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Abstract—A new lower bound on the entropy of the sum
of independent random vectors is demonstrated in terms of
rearrangements. This lower bound is better than that given by
the entropy power inequality. In fact, we use it to give a new,
independent, and simple proof of the entropy power inequality
in the case when the summands are identically distributed. We
also give a more involved but new way to recover the full entropy
power inequality, without invoking Fisher information, MMSE
or any differentiation of information functionals.

I. INTRODUCTION

The entropy power inequality (EPI) is a basic and pow-
erful tool in information theory, and also has relevance to
probability theory and mathematical physics. Firstly, it has
been used very effectively in proofs of converse results for
various channel coding theorems; indeed this was Shannon’s
original motivation for introducing it in [1]. Another famous
application of it to Gaussian broadcast channels was developed
by Bergmans [2], and this was significantly generalized in
an important (and much more recent) paper of Weingarten,
Steinberg and Shamai [3] to the Gaussian MIMO setting.
Secondly, the EPI plays a key role in the information-theoretic
understanding of probabilistic limit theorems; not only does
it imply that entropy increases monotonically along a subse-
quence for the normalized sums in the central limit theorem,
but the search for a discrete analogue of it has motivated
much interesting recent research (see [4], [5] and references
therein). Thirdly, the EPI is closely related to important results
in mathematical physics– it can be used to deduce the Fourier
transform formulation of Heisenberg’s uncertainty principle,
as well as the Gaussian logarithmic Sobolev inequality (both
these deductions are in Stam’s beautiful paper [6]).

Numerous variants and generalizations of the EPI have been
proved, discussed, and applied to various problems in the
literature. However, to our knowledge, there are no known
direct refinements of the EPI in the sense that a natural
information-theoretic quantity is inserted between the left and
right sides of the classical formulations of the inequality.
Our first contribution is to provide such a refinement. The
refinement is stated in terms of the notion of the spherically
symmetric decreasing rearrangement of a random vector (or
its probability density function); we defer the definition of this
notion to Section II.

Theorem 1. Let fi, i = 1, 2, · · ·, n be n probability densities
on Rd and f∗i , i = 1, 2, · · ·, n be the spherically symmetric
decreasing rearrangements of the corresponding densities.
Then

h(f1 ? f2 ? · · · ? fn) ≥ h(f∗1 ? f∗2 ? · · · ? f∗n), (1)

as long as both sides are well defined. Here

h(f) = −
∫
Rd

f(x) log(f(x))dx,

is the differential entropy of a probability density f , and ? is
ordinary convolution for densities on Rd.

Indeed, the classical EPI can be used to show that if gi
are independent isotropic (i.e., covariance being a multiple of
identity) Gaussians with h(fi) = h(gi), then

h(f∗1 ? f
∗
2 ? · · · ? f∗n) ≥ h(g1 ? g2 ? · · · ? gn).

Since the classical EPI can be formulated as saying that

h(f1 ? f2 ? · · · ? fn) ≥ h(g1 ? g2 ? · · · ? gn), (2)

Theorem 1 is saying that h(f∗1 ? f
∗
2 ? · · · ? f∗n) can be inserted

between the two sides of (2). The details of this argument
are given in Section III, but for now we simply note that this
argument does not immediately give a new proof of the EPI,
since the EPI itself was used to show that (1) is a refinement
of (2).

The proof of Theorem 1 is independent of the EPI or any
Fisher information, MMSE or entropy differentiation argu-
ments, and relies on rearrangement inequalities developed by
Brascamp, Lieb and Luttinger [7]. The details of the proof of
Theorem 1, as well as various applications, will be contained
in the forthcoming paper [8] by the authors. In this note, we
focus on one particular application– providing a new proof
of the EPI. This is particularly easy to do in the special case
when the summands are identically distributed (which is the
relevant case for the application to the plain vanilla entropic
CLT) and we explain this in Section IV; the deduction of the
general case from Theorem 1 is more involved and presented
in Section V. Section VI contains some concluding remarks.

978-1-4799-0446-4/13/$31.00 ©2013 IEEE

2013 IEEE International Symposium on Information Theory

599



II. BRIEF INTRODUCTION TO SPHERICALLY SYMMETRIC
DECREASING REARRANGEMENT

For a Borel set A with volume |A|, one can define its
spherically symmetric rearrangement A∗ by

A∗ = B(0, r),

where B(0, r) stands for the open ball with radius r centered
at the origin and r is determined by the condition that B(0, r)
has volume |A|. Here we use the convention that if |A| = 0,
then A∗ = ∅.

Now for a measurable non-negative function f , we define
its spherically symmetric decreasing rearrangement f∗ by:

f∗(y) =

∫ +∞

0

IB∗t (y)dt,

where Bt = {x : f(x) > t} and IB∗t (y) is the indicator
function of B∗t . It follows easily from definition that f∗(x)
is spherically symmetric and a decreasing function of the
Euclidean norm of x.

The following lemma contains some simple properties of
f∗:

Lemma 2. 1) For 1 ≤ p < +∞,

‖f‖p = ‖f∗‖p.

In particular, if f is a probability density, so is f∗.
2) If f is bounded then so is f∗; if f is strictly positive,

then so is f∗.
3) If f is a probability density function, then∫

‖x‖2f∗(x)dx ≤
∫
‖x‖2f(x)dx,

where ‖x‖ is the Euclidean norm.

The first two statements in the above lemma are classical [9]
and the last one is probably known in the literature, although
we are not able to find a reference. We also need the following
observation, which seems to be new but follows easily from
definition.

Lemma 3. If one of h(f) and h(f∗) is well defined, then so
is the other one and we have:

h(f) = h(f∗).

III. THEOREM 1 AS A STRENGTHENING OF EPI

We first point out that Theorem 1 can be viewed as a
strengthening of the classical EPI. Suppose that f1 and f2 are
two densities. Then by Theorem 1, for any fixed 0 < λ < 1,
we have:

h(
√
λX1 +

√
1− λX2) ≥ h(

√
λX∗1 +

√
1− λX∗2 ), (3)

where Xi is distributed according to fi, X∗i is distributed
according to f∗i for i = 1, 2 and all random vectors are
independent.

In the literature, the EPI is typically stated under the
assumption that both random vectors have finite covariance
matrices. By Lemma 2 (3), we can apply EPI to X∗1 and X∗2 :

h(
√
λX∗1 +

√
1− λX∗2 ) ≥ λh(X∗1 ) + (1− λ)h(X∗2 ). (4)

Now from Lemma 3, we have:

λh(X∗1 ) + (1− λ)h(X∗2 ) = λh(X1) + (1− λ)h(X2), (5)

From inequalities (3), (4) and (5) , we see that

h(
√
λX1 +

√
1− λX2) ≥ λh(X1) + (1− λ)h(X2),

which is an equivalent form of the EPI applied to X1 and X2.
Hence h(

√
λX∗1 +

√
1− λX∗2 ), given by Theorem 1, is a

tighter lower bound of h(
√
λX1+

√
1− λX2) than λh(X1)+

(1−λ)h(X2), given by the EPI applied to X1 and X2 directly.
In this sense, Theorem 1 is a strengthening of the EPI.

IV. DEDUCING EPI FROM THEOREM 1 ASSUMING
IDENTICAL DISTRIBUTION

An EPI for symmetric densities comes almost for free if we
assume identical distribution. The case when λ = 1

2 seems to
be folklore; we learned it from Andrew Barron several years
ago. For completeness, we sketch the easy proof for all λ. We
first work under the assumption that f1 and f2 are bounded
and strictly positive, with finite covariance matrices. At the
end of this section, we indicate how to relax this assumption
to obtain the EPI under the assumption that the distribution
has a finite covariance matrix.

By Lemma 2, it suffices to show the following.

Proposition 4. Fix any 0 < λ < 1. Suppose that Y1 and Y2
are two independent random vectors distributed according to
a spherically symmetric, bounded and strictly positive density
with a finite covariance matrix. Then:

h(
√
λY1 +

√
1− λY2) ≥ h(Y1).

Proof: Clearly, both sides are finite under our assump-
tions. By independence, we have:

h(Y1, Y2) = h(Y1) + h(Y2) = 2h(Y1).

By the scaling property for entropy,

h(Y1, Y2) = h(
√
λY1 +

√
1− λY2,

√
1− λY1 −

√
λY2).

Now we can use subadditivity of entropy to obtain:

h(Y1, Y2) ≤ h(
√
λY1 +

√
1− λY2) + h(

√
1− λY1 −

√
λY2)

= 2h(
√
λY1 +

√
1− λY2),

where the last equality follows from spherical symmetry (in
fact, we only need central symmetry) and the i.i.d. assumption.

The inequality (3), Proposition 4 and Lemma 3 imply the
EPI for bounded and strictly positive density if we assume
identical distribution. Note that it is known [10] if X has a
finite covariance matrix, then h(X +

√
tZ) is continuous at
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t = 0, where Z is a standard Gaussian random vector on
Rd, independent of X . But X +

√
tZ has a bounded and

strictly positive density. Hence we can relax our assumption
at the beginning by a limiting argument. We conclude that the
assumption of a finite covariance matrix is enough.

V. THE FULL EPI VIA REARRANGEMENT

In this section, we will assume d = 1 for convenience.
Let X and Y be two independent random variables. Similarly
to the previous section, to prove the full EPI, we can assume
that X and Y are both symmetric random variables distributed
according to bounded, decreasing densities with finite second
moments.

Our proof is inspired by and essentially an adaption of
Brascamp and Lieb’s proof of Young’s inequality with sharp
constant [11]. The trick is to use tensorization, or what
physicists call the replica method. Consider X1, X2, · · ·, XM ,
which are M independent copies of X , and independent of
these, Y1, Y2, · · ·, YM , which are M independent copies of Y .
Then by independence, we have:

h(
√
λX1 +

√
1− λY1,

√
λX2 +

√
1− λY2, · · · ,√

λXM +
√
1− λYM ) =Mh(

√
λX1 +

√
λY1).

(6)

Now we apply the M dimensional version of Theorem 1:

h(
√
λX1 +

√
1− λY1, · · · ,

√
λXM +

√
1− λYM )

= h(
√
λX+

√
1− λY)

≥ h(
√
λX∗ +

√
1− λY∗),

(7)

where X = (X1, X2, · · ·, XM ), Y = (Y1, Y2, · · ·, YM ) and all
random variables are independent.

Since we assumed f and g are bounded symmetric de-
creasing, we can approximate these densities pointwisely and
monotonically from below by symmetric decreasing simple
functions of the form fn and gn:

fn =

kn∑
i=1

cni I
n
i ,

where Ini are indicators of symmetric finite intervals with Ini ≤
Ini+1 and cni > 0 (note that cni > 0 since fn is decreasing) and
a similar expression for gn. By our assumption, we can show
(details omitted) that for fixed 0 < λ < 1,

h(f̃n)→ h(f),

h(g̃n)→ h(g),

h

(
1√
λ
f̃n

(
·√
λ

)
?

1√
1− λ

g̃n

(
·√

1− λ

))
→

h

(
1√
λ
f

(
·√
λ

)
?

1√
1− λ

g

(
·√

1− λ

))
,

where f̃n and g̃n are normalized versions of fn and gn. Hence,
without loss of generality, we can assume that f and g are of
the following form:

f =

k1∑
i=1

c1i I
1
i , g =

k2∑
i=1

c2i I
2
i .

where c1i > 0, c2i > 0. Let

F (x1, x2, · · ·, xM ) =

M∏
i=1

f(xi),

G(y1, y2, · · ·, yM ) =

M∏
i=1

g(yi)

be the densities of X and Y. Then it’s easy to see F takes at
most (M+1)k1 values and G takes at most (M+1)k2 values.
Hence just by looking at the definitions of rearrangements, one
sees that (we omit the elementary detail), F ∗ takes at most
(M + 1)k1 values and G∗ takes at most (M + 1)k2 values.
This allows us to express F ∗ and G∗ as, using spherically
symmetric decreasing property,

F ∗ =

(M+1)k1∑
i=1

b1i Iη1i , G∗ =

(M+1)k2∑
j=1

b2jIη2j ,

where b1i > 0, b2j > 0 and Iη1i , Iη2j are indicators of M

dimensional balls η1i and η2j , centered at the origin and
|η1i | ≤ |η1i+1|, |η2j | ≤ |η2j+1|. Since both are probability
densities, we have:

(M+1)k1∑
i=1

b1i |η1i | = 1,

(M+1)k2∑
j=1

b2j |η2j | = 1,

∑
i,j

b1i b
2
j |η1i ||η2j | = 1.

By concavity of entropy as a functional of density, we get:

h(
√
λX∗ +

√
1− λY∗)

≥
∑
i,j

b1i b
2
j |η1i ||η2j |h(

√
λZ1

i +
√
1− λZ2

j ),
(8)

where Z1
i and Z2

j are independent uniform distributions on
the M dimensional balls η1i and η2j respectively. We now use
the following simple lemma:

Lemma 5. Let f be a mixture of densities:

f =

n∑
i=1

cifi.

Then
h(f) ≤

∑
i

cih(fi)−
∑
i

ci log ci

≤
∑
i

cih(fi) + log n.

Hence we have, using Lemma 5 and Lemma 3:

Mh(X) = h(X) = h(X∗)

≤ k1 log(M + 1) +

(M+1)k1∑
i=1

b1i |η1i |h(Z1
i ),

Mh(Y ) = h(Y) = h(Y∗)
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≤ k2 log(M + 1) +

(M+1)k2∑
j=1

b2j |η2j |h(Z2
j ). (9)

Now let us temporarily assume that the EPI is true when both
X and Y are uniform distributions on balls centered at the
origin. Under this assumption,

h(
√
λZ1

i +
√
1− λZ2

j ) ≥ λh(Z1
i ) + (1− λ)h(Z2

j ). (10)

Then if we combine (6) to (10), we get:

h(
√
λX +

√
1− λY )

≥ −λk1
log(M + 1)

M
− (1− λ)k2

log(M + 1)

M
+ λh(X) + (1− λ)h(Y ).

Taking a limit as M goes to infinity, we get full EPI.
This is already interesting. Because, assuming the validity

of Theorem 1 when n = 2 (but for any d), some simple
reductions reduce our task to proving EPI ONLY for uniform
distributions on balls! In principle, this is a calculus problem
and an explicit expression for the entropy of the sum of two
independent uniforms on balls will be given in the full paper.
But, to show the full entropy power, we actually only need
the following lemma:

Lemma 6. Let Z1 and Z2 be two independent uniforms on
M dimensional balls centered at the origin, then:

h(
√
λZ1 +

√
1− λZ2) ≥ λh(Z1) + (1− λ)h(Z2) + o(M),

where the o symbol is uniform with respect to all pairs of balls
centered at the origin.

Proof: We will only sketch the argument here. Let

Z =
√
λZ1 +

√
1− λZ2

and the radii of the balls corresponding to Z1 and Z2 be b1 and
b2 respectively. Suppose the densities of Z,Zi are f, fi, i =
1, 2. We now define two M dimensional Gaussian densities:

gi(x) =

(
M

2πb2i

)M
2

e
−M|x|2

2b2
i , i = 1, 2,

and let G =
√
λG1 +

√
1− λG2, with density g, where G1

and G2 are independent random vectors with densities g1 and
g2. We indicate that (details in the full paper), using Stirling’s
approximation, one can show (assuming M even,w.l.o.g):

fi ≤
√
πMe

1
12M gi,

f ≤ πMe
1

6M g.

Hence it is easily seen that:

D(Z‖G) = λD(Z1‖G1) + (1− λ)D(Z2‖G2) +O(log(M)).

where D(·‖·) is the relative entropy and the O(log(M)) means
it’s bounded by log(M) times a universal constant. Now some
easy calculations will show:

D(Z‖G) = −h(Z)+ M2

M + 2
−M

2
log

(
M

2π(λb21 + (1− λ)b22)

)
,

D(Zi‖Gi) = −h(Zi) +
M2

M + 2
− M

2
log

(
M

2πb2i

)
.

Hence we get:

h(Z)− λh(Z1)− (1− λ)h(Z2)

=
M

2

(
log(λb21 + (1− λ)b22)

− λ log(b21)− (1− λ) log(b22)
)
+O(log(M))

(11)

≥ O(log(M)),

where the last step follows from concavity of log and the
meaning of the O symbol is as before.

The above proof gives very strong information about the
entropy of the sum of two independent uniforms on balls, in
high dimensions. Equality (11) is in fact equivalent to:

e
2h(Z1+Z2)

M = e
O(log(M))

M

(
e

2h(Z1)
M + e

2h(Z2)
M

)
, (12)

where the meaning of the O symbol is as before. This is not
surprising because uniform distributions on high-dimensional
balls are close to Gaussians.

Another implication is the following. Suppose we consider
two independent uniforms X and Y on Borel sets in RM with
finite volumes. Then Theorem 1 gives:

h(X + Y ) ≥ h(X∗ + Y ∗).

But from (12) and Lemma 3, we see that:

2h(X∗ + Y ∗)

M
= log(e

2h(X)
M + e

2h(Y )
M ) +

O(log(M))

M
.

Hence, although our Theorem 1 is a strengthening of EPI, in
high dimensions, we do not gain much.

However, for a fixed dimension, our bound can give sig-
nificant improvements over EPI. In fact, a simple calculation
shows that when d = 1 and X,Y are uniforms on Borel sets
A and B, Theorem 1 becomes:

h(X + Y ) ≥ log(|A|e
|B|
2|A| ) = log(|A|) + |B|

2|A|
,

assuming |A| ≥ |B|. In contrast, the EPI will give:

h(X + Y ) ≥ log(|A|) + 1

2
log

(
1 +

(
|B|
|A|

)2)
.

Our bound is more precise than that given by EPI especially
when |B||A| is small.

Remark 7. There have been many proofs of the EPI. The
ones that are information-theoretic in nature include the early
proof by Stam [6] using Fisher information and interpolation
(with simplifications by Blachman [12] and Dembo, Cover
and Thomas [13]), Verdú and Guo’s proof [14] using a similar
interpolation but with MMSE instead of Fisher information,
and Rioul’s proof [15] sidestepping the explicit interpola-
tion arguments common to the previously mentioned proofs.
There have also been more analytical proofs, such as Lieb’s
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proof [16] starting from Young’s convolution inequality with
sharp constant (which in turn has several proofs), Szarek
and Voiculescu’s proof [17] based on a restricted Brunn-
Minkowski inequality, and Lehec’s proof [18] based on a
Brownian motion representation of relative entropy to Gaus-
sianity. We have given yet another proof of the EPI here,
starting with Theorem 1, which reduces the task of proving the
EPI for general independent summands to proving the EPI for
summands with spherically symmetric, decreasing densities.
Our proof is in some sense related to the Szarek–Voiculescu
proof since the restricted Brunn-Minkowski inequality they use
as their main stepping stone to the EPI is actually proved using
rearrangements, but that inequality does not have a simple
information-theoretic statement like Theorem 1 does.

Remark 8. Although Young’s inequality with sharp constant
implies the EPI, the early proofs of Young’s inequality with
sharp constant [19], [11], [20] are very different from direct
proofs of the EPI. Even in the recent work by Cordero-
Erausquin and Ledoux [21], where they give a proof of a
special case of the EPI by similar entropy duality methods
to their proof of Young’s inequality, there are difficulties in
treating the EPI as discussed by them. Our proof provides a
unification of sorts in that both our proof and the proof by
Brascamp and Lieb [11] of Young’s inequality have two key
ingredients (the replica trick and a rearrangement inequality).

VI. CONCLUSION

We indicate some extensions and possible applications of
Theorem 1, the details of which will be contained in the full
paper.

First, it turns out that Theorem 1 has a natural extension to
Rényi entropies of all orders. Specifically, we have:

Theorem 9. Let fi, i = 1, 2, · · ·, n be n probability densities
on Rd. Then for p ∈ [0,+∞],

hp(f1 ? f2 ? · · · ? fn) ≥ hp(f∗1 ? f∗2 ? · · · ? f∗n),

as long as both sides are well defined. Here

hp(f) =
1

1− p
log(

∫
fp(x)dx)

for p ∈ (0, 1) ∪ (1,+∞), h1(f) = h(f) and h0(f), h∞(f)
are defined in a limiting sense.

We will give a unified proof for all p in the full paper, using
some ideas from majorization theory.

Second, some other functional inequalities can be obtained
as corollaries to our results. For example, the Pólya-Szegö in-
equality [9] can be obtained as a corollary to Theorem 1 using
standard information theoretical tools. As another example, the
Brunn-Minkowski inequality [9] is implied by the p = 0 case
of Theorem 9.

Finally, we point out that our results might be useful in
reducing some optimization problems involving entropy of
sums to the spherically symmetric decreasing case, for which
the symmetry can be used.
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