Subjective Probability and Generic Sentences

Ashwini Deo and Mokshay Madiman
Yale University

Semantics and Linguistic Theory 20
UBC and SFU
April 29-May 12010

What makes a generic true?

Generic sentences:
(1) Tolerate exceptions (to extreme degrees)
a. Lions have a mane.
True
b. Mosquitoes carry the West Nile virus. (<1\% do)
True
(2) Are irreducible to quantificational claims
a. Ducks lay eggs.
b. BUt: Ducks are female.

False
(3) Express stable, non-accidental generalizations
a. Supreme court judges have a prime SSN.

False
b. Children born in Rainbow lake are right-handed.

False
How can these (and other) properties be accounted for?

Generics and probability

Cohen (1996, 1999, and later): Generics express probability judgments, interpreted as statements of hypothetical relative frequency

- $\mathrm{P}(\psi \mid \phi)=$ the probability that an arbitrary member of ϕ satisfies ψ
- Birds fly is true at time t iff P (fly|birds) is >0.5 and remains \sim the same over long intervals in every admissible history continuing t
- The class of generics that are directly accounted for by this simple proposal are the ones which receive a straightforward analysis as strong quantificational claims
(4) a. Ravens are black. (despite albinos)
b. Dogs have four legs. (despite maimed ones)

Extended truth-conditions: Predicate-induced alternatives

a. Lions have manes.
b. Ducks lay eggs.

- Generics are evaluated with respect to a set of alternatives
- Lions have manes induces a set of alternative sexually selected decorative traits: \{ have coloration of feathers, have antlers, have rump coloration, have manes\}
- Lions have manes is true because P (have mane|lion) >0.5 for those lions that satisfy at least one predicate from the alternative set
- This condition restricts the domain to predicate-appropriate members of a class of individuals

Extended truth-conditions: Homogeneity w.r.t salient partitions

a. Ducks are female.
b. Israelis live on the coast.
c. People are over three years old.

- $\mathbf{P}(\psi \mid \phi)$ must be the same in all salient partitions of ϕ (e.g. gender, space, age)
- The choice of predicate influences the availability of salient partitions
- This condition serves to eliminate a class of false generics

Extended truth-conditions: The relative-absolute contrast

a. Frenchmen eat horsemeat.
b. Mosquitoes carry the West Nile virus.
c. Tigers eat people.

- " ϕ 'are' ψ " is true as a relative generic iff $\mathrm{P}(\psi \mid \phi)$ is $>$ $\mathrm{P}\left(\psi \mid \phi^{\prime}\right)$ where $\phi^{\prime}=\bigcup A L T(\phi)$
- A generic may be true on either the absolute or the relative reading
- This notion accounts for the truth of generics that do not correspond to strong quantificational relations

Goal

A unified account of bare plural generics whose truth/falsity is judged based on beliefs about proportions
Subjective probability

- The beliefs of an (individual or collective) agent underlie truth judgments and are represented by probability distributions over the parameters of interest (De Finetti 1989, Ramsey 1926)
- The agent's (un)certainty correlates with the shape of the belief distribution
- Strong belief = Highly peaked graph
- Weak belief = Unpeaked (spread-out) graph

Framework

- BEL : $R \rightarrow \mathcal{P}([0,1])$ represents an individual belief system, where R is a set of sentences and $\mathcal{P}([0,1])$ is the set of probability distributions on $[0,1]$
- For any generic " ϕ 'are' ψ ", $\operatorname{BEL}(\phi$ are $\psi)$ is a probability distribution on $[0,1]$ that describes an agent's belief about the proportion of ϕ that are ψ

- For any set ϕ, ϕ_{t} represents its time-relativized version

Partial order on $\mathcal{P}([0,1])$ for comparing beliefs

- Comparability: A pair of probability distributions on [0,1] is comparable in the partial order \succ iff both are highly peaked and if these peaks are well separated
E.g.: DIST $2 \succ$ DIST 3
- Incomparability: A pair of probability distributions on [0,1] is incomparable in \succ iff either or both are unpeaked, or if they are peaked at the same value
E.g.: DIST $1 \nsucc$ DIST 2 , DIST $1 \nsucc$ DIST 3, DIST $2 \nsucc$ DIST 2

Judging generics: Our proposal

" ϕ 'are' ψ " is true iff we (sharply) believe that the proportion of ϕ that are ψ is greater than the proportion of ϕ^{\prime} that are ψ and if our belief in the proportion of ϕ that are ψ is stable across time
" ϕ 'are' ψ " is judged true iff $B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ is salient for each time t and $B E L(\phi$ 'are' $\psi)$ is stationary
(8) Salience: $B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ is salient iff there exists a well-defined ϕ^{\prime} s.t. $\operatorname{BEL}\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right) \succ \operatorname{BEL}\left(\phi_{t}^{\prime}\right.$ 'are' $\left.\psi_{t}\right)$.
ϕ^{\prime} is well-defined w.r.t. " ϕ 'are' ψ " iff
a. $\llbracket \phi^{\prime} \rrbracket \supset \llbracket \phi \rrbracket$
b. $\forall x\left[\phi^{\prime}(x) \rightarrow \llbracket \psi(x) \rrbracket \in\{0,1\}\right]$
(9) Stationarity: $B E L(\phi$ 'are' $\psi)$ is stationary iff $B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ does not vary with time t

Sources of falsity for generics

Generic sentences will be judged false if either:

1. $\operatorname{BEL}(\phi$ 'are' ψ) is not stationary
a. Supreme court judges have a prime SSN.

False
b. Children born in Rainbow lake are right-handed.

False
2. $B E L\left(\phi_{t}^{\prime}\right.$ 'are' $\left.\psi_{t}\right) \succ \operatorname{BEL}\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ for any time t
a. Americans have a small ecological footprint.

False
b. Girls in Saudi Arabia dress skimpily.
3. $B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ and $B E L\left(\phi_{t}^{\prime}\right.$ 'are' $\left.\psi_{t}\right)$ are incomparable in the partial order [see next display]

Incomparability as a falsifier

$B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ and $\operatorname{BEL}\left(\phi_{t}^{\prime}\right.$ 'are' $\left.\psi_{t}\right)$ are incomparable in the partial order if either:

- there is no well-defined ϕ^{\prime} relative to ϕ are ψ
(12) a. Books are paperbacks. paperback undefined beyond books
b. Humans are autistic. autism undefined beyond humans
- there is a well-defined ϕ^{\prime} but

$$
\begin{equation*}
B E L\left(\phi_{t} \text { ‘are’ } \psi_{t}\right)=B E L\left(\phi_{t}^{\prime} \text { ‘are’ } \psi_{t}\right) \tag{13}
\end{equation*}
$$

a. Ducks are female.
$\phi^{\prime}=$ birds, animals, \#living things
b. Peacocks are male.
$\phi^{\prime}=$ birds, animals, \#living things

- there is a well-defined ϕ^{\prime} but either $\operatorname{BEL}\left(\phi_{t}^{\prime}\right.$ 'are' $\left.\psi_{t}\right)$ or $B E L\left(\phi_{t}\right.$ 'are' $\left.\psi_{t}\right)$ has a spread-out (unpeaked) distribution, rendering the pair incomparable
a. Carpets are Persian.
b. People are over three years old.

Comparison with the frequentist view

Advantages of our proposal:

- While we introduce the notion of beliefs, we do away with some idealized abstractions implicit in Cohen:

1. admissible histories continuing into the future
2. limiting proportions as size goes to infinity

- Truth/falsity uniformly determined by salience and stationarity, eliminating the need for:

1. predicate-induced alternatives
2. checking homogeneity w.r.t. salient partitions
3. relative-absolute contrast

- All generics are relative in our account
- Generics depend on agent's beliefs

Comparison with the frequentist view (contd.)

Class of generic	Source of falsity	
	Frequentist analysis	Subjective analysis
SCJ have a prime SSN	non-homogeneous histories	fail stationarity
Ducks are female	non-homo. salient partition	fail salience
Books are paperbacks	non-homo. salient partition	fail salience
Humans are autistic	no explanation	fail salience

Class of generic	Source of truth	
	Frequentist analysis	Subjective analysis
Ravens are black	absolute generic	salience+stationarity
Lions have manes	predicate-induced ALT	salience+stationarity
Frenchmen eat horsemeat	relative generic	salience+stationarity
Tigers eat people	relative generic	salience+stationarity

Extending the account

- Satisfaction of salience dependent on contextually provided supercategory:
(15) a. Indians speak English.
b. Cats make good pets.
- Existential generics:
(16) a. Hindus eat beef.
b. Mammals lay eggs.
- Predictions for divergent judgments about:
(17) a. Muslims are terrorists.
b. Black people are criminals.

References

- Cohen, Ariel. 1999. Generics, Frequency Adverbs, and Probability. Linguistics and Philosophy 22(3):221253.
- Cohen, Ariel. 1999.Think generic!: the meaning and use of generic sentences. Stanford: CSLI.
- De Finetti, Bruno. 1989. Probabilism: A Critical Essay on the Theory of Probability and on the Value of Science. Erkenntnis 31: 169-223. [Probabilismo, Napoli, Logos 14 (1931), 163-219. Translated by Maria Concetta Di Maio, Maria Carla Galavotti, and Richard C. Jeffrey.
- Krifka, Manfred, Francis J. Pelletier, Greg Carlson, Alice ter Meulen, Gennaro Chierchia, and Godehard Link. 1995. Genericity: An Introduction. In The Generic Book, pages 1124. Chicago: The University of Chicago Press.
- Leslie, Sarah-Jane. 2007. Generics and the structure of the mind. Philosophical Perspectives 21(1): 375-403.
- Ramsey, Frank. 1931. Truth and probability. In R.B. Braithwaithe ed. The Foundations of Mathematics and other Logical Essays, pages 156-198. New York: Harcourt, Brace and Company.

