Subjective Probability and Generic Sentences

Ashwini Deo and Mokshay Madiman Yale University

Semantics and Linguistic Theory 20 UBC and SFU April 29–May 1 2010

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What makes a generic true?

Generic sentences:

(1)	Tolerate exceptions (to extreme degrees)		
	a. Lions have a mane.	True	
	b. Mosquitoes carry the West Nile virus. (< 1% do)	True	
(2)	Are irreducible to quantificational claims		
	a. Ducks lay eggs.	True	
	b. вит: Ducks are female.	False	
(3)	Express stable, non-accidental generalizations		
	a. Supreme court judges have a prime SSN.	False	
	b. Children born in Rainbow lake are right-handed.	False	

How can these (and other) properties be accounted for?

Generics and probability

Cohen (1996, 1999, and later): Generics express probability judgments, interpreted as statements of hypothetical relative frequency

- P(ψ|φ) = the probability that an arbitrary member of φ satisfies ψ
- Birds fly is true at time t iff P(fly|birds) is >0.5 and remains ~ the same over long intervals in every admissible history continuing t
- The class of generics that are directly accounted for by this simple proposal are the ones which receive a straightforward analysis as strong quantificational claims
- (4) a. Ravens are black. (despite albinos)b. Dogs have four legs. (despite maimed ones)

Extended truth-conditions: Predicate-induced alternatives

(5)	a. Lions have manes.
	b. Ducks lay eggs.

true true

- Generics are evaluated with respect to a set of alternatives
 - Lions have manes induces a set of alternative sexually selected decorative traits: {have coloration of feathers, have antlers, have rump coloration, have manes}
 - Lions have manes is true because P(have mane|lion) > 0.5 for those lions that satisfy at least one predicate from the alternative set
- This condition <u>restricts the domain to</u> predicate-appropriate members of a class of individuals

Extended truth-conditions: Homogeneity w.r.t salient partitions

(6)	a. Ducks are female.	false
	 b. Israelis live on the coast. 	false
	 People are over three years old. 	false

- P(ψ|φ) must be the same in all salient partitions of φ (e.g. gender, space, age)
- The choice of predicate influences the availability of salient partitions
- This condition serves to eliminate a class of false generics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extended truth-conditions: The relative-absolute contrast

7)	a. Frenchmen eat horsemeat.	true
	 Mosquitoes carry the West Nile virus. 	true
	c. Tigers eat people.	true

- " ϕ 'are' ψ " is true as a relative generic iff $P(\psi|\phi)$ is > $P(\psi|\phi')$ where $\phi' = \bigcup ALT(\phi)$
- A generic may be true on either the absolute or the relative reading
- This notion accounts for the truth of generics that do not correspond to strong quantificational relations

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Goal

A unified account of bare plural generics whose truth/falsity is judged based on beliefs about proportions

Subjective probability

- The beliefs of an (individual or collective) agent underlie truth judgments and are represented by probability distributions over the parameters of interest (De Finetti 1989, Ramsey 1926)
- The agent's (un)certainty correlates with the shape of the belief distribution

(ロ) (同) (三) (三) (三) (○) (○)

- Strong belief = Highly peaked graph
- Weak belief = Unpeaked (spread-out) graph

Framework

- BEL : R → P([0, 1]) represents an individual belief system, where R is a set of sentences and P([0, 1]) is the set of probability distributions on [0,1]
- For any generic "φ 'are' ψ", BEL(φ are ψ) is a probability distribution on [0,1] that describes an agent's belief about the proportion of φ that are ψ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For any set ϕ , ϕ_t represents its time-relativized version

Partial order on $\mathcal{P}([0,1])$ for comparing beliefs

- Comparability: A pair of probability distributions on [0,1] is comparable in the partial order ≻ iff both are highly peaked and if these peaks are well separated E.g.: DIST 2 ≻ DIST 3
- Incomparability: A pair of probability distributions on [0,1] is incomparable in ≻ iff either or both are unpeaked, or if they are peaked at the same value E.g.: DIST 1 ≯ DIST 2, DIST 1 ≯ DIST 3, DIST 2 ≯ DIST 2

Judging generics: Our proposal

" ϕ 'are' ψ " is true iff we (sharply) believe that the proportion of ϕ that are ψ is greater than the proportion of ϕ' that are ψ and if our belief in the proportion of ϕ that are ψ is stable across time

" ϕ 'are' ψ " is judged true iff $BEL(\phi_t$ 'are' ψ_t) is **salient** for each time *t* and $BEL(\phi$ 'are' ψ) is **stationary**

(8) **Salience:** $BEL(\phi_t \text{ 'are' } \psi_t)$ is salient iff there exists a well-defined ϕ' s.t. $BEL(\phi_t \text{ 'are' } \psi_t) \succ BEL(\phi'_t \text{ 'are' } \psi_t)$.

 ϕ' is well-defined w.r.t. " ϕ 'are' ψ " iff a. $\llbracket \phi' \rrbracket \supset \llbracket \phi \rrbracket$ b. $\forall x [\phi'(x) \rightarrow \llbracket \psi(x) \rrbracket \in \{0, 1\}]$

(9) **Stationarity:** $BEL(\phi \text{ 'are' } \psi)$ is stationary iff $BEL(\phi_t \text{ 'are' } \psi_t)$ does not vary with time t

Sources of falsity for generics

Generic sentences will be judged false if either:

- 1. $BEL(\phi \text{ 'are' } \psi)$ is not stationary
 - (10) a. Supreme court judges have a prime SSN. *False* b. Children born in Rainbow lake are right-handed. *False*
- 2. $BEL(\phi'_t \text{ 'are' } \psi_t) \succ BEL(\phi_t \text{ 'are' } \psi_t)$ for any time *t*
 - (11)a. Americans have a small ecological footprint.Falseb. Girls in Saudi Arabia dress skimpily.False
- 3. $BEL(\phi_t \text{ 'are' } \psi_t)$ and $BEL(\phi'_t \text{ 'are' } \psi_t)$ are incomparable in the partial order [see next display]

Incomparability as a falsifier

 $BEL(\phi_t \text{ 'are' } \psi_t)$ and $BEL(\phi'_t \text{ 'are' } \psi_t)$ are incomparable in the partial order if either:

• there is no well-defined ϕ' relative to ϕ are ψ

- a. Books are paperbacks. paperback undefined beyond books
 b. Humans are autistic. autism undefined beyond humans
- ► there is a well-defined ϕ' but $BEL(\phi_t \text{ `are' } \psi_t) = BEL(\phi'_t \text{ `are' } \psi_t)$
 - (13) a. Ducks are female. $\phi' = birds$, animals, #living things b. Peacocks are male. $\phi' = birds$, animals, #living things
- ► there is a well-defined φ' but either BEL(φ'_t 'are' ψ_t) or BEL(φ_t 'are' ψ_t) has a spread-out (unpeaked) distribution, rendering the pair incomparable
 - (14) a. Carpets are Persian.b. People are over three years old.

Comparison with the frequentist view

Advantages of our proposal:

- While we introduce the notion of beliefs, we do away with some idealized abstractions implicit in Cohen:
 - 1. admissible histories continuing into the future
 - 2. limiting proportions as size goes to infinity
- Truth/falsity uniformly determined by salience and stationarity, eliminating the need for:
 - 1. predicate-induced alternatives
 - 2. checking homogeneity w.r.t. salient partitions

(日) (日) (日) (日) (日) (日) (日)

- 3. relative-absolute contrast
- All generics are relative in our account
- Generics depend on agent's beliefs

Comparison with the frequentist view (contd.)

Class of generic	Source of falsity		
	Frequentist analysis	Subjective analysis	
SCJ have a prime SSN	non-homogeneous histories	fail stationarity	
Ducks are female	non-homo. salient partition	fail salience	
Books are paperbacks	non-homo. salient partition	fail salience	
Humans are autistic	no explanation	fail salience	

Class of generic	Source of truth		
	Frequentist analysis	Subjective analysis	
Ravens are black	absolute generic	salience+stationarity	
Lions have manes	predicate-induced ALT	salience+stationarity	
Frenchmen eat horsemeat	relative generic	salience+stationarity	
Tigers eat people	relative generic	salience+stationarity	

Extending the account

Satisfaction of salience dependent on contextually provided supercategory:

(15) a. Indians speak English. b. Cats make good pets.

- Existential generics:
 - (16) a. Hindus eat beef.b. Mammals lay eggs.
- Predictions for divergent judgments about:
 - (17) a. Muslims are terrorists.
 - b. Black people are criminals.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

References

Cohen, Ariel. 1999. Generics, Frequency Adverbs, and Probability. Linguistics and Philosophy 22(3):221253.

Cohen, Ariel. 1999. Think generic!: the meaning and use of generic sentences. Stanford: CSLI.

De Finetti, Bruno. 1989. Probabilism: A Critical Essay on the Theory of Probability and on the Value of Science. Erkenntnis 31: 169–223. [Probabilismo, Napoli, Logos 14 (1931), 163-219. Translated by Maria Concetta Di Maio, Maria Carla Galavotti, and Richard C. Jeffrey.

Krifka, Manfred, Francis J. Pelletier, Greg Carlson, Alice ter Meulen, Gennaro Chierchia, and Godehard Link. 1995. Genericity: An Introduction. In *The Generic Book*, pages 1124. Chicago: The University of Chicago Press.

Leslie, Sarah-Jane. 2007. Generics and the structure of the mind. Philosophical Perspectives 21(1): 375–403.

Ramsey, Frank. 1931. Truth and probability. In R.B. Braithwaithe ed. The Foundations of Mathematics and other Logical Essays, pages 156–198. New York: Harcourt, Brace and Company.

▲□▶▲□▶▲□▶▲□▶ □ のQ@