CHAPTER I
Uniform Convergence of
Empirical Measures

... in which uniform analogues of the strong law of large numbers are proved
by two methods. These generalize the classical Glivenko-Cantelli theorem,
which concerns only empirical measures indexed by intervals on the real line,
to uniform convergence over classes of sets and uniform convergence over classes
of functions. The results are applied to prove consistency for statistics expressible
as continuous functionals of the empirical measure. A refinement of the second
method gives rates of convergence.

II.1. Uniformity and Consistency

For independent sampling from a distribution function F, the strong law of
large numbers tells us that the proportion of points in an interval (— co, ¢]
converges almost surely to F(t). The classical Glivenko-Cantelli theorem
strengthens the result by adding that the convergence holds uniformly over
all . The strong law also tells us that the proportion of points in any fixed
set converges almost surely to the probability of that set. The strengthening
of this result, to give uniform convergence over classes of sets more interesting
than intervals on the real line, and its further generalization to classes of
functions, will be the main concern of this chapter.

For the most part we shall consider only independent sampling from a
fixed distribution P on a set S. The probability measure P, that puts equal
mass at each of the n observations &,,..., &, will be called the empirical
measure. It captures everything we might need to know about the observa-
tions, except for the order in which they were taken. Averages over the
observations can be written as expectations with respect to P, :

EWORY N

If P| f| < oo, the average converges almost surely to its expected value, Pf.
We shall be finding conditions under which the convergence is uniform over
a class # of functions.

Of course we should not expect uniform convergence over all classes of
functions, except in trivial cases. Unless P is a discrete distribution, the
difference P,D — PD cannot even converge to zero uniformly over all sets;
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there always exists a countable set with P, measure one. But there are non-
trivial classes over which the convergence is uniform. When we have such a
class # we can deduce consistency results for statistics that depend on the
observations only through the values P, f, for f in %

1 Example. The median of a distribution P on the real line can be defined
as the smallest value of m for which P(— oo, m] > 4. If P(— 0, ] > % for
each t > m then the median is a continuous functional, in the sense that

|median(Q) — median(P)| < ¢
whenever the distribution Q is close enough to P. Close means

sup |Q(—o0, t] — P(— o0, t]] < 6,

where the tiny § is chosen so that
P(—oo,m—¢] <4 —6,
P(—oo,m+¢]>%+ 6.
The argument goes: if Q has median m’ then
P(—o0,m] > Q(~co,m] — 8 =1 -6,
so certainly m’ > m — . Similarly, for every m” < m,
P(—oo,m"] < Q(—oo,m" ]+ 6<%+ 6,

which implies m” < m + ¢, and hence m’ < m + «.

Next comes the probability theory. If the empirical measure P, is con-
structed from a sample of independent observations on P, the Glivenko-
Cantelli theorem tells us that

sup|P,(—0,t] — P(— 0, t]] >0 almost surely.

t
From this we deduce that, almost surely,
|median(P,) — median(P)| < ¢ eventually.

The sample median is strongly consistent as an estimator of the population
median. ]

For this example we didn’t have to prove the uniformity result; the
Glivenko—-Cantelli theorem is the oldest and best-known uniform strong law
of large numbers in the literature. But as we encounter new functions
(usually called functionals) of the empirical measure, new uniform con-
vergence theorems will be demanded. We shall be exploring two methods
for proving these theorems.

The first method is simpler in concept, but harder in execution. It
involves direct approximation of functions in an infinite class & by a
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finite collection of functions. Classical convergence results, such as the strong
law of large numbers or the ergodic theorem, ensure uniform convergence
for the finite collection; the form of approximation carries the uniformity
over to & Section 2 deals with direct approximation.

The second method depends heavily upon symmetry properties implied by
independence. It uses simple combinatorial arguments to identify classes
satisfying uniform strong laws of large numbers under independent sampling.
Sections 3 to 5 assemble the ideas behind this method.

I1.2. Direct Approximation

Throughout the section # will be a class of (measurable) functions on a set
§ with a o-field that carries a probability measure P. The empirical measure
P, is constructed by sampling from P. Assume P|f| < oo for each f in .
If # were finite, the convergence of P, f to Pf assured by the strong law of
large numbers would, for trivial reasons, be uniform in f. If # can be ap-
proximated by a finite class (not necessarily a subclass of ) in such a way
that the errors of approximation are uniformly small, the uniformity carries
over to & The direct method achieves this by requiring that each member
of # be sandwiched between a pair of approximating functions taken from
the finite class.

2 Theorem. Suppose that for each ¢ > 0 there exists a finite class F. containing
lower and upper approximations to each f in &, for which

fo<f<fov and P(fouv—fi) <e
Then supg |P, f — Pf| — 0 almost surely.

Proor. Break the asserted convergence into a pair of one-sided results:
liminf inf(P,f — Pf) > 0
Z

and
limsup sup(P,f — Pf) <0
7

or, equivalently,
liminf inf(P,(—f) — P(—f)) = O.

&

Then two applications of the next theorem will complete the proof. O

3 Theorem. Suppose that for each ¢ > 0 there exists a finite class F, of
Sfunctions for which: to each fin & there exists an f, in &, such that f, < f and
Pf, > Pf — ¢. Then

liminf inf(P,f — Pf) = 0 almost surely.
Z
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Proor. For each ¢ > 0,
liminf inf(P, f — Pf) > liminf inf(P, f, — Pf) because f, < f
7z F

> liminf inf (P, f, — Pf,) + inf(Pf, — Pf)
F F

>0+ —e¢ almost surely, as &, is finite.

Throw away an aberrant null set for each positive rational ¢ to arrive at the
asserted result. (]

You might have noticed that independence enters only as a way of
guaranteeing the almost sure convergence of P, f, to Pf, for each approximat-
ing f,. Weaker assumptions, such as stationarity and ergodicity, could
substitute for independence.

4 Example. The method of k-means belongs to the host of ad hoc procedures
that have been suggested as ways of partitioning multivariate data into
groups somehow indicative of clusters in the underlying population. We can
prove a consistency theorem for the procedure by application of the one-
sided uniformity result of Theorem 3.

For purposes of illustration, consider only the simple case where observa-
tions ¢, ..., &, from a distribution P on the real line are to be partitioned
into two groups. The method prescribes that the two groups be chosen to
minimize the within-groups sum of squares. Equivalently, we may choose
optimal centers a, and b, to minimize

M=

& — al* A & — bI%,
i=1
then allocate each ¢&; to its nearest center. The optimal centers must lie at the
mean of those observations drawn into their clusters, hence the name
k-means (or 2-means, in the present case). In terms of the empirical measure
P,, the method seeks to minimize

W(a, b, P,) = P, fo.,
where
fap®) =|x —al* A |x = b|%
As the sample size increases, W(a, b, P,) converges almost surely to
W(a, b, P) = Pf,,

for each fixed (a, b). This suggests that (a,, b,), which minimizes W(-, -, P,),
might converge to the (a*, b*) that minimizes W(., -, P). Given a few
obvious conditions, that is indeed what happens.

To ensure finiteness of W(-, -, P), assume that P|x|? < co. Assume also
that there exists a unique (a*, b*) minimizing W. Adopt the convention that
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a < b in order that (b*, a*) be ruled out as a distinct minimizing pair.

Without uniqueness the consistency statement needs a slight reinterpretation
(Problem 1).

The continuity argument lurking behind the consistency theorem does
depend on one-sided uniform convergence of W(-, -, P,) to W(-, -, P), but
not uniformly over all possible choices for the centers- We must first force
(a,, b,) into a region

for some suitably large M, then prove

liminf inf (P, f, , — Pf, ,) > 0 almost surely.
C

We need at least one of the centers within a bounded region [ — M, M] to get
the uniformity. Determine how large M needs to be by invoking optimality

of (a,, b,).
W(a,, by, P,) < W(0,0, P,)
— W(0,0, P) almost surely
= P|x).

If both a, and b, lay outside [ — M, M] then

W(a,, b,, P,) = GM)?P,[ —i1M, 1M]
- (ZM)*P[—3M, iM] almost surely.

If we choose M so that P|x[* < (3M)*P[—iM,1M] then there must
eventually be at least one of the optimal centers within [ — M, M7, almost
surely. We shall later also need M so large that (a*, b*) belongs to C.

Explicit construction of the finite approximating class demanded by
Theorem 3 is straightforward, but a trifle messy. That is one of the dis-
advantages of brute-force methods. First note that

fa () < (x = M)? + (x + M)?* for (a, b)in C.

Write F(x) for the upper bound. Because PF < o0, there exists a constant D,
larger than M, for which PF[—D, D¢ < &. We have only to worry about
the approximation to f, , on [—D, D].

We may assume that both g and b lie in the interval [—-3D, 3D]. For if,
say, |b| > 3D then

Jap(x] < D} = |x — al? = £, (){|x| < D}

because |a| < M; the lower approximation for fa.a on [—D, D] will also
serve for f, ;.
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Let C, be a finite subset of [—3D, 3D]? such that each (4, b) in that
square has an (a,b') with |a — d’| < ¢/D and |b — V| < ¢/D. Then for
each xin [—D, D],

[ fap0) = fo,s()] < 1(x — a)* = (x — a)?[ + [(x — b)> — (x — b')?|
<2la—d|lx—%Ha+a)|+2|b—b]|x — b+ b)
< 2(¢/D)(D + 3D) + 2(¢/D)D + 3D)
= 16e.

The class #33, consists of all functions (£, ,(x) — 16¢){|x| < D} for (a, b’)

ranging over C,.
From Theorem 3,

liminf inf(P, £, , — Pf, ) = O.
(o}

Eventually the optimal centers (a,, b,) lie in C. Thus
liminf(W(a,, b,, P,) — W(a,, b,, P)) > 0 almost surely.
Since
W(a,, b,, P,) < W(a* b* P,) because (a,, b,) is optimal for P,
— W(a*, b*, P) almost surely
< W(a,, b,, P)  because (a*, b*) is optimal for P,
we then deduce that

W(ay, b,, Py - W(a*, b*, P) almost surely.

Notice what happened. The uniformity allowed us to transfer optimality of
(a,,b,) for P, to a sort of asymptotic optimality for P; the processes
W(-, -, P,) have disappeared, leaving everything in terms of the fixed, non-
random function W(-, -, P).

We have assumed that W(-, -, P) achieves its unique minimum at (a*, b*).
Complete the argument by strengthening this to: for each neighborhood U
of (a*, b*),

inf W(a, b, P) > W(a*, b*, P).

C\U

Continuity of W(-, -, P) takes care of the infimum over bounded regions of
C\U. If there were an unbounded sequence (a;, §;) in C with

W((xia ﬁir P) i W(a*a b*, P):

we could extract a subsequence along which, say, o; - — co and g; —» B, with
|B] < M. Dominated convergence would give

W(a*, b*, P) = P|x — BI?,

which would contradict uniqueness of (a*, b*): for every a, the pair (a, f)
would minimize W(., -, P). The pair (a,, b,), by seeking out the unique
minimum of W(-, -, P) over the region C, must converge to (a*, b*). O
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The k-means example typifies consistency proofs for estimators defined
by optimization of a random criterion function. By ad hoc arguments one
forces the optimal solution into a restricted, often compact, region. That is
usually the hardest part of the proof. (Problem 2 describes one particularly
nice ad hoe argument.) Then one appeals to a uniform strong law over the
restricted region, to replace the random criterion function by a deterministic
limit function. Global properties of the limit function force the optimal
solution into desired neighborhoods. If one wants consistency results that
apply not just to independent sequences but also, for example, to stationary
ergodic sequences, one is stuck with cumbersome direct approximation
arguments; but for independent sampling, slicker methods are available for
proving the uniform strong laws. We shall return to the k-means problem
in Section 5 (Example 29 to be precise) after we have developed these methods.

S Example. Let 0 be the parameter of a stationary autoregressive process

Yn+1 = Byn + U,

for independent, identically distributed innovations {u,}. Stationarity
requires |0| < 1. A generalized M-estimator for 8 is any value 6, for which
the random function

n—1
H)=@n-1"" ‘Zlg(yi)tﬁ(ym — 0y)

takes the value zero. We would hope that 8, converges to the * at which the
deterministic function

H(0) = Pg(y)p(y, — 0y,)

takes the value zero. If |¢| < 1 and |¢| < 1 and ¢ is continuous, we can go
part of the way towards proving this by means of a uniform strong law for a
bivariate empirical measure.

Write Q,, for the probability measure that puts equal mass (n — 1)~* on
each of the pairs (yy, y,), ..., (V4 1, V). For fixed (integrable) f(-, -),

0.f— Qf almost surely,

where Q denotes the joint distribution of (y,, y,). This follows from the
ergodic theorem for the stationary bivariate process {(y,, yn+1)}- '

Check the approximation conditions of Theorem 2, with Q in place of P,
for the class of functions

Fe1s %3, 0) = gx)p(x; — 6x;) for —1<O< L.
First, choose an integer K so large that

P{{y,| <K, |y;] <K} >1—¢
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Then appeal to uniform continuity of ¢ on the compact interval [ —2K, 2K]
to find a 6 > 0 such that |¢(a) — ¢(b)| < ¢ whenever |a — b| < & and
la] < 2K and |b| < 2K. For 0 in the interval [k6/K, (k + 1)§/K],

| f (x5 X2, 0) — f Q1 X2, kO/K)| < & + 2{|x,] > K} + 2{|x,| > K}.

With the integer k running over the finite range needed for these intervals to
cover [ —1, 1], the functions

J(x1, %2, k6/K) & & & 2{|x4| > K} + 2{|x,| > K}

provide the upper and lower approximations required by Theorem 2.

As noted following Theorem 3, the uniform strong laws also apply to
empirical measures constructed from stationary ergodic sequences. Ac-
cordingly,

(6) sup 'an(a:e) - Qf(:79)|_>0 almost SurelYa

le]<1
that is,
sup |H,(0) — H(B){ -» 0 almost surely.

18|<1
Provided 6, lies in the range [ —1, 1], we can deduce from (6) that H(6,) —» 0
almost surely. It would be a sore embarrassment if the estimate of the auto-
regressive parameter were not in this range. Usually one avoids the em-
barrassment by insisting only that H,(6,) — 0, with 6, in [—1, 1]. Such a 8,
always exists because H,(6*) — 0 almost surely.

Convergence results for 6, depend upon the form of H(-). We know 6,
gets forced eventually into the set {|H| < &} for each & > 0. If this set
shrinks to 0* as ¢ | O then 6, must converge to 6*, which necessarily would
have to be the unique zero of H(-). If we assume that H does have these
properties we get the consistency result for the generalized M-estimator. []

I1.3. The Combinatorial Method

Since understanding of general methods grows from insights into simple
special cases, let us begin with the best-known example of a uniform strong
law of large numbers, the classical Glivenko—Cantelli theorem. This asserts
that, for every distribution P on the real line,

(7) sup | P,(—o0,t] — P(—o0,t]| > 0 almost surely,
t

when the empirical measure P, comes from independent sampling on P.
The ideas that will emerge from the treatment of this special case will later
be expanded into methods applicable to other classes of functions. To
facilitate back reference, break the proof into five steps.
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Keep the notation tidy by writing |-| to denote the supremum over the
class # of intervals (—co,t], for —co <t < c0. We could restrict the
supremum to rational ¢ to ensure measurability.

FIRST SYMMETRIZATION.

Instead of matching P, against its parent distribution P, look at the difference
between P, and an independent copy, P, say, of itself. The difference P, — P,
is determined by a set of 2n points (albeit random) on the real line; it can be
attacked by combinatorial methods, which lead to a bound on deviation
probabilities for |P, — P,|. A symmetrization inequality converts this into
a bound on | P, — P| deviations.

8 Symmetrization Lemma. Let {Z(:):t € T} and {Z'(t):t € T} be indepen-
dent stochastic processes sharing an index set T. Suppose there exist constants
B > 0and a > 0 such that IP{| Z'(t)| < a} > B for every t in T. Then

©) IP{sup |Z(t)| > s} < ,B‘IIP{sup |Z(t) — Z'(t)] > & — oz}.

PROOF. Select a random 7 for which | Z(z)| > ¢ on the set {sup | Z(t)| > &}.
Since 7 is determined by Z, it is independent of Z'. It behaves like a fixed
index value when we condition on Z:

IP{|Z'(7)| < «|Z} = B.

Integrate out.

ﬁIP{sup 1Z@®)| > s} SPUZ@| <o |Z(1)] > ¢
<P{Z()—- Z'(1)| > ¢ — o}

< IP{sup [Z(t) — Z'(t)| > ¢ — oc} Ol

Close inspection of the proof would reveal a disregard for a number of
measure-theoretic niceties. A more careful treatment may be found in
Appendix C. For our present purpose it would suffice if we assumed T
countable; the proof is impeccable for stochastic processes sharing a count-
able index set. We could replace suprema over all intervals (—co, t] by
suprema over intervals with a rational endpoint.

For fixed t, P,(— o0, t] is an average of the n independent random variables
{&; < t}, each having expected value P(— o0, t] and variance P(— oo, t] —
(P(— o0, t])?, which is less than one. By Tchebychev’s inequality,

IP{|P(—0,t] — P(—o0,t]| <ie} =1 if n>8 2
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Apply the Symmetrization Lemma with Z = P, — P and Z’' = P, — P, the
class .# as index set, o = ¢, and f = 1.

(10)  P{|P, — P| > ¢} < 2IP{|P, — P.| > &} if n> 82

SECOND SYMMETRIZATION.

The difference P, — P, depends on 2n observations. The double sample
size creates a minor nuisance, at least notationally. It can be avoided by a
second symmetrization trick, at the cost of a further diminution of the &.
Independently of the observations &,,...,¢,, &,..., & from which the
empirical measures are constructed, generate independent sign random
variables o, ..., 0, for which IP{o; = +1} = IP{6; = —1} = 1. The sym-
metric random variables {¢ <t} — {¢<t}, for i=1,...,n and
— 0 <t < o, have the same joint distribution as the random variables
o:i[{¢; < 1} — {& < t}]. (Consider the conditional distribution given {s,}.)
Thus

IP{||P, — P,| > 3¢} = IP{sup
t

Y aliE <t - (&< t}]‘ . %g}

> %8}
n

nl Y efli<ty| > %8}.
i<

Write P} for the signed measure that places mass n~'g; at &;. The two sym-
metrizations give, for n > 8¢ 2,

< IP{sup
t

n! i ol <t}
i=1

-+ IP{sup
t

(11) IP{| P, — P|| > &} < 4IP{|| P}l > }e}.

To bound the right-hand side, work conditionally on the vector of observa-
tions &, leaving only the randomness contributed by the sign variables.

MAXIMAL INEQUALITY.

Once the locations of the & observations are fixed, the supremum | Py
reduces to a maximum taken over a strategically chosen set of intervals
I;=(—00,t], for j=0,1,...,n Of course the choice of these intervals
depends on &; we need one ¢; between each pair of adjacent observations.
(The t, and t,, are not really necessary.) With the number of intervals reduced
so drastically, we can afford a crude bound for the supremum.

1) POPS > delg) < 3 POPIL > def8)

< (n + 1) max IP{| PyI;| > Le|&}.
j
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This bound will be adequate for the present because the conditional proba-
bilities decrease exponentially fast with n, thanks to an inequality of
Hoefiding for sums of independent, bounded random variables.
EXPONENTIAL BOUNDS.

Let Yj,..., Y, be independent random variables, each with zero mean and
bounded range: g; < Y; < b;. For each n > 0, Hoeffding’s Inequality
(Appendix B) asserts

P{Y,+--+ Yl>n < 2exp[—2n2/ 2. (b — ai)z].
i=1
Apply the inequality with Y; = ¢,{¢; < t}. Given &, the random variable Y;
takes only two values, +{¢; < t}, each with probability 3.

IP{| P3(— o0, ]| > de|&} < 2exp[—2(ne/4>2/ Y4 < r}}
i=1

< 2 exp(—ne?/32),

because the indicator functions sum to at most n. Use this for each I ;in
inequality (12).

IP{|P7]| > %e|&} < 2(n + 1) exp(—ne?/32).
Notice that the right-hand side now does not depend on &.

INTEGRATION.
Take expectations over &.
IP{||P, — P|| > &} < 8(n + 1) exp(—ne?/32).

This gives very fast convergence in probability, so fast that
Y IP{||P, — P| > ¢} < ©
n=1

for each ¢ > 0. The Borel-Cantelli lemma turns this into the full almost sure
convergence asserted by the Glivenko—Cantelli theorem.

I1.4. Classes of Sets with Polynomial Discrimination

We made use of very few distinguishing properties of intervals for the proof
of the Glivenko—Cantelli theorem in Section 3. The main requirement was
that they should pick out at most n + 1 subsets from any set of n points.
Other classes have a similar property. For example, quadrants of the form
(— o0, t] in IR? can pick out fewer than (n + 1) different subsets from a
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set of n points in the plane—there are at most n + 1 places to set the horizontal
boundary and at most n + 1 places to set the vertical boundary. (Problem 8
gives the precise upper bound.) With (n + 1)? replacing the n + 1 factor,
we could repeat the arguments from Section 3 to get the bivariate analogue
of the Glivenko—Cantelli theorem. The exponential bound would swallow
up (n + 1), just as it did the n + 1. Indeed, it would swallow up any poly-
nomial. The argument works for intervals, quadrants, and any other class
of sets that picks out a polynomial number of subsets.

13 Definition. Let 2 be a class of subsets of some space S. It is said to have
polynomial discrimination (of degree v) if there exists a polynomial p(-)
(of degree v) such that, from every set of N points in S, the class picks out at
most p(N) distinct subsets. Formally, if S, consists of N points, then there
are at most p(N) distinct sets of the form S, n D with D in 2. Call p(-) the
discriminating polynomial for &. O

When the risk of confusion with the algebraic sort of polynomial is slight,
let us shorten the name “class having polynomial discrimination” to
“polynomial class,” and adopt the usual terminology for polynomials of low
degree. For example, the intervals on the real line have linear discrimination
(they form a linear class) and the quadrants in the plane have quadratic
discrimination (they form a quadratic class). Of course there are classes
that don’t have polynomial discrimination. For example, from every col-
lection of N points lying on the circumference of a circle in IR? the class of
closed, convex sets can pick out all 2V subsets, and 2V increases much faster
than any polynomial.

The method of proof set out in Section 3 applies to any polynomial class
of sets, provided measurability complications can be taken care of. Appendix
C describes a general method for guarding against these complications.
Classes satisfying the conditions described there are called permissible.
Every specific class we shall encounter will be permissible. As the precise
details of the method are rather delicate—they depend upon properties of
analytic sets—let us adopt a naive approach. Ignore measurability problems
from now on, but keep the term permissible as a reminder that some regularity
conditions are needed if pathological examples (Problem 10) are to be ex-
cluded. Problems 3 through 7 describe a simpler approach, based on the
more familiar idea of existence of countable, dense subclasses.
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14 Theorem. Let P be a probability measure on a space S. For every permissible
class @ of subsets of S with polynomial discrimination,

sup |P,D — PD| > 0 almost surely.
2

ProOF. Go back to Section 3, change .# to 9, replace the n + 1 multiplier
by the polynomial appropriate to &, and strike out the odd reference to
interval and real line. O

Which classes have only polynomial discrimination? We already know
about intervals and quadrants; their higher-dimensional analogues have
the property too. Other classes can be built up from these.

15 Lemma. If € and 9 have polynomial discrimination, then so do each of :

(i) {D°: D e P},
(i) {CuD:Ce%and D e I},
(iii) {CnD:Ce¥and D e D}.

Proor. Write ¢(-) and d(-) for the discriminating polynomials. We may
assume them both to be increasing functions of N. From a set S, consisting
of N points, suppose % picks out subsets S, ..., S, with k < ¢(N). Suppose
S; consists of N; points. The class & picks out at most d(N,) distinct subsets
from S;. This gives the bound d(N,) + - -- + d(N,) for the size of the class
in (iii). The sum is less than ¢(N) d(N). That proves the assertion for (iii).
The other two are just as easy. U

The lemma can be applied repeatedly to generate larger and larger
polynomial classes. We must place a fixed limit on the number of operations
allowed, though. For instance, the class of all singletons has only linear
discrimination, but with arbitrary finite unions of singletons we can pick
out any finite set.

Very quickly we run out of interesting new classes to manufacture by
means of Lemma 15 from quadrants and the like. Fortunately, there are
other systematic methods for finding polynomial classes.

Polynomials increase much more slowly than exponentials. For N large
enough, a polynomial class must fail to pick out at least one of the 2~ subsets
from each collection of N points. Surprisingly, this characterizes poly-
nomial discrimination. Some picturesque terminology to describe the
situation has become accepted in the literature. A class & is said to shatter
a set of points F if it can pick out every possible subset (the empty subset
and the whole of F included); that is, & shatters F if each of the subsets
of F hasthe form D n F for some D in &. This conveys a slightly inappropriate
image, in which F gets broken into tiny fragments, rather than an image of
a diligent @ trying to pick out all the different subsets of F; but at least it is
vivid.
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For example, the class of all closed discs in IR? can shatter each three-point
set, provided the points are not collinear. But from no set of four points, no
matter what its configuration, can the discs pick out more than 15 of the 16
possible subsets. The discs shatter some sets of three points; they shatter
no set of four points.

16 Theorem. Let S, be a set of N points in S. Suppose there is an integer
V < N such that 9 shatters no set of V points in Sy. Then @ picks out no
more than (§) + () + - -+ + (N ,) subsets from S, .

Proor. Write Fy,..., F, for the collection of all subsets of V elements
from S,. Of course k = (¥). By assumption, each F, has a “hidden” subset
H; that 9 overlooks: D n F; # H, for every D in 2. That is, all the sets of
the form D n §,, with D in 9, belong to

%, = {C < Sy: Cn F; # H,for each i}.

It will suffice to find an upper bound for the size of €,.

In one special case it is possible to count the number of sets in %, directly.
If H; = F, for every i then no C in %, can contain an F;; no C can contain a
set of V points. In other words, members of %, consist of either 0, 1,..., or
V — 1 points. The sum of the binomial coefficients gives the number of sets
of this form.

By playing around with the hidden sets we can reduce the general case to
the special case just treated. Label the points of Sy as 1,..., N. For each i
define H; = (H; U {1}) n F;; that is, augment H, by the point 1, provided
it can be done without violating the constraint that the hidden set be con-
tained in F;. Define the corresponding class

¢, ={C<c8S,:Cn F; #+ H; foreachi}.

The class € has nothing much to do with €,,. The only connection is that all
its hidden sets, the sets it overlooks, are bigger. Let us show that this implies
%, has a greater cardinality than %,. (Notice: the assertion is not that
%o = ¥,.)

Check that the map C— C\{l} is one-to-one from ¥,\ ¥, into €,\%,.
Start with any C in %,\%,. By definition, C n F; # H; for every i, but
C N F;= Hj for at least one j. Deduce that H; # Hj, so 1 belongs to C
and F; and Hj}, but not to H;. The stripping of the point 1 does define a
one-to-one map. Why should C\ {1} belong to €,\%,? Observe that

(C\{1}) n F; = H)\{1} = H},

which bars C\ {1} from belonging to ¥,. Also, if F, contains 1 then so must
H;, but C\{1} certainly cannot; and if F, doesn’t contain 1 then

(C\{IDnF;=CnF;#H;=H,.
In either case (C\{1}) n F; # Hj, so C\{1} belongs to ¥,.
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Repeat the procedure, starting from the new hidden sets and with 2 taking
over the role played by 1. Define H! = (H} u {2}) n F; and

¢, = {C = 8y:Cn F; # H{ for each i}.

The cardinality of €, is greater than the cardinality of #,. Another N — 2
repetitions would generate classes €, %, ..., €y with increasing cardirfali-
ties. The hidden sets for €y would fill out the whole of each F ;: the special
case already treated. |

17 Corollary. If a class shatters no set of 'V points, then it must have polynomial
discrimination of degree no greater than V — 1. ]

All we lack now is a good method for identifying classes that have trouble
picking out subsets from large enough sets of points.

18 Lemma. Let  be a finite-dimensional vector space of real functions on S.
The class of sets of the form {g > 0}, for g in %, has polynomial discrimination
of degree no greater than the dimension of 4.

PRrOOF. Write V — 1 for the dimension of 4. Choose any collection {sy, ..., s}
of distinct points from S. (Everything reduces to triviality if S contains fewer
than V points.) Define a linear map L from % into IRY by

L(g) = (g(s1), - . ., g(sy)).

Since L% is a linear subspace of IR” of dimension at most ¥ — 1, there exists
in IR” a non-zero vector y orthogonal to L%. That is,

Y 7:9(s;) =0 foreachgin ¥,

or
(19) {;} :g(s) = {Z} (=7)g(s;) for each g.

Here {+} stands for the set of those i for which y; > 0, and {—} for those
with y; < 0. Replacing y by —y if necessary, we may assume that {—1}is
non-empty.

Suppose there were a g for which {g > 0} picked out precisely those
points s; with i in {+}. For this g, the left-hand side of (19) would be > 0,
but the right-hand side would be < 0. We have found a set that cannot be
picked out. O

Many familiar classes of geometric objects fall within the scope of the
lemma. For example, the class of subsets of the plane generated by the linear
space of quadratic forms ax® + bxy + cy? + dx + ey + f includes all
closed discs, ellipsoids, and (as a degenerate case) half-spaces. More com-
plicated regions, such as intersections of 257 closed or open half-spaces, can
be built up from these by means of Lemma 15. You can feed them into
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Theorem 14 to churn out a whole host of generalizations of the classical
Glivenko-Cantelli theorem.

Uniform limit theorems for polynomial classes of sets have one thing in
common: they hold regardless of the sampling distribution. This happens
because the number A,(E) of subsets picked out by the class from the sample
{&4, ..., &,} can be bounded above by a polynomial in n, independently of
the configuration of that sample. Without the uniform bound the inequality
(12) would be replaced by

(20) IP{|Py| > 3¢|€} < 2A,(8) exp(—ne?/32).

Write W, for the minimum of 1 and the right-hand side of (20). Then the
argument from the INTEGRATION step gives the sharper bound

IP{|P, — P|| > &} < 4IPW,

for all n large enough. Thus a sufficient condition for ||P, — P|| to converge
in probability to zero is: IPW, — 0 for each ¢ > 0. Equivalently, because
0 < W, < 1, we could check that log A,(§) = o,(n). Theorem 16 helps here.

AG <BV-D=0@+ -+,

where V = V (¢, ..., ¢,) is the smallest integer such that & shatters no
collection of V points from {&,,...,¢&,}. Set k = V — 1. If k < in, all the
terms in the sum for B,(k) are less than (}):

n~1'log B,(k) < n !log[(k + Dn!/(n — k)! k!].

Three applications of Stirling’s approximation and some tidying up reduce
the right-hand side to

—(1 — k/n) log(1 — k/n) — (k/n) log(k/n) + o(1),

which tends to zero as k/n — 0. It follows that both n~!log A, — 0 and
[P, — P|| — 0 in probability, if ¥/n — 0 in probability.

If we don’t know how fast V/n converges to zero, we can’t use the Borel-
Cantelli lemma to deduce from these inequalities that |P, — P| converges
almost surely to zero. But there is another reason why the convergence in
probability implies the stronger result.

Symmetry properties would force |P, — P| to converge almost surely to
some constant, no matter how V/n behaved. Given P,, the unordered set
{&,,..., £,} is uniquely determined, but there’s no way of deciding the order
in which the observations were generated. Given P, ;, we know slightly less
about {¢,,..., ¢,}; it could be any of the (n + 1) possible subsets of size n
obtained by deleting one of the support points of P, ;. (Count coincident
observations as distinct support points.) The conditional distribution of P,
given P,., must be uniform on one of these (n + 1) subsets, each subset
being chosen with probability (n + 1)~!. The conditional expectation
of P, given P,,, (in the intuitive sense of the average over the n + 1
possible choices for P,) must be P,,,. The extra information carried



22 I1. Uniform Convergence of Empirical Measures

by P,.2, P,y3,... adds nothing more to our knowledge about P,; the
conditional expectation of P, given the o-field generated by P, ,, P,.,,...
still equals P, ;. That is, the sequence {P,} is a reversed martingale, in some
wonderful measure-valued sense. Apply Jensen’s inequality to the convex
function that takes P, onto | P, — P| to deduce that {|P, — P|}isabounded,
reversed submartingale. (Problem 11 arrives at the same conclusion in a
slightly more rigorous manner.) Such a sequence must converge almost
surely (Neveu 1975, Proposition V-3-13) to a limit random variable, W, Since
W is unchanged by finite permutations of {¢;}, the zero-one law of Hewitt
and Savage (Breiman 1968, Section 3.9) forces it to take on a constant value
almost surely. The only question remaining for the proof of a uniform strong
law of large numbers is whether the constant equals zero or not: convergence
in probability to zero plus convergence almost surely to a constant gives
convergence almost surely to zero.

21 Theorem. Let 9 be a permissible class of subsets of S. A necessary and
sufficient condition for

sup|P,D — PD| -0 almost surely
2

is the convergence of n™ 'V, to zero in probability, where V, = V(& 1505 En)
is the smallest integer such that 9 shatters no collection of V, points from

{éla R | én}

PROOF. You can formalize the sufficiency argument outlined above ; necessity
is taken care of in Problem 12. (]

Because 0 < n™'¥, < 1, convergence in probability of n~ 1V, to zero is
equivalent to n™'IPV, — 0. This has an appealing interpretation. The uniform
strong law of large numbers holds if and only if, on the average, the class of
sets behaves as if it has polynomial discrimination with degree but a tiny
fraction of the sample size.

22 Example. Let’s see how easy it is to check the necessary and sufficient
condition stated in Theorem 21. Consider the class € of all closed, convex
subsets of the unit square [0, 1]* We know that there exist arbitrarily large
collections of points shattered by 4. Were we sampling from a non-atomic
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distribution concentrated around the rim of a disc inside [0, 1]?, the class
% could always pick out too many subsets from the sample. Indeed, there
would always exist a convex C with P,C = 1 and PC = 0. But such con-
figurations of sample points should be thoroughly atypical for sampling
from the uniform distribution on [0, 1]?. Theorem 21 should say something
useful in that case.

How large a subcollection of sample points can % shatter? Suppose it is
larger than the size requested by Theorem 21. That is, for some & > 0,

IP{n~'V, > ¢} > ¢ infinitely often.

This will lead us to a contradiction.

A set of k points is shattered by € if and only if none of the points can be
written as a convex combination of the others; each must be an extreme
point of their convex hull. So there exists a convex set whose boundary has
empirical measure at least k/n, which seems highly unlikely because P puts
zero measure around the boundary of every convex set. Be careful of this
plausibility argument; it contains a hidden appeal to the very uniformity
result we are trying to establish. An approximation argument will help us to
avoid the trap.

Divide [0, 1]? into a patchwork of m? equal subsquares, for some fixed
m that will be specified shortly. Because the class o7 of all possible unions of
these subsquares is finite,

IP{sup |P,A — PA| > %s} < %¢ for all n large enough.
o

The 4¢ here is chosen to ensure that, for some n,

IP{n~'V, > ¢and sup |P,4A — PA| < ¢} > }e.
o

Since a set with positive probability can’t be empty, there must exist a sample
configuration for which % shatters some collection of at least ne sample
points and for which |P,4 — PA| < % for every A4 in /. Write H for the
convex hull of the shattered set, and 4 for the union of those subsquares
that intersect the boundary of H. The set A contains all the extreme points
of H,so P, Ay > ¢; it belongs to o, so |P, Ay — PAy| < 3¢ Consequently
PAy > e, which will give the desired Contradiction if we make m large
enough.
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Experiment with values of m equal to a power of 3. No convex set can
have boundary points in all nine of the subsquares; the middle subsquare
would lie inside the convex hull of four points occupying each of the four
corner squares. For every convex C the P measure of the union of those

subsquares intersecting its boundary must be less than %. Subdivide each
of the nine subsquares into nine parts, then repeat the same argument
eight times. This brings the measure of squares on the boundary down to
(8. Keep repeating the argument until the power of £ falls below 3e. That
destroys the claim made for 4. O

I1.5. Classes of Functions

The direct approximation methods of Section 2 gave us sufficient conditions
for the empirical measure P, to converge to the underlying P uniformly over
a class of functions,

sup [P, f — Pf|— 0 almost surely.
F

The conditions, though straightforward, can prove burdensome to check. In
this section a transfusion of ideas from Sections 3 and 4 will lead to a more
tractable condition for the uniform convergence. The method will depend
heavily on the independence of the observations {¢;}, but the assumption of
identical distribution could be relaxed (Problem 23).

Throughout the section write |-|| to denote sup |-|.

Let us again adopt a naive approach towards possible measurability
difficulties, with only the word permissible (explained in Appendix C) to
remind us that some regularity conditions are needed to exclude patho-
logical examples.

A domination condition will guard against any complications that could
be caused by & containing unbounded functions. Call each measurable F
such that | f| < F, for every f in &%, an envelope for . Often F will be taken
as the pointwise supremum of | f | over %, the natural envelope, but it will
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be convenient not to force this. We shall assume PF < oo. With the proper
centering, the natural envelope must satisfy this condition (Problem 14) if
the uniform strong law holds.

The key to the uniform convergence will again be an approximation
condition, but this time with distances calculated using the .#! seminorm
for the empirical measures themselves. This allows us to drop the require-
ment that the approximating functions sandwich each member of %,

23 Definition. Let Q be a probability measure on S and % be a class of
functions in £*(Q). For each ¢ > 0 define the covering number N, (e, @, %)
as the smallest value of m for which there exist functions g,,..., g, (not
necessarily in %) such that min; Q| f — g;| < e for each f'in #. For definite-
ness set N (e, Q, #) = oo if no such m exists. O

If # has envelope F we can require that the approximating functions
satisfy the inequality |g;| < F without increasing N, (¢, Q, #): replace g; by

max{—F, min[F, g;]}.

We could also require g; to belong to %, at the cost of a doubling of ¢: replace
g;by an f;in & for which Q| f; — g;] < e.

24 Theorem. Let & be a permissible class of functions with envelope F.
Suppose PF < co. If P, is obtained by independent sampling from the prob-
ability measure P and if log N (e, P,, #) = 0,(n) for each fixed ¢ > 0, then
supg |P, f — Pf} — 0 almost surely.

PrOOF. Problem 11 (or the slightly less formal symmetry argument leading
up to Theorem 21 in Section 4) shows that {||P, — P||} is a reversed sub-
martingale; it converges almost surely to a constant. It will suffice if we
deduce from the approximation condition that {||P, — P|} converges in
probability to zero.

Exploit integrability of the envelope to truncate the functions back to a
finite range. Given ¢ > 0, choose a constant K so large that PF{F > K} <e.
Then

sup [P, f — Pf| < sup|P,f{F < K} — Pf{F < K}|

3
+ sup P,| f|{F > K} + sup P| f|{F > K}.
F 7
Because | f| < F for each fin &, the last two terms sum to less than
P,F{F > K} + PF{F > K}.

This converges almost surely to 2PF{F > K}, which is less than 2e. It
remains for us to show that the supremum over the functions f{F < K}
converges in probability to zero. As truncation can only decrease the £(P,)
distance between two functions, the condition on log covering numbers also
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holds if each f'is replaced by its truncation; without loss of generality we may
assume that | f| < K for each fin &

In the two SYMMETRIZATION steps of the proof of the Glivenko—Cantelli
theorem (Section 3) we showed that

IP{||[P, — P|| > &} < 4IP{||Pg|| > 4e} for n > 872,

where |-|| denoted a supremum over intervals (— o, t] of the real line. The
signed measure P put mass +n~! on each observation & ..., &, the
random + signs being decided independently of the {&;}. The argument
works just as well if ||-| denotes a supremum over &%, the interpretation
adopted in the current section. The only property of the indicator function
(— oo, f] needed in the SYMMETRIZATION steps was the boundedness, which
implied var(P,(—o0,t]) < n~!. This time an extra factor of K? would
appear in the lower bound for .

With intervals we were able to reduce ||P°|| to a maximum over a finite
collection; for functions the reduction will not be quite so startling. Given
€, choose functions gy, ..., gy, where M = N, (3¢, P,, %), such that

min P,| f — g;| < g¢ for each fin &
J
Write f* for the g; at which the minimum is achieved.

Now we reap the benefits of approximation in the #!(P,) sense. For any

function g,

|Pyg| =

n! 'Zi +9(&)

<t Y1gE)] = Palgl
Choose g = f — f* for each fin turn.
IP{SU; |Pof| > %Elé} < IP{S;P LIPRf*I + Pl f — f*11> %8|§}
< IP{max |Pog;| > %el&} because P,|f — f*| < 3e
j
< Ni(3e, P,,, ) max IP{| Pyg;| > 4e|&}.
j

Once again Hoeffding’s Inequality (Appendix B) gives an excellent bound
on the conditional probabilities for each g IE

IP{| Pg;| > %e|&} = IP{

%, % 06| > boale]

<2exp [ —2(}ne)? / .anl (2g9,¢ i))z]

< 2 exp(—ne?/128K?) because |g;| < K.
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When the logarithm of the covering number is less than ne?/256K?, the in-
equality

IP{||P;| > %e|&} < 2 exp[log N,(3¢, P,, F) — ne?/128K?]
will serve us well; otherwise use the trivial upper bound of 1. Integrate out.
IP{||P;|| > L&} < 2 exp(—ne?/256K?) + P{log N,(}e, P,, F) > ne*/256K*}.

Both terms on the right-hand side of the inequality converge to zero. O

For some classes of functions the conditions of the theorem are easily
met because N,(e, P,, #) remains bounded for each fixed & > 0. This
happens if the graphs of the functions in & form a polynomial class of sets.
The graph of a real-valued function f on a set S is defined as the subset

G, ={(1):0<t<f(s) or f(s)<t<0}

of S ® IR. We learn something about the covering numbers of a class & by
observing how its graphs pick out sets of points in S ® R.

25 Approximation Lemma. Ler & be a class of functions on a set S with
envelope F, and let Q be a probability measure on S with 0 < QF < co. If'the
graphs of functions in & form a polynomial class of sets then

N(eQF,Q, F) < Ac™" for O0<e<1,

where the constants A and W depend upon only the discriminating polynomial
of the class of graphs.

Proor. Letf}, ..., f,, be a maximal collection of functions in & for which

Qlfi — fil>eQF if i#].

Maximality means that no larger collection has the same property; each f
must lie within eéQF of at least one f;. Thus m > N,(eQF, Q, #).

Choose independent points (s, t,),..., (S, %) in S ® IR by a two-step
procedure. First sample s; from the distribution Q(-F)/Q(F) on S. Given
s;, sample t; from the conditional distribution Uniform[—F(s;), F(s;)].
The value of k, which depends on m and ¢, will be specified soon.
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The graphs G, and G,, corresponding to f; and f,, pick out the same
subset from this sample if and only if every one of the k points lands outside
the region G; A G,. This occurs with probability equal to

iljl [1 — PIP{(s;, t) e G; A GZ,Si}] = [1 = IP(| fi(s1) — fals)I/2F (s, ))]*
=0 - 91fi — £ol20(F)F*
< (1 — 3o
< exp(—%ke).

Apply the same reasoning to each of the (%) possible pairs of functions f;
and f;. The probability that at least one pair of graphs picks out the same
set of points from the k sample is less than

2

Choose k to be the smallest value that makes the upper bound strictly less
than 1. Certainly k < (1 + 4 log m)/e. With positive probability the graphs
all pick different subsets from the k sample; there exists a set of k points in
S ® IR from which the polynomial class of graphs can pick out m distinct
subsets. From the defining property of polynomial classes, there exist
constants B and V such that m < Bk" for all k > 1. Find n, so that
(1 + 4logn)” < n'? for all n > ng. Then either m < n, or m < Bm'/?¢”7,
Set W= 2Vand A = max(B?, n,). O

(m) exp(—%ke) < 4 exp(2 log m — Lke).

To show that a class of graphs has only polynomial discrimination we can
call upon the results of Section 4. We build up the graphs as finite unions and
intersections (Lemma 15) of simpler classes of sets. We establish their dis-
crimination properties by direct geometric argument (as for intervals and
quadrants) or by exploitation of finite dimensionality (as in Lemma 18) of a
generating class of functions.

26 Example. Define a center of location for a distribution P on IR™ as any
value § minimizing the criterion function

where ¢(-) is a continuous, non-decreasing function on [0, co) and |-| denotes
the usual euclidean distance. If P¢(|x|) < oo and ¢(-) does not increase too
rapidly, in the sense that there exists a constant C for which ¢(2t) < Co(r)
for all ¢, then the function H(-, P) is well defined:

H(0, P) < PLQ2I0D{Ix| < |01} + Co(Ix){Ix| > |0]}] < 0.
If trivial cases are ruled out by the requirement

@7 P{x: ¢(1x]) < ¢(o0 —)} > 0,
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the minimizing value will be achieved (Problem 21); extra regularity condi-
tions on P, which are satisfied by distributions such as the multivariate
normal, ensure uniqueness (Problem 22). For this example, let us not get
bogged down by the exact conditions needed; just assume that H(-, P) has a
unique minimum at some 6.

Estimate 6, by any value 0, that minimizes the sample criterion function
H(-, P,). To show that 6, converges to 6, almost surely, it will suffice to prove
that H(0,, P) — H(0,, P) almost surely, because H(8, P) is bounded away
from H(f,, P) outside each neighborhood of 6.

The argument follows the same pattern as for k-means (Example 4). First
show that 6, eventually stays within a large compact ball {|x| < K}. Choose
the K greater than |8, ] and large enough to ensure that

$GKIP{|x| < 3K} > Pe(|x]),

which is possible by (27): as K tends to infinity the left-hand side converges
to ¢(co —). Such a K will suffice because H(0, P,) = P,¢(|x|) and

H(O, P,) = ¢GKIP,{|x| < 7K}

for every 6 with |8| > K.
If we prove uniform almost sure convergence of P, to P over the class

F ={¢(l- - 00):10| < K3},
then we can deduce almost surely that H(6,, P) - H(0,, P) from
H(b,, P,) — H(b,, P) - 0,
H(,, P,) < H(b,, P,) > H(0,, P) < H(8,, P).

Here’s our chance to apply Theorem 24.

The class & has envelope ¢(2K) + Coé(|x]), which satisfies the first
requirement of the theorem. Bound the covering numbers by showing that
the graphs of functions in & have only polynomial discrimination. We may
assume that ¢(0) = 0. The graph of ¢(|- — 6]) contains a point (y, t), with
t > 0,if and only if |y — 8] > a(t), where a(t) denotes the smallest value of
o for which ¢(«) > t. From a collection of points {(y;, t;)} the graph picks
out those points satisfying |y;|* — 2y,-0 + |8]*> — a(z,)?> > 0. Construct
from (y;, t;) a point z; = (y;, |y;1* — a(z)?) in R™*L. On IR™*! define a
vector space % of functions

gﬁ,y,&(xa S) = ﬁ'x + ys + 0

with parameters § in IR” and 7, § in IR. By Lemma 18, the sets {g > 0}, for
g in &, pick out only a polynomial number of subsets from {z;}; those sets
corresponding to functions in ¢ with f = —260, y = 1, and § = |0]? pick
out even fewer subsets from {z;}. The graphs of functions ¢(|- — 0|) have
only polynomial discrimination.
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Buried within the argument of the last example lies a mini lemma relating
finite dimensionality of a class of functions to discrimination properties of
the graphs. It is perhaps worth noting.

28 Lemma. Let F be a finite-dimensional vector space of real functions on S.
The class of graphs of functions in F has polynomial discrimination.

PrOOF. Define on S ® IR the vector space ¢ of real functions

gs.st) = f(s) — rt.

Define
Gi=1{g;,1 20} ={(s,0): f(s) > 1}
Gr={9-5,-1 20 ={(s0): f(s) <1}
Observe that
G, =G {t >0} U G,{t <0}.
Invoke Lemmas 18 and 15. O

29 Example. Now let’s have another try at the k-means problem introduced
in Example 4. There we met the class of functions of the form

JaoX) =1x —al® A |x — bJ?

with (a, b) ranging over the subset C of IR?. We know that sup, Ja» < Ffor
an F with PF < oo, provided P|x|* < 0.

The graphs of functions | x — a|? form a class with polynomial discrimina-
tion, by Lemma 28. Intersect pairs of such graphs in all possible ways to get
the graphs of all functions f, ,. Apply Lemma 15 (to handle the intersections),
then the Approximation Lemma (to bound covering numbers), then Theorem
24:

sup|P, fo» — Pf,,| > 0 almost surely.
(5

Compare this with the direct approximation argument of Example 4. J

I1.6. Rates of Convergence

Theorem 24 imposed the condition log N, (¢, P,, #) = 0,(n) on the rate of
growth of the covering numbers. Many classes meet the condition easily.
For example, if the graphs of functions from % have only polynomial
discrimination, the covering numbers stay smaller than a fixed polynomial
in ™. The method of proof will deliver a finer result for such a class; we can
get good bounds not just for a fixed ¢ deviation but also for an g, that de-
creases to zero as n increases. That is, we get a rate of convergence for the
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uniform strong law of large numbers. The method will also allow the class
of functions to change with n, provided the covering numbers do not grow
too rapidly. If the classes are uniformly bounded, and if the supremum of
Pf? over the nth class tends to zero as n increases, this will speed the rate of
convergence.

Consider the effect upon the two key steps of the argument for Theorem
24 if we let both ¢ and & depend on n. As before, replace P, — P by the:
signed measure PJ that places mass +n~! at each of £, ..., &,. The sym-
metrization inequality

(30) IP{sup \P,f — Pf| > 88,,} < 4IP{sup P2 f] > 2en}
Fn Fn

still holds provided var(P, f)/(4¢,)* < % for each fin &,. The approximation
argument and Hoeffding’s Inequality still lead to

3D H’{Sup |Paf1> 28n|§} < 2Ny(e,, P,y ) exp[—%nﬁf/<max Pngf)],
Fn j

J
where the maximum runs over all N,(g,, P,, #,) functions {g;} in the
approximating class.

If the supremum over %, of Pf? tends to zero, one might expect that the
maximum over the {P,g7} should converge to zero at about the same rate.
The next lemma will help us make the idea precise if the approximating
{g;} are chosen from %,. As squares of functions are involved, covering
numbers need to be calculated using .#? seminorms rather than the %!
seminorms of Definition 23.

32 Definition. Let Q be a probability measure on S and & be a class of
functions in £2(Q). For each ¢ > 0 define the covering number N,(¢, Q, F)

as the smallest value of m for which there exist functions g, ..., g, (not
necessarily in &) such that min;(Q(f — g;)*)*/* < ¢ for each fin &#. For
definiteness set N,(g, Q, F) = oo if no such m exists. |

As before, if # has envelope F we can require that |g;] < F; and we could
require g; to belong to %, at the cost of a doubling of ¢, by substituting for
g;an f;in & such that (Q(f; — g)))"* < .

33 Lemma. Let % be a permissible class of functions with |f| < 1 and
(PfHY? < § for each fin #. Then

IP{sup(P,,fz)”2 > 85} < 4IP[N,(6, P,, F) exp(—ndé*) A 1].
7

PrOOF. Let P, be an independent copy of P,. Write Z(f) for (P, f*)'/* and
Z'(f) for (P, f*)*/2. From the Symmetrization Lemma of Section 3,

34) IP{sup |Z(f)] > 85} < %IP{sup 1Z(f) = Z'(f)] > 65}

&
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because, for each fin &,
IP{{Z'(f)| <25} = 1 — IP(Z'(f)*)/40° = 1 — (Pf?)/45>.

The intrusion of the square-root into the definition of Z and Z' would
complicate reduction to the P, process. Instead, construct P, and P, by a
method that guarantees equal numbers of observations for both empirical
measures. Sample 2n observations X, ..., X5, from P. Independently of
the vector X of these observations, generate independent selection variables
Tis ..., T, With P{z(i) = 1} = P{z(i) = 0} = 1. Use these to choose one
observation from each of the pairs (X,;_,, X5;), for i = 1,..., n. Construct
P, from these observations, and P, from the remaining observations. For-
mally, set & = X, ;. and & = X,; ., then put mass n~' on each
point &, for P,, and put mass n™ ! on each & for P,. Set S,, = (P, + P,). It
has the same distribution as P,,,.

Temporarily write p(-) for the £*(S,,) seminorm: p(f) = (S, f ).
Given X, find functions g4, . .., ga, Where M = N,(\/28, S,,, %), for which

min p(f — g;) < ﬁé for every f'in #.
j

We may assume that [g;| < 1 for every j. The awkward \/5 will disappear at
the end when we convert to #2(P,) covering numbers.

From the triangle inequality for the #*(P,) seminorm, and the bound
28,, for P,, deduce for each f and g that

1Z(f) — Z(g) < Z(f — g) < 2So(f — 9D = /20(f — 9)

and similarly for Z'. For fin & set g equal to the g; that minimizes p(f — g;)-
Then

\Z(f) = ZON < Z(f — g + 1Z(g)) = Zg + Z'(g; — )
<4é + 1Z(g) — Z'(g));

whence
lP{sgp 1Z(f) — Z(N)) > 65)X} < IP{maXlZ(gj) - Z'(gpl > 25)"}
] <M mjz;x P{|Z(g;) — Z'(g;)| > 26(X}.
Fix a g with |g| < 1. Bound | Z(g) — Z'(g)| by

\Z(9)* — Z'(9)*|/[Z(9) + Z'(9)]

which is less than

[P.g*> — Pug?1/(255,*)"?
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thanks to the inequality a'/? + b'/? > (a + b)!/?, for a, b > 0. Apply
Hoeffding’s Inequality (Appendix B).

P{|Z(g) — Z'(9)| > 26|X}

<

<2 exp[— 16n252S2,,g2/

Z, +[*(X5i-1) — 97 (X))

> 2n8(2S,,9%)' | X}

Z 4[92(X2i—1) - gz(Xzi)]Z]
< 2 exp(—2nd?)

because the inequality |g| < 1 implies

Y 9P (Xaim1) — g2 (X12)1F < Y gH(Xpim 1) + 9°(X5) ="2nS,,97
i=1 i=1

Notice how the S,,g* factor cancelled. That happened because we sym-
metrized Z instead of P,.
Setting g equal to each g; in turn, we end up with

H’{sup 1Z() — Z'(f)| > 65[X} < 2N,(\/25, S, F) exp(—2n52)

Decrease the right-hand side to the trivial upper bound of 1, if necessary,
then average out over X:

(35)
IP{sup \Z(f) — Z/(f)| > 65} < IP[2N,(/26, Sy, F) exp(—2n6%) A 1]

The presence of the S,, is aesthetically unpleasing, especially since both
0 and & will always depend on n in applications. Problem 24 allows us to
replace it by P,, at a small cost:
P[2N,(:/28, Sy, F) exp(—2n8%) A 1]
< IP[2N,(6, P,, #)N,(6, P,, F) exp(—2né*) A 1]
< IP[2N,(6, P,, #) exp(—nd?) A 1]
+ IP[N,(S, P, F) exp(—nd?) A 1]

by virtue of the inequality xy A 1 < (x A 1) + (y A 1) for x, y > 0. The

empirical measures P, and P, have the same distribution; the sum of expec-
tations is less than

3IP[N,(8, P,, F) exp(~nd?) A 1].
Combine the last bound with (34) and (35) to complete the proof. U

The bounds we have for #! covering numbers can be converted into
bounds for #? covering numbers. For the sake of future reference, consider
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aclass # with envelope F. Set F equal to a constant to recover the inequalities
for a uniformly bounded &%,

36 Lemma. Let F be a class of functions with strictly positive envelope F, and
Q be a probability measure with QF* < co. Define P(-) = Q(-F2)/Q(F?) and
4 = {f/F:feF}. Then:

(D) N2(3(QF)'?, 0, F) < Ny(5, P, 9) < N,(30% P, %);
(i) if the class of graphs of functions in F has only polynomial discrimination
then there exist constants A and W, not depending on Q and F, such that

N,(8(QF*)'2,Q, F) < A5™Y for 0 < § < 1.
PROOF. For every pair of functions fi, f, with | f;| < F and | f,| < F,
QF)7'Q1fi — o> = PIfi/F — f,/F|* < 2P| f,/F — f,/F|.

Assertion (i) follows from these connections between the seminorms used
in the definitions of the covering numbers.

The graph of f covers a point (x, ¢) if and only if the graph of f/F covers
(x, t/F(x)); the graphs of functions in ¢ also have polynomial discrimination.
Invoke the Approximation Lemma (I1.25) for classes with envelope 1.

N.(30% P, %) < A(36%) 7.
Rechristen 42% as 4 and 2W as W. |
It is now an easy matter to prove rate of convergence theorems for uni-
formly bounded classes of functions. As an example, here is a result tailored

to classes whose graphs have polynomial discrimination. (Remember that
the notation x,, > y, means x,/y, — c0.)

37 Theorem. For each n, let %, be a permissible class of functions whose
covering numbers satisfy
supNy(e, 0, %) < Ae™” for O<e< 1
Q
with constants A and W not depending on n. Let {a,} be a non-increasing

sequence of positive numbers for which nd;0z > log n. If | f| < 1 and (Pf?)4/2
< 9, for eachfin %,, then

sup|P,f — Pf| < 8%a, almost surely,
Fn
PrOOF. Fix ¢ > 0. Set ¢, = ¢62a,,. Because
var(P, f)/(4e,)* < (16ne25202)™ ! < (log n)~?

the symmetrization inequality (30) holds for all n large enough:

IP{sup |P,f — Pf| > 88,,} < 4IP{sup [Py f] > 28"}.
Fn F
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Condition on &. Find approximating functions {g;} as in (31). We may
assume that each g; belongs to %,. (More formally, we could replace g ; by
an f; in #, for which P,|f; — g;| < ¢, then replace ¢ by 2¢ throughout the
argument.) From (31),

IP{sup |Pf| > 23,} < 24e; ¥ exp(—4ne?/6462) + IP{sup P.f*> 645,2,}.
Fn Fn

The first term on the right-hand side equals
24e™" exp[W log(1/82a,) — ne?62a2/128],

which decreases faster than every power of n because log(1/62a,) increases
more slowly than log n, while nd7«? increases faster than log n. Lemma 33
bounds the second term by

4A(ed%,) " exp(—nd?)

which converges to zero even faster than the first term. An application of the
Borel-Cantelli lemma completes the proof. ([l

Specialized to the case of constant {a,}, the constraint placed on {3,} by
Theorem 37 becomes 62 > n™ ! log n. This particular rate pops up in many
limit theorems involving smoothing of the empirical measure because
(Problem 25) it corresponds to the size of the largest ball containing no
sample points.

38 Example. Let P be a probability measure on IR? having a bounded
density p(-) with respect to d-dimensional lebesgue measure. One theoretically
attractive method for estimating p(-) is kernel smoothing: convolution of
the empirical measure P, with a convenient density function to smear out
the point masses into a continuous distribution. The estimate is

pn(x) = Pna_de,o'a
where

Kx,a(y) = K[G_l(y - X):]

for some density function K on IR and a scaling factor ¢ that depends on .
Note that the ¢~ is not part of K .

The traditional method for analyzing p, compares it with the correspond-
ing smoothed form of p,

p(x) = IPp,(x) = Po K, ,.

The difference p, — p breaks into a sum of a random component, p, — p,
and a bias component p — p. The smaller the value of o, the smaller the
bias (Problem 26); the slower ¢ tends to zero, the faster p, — p converges to
zero. These two conflicting demands determine the rate at which P, — p can
tend to zero.
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If p, — pisto converge uniformly to zero, we must not allow ¢ to decrease
too fast. Otherwise we might somewhere be smoothing P, over a region
where it puts too little mass, making |p, — p| too large. Theorem 37 will let
o decrease almost as fast as n™! log n, the best rate possible.

For concreteness take K to be the standard normal density, which enjoys
the uniform bound 0 < K, , < 1 for all x and o (the constant (2)"%? is
too awkward for repeated use.) The class of graphs of all K, , functions has
polynomial discrimination (Problem 28 proves this for a whole class of
kernel functions). Assume also that the density p(-) is bounded, say 0 <
(-} < 1. In that case

sup PK2 , < o*

X

because

PK:, < PK,,

JK((y — x)/o)p(y) dy

= ¢* fK(t)p(x + ot) dt.

Everything is set up for Theorem 37. Put «, = 1 and 62 = ¢°. Provided
o> n"tlogn,

sup |P,K, , — PK, ,| € ¢ almost surely,

that is,

sup |p,(x) — p(x)| = 0 almost surely.
Smoothness properties of p(-) determine the rate at which the bias term
converges to zero (Problem 26). For example, one bounded derivative would
give maximum bias of order O(¢) in one dimension. We would then want
something like ¢®> > n~!logn to get a comparable rate of convergence
from Theorem 37 for p, — P. O]

NOTES

Uniform strong laws of large numbers have a long history, which is described
in the first section of the survey paper by Gaenssler and Stute (1979). Theorem
2 comes from DeHardt (1971), but the idea behind it is much older. Billingsley
and Topsee (1967) and Topsee (1970, Sections 12 to 15) developed much
deeper results for the closely related area of uniformity in weak convergence.

Hartigan (1975) is a good source for information about clustering.
Hartigan (1978) and Pollard (1981b, 1982b, 1982c) have proved limit
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theorems for k-means. Engineers know the method of k-means by the
name quantization. The March 1982 IEEE Transactions on Information
Theory was devoted to the topic. Denby and Martin (1979) proposed the
generalized M-estimator of Example 5.

Ithaslong been appreciated that comparison of two independent empirical
distribution functions transforms readily into a combinatorial problem.
Gnedenko (1968, Section 68), for example, reduced the analysis of two-
sample Smirnov statistics to a random walk problem. The method in
the text has evolved from the ideas introduced by Vapnik and Cervonenkis
(1971). Their method of conditioning turned calculations for a single fixed
set into an application of an exponential bound for hypergeometric tail
probabilities. Classes with polynomial discrimination are often called VC
classes in the literature. The symmetrization described in Section 3 is a well-
known method for proving central limit theorems in Banach spaces (Araujo
and Giné 1980, Section 2; Giné and Zinn 1984, Section 1). Steele (1975, 1978)
discovered subadditivity properties of empirical measures that strengthen
the Vapnik~Cervonenkis convergence in probability results to necessary and
sufficient conditions for almost sure convergence. Pollard (1981b) introduced
the martingale tools and the randomization method described in Problem
12 to rederive Steele’s conditions. Theorem 21 and Example 22 are based on
Steele (1978); Flemming Topsee explained to me the &-trick for convex sets.
See Gaenssler and Stute (1979) for more about the history of this example.

The proof of Theorem 16, which is often called the Vapnik—Cervonenkis
lemma, is adapted from Steele (1975). Sauer (1970) was the first to publish
the inequality in precisely this form, although he suggested that Shelah had
also established the result. (I am unable to follow the two papers of Shelah
that Sauer cited.) Vapnik and Cervonenkis (1971) proved an insignificantly
weaker version of the inequality. Dudley (1978, Section 7) has dug further
into the history. Lemma 18 is due to Steele (1975) and Dudley (1978).

The sum of binomial coefficients in Theorem 16 and the randomization
method of Problem 12 suggest that a direct probabilistic path might lead
to the necessary and sufficient conditions of Theorem 21. Does there exist
a set of n independent experiments that can be performed to decide whether
a particular subset of a collection of n points can be picked out by a particular
class of sets? Or maybe the experiments could be linked in some way. For a
class that picks out only subsets with fewer than ¥ points the solution is
easy—it lies buried within the proof of Theorem 16.

The notes to Chapter VII will give more background to the concept of
covering number.

Vapnik and Cervonenkis (1981) have found necessary and sufficient
conditions for uniform almost sure convergence over bounded classes of
functions. They worked with #* and #! distances between functions. Giné
and Zinn (1984) applied chaining inequalities and gaussian-process methods
(see Chapter VII) to deduce £ necessary and sufficient conditions. The
square-root trick in Lemma 33 comes from Le Cam (1983) via Giné and
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Zinn. Kolchinsky (1982) and Pollard (1982¢) independently introduced the
symmetrization method used in Lemma 33, The Approximation Lemma is
due to Dudley (1978), who proved it for classes of sets. The extension to
classes of functions was proved ad hoc by Pollard (1982d), using an idea of
Le Cam (1983).

The density estimation literature is enormous. Silverman (1978) and Stute
(1982b) have found sharp results involving the n~!logn critical rate.
Bertrand-Retali (1974, 1978) proved that ¢? > n™!logn is both necessary
and sufficient for uniform consistency over the class of all uniformly con-
tinuous densities on IR,

Universal separability was mentioned in passing by Dudley (1978) as a
way of avoiding measurability difficulties.

Most of the results in the chapter can be extended to independent, non-
identically distributed observations (Alexander 1984a).

PROBLEMS

[1] In Example 4 relax the assumption that W(-, -, P) has a unique minimum; assume
the function achieves its minimum for each (a, b) in a region D. Prove that the
distance from the optimal (a,, b,) to D converges to zero almost surely, provided
P does not concentrate at a single point. [The condition rules out the possibility
of a minimizing pair for W(-, -, P) with one center off at infinity.]

[2] Here is an example of an ad hoc method to force an optimal solution into a
restricted region. Suppose an estimator corresponds to the f, that minimizes P, f
over a class %, and that we want to force £, into a region . Write y, for the infi-
mum, assumed finite, of Pf over #. Suppose there exists a positive function b(-)
on # such that, for some ¢ > 0,

b(f) =y, +¢ for fin F\H

P[inf f/b(f)] > 190l /[0l + ).
F\AX

Show that liminfinfz 4, P, f > 7y, almost surely. [Trivial if y, < 0.] Deduce
that f, belongs to ¢ eventually (almost surely). Now read the case 4 consistency

proof of Huber (1967). Compare the last part of his argument with our Theorem 3.

[3] Callaclass & of functions universally separable if there exists a countable subclass
%, such that each fin & can be written as a pointwise limit of a sequence in %.
If % has an envelope F for which PF < co, prove that universal separability
implies measurability of |P, — P|.

[4] For any finite-dimensional vector space ¢ of real functions on S, the class & of sets
of the form {g > 0}, for g in ¥, is universally separable. [Express each g in ¢ as
a linear combination of some fixed finite collection of non-negative functions. Let
%, be the countable subclass generated by taking rational coefficients. For each
g in ¢ there exists a sequence {g,} in %, for which g, | g. Show that {g, > 0} |
{g = 0} pointwise.]

[5] The operations in Lemma 15 preserve universal separability.
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(6]

[7]

(8]

[9]

[10]

(1]

[12]

For a universally separable class &, the quantity ¥, defined in Theorem 21 is
unchanged if 2 is replaced by its countable subclass 2. Prove that ¥, is measur-
able.

Prove that the class of indicator functions of closed, convex subsets of IR? is
universally separable. [ Consider convex hulls of finite sets of points with rational
coordinates. ]

Theorem 16 informs us that the class of quadrants in IR? picks out at most
1 + 3N + $N? subsets from any collection of N points. Find a configuration for
which this bound is achieved.

For N > 2 the sum of binomial coefficients singled out by Theorem 16 is bounded
by N¥. [Count subsets of {1, ..., N} containing fewer than V elements by arrang-
ing each subset into increasing order then padding it out with enough copies of
the largest element to bring it up to a V-tuple. Don’t forget the empty set.]

Let M be a subset of [0, 1] that has inner lebesgue measure zero and outer lebesgue

measure one (Halmos 1969, Section 16). Define the probability measure u as the

trace of lebesgue measure on M (the measure defined in Theorem A of Halmos

(1969), Section 17). Assuming the validity of the continuum hypothesis, put M

into a one-to-one correspondence with the space [0, U) of all ordinals less than

the first uncountable ordinal U (Kelley 1955, Chapter 0). Define 2 as the class

of subsets of [0, 1] corresponding to the initial segments [0, x] in [0, U).

(a) Show that @ has linear discrimination. [It shatters no two-point set.]

(b) Equip M* with its product o-field and product measure u®. Generate ob-
servations ¢, £,, ... on P = Uniform(0, 1) by taking them as the coordinate
projection maps on M®. Construct empirical measures {P,} from these
observations. Show that sup, | P,D — PD| is identically one.

(c) Repeat the construction with the same 2, but replace (M ®, u*®) by a countable
product of copies of M° equipped with the product measure A®, where A
equals the trace of lebesgue measure on M*. This time sup, |P,D — PD]| is
identically zero.

[Funny things can happen when & has measurability problems. Argument

adapted from Pollard (1981a) and Durst and Dudley (1981).]

For independent and identically distributed random elements {&,}, write " for
the o-field generated by all symmetric functions of ¢, ..., &y as N ranges over
n,n + 1,.... Forafixed function f, apply the usual reversed martingale argument
(Ash 1972, page 310) to show that IP(P, f|6"**) = P, f. If P(sups |f]) < 0,
deduce

IP(Supanf — Pf| |5”‘“) =2 sup [P, f — Pf|

for every class of functions # that makes both suprema measurable.

Here is one way to prove necessity in Theorem 21. Suppose [P, — P| — 0 almost
surely. Construct by placing mass n™ ! at each ¢, for which the sign variable
o; equals +1; construct u, similarly from the remaining ¢;’s. Notice that P2 =
#a — 1y - Let N be the number of sign variables Oy, ..., 0,equal to + 1.

(a) Prove that (n/N)u, has the same distributions as Py. [What if N = 07]

(b) Deduce that both ||, — 3P| — Oand ||u; — 1P| - 0, in probability.
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(c) Deduce that [pu] — p; | — 0 in probability.

(d) Suppose 2 shatters a set F consisting of at least ny of the points &,,...,¢,.
Without loss of generality, at least $n7 of the points in F are allocated to ;.
Choose a D to pick out just those points from F. Use independence properties
of the {o;} to show that, with high probability, y} (D\F) and 1y (D\F) are
nearly equal. [Argue conditionally on P, and the o, for those ¢, in F.]

(e) Show that uf(D) — (D) = 4y with high conditional probability. This
contradicts (c).

[13] Rederive the uniform strong law for convex sets (Example 22) by the direct

approximation method of Theorem 2.

[14] Let & be a permissible class with natural envelope F = supg | f|.If|P, — P|| - O

almost surely and if supz | Pf| < co then PF < oo. [The condition on supg | Pf]
excludes trivial cases such as & consisting of all constant functions. From
P, — Pl < eand ||P,_; — P} <& deduce n™!| f(&,) — Pf| < 2¢; almost sure
convergence implies

]P{sup |f(&) — Pf| = n infinitely often} =0.
F

Invoke the non-trivial half of the Borel-Cantelli lemma, then replace each &, by
¢, to get

00 > IP(sup | f(&) — Pfl) > IPF(¢,) — constant.
F

Noted by Giné and Zinn (1984).]

[15] Hereis an example of how Theorem 24 can go wrong if the envelope F has PF = co.

Let P be the Uniform(0, 1) distribution and let # be the countable class consisting
of the sequence {f;}, where fi(x) = x~2{(i + 1)™* < x < i"'}. Show that the
graphs have polynomial discrimination and that Pf, =1 for every i But
sup; P, f; = oo almost surely. [Find an «, with na? — 0, such that [0, «,] contains
at least one observation, for n large enough.]

[16] Let # be the class of all monotone increasing functions on IR taking values in the

range [0, 1]. The class of graphs does not have polynomial discrimination, but it
does satisfy the conditions of Theorem 24 for every P. [If {x;} and {t,} are strictly
increasing sequences, the graphs can shatter the set of points (x,, ) N G AN |

[17] For the # of the previous problem, rewrite P, f as {8 P{f >t} dt. Deduce

uniform almost sure convergence from the classical result for intervals, [Suggested
by Peter Gaenssler.]

[18] Let & and ¢ be classes of functions on S with envelopes F and G. Write & for

the class of all sums f + g with f in % and g in . Prove that
N{Q(F + G), 0, #) < N(OQF, Q, FIN(3QG, 0, %) for i=1,2.

[19] A condition involving only covering numbers for P would not be enough

to give a uniform strong law of large numbers. Let P be Uniform(0, 1). Let 9
consist of all sets that are unions of at most # intervals each with length less than
n~%forn=1,2,.... Show that sup, |P,D — PD| = 1, even though N,(e, P, &)
< oo for each & > 0.
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[20]
[21]

[22]

[23]

[24]

[25]

Deduce Theorem 2 from Theorem 24.

Under the conditions set down in Example 26, the function H(-, P) achieves its
minimum. [If H(6;, P) converges to the infimum as i > oo, use Fatou’s lemma to
show that the infimum is achieved at a cluster point of {§;}; condition (27) rules
out cluster points at infinity.] Notice that only left continuity of ¢ is needed for
the proof. Find and overcome the extra complications in the argument that would
be caused if ¢ were only left-continuous.

This problem assumes familiarity with convexity methods, as described in Section
4.2 of Tong (1980). Suppose that the distribution P of Example 26 has a density
p(-) whose high level sets D, = {p > ¢} are convex and symmetric about the origin.
Prove that H(6, P) has a minimum at § = 0. [By Fubini’s theorem,

H®, P) = ff {0<s<¢(]x — 0DHO <t < p(x)} ds dt dx

= ff volume[ B(B, «(s))* n D,] ds dt,

where B(0, r) denotes the closed ball of radius r centered at 6. The volume of
B(9, r) n D, is maximized at § = 0.] When is the minimum unique? Show that a
multivariate normal with zero means and non-singular variance matrix satisfies
the condition for uniqueness.

Suppose {¢;} are independent, but that the distribution of ¢, call it Q;, changes
with i. Write P for the average distribution of the first n observations, P™ —
n~YQy + -+ + Q,). Show for a permissible polynomial class & that

sup {P,D — P®D| -0 almost surely.
2

What difficulties occur in the extension to more general classes of sets, or functions ?
[Adapt the double-sample symmetrization method of Lemma 33: sample a pair
(X2i-1, X5;) from Q;; use the selection variable ¢, to choose which member of the
pair is allocated to P,, and which to P.,.]

Show that

N2(/28, HQ: + Q2), #) < Ny(6, 0y, FIN,(3, 0, F).

[Let h, be the density of Q, with respect to Q; + Q,. Consider the approximating
functions g, {h, > 3} + g,{h; < 4}.]

Let P be the uniform distribution on [0, 1]% For a sample of » independent
observations on P show that

P{some square of area o, contains no observations} — 1

if , is just slightly smaller than n™! log n. [Break [0, 1]? into N subsquares each
with area slightly less than n ™! log n. Set 4; = {ith subsquare contains at least one
observation}. Show that IP(4;.,]4; n--- N A4;) < IPA;,,. The probability that
each of these subsquares contains at least one point is less than (IPA,)". Bertrand-
Retali (1978).]
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[26]

£27]

(28]

[29]

II. Uniform Convergence of Empirical Measures

In one dimension, write the bias term for the kernel density estimate as

Bx) — p(o) = f K@[p(x + 02) — p(x)] d=.

Suppose p has a bounded derivative, and that ||z|K(z) dz < co. Show that the
bias is of order O(s). Generalize to higher dimensions. [If p has higher-order
smooth derivatives, and K is replaced by a function orthogonal to low degree
polynomials, the bias can be made to depend only on higher powers of ¢.]

The graphs of translated kernels K, , have polynomial discrimination for any K
on the real line with bounded variation. [Break K into a difference of monotone
functions.]

Let K be a density on IR? of the form A(]x|), where h(-) is a monotone decreasing
function on [0, c0). Adapt the method of Example 26 to prove that the graphs of
the functions K, , have polynomial discrimination.

Modify the density estimate of Example 38 for distributions on the real line by
choosing K as a function of bounded variation for which [ K(z)dz =0 and
§2K(z)dz = 1 and {|zK(z)| dz < oo. Replace p, by ¢,(x) = 6~ 2P,K, ,. Show
that IPq,(x) converges to the derivative of p. How fast can ¢ tend to zero without
destroying the almost sure uniform convergence sup,, |g,(x) — IPg,(x)| — 0?



