CHAPTER VII
Central Limit Theorems

... in which the chaining method for proving maximal inequalities for the
increments of stochastic processes is established. Applications include con-
struction of gaussian processes with continuous sample paths, central limit
theorems for empirical measures, and Justification of a stochastic equicontinuity
assumption that is needed to prove central limit theorems for statistics defined
by minimization of a stochastic process.

VIL1. Stochastic Equicontinuity

Much asymptotic theory boils down to careful application of Taylor’s
theorem. To bound remainder terms we impose regularity conditions, which
add rigor to informal approximation arguments, but usually at the cost of
increased technical detail. For some asymptotics problems, especially those
concerned with central limit theorems for statistics defined by maximization
or minimization of a random process, many of the technicalities can be
drawn off into a single stochastic equicontinuity condition. This section
shows how. Empirical process methods for establishing stochastic equi-
continuity will be developed later in the chapter.

Maximum likelihood estimation is the prime example of a method that
defines a statistic by maximization of a random criterion function. Indepen-
dent observations ¢, ..., &, are drawn from a distribution P, which is
assumed to be a member of a parametric family defined by density functions
{p(-, 0)}. For simplicity take § real-valued. The true, but unknown, 6, can
be estimated by the value 6, that maximizes

G, (0) = n~" Y log p(&;, 6).
i=1

Let us recall how one proves asymptotic normality for 6,, assuming it is
consistent for 0.

Write g, (-, 6) forlog p(-, §),and g,(-, 6), g2(+, 0), gs(-, 0), for the first three
partial derivatives with respect to 6, whose existence we impose as a regularity
condition. Using Taylor’s theorem, expand g,(-, ) into

90(:> 00) + (6 — 00)g1(-, o) + 30 — 06)gs(-, B) + 40 — 05)°gs(-, 6%)
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with 6* between 0, and 6. Integrate with respect to the empirical measure P, .
Gu(8) = G(bo) + (0 — 00)P,g;, + (O ~ 0,)*P,g, + R,(6).
If we impose, as an extra regularity condition, the domination
lgs(+, 0)] < H(-) for all 6,
then the remainder term will satisfy
[RAO)| < 410 — 061> Pulgs(-, 0%)| < 516 — 6,|°P,H.

Assume PH < oo and P|g,| < oo. Then, by the strong law of large numbers,
for each sequence of shrinking neighborhoods of 8, we can absorb the re-
mainder term into the quadratic, leaving

(1) G,(0) = G,(00) + (8 — O5)P,g, + 3(0 — 6,)*(Pg, + 0,(1)) near 6.

The 0,(1) stands for a sequence of random functions of § that are bounded
uniformly on the shrinking neighborhoods of 8, by random variables of
order o,(1). Provided Pg, < 0, such a bound on the error of approximation
will lead to the usual central limit theorem for {n'/3(8, — 6,)}. As a more
general result will be proved soon, let us not pursue that part of the argument
further. Instead, reconsider the regularity conditions.

The third partial derivative of go(-, §) was needed only to bound the
remainder term in the Taylor expansion. The second partial derivative enters
(1) only through its integrated value Pg,. But the first partial derivative plays
a critical role; its value at each &; comes into the linear term. That suggests
we might relax the assumptions about existence of the higher derivatives and
still get (1). We can. In place of Pg, we shall require a second derivative
for Pgo(-, 0); and for the remainder term we shall invoke stochastic equi-
continuity.

In its abstract form stochastic equicontinuity refers to a sequence of
stochastic processes {Z,(t): t € T} whose shared index set T comes equipped
with a semimetric d(-, -). (In case you have forgotten, a semimetric has all
the properties of a metric except that d(s, ) = 0 need not imply that s equals
t.) We shall later need it in that generality.

2 Definition. Call {Z,} stochastically equicontinuous at t, if for each # > 0
and ¢ > 0 there exists a neighborhood U of t,, for which

limsup IP{sup | Z,(t) — Z,(to)| > r/} <e. O
U

There might be measure theoretic difficulties related to taking a supremum
over an uncountable set of t values. We shall ignore them as far as possible
during the course of this chapter. A more careful treatment of measurability
details appears in Appendix C.

Because stochastic equicontinuity bounds Z, uniformly over the neigh-
borhood U, it also applies to any randomly chosen point in the neighborhood.
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If {z,} is a sequence of random clements of T that converges in probability
to ¢4, then

3) Z,(t,) — Z,(ty) > 0 in probability,

because, with probability tending to one, 7, will belong to each U. When we
come to check for stochastic equicontinuity the form in Definition 2 will be
the one we use; the form in (3) will be easier to apply, especially when be-
havior of a particular {z,} sequence is under investigation.

The maximum likelihood method generalizes to other maximization
problems, where {log p(-, 8)} is replaced by other families of functions. For
future reference it will be more convenient if we pose them as minimization
problems.

Suppose # = {f(-,1):te T}, with T a subset of IR, is a collection of
real, P-integrable functions on the set S where P lives. Denote by P, the
empirical measure formed from n independent observations on P, and
define the empirical process E, as the signed measure n'/>(P, — P). Define

Fn(t) = Pnf('7 t)'
We shall prove a central limit theorem for sequences {t,} that come close
enough to minimizing the {F,(-)}.

Suppose f(-, t) has a linear approximation near the ¢, at which F (-)takes
on its minimum value:

) G0 = (o) + (8 = to)AC) + |t — tolr(-, ).
For completeness set (-, t,) = 0. The A(+) is a vector of k real functions on
S. Of course, if the approximation is to be of any use to us, the remainder
function r(-, t) must in some sense be small near ¢,. If we want a central
limit theorem for {z,}, stochastic equicontinuity of {E,r(-, )} at ¢, is the ap-
propriate sense.

Usually r(-, £) will also tend to zero in the #2(P) sense:P|r(-, £)|*> - 0 as
t - to. That is, f(-, t) will be differentiable in quadratic mean. In that case,
we may work directly with the #2(P) seminorm p, on the set # of all re-
mainder functions {r(-, t)}. Stochastic equicontinuity of {E,r(-, )} would
then follow from: for each ¢ > 0 and # > 0 there exists in % a neighborhood
V of 0 such that

limsup ]P{sup |E,r| > r/} < e
14

The neighborhood ¥V would take the form {re %: pp(r) < 0} for some
6 > 0. This would be convenient for empirical process calculations. Differ-
entiability in quadratic mean would also imply that PA = 0. For if PA were
non-zero the integrated form of (4),

P, 1) = Pf(-,t0) + (t — to) PA + o(t — to) near t,,
would contradict existence of even a local minimum at t,,.
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5 Theorem. Suppose {t,} is a sequence of random vectors converging in
probability to the value t, at which F(-) has its minimum. Define r(-, t) and the
vector of functions A(-) by (4). If

(i) t, is an interior point of the parameter set T ;
(ii) F(-) has a non-singular second derivative matrix V at ty;
(iil) F,(1,) = 0,(n™ ") + inf, F,(t);
(iv) the components of A(-) all belong to L*(P);
(v) the sequence {E,r(-, t)} is stochastically equicontinuous at t, ;
then n'?(t, — ty) ~ N(O, V™ [P(AA") — (PAYPAYTV 1)

Proor. Reparametrize to make ¢, equal to zero and V equal to the identity
matrix. Then (ii) implies

F(t) = F(0) + 1[t]* + o(|t]*) near 0.

Separate the stochastic and deterministic contributions to the function F (t)
by writing P, as the sum P + n~ Y2E,. Write Z,(t) for E,r(-, t). Stochastic
equicontinuity implies Z,(t,) = 0,(1). For values of  near zero,

(6) F,() — F0)=PLf(,0) = (.00 + n"2E,[f(-, 1) — f(-, 0)]
=3t + o(|t]?) + n"Y2E,A + n” Y3t Z,(0).
Invoke (iii). Because F,(t,) comes within o,(n~') of the infimum, which is
smaller than F,(0),
Op(n_l) = Fn(Tn) - Fn(o)
= 3ltl® + 0p(Itl?) + n7 2 E,A + 0,(n” 127, |).
The random vector E,A has an asymptotic N(0, P(AA") — (PA)(PAY)
distribution; it is of order O,(1). Consequently, by the Cauchy-Schwarz in-
equality, 7, E,A > — |1,]0,(1). Tidy up the last inequality.
Op(n_l) = [% - Op(l)]lfnlz - n_l/zlfnlop(l) - Op(n_l/ZITnD
=[5 = 0,(DIIwul = 0,(n™3)]* — O, (n™").
It follows that the squared term is at most O (n~ '), and hence 7, = 0, (n™ /).
(Look at Appendix A if you want to see the argument written without the
0,(-) and O,(-) symbols.) Representation (6) for ¢ = 7, now simplifies:
F(t) = F(0) + 3lt,|* + n” 20, E,A + 0,(n™")
— F,(0) + 315, + nTPE, AP — inTHE,AP + 0,(n7Y)
The same simplification would apply to any other sequence of t values of
order O,(n~'?). In particular,
F(—n"'PE,A) = F0) — 3n '|E,A® + o,(n™ ).

Notice the surreptitious appeal to (i). We need n~ /2E, A to be a point of T
before stochastic equicontinuity applies; with probability tending to one as
n — o0, it is.
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Now invoke (iii) again, comparing the values of F natt,and —n~Y2E A
to get
31t + nTPE,AR = 0,(n7Y),
whence n'?z, = —E,A + 0,(1). When transformed back to the old para-
metrization, this gives
n2yi (e, —t) = —V"2E A 4 0,(1)
~ V72N, P(AA') — (PAY(PAY). O

Examples 18 and 19 in Section 4 will apply the theorem just proved. But
before we can get to the applications we must acquire the means for verifying
the stochastic equicontinuity condition.

VIL.2. Chaining

Chaining is a technique for proving maximal inequalities for stochastic
processes, the sorts of things required if we want to check the stochastic
equicontinuity condition defined in Section 1. It applies to any process
{Z(1): te T} whose index set is equipped with a semimetric d(-, -) that
controls the increments:

P{IZ(s) — Z(Ol > n} < Ay, d(s, 1)) for n > 0.
It works best when A(-, -) takes the form
A(n, 0) = 2 exp(—31*/D?6?),

with D a positive constant. Under some assumptions about covering numbers
for T, the chaining technique will lead to an economical bound on the tail
probabilities for a supremum of | Z(s) — Z(t)| over pairs (s, t).

The idea behind chaining, and the reason for its name, is easiest to under-
stand when T is finite. Suppose T}, T, ..., T,+1 = T are subsets with the
property that each ¢ lies within §; of at least one point in T;. Imagine each
point of T;., ; linked to its nearest neighbor in T,fori=1,..., k Fromevery
t stretches a chain with links t = 1, , ¢,, .. ., t; joining it to a point in T;.

@ = point of T;
O = point of T,

® = point of T,
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The value of the process at ¢ equals its value at ¢, plus a sum of increments
across the links joining ¢ to t,. The error involved in approximating Z(t) by
Z(t,) is bounded, uniformly in t, by

Mw

max |Z(ti+ 1) - Z(ti)l-

1

i
If T; contains N, points, the maximum in the ith summand runs over N ir1
different increments, each across a link of length at most ;. The probability

of the summand exceeding #; is bounded by a sum of N, ; terms, each less
than A(y;, §;).

@) IP{max |Z(t) — Z¢)| > + - + Wk} < Z N 1A®;, 65).
t i=1

This inequality is useful if we can choose ;, §;, and T; to make both the right-
hand side and the sum of the {;} small. In that case the maximum of
| Z(s) — Z(t)| over all pairs in T is, with high probability, close to the maxi-
mum for pairs taken from the smaller class T;.

When A(y, 6) = 2 exp(—4%?/D?62), a good combination seems to be:
{0;} decreasing geometrically and {5;} chosen so that N, ,;A(x;, 6, = 24;,
that is,

M = D6;[2 log(N, 4 1/9))] vz,

With these choices the right-hand side of (7) is bounded by the tail of the
geometric series ) ; §;, and the sum of the {5,} on the left-hand side can be
approximated by an integral that reflects the rate at which N ; Increases as
d; decreases.

8 Definition. The covering number N(J), or N(8, d, T) if there is any risk of
ambiguity, is the size of the smallest d-net for T. That is, N(5) equals the
smallest m for which there exist points ¢, ..., t,, with min, d(z, t;) <6 for
every t in T. The associated covering integral is

J(6)=J(3,d, T) = fé[Z log(N(u)*/u)]**du for 0< o< 1. O

The N(u)?, in place of N(u), will allow us to bound maxima over more than
just the nearest-neighbor links from T;.., to T,.

If we interpret P as standing for the £!(P) or #?(P) semimetrics on %,
the notation N (6, P, #) and N,(6, P, %) used in Chapter II almost agrees
with Definition 8. Here we implicitly restrict ¢, ..., t,, to be points of T.
In Chapter II the approximating functions were allowed to lie outside %
They could have been restricted to lie in & without seriously affecting any
of the results.

The proof of our main result, the Chaining Lemma, will be slightly more
complicated than indicated above. To achieve the most precise inequality,
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we replace 77; by a function of the link lengths. And we eliminate a few pesky
details by being fastidious in the construction of the approximating sets
1;. But apart from that, the idea behind the proof is the same.

As you read through the argument please notice that it would also work
if N(-) were replaced throughout by any upper bound and, of course, J()
were increased accordingly. This trivial observation will turn out to be most
important for applications; we seldom know the covering numbers exactly,
but we often have upper bounds for them.

9 Chaining Lemma. Let {Z(t):t € T} be a stochastic process whose index
set has a finite covering integral J(-). Suppose there exists a constant D such
that, for all s and t,

(10)  TP{|Z(s) — Z(®)| > nd(s, t)} < 2 exp(—3n*/D*) for 5> 0.

Then there exists a countable dense subset T* of T such that, for 0 < ¢ < 1,
IP{1Z(s) — Z(t)| > 26D J(d(s, 1)) for some s, t in T* with d(s, ) < &} < 2¢

We can replace T* by T if Z has continuous sample paths.

Proor. Write H(u) for [2 log(N(u)?/u)]'/%. It increases as u decreases. Set
0; =¢/2 fori=1,2,.... Construct 25;-nets T, in a special way, to ensure
that T, < T, < ---. (The extra 2 has little effect on the chaining argument.)

Start with any point ¢,. If possible choose a t, with d(t,, t;) > 26,; then
a ty with d(t3, t;) > 26, and d(t3, t,) > 26,; and so on. After some t,,, with
m no greater than N(6,), the process must stop: if m > N(§,) then some pair
t;, t; would have to fall into one of the N(,) closed balls of radius §, that
cover T. Take T, as the set {ty, ..., t,}. Every ¢ in T lies within 25, of at least
one point in Tj.

Next choose ¢, 4, if possible, with d(t,,. ;, t;) > 268, for i < m;then t,,, ,
with d(t,.,,t) > 26, for i <m + 1; and so on. When that process stops
we have built T, up to T, a 2d,-net of at most N(,) points.

The sets T3, Ty, ... are constructed in similar fashion. Define T* to be
the union of all the {T;}.

For the chaining argument sketched earlier (for finite T') we bounded the
increment of Z across each link joining a point of 7;, ; to its nearest neighbor
in T;. This time T;,, contains T;; all the links run between points of T}, 1
With only an insignificant increase in the probability bound we can increase
the collection of links to cover all pairs in T;, , provided we replace the
suggested #; by a quantity depending on the length of the link. Set

A; = {|Z(s) — Z(t)| > Dd(s, t)H(9,) for some s, t in T;}.

It is a union of at most N(5;)* events, each of whose probabilities can be
bounded using (10).

IPA; < 2N(5,)* exp[ —1H(5,)*] = 24;.
The union of all the {4}, call it 4, has probability at most 2.
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Consider any pair (s, t) in T* for which d(s, t) < e. Find the # for which
6, < d(s, t) < 20,. Because the {T;} expand as i increases, both s and ¢t
belong to some T,,,; with m > n. With a chain s = s,,, 4, s, ..., s, link s
to an s, in T,, choosing each s; to be the closest point of T; to s;, ;, thereby
ensuring that d(s;,, s;) < 26,. Define a chain {t;} for ¢ similarly. Break
Z(s) — Z(t) into Z(s,) — Z(t,) plus sums of increments across the links of
the two chains; | Z(s) — Z(t)| is no greater than

1Z(s,) — Z(t,)| + i LIZGsie ) — Z(DI + | Z(t+1) — Z()1]-

Both s;,, and s; belong to T, ,. On A%, |,
[Z(s;i+1) — Z(s)] < Dd(s;4 1, s)H(0;4 1) < 2D6; H(0; 4 ).

On A%, these bounds, together with their companions for (s,,, ¢,) and (¢, 4, t,),
allow | Z(s) — Z(t)] to be at most

Dd(sns tn)H(an) +2 z 2D51H(51+1)

i=n

The distance d(s,, t,) is at most

ds, D) + Y dlsia15) + Y d(tis s, 1) < 26, + 2 Y 26, < 105,

i=n i=n i=n

Also 6; = 4(6;, 1 — 6,4 ,). Thus, on A4°,

|Z(s) — Z(1)| < 10D5,H(é,) + 4D i4(5i+1 — 0i+2)H(d;+ 1)

< 10D6,H(S,) + 16D Y f{am <u <6,y H®) du

< 10D, H(3,) + 16D J(S,, ,)
< 26D J(d(s, 1)).

If Z has continuous sample paths, the inequality with T* replaced by T is
the limiting case of the inequalities for T* with ¢ replaced by e + n=t. [0

Often we will apply the inequality from the Chaining Lemma in the weaker
form:

IP{|Z(s) — Z(t)| > 26D J(e) for some s, t in T* with d(s, t) < &} < 2e.

A direct derivation of the weaker inequality would be slightly simpler than
the proof of the lemma. But there are applications where the stronger result
is needed.
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11 Example. Brownian motion on [0, 1], you will recall, is a stochastic
process {B(-,):0 <t < 1} with continuous sample paths, independent
increments, B(:,0) = 0, and B(f) — B(s) distributed N@©,t —s) for t > s.
If we measure distances between points of [0, 1] in a strange way, the Chain-
ing Lemma will give a so-called modulus of continuity for the sample paths
of B.

The normal distribution has tails that decrease exponentially fast: from
Appendix B,

IP{|B(t) — B(s)| > n} < 2 exp(—37°/|t — s)).

Define a new metric on [0, 1] by setting d(s, £) = |s — ¢|"/2 Then B satisfies
inequality (10) with D = 1. The covering number N(J, d, {0, 1]) is smaller
than 26~ 2, which gives the bound

J(@6) < fs[Z log 4 + 10 log(1/u)]*'? du
0

< (2log 4)*28 + /10[log(1/5)]~ 12 f 6log(1/u) du
0

< 46[log(1/6)]""* for & small enough.
From the Chaining Lemma,
IP{|B(s) — B(t)| > 26J(d(s, 1)) for some pair with d(s, t) < 6} < 26.

The event appearing on the left-hand side gets smaller as & decreases. Let
6 | 0. Conclude that for almost all w,

|B(w, 5) — B(w, )| < 74](s — 1) log|s — t]|"/?

for |s — t|Y? < &(w). Except for the unimportant factor of 74, this is the
best modulus possible (McKean 1969, Section 1.6). J

VII.3. Gaussian Processes

In Section 5 we shall generalize the Empirical Central Limit Theorem of
Chapter V to empirical processes indexed by classes of functions. The limit
processes will be analogues of the brownian bridge, gaussian processes with
sample paths continuous in an appropriate sense. Even though existence of
the limits will be guaranteed by the method of proof, it is no waste of effort
if we devote a few pages here to a direct construction, which makes non-trivial
application of the Chaining Lemma. The direct argument tells us more about
the sample path properties of the gaussian processes.

We start with analogues of brownian motion. The argument will extend
an idea already touched on in Example 11.
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Look at brownian motion in a different way. Regard it as a stochastic
process indexed by the class of indicator functions

F={0,1:0<t<1).

The covariance IP[B(-, f)B(-, g)] can then be written as P(fg), where P =
Uniform{0, 1]. The process maps the subset & of #*(P) into the space
&*(IP) in such a way that inner products are preserved. From this perspec-
tive it becomes more natural to characterize the sample path property as
continuity with respect to the #?(P) seminorm pp on &. Notice that

(1[0, s] — [0, 2]1) = (PI[0, s1 — [0, ]2 = |s — t|'2
It is no accident that we used the same distance function in Example 11.
The new notion of sample path continuity also makes sense for stochastic

processes indexed by subclasses of other #*(P) spaces, for probability
measures different from Uniform[0, 17.

12 Definition. Let & be a class of measurable functions on a set S with a
o-field supporting a probability measure P. Suppose # is contained in
#2(P). A P-motion is a stochastic process {Bp(-, f): f € #} indexed by &F
for which:

() Bp has joint normal finite-dimensional distributions with zero means
and covariance IP[By(-, f)Bp(-, 9)] = P(fg);

(i1) each sample path Bp(w, -) is bounded and uniformly continuous with
respect to the #*(P) seminorm pp(-) on Z.

The name does not quite fit unless one reads “ Uniform[0, 1]” as
“brownian,” but it is easy to remember. The uniform continuity and bounded-
ness that crept into the definition come automatically for brownian motion
on the compact interval [0, 1]. In general & need not be a compact subset
of #?(P), although it must be totally bounded if it is to index a P-motion
(Problem 3); uniformly continuous functions on a totally bounded & must
be bounded.

We seek conditions on P and & for existence of the P-motion. The
Chaining Lemma will give us much more: a bound on the increments of the
process in terms of the covering integral

]
J) = 96, pp. #) = | T2 108N, pp, #))]" du
0
Finiteness of J(-) will guarantee existence of Bp.

13 Theorem. Let & be a subset of #*(P) with a finite covering integral,
J(), under the L*(P) seminorm pp(-). There exists a P-motion, Bp, indexed
by &, for which

[Br(@, f) — Bew, 9| < 26J(pp(f — 9)) if pp(f — g) < 8(w),
with dw) finite for every w.
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Proor. Construct the process first on a countable dense subset % = {f}
of Z. Such a subset exists because & has a finite -net for each § > 0 (other-
wise J could not be finite). Apply the Gram-Schmidt procedure to %,
generating an orthonormal sequence of functions {u;}. Each f in &% is a
finite linear combination Zj {uj, fu; because {u,, ..., u,} spans the same
subspace as {f}, . .., f,}. Here, temporarily, <u, > denotes the inner product
in Z%(P): {u, f» = P(uf). Choose a probability space (Q, &, IP) supporting
a sequence {U;} of independent N(0, 1) random variables. For each f
in % and w in Q define

Zw, ) = Y <y U )

The sum converges for every w, because only finitely many of the coefficients
{u;, f> are non-zero. The finite-dimensional distributions of Z are joint
normal with zero means and the desired covariances:

PLZ(-, N)Z(-, 9)] = ). <us, 5 <u;, gV, U
= Z <ui’f><uia g>
=L

as required for a P-motion.
The #2(P) seminorm is tailor-made for the chaining argument. Because
IP{|N(0, 1)| = x} < 2 exp(—3x?) for x > 0 (Appendix B),

IP{{Z(f) — Z(g9)| = n} < 2 exp(—3*/IPLZ(f) — Z(9)]?)
= 2 exp(—3n°/pe(f — 9)®).

Apply the Chaining Lemma to the process Z on %,. Because %, itself is
countable we may as well assume the countable dense subset promised by
the Lemma coincides with %,. Let G(J) denote the set of w for which

1Z(f) — Z(9)| > 26J(pp(f — g)) for some pair with pp(f — g) < 0.

Then IPG(5) < 20 for every § > 0. As § decreases, G(6) contracts to a
negligible set G(0). For each w not in G(0),

|Z(, f) = Z(w, 9)| < 26J(pp(f — 9)) 1 pp(f — g) < &(w).

Reduce Q to Q\ G(0). Then each sample path Z(w, -) is uniformly continuous.
Extend it from the dense %, up to a uniformly continuous function on the
whole of #. The extension preserves the bound on the increments, because
both J and pp are continuous. Complete the proof by checking that the
resulting process has the finite dimensional distributions of a P-motion. [

For brownian motion, continuity of sample paths in the usual sense
coincides with continuity in the pp sense, with P = Uniform[0, 1]. The
P-motion processes for different P measures on [0, 1] (or on IR, or on IR¥)
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do not necessarily have the same property. If P has an atom of mass « at a
point ¢,, the sample paths of the B, indexed by intervals {[0, t1} will all have
a jump at t,. The size of the jump will be N(0, o) distributed independently
of all increments that don’t involve a pair of intervals bracketing t,. All
sample paths are cadlag in the usual sense.

We encountered similar behavior in the gaussian limit processes for the
Empirical Central Limit Theorem (V.11) on the real line. We represented
the limit as U(F(-)), with U a brownian bridge and F the distribution function
for the sampling measure P. We can also manufacture the limit process
directly from the P-motion, in much the same way that we get a brownian
bridge from brownian motion. Denote by 1 the function taking the constant
value one. Then the process obtained from B, by setting

EP(':f) = BP(,f) - (Pf)BP(a 1)7

is a gaussian process analogous to the brownian bridge.

14 Definition. Call a stochastic process E, indexed by a subclass # of
#*(P) a P-bridge over & if

(1) Ep has joint normal finite-dimensional distributions with zero means
and covariance IP[Ex(-, )Ep(-, 9)] = P(fg) — (Pf)(Pg);

(ii) each sample path Ep(w, -) is bounded and uniformly continuous with
respect to the #2(P) seminorm on %, O

The P-bridge will return in Section 5 as the limit in a central limit theorem
for empirical processes indexed by a class of functions.

VIL.4. Random Covering Numbers

The two methods developed in Chapter I, for proving uniform strong laws
of large numbers, can be adapted to the task of proving the maximal in-
equalities that lurk behind the stochastic equicontinuity conditions in-
troduced in Section 1. The second method, the one based on symmetrization
of the empirical measure, lends itself more readily to the new purpose because
it is the easier to upgrade by means of a chaining argument. We have the
tools for controlling the rate at which covering numbers grow; we have a
clean exponential bound for the conditional distribution of the increments
of the symmetrized process. The introduction of chaining into the first
method is complicated by a messier exponential bound. Section 6 will tackle
that problem.

Recall that the symmetrization method relates P, — P to the random
signed measure PP that puts mass + n~ ! at each of 15 -5 &, the signs being
allocated independently plus or minus, each with probability 1. For central
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limit theorem calculations it is neater to work with the symmetrized empirical
process E; = n'/?P;. Hoeflding’s Inequality (Appendix B) gives the clean
exponential bound for E; conditional on everything but the random signs.
For each fixed function f,

IP{|E; f|>n|E} = IP{

;if(éi)‘ > nn”zli}

i

< 2exp| — 2012y’ / > 4f(é,~)2]

= 2exp[~31*/P, f*].
That is, if distances between functions are measured using the #2(P,)
seminorm then tail probabilities of E; under IP(-|€) satisfy the exponential
bound required by the Chaining Lemma, with D = 1. For the purposes of
the chaining argument, E? will behave very much like the gaussian process
Bp of Section 3, except that the bound involves the random covering number
calculated using the £*(P,) seminorm. Write

¥e]
6, P, F) = f [2 log(N (4, Py, ) /)12 du
0

for the corresponding covering integral.

Stochastic equicontinuity of the empirical processes {E,} at a function
fo in # means roughly that, with high probability and for all n large enough,
|E, f — E, fol should be uniformly small for all f close enough to f,. Here
closeness should be measured by the #?(P) seminorm pp. With the Chaining
Lemma in hand we can just as easily check for what seems a stronger property
—but if you look carefully you’ll see that it’s equivalent to stochastic equi-
continuity for a larger class of functions. Of course we need # to be per-
missible (Appendix C).

15 Equicontinuity Lemma. Let & be a permissible class of functions with
envelope F in &*(P). Suppose the random covering numbers satisfy the uni-
formity condition: for each n > 0 and ¢ > O there exists a y > 0 such that

(16) limsup IP{J,(y, P,, #) > 5} < &.
Then there exists a 6 > 0 for which
limsup IP{sup E.f — | > '7} <eg,
[6]

where [0] = {(f,9): f,g € F and pp(f — g) < 6}.

Proor. The idea will be: replace E, by the symmetrized process EZ; replace
[6] by a random analogue,

205 ={(f,9): f.g e F and (P,(f — 9))"'* < 26};
then apply the Chaining Lemma for the conditional distributions IP(- | €).
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For fixed f and ¢ in [6] we have var(E,(f — g)) = P(f — g)* < 62
Argue as in the FIRST and SECOND SYMMETRIZATION steps of Section IL.3:
when ¢ is small enough,

IP{S[I;]p |E.(f — @) > n} < 4IP{sup [Ex(f — )| > %n}

(o1
That gets rid of E,,.

If with probability tending to one the class (26> contains [0], we will
waste only a tiny bit of probability in replacing [5] by (26):

IP{SS]p |EXf — 9] > %n} < IP{SUP E(f — 9l > %17} + IP{[6] & <26>}.

(26
It would suffice if we showed supg, |P,h — Ph| — 0 almost surely, where
% ={(f —9)*: f,ge F}. This follows from Theorem I1.24 because the
condition (16) implies
an log Ny(6, P,, %) = 0,(n) foreach & > 0.

Problems 5 and 6 provides the details behind (17). That gets rid of [5].

The reason we needed to replace [6] by <26> becomes evident when we
condition on & Write p,(-) for the #?(P,) seminorm. We have no direct
control over p,(f — g) for functions in [§]; but for (28), whose members
are determined as soon as § is specified, p,(f — g) < 2. Apply the Chaining
Lemma.

P{|ES(f — g)| > 26J,(26, P,, F) for some (f, g) in <26)*|E} < 45

The countable dense subclass (26>* can be replaced by <26 itself, because
Ey is a continuous function on & for each fixed &:

|EX(f — @) < n'PP|f — gl <n'Pp(f - g).

Integrate out over &, then choose 6 so that both IP{26J,(26, P,, %) > in
and 46 are small. O

Now that we have the maximal inequalities for empirical processes, we
can take up again the central limit theorems for statistics defined by minimiza-
tion of a random process, the topic we left hanging at the end of Section 1.

Recall that we need the processes {E,(-, t)}, which is indexed by the
class # = {r(-,t):te T} of remainder functions, stochastically equi-
continuous at t,. If f(-, ) is differentiable in quadratic mean at 1, it will
suffice if we find a neighborhood V = {r e %: pp(r) < 6} for which

limsup IP{sup |E,r| > n} < &
14

Notice that V' < {r; — ry:pp(r; — 1,) < 8}, because r(-, t,) = 0 by defini-
tion. Thus we may check for stochastic equicontinuity by showing:

(i) The class £ has an envelope belonging to .#2(P).
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(i) f(-, ¢)is differentiable in quadratic mean at ¢,. From (i), this follows by
dominated convergence if r(-, t) — 0 almost surely [P] as t — ¢,.
(iii) Condition (16) is satisfied for # = 4.

These three conditions place constraints on the class { f(-, £)}.

18 Example. The spatial median of a bivariate distribution P is the value
of 0 that minimizes M(f) = P|x — 6. Estimate it by the 6, that minimizes
M, (6) = P,|x — 0|. Example I1.26 gave conditions for consistency of such
an estimator. Those conditions apply when P equals the symmetric normal
N(0, I,), a pleasant distribution to work with because explicit values can be
calculated for all the quantities connected with the asymptotics for {6,}.
For this P, convexity and symmetry force M(-) to have its unique minimum

at zero, so f, converges almost surely to zero. Theorem 5 will produce the
central limit theorem,

n''20, ~ N(0, (4/m)1),

after we check its non-obvious conditions (ii), (iv), and (v).
Change variables to reexpress M(#) in a form that makes it easier to find
derivatives.

M) = 2n)~ ! J|x| exp(—%ix + 0)?) dx.

Differentiate under the integral sign.

M’'(0) = 0, of course,
M"(0) = 2m)~! fIXI(XX' — I,) exp(—3|x/*) dx.

A random vector X with a N(0, I,) distribution has the factorization X = RU
where R? = [X|* has a y2-distribution independent of the random unit
vector U = X/|X|, which is uniformly distributed around the rim of the
unit circle.

V = M"(0) = P(RUU’ — RI,)
= PR3IPUU’ — (IPR)I,
= (n/8)"21,.

Condition (i) wasn’t so hard to check.
To figure out the A(x) that should appear in the linear approximation

lx — 0] = |x| + O'A(x) + |0]r(x, 0),

carry out the usual pointwise differentiation. That gives A(x) = x/|x| for
x # 0. Set A(0) = 0, for completeness. The components of A(-) all belong
to £?(P). Indeed, PAA' = TPUU’ = 11,. That’s condition (iv) taken care of,
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Now comes the hard part—or at least it would be hard if we hadn’t
already proved the Equicontinuity Lemma. Start by checking that the class
% of remainder functions (-, 6) has an envelope in Z*(P). For § + 0,

Ir(x, )] = |1x — 6] — x| — 'A(x)|/16]
<1017 (x — 0P — [xP)/(Ix — 6] + |x]) + 1
< @Ix+10D/(x = 01 + |x]) + 1
<4

It follows that |- — 8] is differentiable in quadratic mean at & = 0. We have
only to verify condition (16) of the Equicontinuity Lemma to complete the
proof of stochastic equicontinuity.

Each r(-, ), for 6 # 0, can be broken into a difference of two bounded
functions:

ri(-, 0) = 0'A()/|6,
r2( 0) = (Ix — 0] — |x])/|6].

Write #, and £, for the corresponding classes of functions.

The linear space spanned by %, has finite dimension; the graphs have
polynomial discrimination, by Lemma IL.28; the covering numbers
N,(u, P,, ;) are bounded by a polynomial Au~" in u~!, with 4 and W
not depending on P, (Lemma I1.36).

The graphs of functions in %, also have polynomial discrimination,
because {(x, 1):|x — 8] — |x| > |0|t} can be written as

{=20% +161* 2 216/ [x]t + [0}  {Ix| + 6]t > O} U {|x| + |0]¢ < O}

This is built up from sets of the form {g > 0} with g in the finite-dimensional
vector space of functions

Go, 8, 9,6.6.0(6 1) = &% + BIx| + y[x|t + 6t + e + ¢,

The covering numbers for %, are also uniformly bounded by a polynomial
inu L

These two polynomial bounds combine (Problem I1.18) to give a similar
uniform bound for the covering numbers of #, which amply suffices for the
Equicontinuity Lemma: for each # >0 there exists a v such that
J2(y, P,, ) < n for every P,. The conditions of Theorem 5 are all satisfied ;
the central limit theorem for {6,} is established. O

19 Example. Independent observations are sampled from a distribution P
on the real line. The optimal 2-means cluster centers a,, b, minimize
Wi(a, b, P,) =P, f,,, where f, ,(x)=|x —af> A [x — b|®>. In Examples
I1.4 and 11.29 we found conditions under which a,, b, converge almost surely
to the centers a*, b* that minimize W(q, b, P) = Pf, ,. Theorem 5 refines
the result to a central limit theorem.
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Keep the calculations simple by taking P as the Uniform{0, 1] distribu-
tion. The argument could be extended to other P distributions, higher
dimensions, and more clusters, at the cost of more cumbersome notation
and the imposition of a few extra regularity conditions.

The parameter set consists of all pairs (a, b)) with 0 < a < b < 1. For the
Uniform[0, 1] distribution direct calculation gives explicitly the values
a*, b* that minimize W(a, b, P).

W(a, b, P) = f{OSx <ia+b)}|x — a)?
+ {3a+b) < x < 1}|x — b|* dx
= 30> + J(1 ~ b + (b — a)*.

Minimizing values: a* = }, b* = 2, as you might expect. Near these optimal
centers,

W(a,b,P) =35 +3a—3>—3a - Db —D + 30 — H?
+ cubic terms

The function f, ,(x) has partial derivatives with respect to a and b except
when x = 4(a + b). That suggests for A(x) the two components

Afx) = —2(x — D0 < x <1,
A = —2x — D < x < 1}.

Both functions belong to #*(P). The remainder function is defined by
subtraction of the linear approximation from f, ,. Simplify the notation by
writing s = a — 4, t = b — 3; change f, , to g, , and (-, a, b) to R(-, s, t).
(Is] + [tDR(x, s, ) = g, (X) = go,0(x) + 25(x — D{0 < x < 3}
+22(x —HE<x<1}
= a piecewise linear function of x.

envelope

X

\

fR(-,s, t)

)|

/
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The remainder functions are bounded by a fixed envelope in £*(P).

IR, s, )l < [Ix —F -9 — (x — 2|+ |(x — 5 — 1) — (x — D
+2[sl1x — gl + 20el1x = 3/(Us| + [2])
<4d|x —% +4|x -2+ 2

Deduce differentiability in quadratic mean of f, , at the optimal centers.

The graphs of the piecewise linear functions in £ have only polynomial
discrimination, and they have an envelope in #?(P). Lemma I1.36 gives a
uniform bound on the covering numbers that ensures J,(y, P,, #) < n for
every P, if y is chosen small enough. The Equicontinuity Lemma applies;
the processes {E,r(-, a, b)} are stochastically equicontinuous at (3, 3); the
optimal centers obey a central limit theorem

(n'"*(a, — ), n'?(b, — D) ~ NO, V" IP(AA)V 1),

where
3 -4 % 0
V= [_l é], P(AN) = [0 L]. O
4 4 2

VIL.5. Empirical Central Limit Theorems

As random elements of D[0, 1], the uniform empirical processes {U,}
converge in distribution to a brownian bridge. More generally, the empirical
processes {E,} for observations from an arbitrary distribution on the real
line converge in distribution, as random elements of D[ — o0, 0], to a
gaussian process obtained by stretching out the brownian bridge. Both
results treat the empirical measure as a process indexed by intervals of the
real line. In this section we shall generalize these results to empirical measures
indexed by classes of functions.

Convergence in distribution, as we have defined it, deals with random
elements of metric spaces. Once we leave the safety of intervals on the real
line it becomes quite a problem to decide what metric space of functions
empirical process sample paths should belong to. Without the natural
ordering of the intervals, it is difficult to find a completely satisfactory sub-
stitute for the cadlag property; without the simplification of cadlag sample
paths, empirical processes run straight into the measure-theoretic complica-
tions we have so carefully been avoiding. Appendix C describes one way of
overcoming these complications. A class of functions satisfying the regularity
conditions described there is said to be permissible. Most classes that arise
from specific applications are permissible.

Let # be a pointwise bounded, permissible class of functions for which
supgz |Pf| < c0. The empirical processes {E,} define bounded functions on
& ; their sample paths belong to the space & of all bounded, real functions
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on Z. To avoid some of the confusion that might be caused by the hierarchy
of functions on spaces of functions on spaces of functions, call members of
Z functionals. Equip 2 with the metric generated by the uniform norm,
Ixll = supgz |x(f)|. Be careful not to confuse the norm [-]} on & with the
F*(P) seminorm pp(-) on Z.

The choice of o-field for & is tied up with the measurability problems
handled in Appendix C. We need it small enough to make E, a measurable
random element of Z, but large enough to support a rich supply of measur-
able, continuous functions. The limit distributions must concentrate on sets
of completely regular points (Section IV.2), That suggests that the o-field
should at least contain the balls centered at the functionals that are uniformly
continuous for the pp seminorm.

20 Definition. Write C(#, P) for the set of all functionals x(-) in & that are
uniformly continuous with respect to the #2(P) seminorm on %. That is, to
each ¢ > 0 there should exist a § > 0 for which |x(f) — x(g)| < ¢ whenever
pp(f — g) < 6. Define #* as the smallest o-field on & that: (i) contains all
the closed balls with centers in C(&, P); (ii) makes all the finite-dimensional
projections measurable. O

Notice that C(Z, P) is complete, because it is a closed subset of the
complete metric space (Z, ||-||). Notice also that ° depends on the sampling
distribution P. Each E, is 2 #*-measurable random element of & under mild
regularity conditions (Appendix C).

The finite-dimensional projections of {E,} (the fidis) converge in distri-
bution to the fidis of Ep, the P-bridge process over % (Definition 14). Of
course some doubts arise over the existence of Ep; getting a version with
sample paths in C(&, P) is no simple matter, as we saw in Section 3. Happily,
the questions of existence and convergence are both taken care of by a single
property of the empirical processes, uniform tightness.

Recall from Section IV.5 that uniform tightness for {E,} requires existence
of a compact set K, of completely regular points in & such that

liminf IP{E,e G} > 1 — ¢
for every open, #°-measurable set G containing K,. From uniform tightness
we would get a subsequence of {E,} that converged in distribution to a tight
borel measure on Z. If C(#, P) contained each K,, the limit would con-
centrate in C(%, P). Its fidis would identify it (Problem 8) as the P-bridge
over 4.

Uniform tightness of {E,} would also imply convergence of the whole
sequence to Ep. For if {IPh(E,)} did not converge to IPh(Ep) for some
bounded, continuous, #°-measurable h on & then

|IPh(E,) ~ IPH(E;)| > ¢ infinitely often

for some ¢ > 0. The subsequence along which the inequality held would
also be uniformly tight; it would have a sub-subsequence converging to a
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process whose fidis still identified it as a P-bridge. That would give a con-
tradiction: along the sub-subsequence, {IPA(E,)} would converge to IPh(Ep)
without ever getting closer than e.

21 Theorem. Let & be a pointwise bounded, totally bounded, permissible
subset of Z*(P). If for each n > 0 and & > 0 there exists a & > 0 for which

(22) limsup IP{sup IELf —g)| > r/} < g,

t)]
where [0] = {(f,9): f,ge F and pp(f — g) < 6}, then E, ~ E, as random
elements of . The limit P-bridge process Ep is a tight, gaussian random
element of & whose sample paths all belong to C(%, P).

ProoF. Check the uniform tightness. Given ¢ > 0 find a compact subset K
of C(Z#, P) with liminf IP{E, € G} > 1 — ¢ for every open, #7-measurable
G containing K. Construct K as an intersection of sets D;, D,, ..., where D,
is a finite union of closed balls of radius k™! centered at points of C(%, P).
Every functional in D, will lie uniformly within k~* of a member of C(Z, P);
every functional in K will therefore belong to C(#, P), being a uniform limit
of functionals in C(#, P). The prooffollows closely the ideas used in Theorem
V.16 to prove existence of the brownian bridge. Only the continuous inter-
polation between values taken at a finite grid requires modification.

Fix # > 0 and ¢ > 0 for the moment, and choose & according to (22).
Invoke the total boundedness assumption on & to find a finite subclass F; =
{fi,- s fu} of &F such that each f in & has an f* in % for which
pp(f — f*) < 36.

We need to find a finite collection of closed balls in &, each with a specified
small radius and centered on a functional in C(#, P), such that E, lies with
specified large probability in the union of the balls. Construct the centers
for the balls by a continuous interpolation between the values taken on at
each f; in % by realizations of an E,,.

For each f;, the sequence of random variables {E,(f)} converges in
distribution. There exists a constant C for which

limsup IP{max |E(f)] > C} <e

Define

Q, = {w:SUPIEn(w,f — ¢)| < n and max |E (o, f)| < C}.
181 i

By the choice of § and C we ensure that liminf IPQ, > 1 — 2&. Write S, for

the bounded set of all points in IR™ with coordinates E,(w, f;) for an o in Q,,,

and S for the union of the {S,}. If r belongs to S then |r;| < C for each

coordinate and |r; —r;] < 2y whenever there exists an f in & with

pp(f — f) < dand pp(f — fj) < 0.
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Construct weight functions A(-) on & by
vl(f) =[1 = pp(f = /81,
ALS) = oo () + -+ + v(D]

Each v(-) is a uniformly continuous function (under the p, seminorm) that
vanishes outside a ball of radius & about f;. For every f there is at least one
fi> its f*, for which v(f) > %; the denominator in the defining quotient for
A; is never less than . The A(-) are non-negative, uniformly continuous
functions that sum to one everywhere in %.

For r in S define an interpolation function by x(f,r) = Y™, A()r;.
Each x(-, r) belongs to C(Z, P). If pp(f — f;) < 4, all the r; values corre-
sponding to non-zero {A(f)} satisfy |r; — r;] < 2. As a convex combination
of these values, x(f, r) must also lie within 2z of r ;- An E (o, -) corresponding
to an w in €, has a similar property:

|Ei@, f) — Ef(w, f)| <1 when pp(f — f)) < 4.
Thus, if w belongs to Q, and | E (o, f) = r;] < nfor every j then

S;l_plEn(w, ) = x(f,0] < 4n.

Choose from the bounded set S a finite subset {r(1), ..., r(p)} for which

min max |r; — ri(k)| < n foreveryrin S.
ko
Abbreviate x(-, r(k)) to x,(-), fork = 1, .. ., p- Then from what we have just
proved

min sup | E(w, /) — x(f)] < 4y,
k F

whenever o belongs to Q,. If we set D equal to the union of the balls
B(xy,4n),. .., B(x,, 41), then

liminf IP{E, € D} > 1 — 2.

Repeat the argument with # replaced by (4k) ™! and & replaced by &/2%* !, for
k=1,2,...,to get each of the D, sets promised at the start of the proof:
D, is a finite union of closed balls of radius k~! and

liminf IP{E, € D,} > 1 — ¢/2%,

The remainder of the proof follows Theorem V.16 almost exactly.

The intersection of the sets Dy, D,, ... is a closed and totally bounded
subset of the complete metric space C(Z, P); it defines the sought-after
compact K. The open G contains some finite intersection D, N - - - N D,. If
not, there would exist a sequence Y = {y,} with y, in G D, " --- N D,
for each k. Some subsequence Y’ of Y would lie within one of the balls making
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up Dy ; some subsequence Y” of Y’ would lie within one of the balls making
up D,; and so on. The sequence constructed by taking the first member of
Y’, the second member of Y”, and so on, would be Cauchy; it would con-
verge to a point y (¥ is complete) belonging to all the closed sets
{G° n Dy n--- n D,}. This would contradict

GnDin---NnD,=GnK=g.
1

k=
Complete the uniform tightness proof by noting that
liminf IP{E, € G} > liminf IP{E,eD; n---nD,} >1—¢

if G contains D; N --- N D,. (|

Condition (22) points the way towards mass production of empirical
central limit theorems. The Chaining Lemma makes it easy. For example,
from the Equicontinuity Lemma of Section 4, we get conditions on the
random covering numbers under which {E,} converges in distribution. The
next section will describe other sufficient conditions.

23 Example. We left unfinished back in Example V.15 a limit problem for
goodness-of-fit statistics with estimated parameters. The empirical processes
were indexed by intervals of the real line; the estimators took the form

6, = 0o+ 11 Y LE) + o,(n" 1)
i=1

H

for an L with PL = 0, PL? < co. We wanted to find the limiting distribution
of

D, = sup |E,(— 0, t] — n*"(8, — 05)A(®)| + 0,(1)

the A(-) being a fixed cadlag function on [ — oo, c0].
Set # equal to {L} U {(—o0,t]: —o0 < t < o0}. Express D, in terms of
a function on the corresponding Z. Define

H(x) = sup |x((— oo, £]) — x(L)A®)|.

Guard against measurability evils by restricting the supremum to rational
t values: it makes no difference to E,, A, or the limiting P-bridge. Clearly
H(-) is a continuous function on %.

You can check condition (22) by means of the Equicontinuity Lemma.
The intervals have only polynomial discrimination; the inclusion of the
single extra function L has a barely perceptible effect on the covering num-
bers. Deduce that D, = H(E,) + o,(1) ~ H(Ep). O
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VIL.6. Restricted Chaining

In this section the method of the Chaining Lemma is modified to develop
another approach to empirical central limit theorems. The arguments for
three representative examples are sketched. You might want to skip over the
section at the first reading.

The chaining arguments in Section 2 assumed that the increments of the
stochastic process had exponentially decreasing tail probabilities,

Q4)  IP{Z(s) — ZO®)| > n} < 2exp(—n¥/D?6?) if d(s, 1) < 6.

The inequality held for every # > 0 and 6 > 0. We shall carry the argument
further to cover processes, such as the empirical process, for which the
inequality holds only in a restricted region 2 of (#, d) pairs.

Suppose f is a bounded function, | f| < C. Let 6% be an upper bound
for the variance o*(f) = Pf? — (Pf)% Bennett’s Inequality (Appendix B)

gives
(25) P{IE,f|>n} = IP{ Z 1)~ Bf| > nn”z}

< 2 exp[ —3(n*/6*)BQ2Cn/(n*1*6%))]
< 2exp(—iA?/8?) if 8%y = 2C/(n'*B~1(A))

for any fixed 4 between 0 and 1, because B(-) is a continuous, decreasing
function, with B(0) = 1.

The restricted range complicates the task of proving maximal inequalities
for the stochastic process {Z(¢): t € T}. We can chain as in Section 2 as long
as the (;, 6;) pairs remain within £ but eventually the chain will hit the
boundary of #, when the links are getting down to lengths less than some
tiny a, say. That leaves the problem of how to bound increments of Z across
little links from points in T to their nearest neighbors in an a-net for T.

Remember the abbreviations N(8), for the covering number N@,d, T),
and J(6), for the covering integral

JS,d, T) = f 6[2 log(N(u)*/u)] 2 du.
4]

The chaining argument will work for maximal deviations down to about
J(a). That explains the constraint J(x) < y/12D in the next theorem. The
other constraints on o and y are cosmetic.

26 Theorem. Let {Z(1):te T} be a stochastic process that satisfies the
exponential inequality (24) for every n > 0 and & > 0 with § > an'/?, for some
constant o. Suppose T has a finite covering integral J(-). Let T(x) be an a-net
(containing N(a) points) for T'; let t, be the closest point in T(a) to t; and let
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[0] denote the set of pairs (s, t) with d(s, t) < 6. Given ¢ > 0 and y > 0 there
exists a 6 > 0, depending on ¢, v, and J(-), for which

]P{sup |Z(s) — Z(t)| > SV} < 2+ IP{sup | Z(t) — Z(t,)| > y}
2] T

provided o < 3¢ and y < 144 and J(2) < min{y/12D, 3/D}.

PRrOOF. The argument is similar to the one used for the Chaining Lemma.
Write H(u) for [2 log(N(u)?/u)]'/?, as before. Choose the largest J for which
6 < 3¢ and J(5) < y/12D. The assumptions about o ensure é > . Find the
integer k for which 6 < 3%« < 36 then define

6;=3"% and u; = D§;H(,,,) for i=0,..., k
Notice that §; < 6 < §, and §, = «. Also
k-1
o+ -+ My = 2 3DG;vy — 6;42)H(G44)
i=0
<3D ) | {is; <u <6y }H()du
i=0
< 3DJ(5,)
<7y because J(6,) < J(6) < y/12D.
Choose é;-nets T; containing N(d;) points, making sure that T, = T(x). Link
each ¢ to a ¢, in T through a chain of points,

t=1lyy1, ty=1, tkmt1s -5 tos
with t; being the closest point of T; to t; , ;. By this construction, d(t,, ,, ;) < §,.
The smallest value of the ratios {6/n,}, for i =0, ...,k — 1, occurs at
i = k — 1; all the ratios are greater than

30/DH(%) = 302/DJ(a) > a?.

The (;, 6;) pairs all belong to the region in which the exponential inequality
(24) holds. Apply the inequality for increments across links of the chains.

k-1
IP{maX |Z(t,) — Z(to)| > V} < Z IP{maX | Z(t; 1) — Z(t)| > ﬂi}
T(x) i=0 Ti+1
k-1

< Y N(3i+1)2 exp(—3n7/D*67)
i=0

IA

> IN(is 1) expl —1og(N (5, )2/61s )]
=0

< 22014,
i=0

Notice how one of the N(8;, ;) factors was wasted ; both factors will be needed
later. The last series sums to less than ¢ because §, < 3¢ and the {§,} decrease
geometrically.
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So to

A
\
\

s,,\ )Ia T(x)

i
N t

Join each (s, £) pair in [§] by two chains leading up to T, plus a link
between s, and t,,.

sup | Z(s) — Z(t)| < 2sup | Z(t) — Z(t,)| + 2 max |Z(t,) — Z(t,)|
] T

T(a)

+ sup|Z(se) — Z(to)|-
i)
Partition the 5y correspondingly.

IP{sup | Z(s) — Z(t)| > 5))} < IP{suplZ(t) — Z(t,)] > y} + ¢
[3] T

{41

The distance between the s, and ¢, of each pair appearing in the last term
is less than

+ IP{sup 1 Z(s0) — Z(ty)] > y}.

d(So, s,) + d(s,, 8) + d(s, ) + d(t, t,) + d(t,, t,)
k=1 k-1
S Y&h+a+d+a+ Y4
i=0

i i=0
<30, +20+6
< 126.

There are at most N(5,) such pairs. The exponential inequality holds for
each pair, because 125/(ay*?) > 12y~ 12 > 1.

IP{SS}) | Z(s0) — Z(to)| > v}
< N(60)%2 exp(—%y?/144D%5?) because d(so, o) < 126
< 26 exp[log(N(6)*/6) — $7%/144D?6%] because N(5,) < N(5)

< 26 exp[6™X(H(0)25? — 72/144D?)]

<26 because H(4)d < J() < y/12D

<eé& |
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Theorem 21 states a sufficient condition for empirical processes indexed
by a pointwise bounded, totally bounded, permissible subclass # of £3*(P)
to converge in distribution to a P-bridge: given # > 0 there exists a § > 0
for which

limsup IP{sup |E.(f — )] > 11} < e
61

For a permissible class of bounded functions, say 0 < f < 1, any condition
implying finiteness of N(-, P, &) or N,(-, P, #) will take care of the total
boundedness. Finiteness of a covering integral will allow us to apply Theorem
26, leaving only a supremum over the class # = {f — f,: fe #} of little
links. It will then suffice to prove supy |E, k| = 0,(1) to get the empirical
central limit theorem. Notice that «, and hence #, will depend on n. The
next three examples sketch typical methods for handling 5#.

27 Example. Equip & with the semimetric d(f, g) = (P|f — g|)"2. (This
is the £*(P) seminorm applied to the function | f — g|!/2.) The square root
ensures that the variance o*(f — g) is less than d(f, g)°. If we take A = 1,
the exponential bound (25) becomes, for d(f, g) < 4,

IP{{E(f — 9)| > n} < 2exp(—gn°/6%) if &%/n = 2/(n'*B~'()).

That is, D = 2 and a = (2/B~1(3))!/%n~ V/* for Theorem 26.
The covering numbers for d(-, -) are closely related to the #*(P) covering
numbers: in terms of the covering integral,

]
(28) J@S,d, F) = f [21og(N,(u2 P, #/w)]"* du for 0<6 < 1.
0

If J is finite, Theorem 26 can chain down to leave a class J# of little links with
|[h| < 1 and P|h| < o If we add to this the condition

(29) log Ny(cn™ Y2, P, #) = o,(n*'?) for eachc¢ > 0,

the empirical central limit theorem will hold.

The methods of Section IL.6 work for the class #,,, = {|h|V?:he #}.
Notice that

N2(5> Pm e%1/2) < Nl(aza Pna ‘#)
because P,(|h,|V* — |hy|M?)? < P,|h; — h,|. From Lemma I1.33,
(30) IP{sup(P,,lhl)”2 > 80(} < 4IP[N,(o?, P,, #) exp(—na?) A 1]
>

= 4IP[exp(log N,(«?, P,, #) — na?) A 1]
0 by (29).
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Symmetrize. For n large enough,

IP{sup |E k] > 4))} < 4]P{sup |ESh]| > y}.
H #H

Condition on & Cover # by M = N,(3yn~ V2, P,, #) balls, for the & Y,
seminorm, with centers gy, ..., g,, in 3 Then as in Section IL6,

IP{sup |E2h| > y[&} < M max IP{|Eyg;| > %y‘f;}.
# J
On the set of § where sup,, P,|h| < 6402, Hoeflding’s Inequality bounds the
right-hand side by
2 expllog M — 3(37)*/(640%)]

which is of order o,(1) because (29) says log M = 0,(n'’?). The central limit
theorem follows. [

31 Example. The direct approximation method of Section IL.2 gave uniform
strong laws of large numbers. With a suitable bound on the number of
functions needed for the approximations, we get central limit theorems.

Define a direct covering number A(9, P, #) as the smallest M for which
there exist functions g, . . ., g,, such that, for every hin J,

|h| <g; and Pg, <6+ P|h| forsomei.
We may assume 0 < g; < 1. If
(32) log A(cn™"%, P, #) = o(n'/?) foreachc > 0,

and if the covering integral (28) from the previous example is finite, then the
empirical central limit theorem holds.

Given y > 0, choose A in the exponential inequality (25) so that
2/B~1(4) = y. The dependence of A on 7 does not vitiate the chaining argu-
ment in Theorem 26; it does ensure that functions in # satisfy

Plh) < a® = =12,

Find g,,..., gs according to the definition of A(yn~Y/2, P, #). Because
Pg; < 2yn™1/2 for each i, the contributions of the means to E, are small.

IP{sup |E,h| > 4y} < IP{sup n'2p |h| > 3)} because n'2P|h| < y
# H

< IP{max n'?pP,g; > 3y} because |h| < g; for some i
< M max IP{E,g; > 7} because n'/2Pg, < 2y
< M max 2 exp[ —3(y*/Pg))B(2y/(n*/*Pg,))] from (25)

< 2exp[log M — Lyn'/2B(1)]
=o(1) by (32) =
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33 Example. In the previous two examples, the method of chaining left
links of small .#!(P) seminorm at the end of the chain; #* approximation
methods took care of # If we chain instead with #2(P) covering numbers,
we need ¥ approximation methods for #,

Set d(-, -) equal to the #?*(P) semimetric. Because ¢*(f — g) < d(f, 9)°,
the chaining down to # requires J,(1, P, %) finite. At the end

Ph? < o® = (2/B~'(E)n~ Y2,

Invoke Lemma I1.33.
IP{sup(P,,hZ)”2 < Szx} -1 as n—ow
F 4

if the random covering numbers satisfy
log N,(cn™ Y4, P,, #) = 0,(n'’*) for eachc > 0.
This would follow from
(34) Jy(en™ Y4, P, #) = o,(1) foreach ¢ > 0,
because
0,(n'*) = (en™ V)" (en™ V4, P,, )
> [2 log(N,(cn™ Y4, P,, #)*n'4/c)]Y2.

Symmetrize. For all n large enough,

]P{sup |E k| > 4);} < 4IP{sup |Esh| > y}.
H H

Now we are back to the sort of problem we were solving in Section 4. Condi-
tion on & On the set of those & for which sup (P, h*)*/? < 8«, chain using
the Hoeffding Inequality to bound the tail probabilities. Apply the Chaining
Lemma for IP(-|&), the #?(P,) seminorm, and & = 8.

]P{sup {ESh| > 26J,(8a, P,, %)ya} < 16a if sup(P,h*)'V? < 8.
H H

Condition (34) and finiteness of J,(1, P, #) are sufficient for the empirical
central limit theorem to hold. O

NOTES

Theorem 5 draws on ideas from Chernoff (1954), but substitutes stochastic
equicontinuity where he placed domination conditions on third-order
partial derivatives. The theorem also holds if ¢, is just a local minimum for
F(.), or if 7, is a minimum for F,(-) over a large enough neighborhood of ¢,.
Huber (1967, Lemma 3) made explicit the role of stochastic equicontinuity
in a proof of the central limit theorem for an M-estimator.
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The chaining argument abstracts the idea behind construction of processes
on a dyadic rational skeleton. It appears to have entered weak convergence
theory through the work of Kolmogorov and the Soviet School; it is closely
related to the arguments for construction of measures in function spaces
(Gihman and Skorohod 1974, Sections II14, IIL.5). The Chaining Lemma
is based on an arrangement by Le Cam (1983) of an argument of Dudley
(1967a, 1973, 1978). Le Cam’s approach avoids the complications introduced
into Dudley’s proof by the nuisance possibility that covering numbers N(§)
might not increase rapidly enough as § decreases to zero. Alexander (1984a,
1984b) has refined Dudley’s form of the chaining argument to prove the most
precise maximal inequalities for general empirical processes to be found in
the literature.

Theorem 13 is based on Theorem 2.1 of Dudley (1973), but with his
modulus function increased slightly to take advantage of Le Cam’s (1983)
cleaner bound for the error term. The extra (5 log(1/8))/? does not change
the order of magnitude of the modulus for most processes.

The argument in Section 4 is based on Pollard (1982c), except for the
substitution of convergence in probability (condition (16)) for uniform
convergence. Kolchinsky (1982) developed a similar technique to prove a
similar central limit theorem for bounded classes of functions. He imposed
finiteness of J,(-, P, #) plus a growth condition on N {5 Py, F) to get
results closer to those of my Example 27. Giné and Zinn (1984) have found
a necessary and sufficient random entropy condition for the empirical
central limit theorem.

Brown (1983) sketched the large-sample theory for the spatial median. He
referred to Brown and Kildea (1979) and the appendix he wrote for Maritz
(1981) for rigorous proofs, which depend on a form of stochastic equi-
continuity.

The central limit theorem for k-means was proved by Pollard (1982b,
1982d) for a fixed number of clusters in euclidean space. The one-dimen-
sional result was proved by Hartigan (1978), using a different method.

Dudley (1978, 1981a, 1981b, 1984) has developed the application of
metric entropy (covering numbers) to empirical process theory. These papers
extended his earlier work on entropy and sample path properties of gaussian
processes (1967b, 1973), and on the multidimensional empirical distribution
function (1966a).

Dudley (1966a, 1978) introduced most of the ideas needed to prove
central limit theorems for empirical processes indexed by sets. He extended
these ideas to classes of functions in (1981a, 1981b). His lecture notes (1984)
provide the best available overview of empirical process theory, as of this
writing. The proof of my Theorem 21 was inspired by Chapter 4 of those
lecture notes, which reworked ideas from Dudley and Philipp (1983). If
Pf =0 for each f in #, a standardization that can be imposed without
affecting E, or Ep, the conditions of Theorem 21 are also necessary for the
empirical central limit theorem.
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The first central limit theorems for empirical processes indexed by classes
of sets were proved by the direct approximation method. Bolthausen (1978)
worked with the class of compact, convex subsets of the unit square in IR2.
He applied an entropy bound due to Dudley (1974). Révész (1976) indexed
the processes by classes of sets with smooth boundaries. Earlier work of
Sun was, unfortunately, not published until quite recently (Pyke and Sun
1982). Dudley’s (1978) Theorem 5.1 imposed a condition on the “metric
entropy with inclusion” that corresponds to finiteness of a covering integral.
Strassen and Dudley (1969) proved a central limit theorem for empirical
processes indexed by classes of smooth functions. They deduced the result
from their central limit theorem for sums of independent random elements
of spaces of continuous functions. All these theorems depend on existence
of good bounds for the rate of growth of entropy functions (covering num-
bers). For more about this see Dudley (1984, Sections 6 and 7) and Gaenssler
(1984).

Theorem 26 resets an argument of Le Cam (1983). Such an approximation
theorem has been implicit in the work of Dudley. Giné and Zinn (1984) have
pointed out the benefits of stripping off the #?(P) chaining argument, to
expose more clearly the problem of how to handle the little links Ieft at the
end of the chain. They have also stressed the strong parallels between
empirical processes and gaussian processes. The examples in Section 6
follow the lead of Giné and Zinn: Example 27 is based on their adaptation
of Le Cam’s (1983) square-root trick; Example 31 is based on their im-
provement of Dudley’s (1978) “metric entropy with inclusion” method;
Example 33 is based on their Theorem 5.5.

PROBLEMS

[1] Prove that the stochastic equicontinuity concept of Definition 2 follows from:
Z,(t,) — Z,(t;) > 0 in probability for every sequence {r,} that converges in
probability to t,. [Suppose the defining property fails for some # > 0 and ¢ > 0.
For a sequence of neighborhoods {U,} that shrink to ¢, find positive integers n(1) <
n(2) < --- with

IP{SUP | Z () — Zp(to)] > "I} > 3¢
Us

for every k. Choose random elements {7,} of T such that, for n(k) < n < n(k + 1),
|Z(@, T(@)) — Z,(o, to)| 2 Fsup|Z,(w, £) — Z,(, t,)]
Ur

and 1,(w) belongs to U,. Appendix C covers measurability of 7,,.]

[2] Let {f(-, t): t € T} be acollection of IR*-valued functions indexed by a subset of IR¥,
Suppose P|f(-,t)|* < oo for each . Set F(t) = Pf(-,t) and F,(t) = P, f(-, t). Let
{z.} be a sequence converging in probability to a value ¢, at which F(t,) = 0. If
(a) F()has a non-singular derivative matrix D at t,;

(b) F(z,) = 0,(n™2);
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(c) {E, f(-, 1)} is stochastically equicontinuous at t,;
then n'/*(z, — t5) ~ N(O, D™*Pf (-, to)f (-, toY]D™Y). [Compare with Huber
(1967).]

[3] For a class # to index a P-motion it must be totally bounded under the F(P)
seminorm pp. [First show & is bounded: otherwise | Bp(f,)| — oo in probability
for some {£,}, violating boundedness of P-motion sample paths. Total boundedness
will then follow from: for each ¢ > 0, every f lies within ¢ of some linear combination
of a fixed, finite subclass of &. If for some ¢ no such finite subclass exists, find {f}
such that

n
Jot1 = Gusr + Zanjfj’
j=1

where pp(g,+1) = ¢and g, , is orthogonal to fi, . . ., f,. Fix an M. Show that there
exists a 6 > 0, depending on M and ¢, for which

P{Be(fu+1) = M|Bp(f1), -, Bo(f,)} 2 6.

Deduce that IP{sup, Bp(f,) > M} = 1 for every M, which contradicts boundedness
of the sample paths. Notice that continuity of the sample paths does not enter the
argument. Dudley (1967b).]

[4] If sups | Pf|is finite then # must be totally bounded under the Z(P) seminorm
pe il it supports a P-bridge. [Choose Z with a N(0, 1) distribution independent of
Ep. The process B(f) = Ep(f) + Z Pf is a P-motion with bounded sample paths.
Invoke Problem 3. The condition on the means is needed — consider the % con-
sisting of all constant functions. The P-bridge is unaffected by addition of arbitrary
constants to functions in #; it depends only on the projection of & onto the sub-
space of #£2(P) orthogonal to the constants.]

[5] Let 5#, be a class of functions with an envelope H in #2(P). Set #, = {h*: he #}.
Show that

Ni(4(QH?)'2, Q, #)) < Ny(2¢, Q, #)).
[By the Cauchy-Schwarz inequality,
Qlht — k3| < QQRH|hy — hy]) < AQH?Y*(Q[hy — hy )12
if both |h,| < H and |h,] < H.]
[6] Let & be a permissible class of functions with envelope F. Suppose
J3(0, P,, F) = 0,(n''*) foreach &> 0.

[Condition (16) of the Equicontinuity Lemma implies that J,(5, P,, #) = o,
for each & > 0.] Show that #, = {(f — g)*: f — ge F} satisfies the sufficient
condition (Theorem I1.24) for the uniform strong law of large numbers:

log Ny(s, P,, #,) = o,(n), foreache > 0.
[Set H = 2F and o, = {f — g:f, g #}. Show that, for | > ¢ > 0,
N2(28, Pn’ e%1) < N2(85 Pn’ 37)2 <e eXp(%Jz(& Pn: '?7)2/82)'
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[7]

(8]

(9]

Deduce from this inequality, Problem 5, and the strong law of large numbers for
{P,H?)} that,if 1 > ¢ > 0,

P{log N,(462PH?)2, P,, #,) > nn}
< IP{log N,(4e(P, H?)'2, P,, #,) > nn} + P{P,H? > 2PH?)
< IP{log N,(2¢, P,, #,) > my} + IP{P,H* > 2PH%*}
< P{4J,(e, P,, F)*/e* > ny} + IP{P,H? > 2PH?}
- 0.

A weaker result was proved by Pollard (1982c).]

If # is totally bounded under the .#?(P) seminorm, then the space C(&, P) of
bounded, uniformly continuous, real functions on & is separable. [Suppose
|x(f) — x(g)| < ¢ whenever pp(f — g) < 28. Choose {f},..., f.,} as a maximal
set with pp(f; — f)) = 36. Use the weighting functions A() from the proof of
Theorem 21 to interpolate between rational approximations to the {x(£)}.]

Suppose & is totally bounded under the #?(P) seminorm. If two probability
measures A and p on the o-field #° have the same fidis, and if both concentrate on
C(#, P), then they must agree everywhere on 4”. [Show that A and p agree for all
finite intersections of fidi sets and closed balls with centers in C(#, P). For example,
consider a closed ball B(x, r) with x in C(&, P). Let {fi, f5, ...} be a countable,
dense subset of C(#, P). Define

B,={zeC(# P):|z(f) — x(f))| <rfor 1 <i<n}

Show that uB(x, r) < uB, = AB, —» AB(x, r) as n — oo. Extend the result to finite
collections of closed balls and fidi sets, then apply a generating-class argument.]

The property that the graphs have only polynomial discrimination is not preserved
by the operation of summing two classes of functions. That is, both &% and ¢ can
have the property without the class & = {f + g: fe #,ge ¥} having it. Let
2 = {Dy,D,,...} be the set of indicator functions of all finite sets of rational
numbers in [0,1]. Let # = 2n + D,:n=1,2,...}and ¥ = {—-2n:n=1,2,...}.
The graphs from neither class can shatter two-point sets, but & can shatter arbi-
trarily large finite sets of rationals in [0, 1]. [The roundabout reasoning used to
bound the covering numbers in Example 18 may not be completely unnecessary.]



