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To Barbara Amato



Preface

A more accurate title for this book might be: An Exposition of Selected
Parts of Empirical Process Theory, With Related Interesting Facts About
Weak Convergence, and Applications to Mathematical Statistics. The high
points are Chapters II and VII, which describe some of the developments
inspired by Richard Dudley’s 1978 paper. There I explain the combinatorial
ideas and approximation methods that are needed to prove maximal
inequalities for empirical processes indexed by classes of sets or classes of
functions. The material is somewhat arbitrarily divided into results used to
prove consistency theorems and results used to prove central limit theorems.
This has allowed me to put the easier material in Chapter I, with the hope of
enticing the casual reader to delve deeper.

Chapters III through VI deal with more classical material, as seen from a
different perspective. The novelties are: convergence for measures that don’t
live on borel o-fields; the joys of working with the uniform metric on
D[0, 1]; and finite-dimensional approximation as the unifying idea behind
weak convergence. Uniform tightness reappears in disguise as a condition
that justifies the finite-dimensional approximation. Only later is it exploited
as a method for proving the existence of limit distributions.

The last chapter has a heuristic flavor. I didn’t want to confuse the
martingale issues with the martingale facts.

My introduction to empirical processes came during my 1977-8 stay with
Peter Gaenssler and Winfried Stute at the Ruhr University in Bochum,
while 1 was supported by an Alexander von Humboldt Fellowship. Peter
and I both spent part of 1982 at the University of Washington in Seattle,
where we both gave lectures and absorbed the empirical process wisdom of
Ron Pyke and Galen Shorack. The published lecture notes (Gaenssler 1984)
show how closely our ideas have evolved in parallel since Bochum. I also
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had the privilege of seeing a draft manuscript of a book on empirical processes
by Galen Shorack and Jon Wellner.

At Yale I have been helped by a number of friends. Dan Barry read and
criticized early drafts of the manuscript. Deb Nolan did the same for the
later drafts, and then helped with the proofreading. First Jeanne Boyce, and
then Barbara Amato, fed innumerable versions of the manuscript into the
DEC-20. John Hartigan inspired me to think.

The National Science Foundation has supported my research and writing
over several summers.

Iam most grateful to everyone who has encouraged and aided me to get
this thing finished.
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Notation

Integrals and expectations are written in linear functional notation; sets are
identified with their indicator functions. Thus, instead of j 4 f()IP(dx) write
IP(fA). When the variable of integration needs to be identified, as in iterated
integrals, I return to the traditional notation. And orthodoxy constrains
me to write | f(x) dx for the lebesgue integral, in whatever dimension is
appropriate. If unspecified, the domain of integration is the whole space.

Abbreviations can stand for a probability measure or a random variable
distributed according to that probability measure:

Bin(n, p) = binomial distribution for n trials with success
probability p.

N(u, 6*) = normal distribution with mean y and variance ¢2.

N(u, V) = multivariate normal distribution with mean vector
¢ and variance matrix V.

Uniform(a, b) = uniform distribution on the open interval (a, b);
square brackets, as in Uniform[0, 1], indicate
closed intervals.

Poisson(1) = poisson distribution with mean A.

The symbol [ denotes end of proof, end of definition, and so on—some-
thing to indicate resumption of the main text. Product measures, product
spaces, and product o-fields share the product symbol ®. Maxima and
minima are v and A. Set-theoretic difference is \ ; symmetric difference
is A If a,/b, — oo, for sequences {a,} and {b,}, then write a, > b,.

Invariably IR denotes the real line, and IR* denotes k-dimensional euclidean
space. The borel o-field on a metric space 4 is always Z(%). The symbol IP



XIiv Notation

denotes a probability measure on a (sometimes unspecified) measurable
space (€, &); miscellaneous random variables live on this space.

An ~, a cross between ~ (the sign for “is distributed according to”) and
an ordinary arrow — (for convergence), is used for convergence in distribu-
tion and weak convergence.

A result stated and proved in the text is always referred to with initial
letters capitalized. Thus the Multivariate Central Limit Theorem is numbered
IT1.30, but Taylor’s theorem and dominated convergence are not reproved.

The letters B, U, Bp, Ep usually denote the gaussian processes: brownian
motion, brownian bridge, P-motion, and P-bridge. The letters U, and
E, denote empirical processes, with U, generated by observations on
Uniform(0, 1). Usually P, is the empirical measure.

The set of all square-integrable functions with respect to a measure y is
written #?(u); the corresponding space of equivalence classes is L,(u). A
similar distinction holds for #*(u) and L(x). Often p, denotes the #2(P)
seminorm; | -|| is the supremum norm on a space of functions. The symbols
7, s, and so on, are usually projection maps on function spaces.

Expressions like N(d), N(6,d, T), and N,(5, P, #) represent various
covering numbers; J(d), J,(6, d, T), and J,(5, P, F) are the corresponding
covering integrals.



CHAPTER 1
Functionals on Stochastic Processes

... which introduces the idea of studying random variables determined by the
whole sample path of a stochastic process.

I.1. Stochastic Processes as Random Functions

Functions analyzed as points of abstract spaces of functions appear in
many branches of mathematics. Geometric intuitions about distance (or
approximation, or convergence, or orthogonality, or any other ideas learned
from the study of euclidean space) carry over to those abstract spaces, lending
familiarity to operations carried out on the functions. We enjoy similar
benefits in the study of stochastic processes if we analyze them as random
elements of spaces of functions.

Remember that a stochastic process is a collection {X,:te T} of real
random variables, all defined on a common probability space (Q, &, IP).
Often T will be an interval of the real line (which makes the temptation to
think of the process as evolving in time almost irresistible), but we shall also
meet up with fancier index sets—subsets of higher-dimensional euclidean
spaces, and collections of functions. The random variable X, depends on
both ¢ and the point w in Q at which it is evaluated. To emphasize its role as
a function of two variables, write it as X{(w, t). For fixed t, the function
X(-, t) is, by assumption, a measurable map from Q into IR. For fixed w, the
function X(w, -) is called a sample path of the stochastic process. If all
the sample paths lie in some fixed collection & of real-valued functions
on T, the process X can be thought of as a map from Q into %, a random
element of Z. For example, if a process indexed by [0, 1] has continuous
sample paths it defines a random element of the space C[0, 1] of all
continuous, real-valued functions on [0, 1]. (In Chapter IV we shall
formalize the definition by adding a measurability requirement.)

Each sample path of X is a single point in &. Each random variable Z for
which Z(w) depends only on the sample path X(w, -), such as the maximum
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of X(w, t) over all ¢, can be expressed by means of a functional on Z. That is,
the value Z(w) is found by applying to X(w, -} a map H that sends functions
in 4 onto points of the real line. The name functional serves to distinguish
functions on spaces of functions from functions on other abstract sets, an
outmoded distinction, but one that can help us to remember where H lives.

By breaking Z into the composition of a functional with a map from Q
into & we also break any analysis of Z into two parts: calculations involving
only the random element X ; and calculations involving only the functional
H. This allows us to study many different Z’s simultaneously, just by varying
the choice of H. Of course we only gain by this if most of the hard work can
be disposed of once and for all in the analysis of X.

The idea can be taken further. Suppose that a second stochastic process
{Y,: t € T} puts all its sample paths in the same function space 2. Suppose
we want to study the same functional H of both processes; we want to show
that HX and HY have distributions that are close, perhaps. Break the
problem into its two parts: show that the distributions of X and Y (the
probability measures they induce on &) are close; then show that H has a
continuity property ensuring that closeness of the distributions of X and Y
implies closeness of the distributions of HX and HY. Such an approach
would make the analysis easier for other functionals with the same sort of
continuity property; for a different H only the second part of the analysis
would need repeating.

1 Example. Goodness-of-fit test statistics can often be expressed as func-
tionals on a suitably standardized empirical distribution function. Consider
the basic case of an independent sample &4, ..., &, from the Uniform(0, 1)
distribution. Define the uniform empirical process U, by

Ufw,t)=n"12 i {éfwy <t —p) for 0<t< L
i=1

This has the standardized binomial distribution, »n~ 2(Bin(n, t) — nt), for
fixed t. Each sample path is piecewise linear with jump discontinuities at
the n points &, (w), ..., & ().

/UH(CU, )

N AN
(\\ 1
The process U, defines a random element of any function space & that
contains all sample paths of this form. We could take 2 as the smallest such

set of functions, but there is some advantage to choosing a space that can
accommodate the sample paths of other important stochastic processes.
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That way the analysis for this particular problem will carry over to many
other limit and approximation problems. The usual choice is the space
D[0, 1] of all real-valued functions on [0, 1] that are right continuous at
each point of [0, 1) with left limits existing at each point of (0, 1]. The catchy
French acronym cadlag (continue & droite, limites & gauche) offers a most
convenient way to avoid repeating this mouthful of a description. From
now on it’s cadlag. The processes U, define random elements of the space
D[0, 1] of all (real-valued) cadlag functions on {0, 1].

Numerous statistics have been suggested as candidates for testing whether
the observations really do come from the uniform distribution, amongst
them:

(HlUn)(w) = Sup Un(wa t)a

(HUp)w) = sup [U(, 1)],

1
(H3U)(w) = f U (o, t)* dt.
0
How do these statistics behave as n tends to infinity? We can try to answer
the question by first determining how {U,}, as a sequence of stochastic
processes indexed by [0, 1], behaves as » tends to infinity.

Suppress the argument w. At each fixed ¢ the sequence of real random
variables {U,(t)} converges in distribution to a N(0, t — ¢?) distribution, by
virtue of the Central Limit Theorem; at each fixed pair (s, t) the sequence of
bivariate random vectors {{U,(s), U,(t))} converges to a bivariate normal
distribution with covariance the same as the covariance between U ,(s) and
U (1), by virtue of the bivariate form of the Central Limit Theorem; and
similarly for the higher finite-dimensional distributions. That is, the joint
distributions of the random variables obtained by sampling U, at any fixed,
finite set of index points converge to the corresponding distributions of the
so-called brownian bridge (also known as the tied-down brownian motion),
the gaussian process U(t) characterized by:

(i) U has continuous sample paths (it is a random element of C[0, 1])
between the two fixed points U(0) = U(1) = 0;

(ii) For fixed ¢4, ..., t, the random vector (U(t,), ..., U(t,)) bas a multi-
variate normal distribution with zero means and cov(U(t;), U(t)) =
min(t;, t;) — t;t;.

The process U need not live on the same probability space as the empirical
processes. It must, however, have sample paths in C[0, 1]. The reason we
need this apparently irrelevant property will emerge in Chapter V, when we
make the argument rigorous.

When n is large, the process U, behaves something like U. On this basis,
Doob (1949) made the bold heuristic assumption that the distributions of
statistics calculated from U, should be close to the distributions of the
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corresponding statistics for U ; he conjectured that functionals of U, should
converge in distribution to the analogous functionals of U. In his words (he
wrote x, and x instead of U, and U):

We shall assume, until a contradiction frustrates our devotion to heuristic
reasoning, that in calculating asymptotic x,(t) process distributions when n — oo
we may simply replace the x,(t) processes by the x(t) process. It is clear that this
cannot be done in all possible situations, but let the reader who has never used
this sort of reasoning exhibit the first counter example.

Happily, the heuristic does give the right answer for each of the three func-
tionals mentioned above. O

This example will guide us in our definition of convergence in distribution
for stochastic processes treated as random elements of function spaces. We
shall explore one possible meaning for closeness of two processes in a
distributional sense. The empirical process application will point us towards
a theory slightly different from the one normally espoused in the weak
convergence literature.

Our progress towards the theory will begin in Chapter I1I with another
look at the classical results for convergence of real random variables and
random vectors, partly as a refresher course in the basic techniques, and
partly as a way to%ta running start on the theory for random elements of
general metric spaces in Chapter IV.

The momentum of the development will carry us through to Chapter V,
where Doob’s heuristic argument will receive its rigorous justification, as a
weak convergence result for D[0, 1]. Chapter VII will extend the theory to
empirical processes with index sets more complicated than [0, 1], building
upon methods that will be introduced and developed in Chapter II.

NOTES

Stochastic processes have frequently been treated as random functions in
the probability literature. Doob (1953) pioneered. Gihman and Skorohod
(1974, Chapter III) have collected together criteria for existence of stochastic
processes with sample paths in C[0, 1] and D[0, 1]. Breiman (1968, Chapters
12 to 14) is a good place to start.

PROBLEMS

[1] Verify that U has the same covariance function as U,,, by writing (U ,(s), U,(¢)) as
a normalized sum of the independent random vectors ({&; < s}, {&; < t}).

[2] Show that the random variables H; U, and H U both have expectation 4. [Remem-
ber that U, and U have the same first and second moment structures.]
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[3] Show that H; U, can be written in terms of the order statistics &, as
= i —2i+1
Ln+ 1)1 + » — P& + ,—Pe )22
E( ) igl (é() f( )) igl (é(;) 5(1)) n(n T 1)

[Complicated functions of the observations can sometimes be represented by
simple functionals of a suitably constructed random process.]



CHAPTER I
Uniform Convergence of
Empirical Measures

... in which uniform analogues of the strong law of large numbers are proved
by two methods. These generalize the classical Glivenko-Cantelli theorem,
which concerns only empirical measures indexed by intervals on the real line,
to uniform convergence over classes of sets and uniform convergence over classes
of functions. The results are applied to prove consistency for statistics expressible
as continuous functionals of the empirical measure. A refinement of the second
method gives rates of convergence.

II.1. Uniformity and Consistency

For independent sampling from a distribution function F, the strong law of
large numbers tells us that the proportion of points in an interval (— co, ¢]
converges almost surely to F(t). The classical Glivenko-Cantelli theorem
strengthens the result by adding that the convergence holds uniformly over
all . The strong law also tells us that the proportion of points in any fixed
set converges almost surely to the probability of that set. The strengthening
of this result, to give uniform convergence over classes of sets more interesting
than intervals on the real line, and its further generalization to classes of
functions, will be the main concern of this chapter.

For the most part we shall consider only independent sampling from a
fixed distribution P on a set S. The probability measure P, that puts equal
mass at each of the n observations &,,..., &, will be called the empirical
measure. It captures everything we might need to know about the observa-
tions, except for the order in which they were taken. Averages over the
observations can be written as expectations with respect to P, :

EWORY N

If P| f| < oo, the average converges almost surely to its expected value, Pf.
We shall be finding conditions under which the convergence is uniform over
a class # of functions.

Of course we should not expect uniform convergence over all classes of
functions, except in trivial cases. Unless P is a discrete distribution, the
difference P,D — PD cannot even converge to zero uniformly over all sets;



IL1. Uniformity and Consistency 7

there always exists a countable set with P, measure one. But there are non-
trivial classes over which the convergence is uniform. When we have such a
class # we can deduce consistency results for statistics that depend on the
observations only through the values P, f, for f in %

1 Example. The median of a distribution P on the real line can be defined
as the smallest value of m for which P(— oo, m] > 4. If P(— 0, ] > % for
each t > m then the median is a continuous functional, in the sense that

|median(Q) — median(P)| < ¢
whenever the distribution Q is close enough to P. Close means

sup |Q(—o0, t] — P(— o0, t]] < 6,

where the tiny § is chosen so that
P(—oo,m—¢] <4 —6,
P(—oo,m+¢]>%+ 6.
The argument goes: if Q has median m’ then
P(—o0,m] > Q(~co,m] — 8 =1 -6,
so certainly m’ > m — . Similarly, for every m” < m,
P(—oo,m"] < Q(—oo,m" ]+ 6<%+ 6,

which implies m” < m + ¢, and hence m’ < m + «.

Next comes the probability theory. If the empirical measure P, is con-
structed from a sample of independent observations on P, the Glivenko-
Cantelli theorem tells us that

sup|P,(—0,t] — P(— 0, t]] >0 almost surely.

t
From this we deduce that, almost surely,
|median(P,) — median(P)| < ¢ eventually.

The sample median is strongly consistent as an estimator of the population
median. ]

For this example we didn’t have to prove the uniformity result; the
Glivenko—-Cantelli theorem is the oldest and best-known uniform strong law
of large numbers in the literature. But as we encounter new functions
(usually called functionals) of the empirical measure, new uniform con-
vergence theorems will be demanded. We shall be exploring two methods
for proving these theorems.

The first method is simpler in concept, but harder in execution. It
involves direct approximation of functions in an infinite class & by a
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finite collection of functions. Classical convergence results, such as the strong
law of large numbers or the ergodic theorem, ensure uniform convergence
for the finite collection; the form of approximation carries the uniformity
over to & Section 2 deals with direct approximation.

The second method depends heavily upon symmetry properties implied by
independence. It uses simple combinatorial arguments to identify classes
satisfying uniform strong laws of large numbers under independent sampling.
Sections 3 to 5 assemble the ideas behind this method.

I1.2. Direct Approximation

Throughout the section # will be a class of (measurable) functions on a set
§ with a o-field that carries a probability measure P. The empirical measure
P, is constructed by sampling from P. Assume P|f| < oo for each f in .
If # were finite, the convergence of P, f to Pf assured by the strong law of
large numbers would, for trivial reasons, be uniform in f. If # can be ap-
proximated by a finite class (not necessarily a subclass of ) in such a way
that the errors of approximation are uniformly small, the uniformity carries
over to & The direct method achieves this by requiring that each member
of # be sandwiched between a pair of approximating functions taken from
the finite class.

2 Theorem. Suppose that for each ¢ > 0 there exists a finite class F. containing
lower and upper approximations to each f in &, for which

fo<f<fov and P(fouv—fi) <e
Then supg |P, f — Pf| — 0 almost surely.

Proor. Break the asserted convergence into a pair of one-sided results:
liminf inf(P,f — Pf) > 0
Z

and
limsup sup(P,f — Pf) <0
7

or, equivalently,
liminf inf(P,(—f) — P(—f)) = O.

&

Then two applications of the next theorem will complete the proof. O

3 Theorem. Suppose that for each ¢ > 0 there exists a finite class F, of
Sfunctions for which: to each fin & there exists an f, in &, such that f, < f and
Pf, > Pf — ¢. Then

liminf inf(P,f — Pf) = 0 almost surely.
Z



11.2. Direct Approximation 9

Proor. For each ¢ > 0,
liminf inf(P, f — Pf) > liminf inf(P, f, — Pf) because f, < f
7z F

> liminf inf (P, f, — Pf,) + inf(Pf, — Pf)
F F

>0+ —e¢ almost surely, as &, is finite.

Throw away an aberrant null set for each positive rational ¢ to arrive at the
asserted result. (]

You might have noticed that independence enters only as a way of
guaranteeing the almost sure convergence of P, f, to Pf, for each approximat-
ing f,. Weaker assumptions, such as stationarity and ergodicity, could
substitute for independence.

4 Example. The method of k-means belongs to the host of ad hoc procedures
that have been suggested as ways of partitioning multivariate data into
groups somehow indicative of clusters in the underlying population. We can
prove a consistency theorem for the procedure by application of the one-
sided uniformity result of Theorem 3.

For purposes of illustration, consider only the simple case where observa-
tions ¢, ..., &, from a distribution P on the real line are to be partitioned
into two groups. The method prescribes that the two groups be chosen to
minimize the within-groups sum of squares. Equivalently, we may choose
optimal centers a, and b, to minimize

M=

& — al* A & — bI%,
i=1
then allocate each ¢&; to its nearest center. The optimal centers must lie at the
mean of those observations drawn into their clusters, hence the name
k-means (or 2-means, in the present case). In terms of the empirical measure
P,, the method seeks to minimize

W(a, b, P,) = P, fo.,
where
fap®) =|x —al* A |x = b|%
As the sample size increases, W(a, b, P,) converges almost surely to
W(a, b, P) = Pf,,

for each fixed (a, b). This suggests that (a,, b,), which minimizes W(-, -, P,),
might converge to the (a*, b*) that minimizes W(., -, P). Given a few
obvious conditions, that is indeed what happens.

To ensure finiteness of W(-, -, P), assume that P|x|? < co. Assume also
that there exists a unique (a*, b*) minimizing W. Adopt the convention that
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a < b in order that (b*, a*) be ruled out as a distinct minimizing pair.

Without uniqueness the consistency statement needs a slight reinterpretation
(Problem 1).

The continuity argument lurking behind the consistency theorem does
depend on one-sided uniform convergence of W(-, -, P,) to W(-, -, P), but
not uniformly over all possible choices for the centers- We must first force
(a,, b,) into a region

for some suitably large M, then prove

liminf inf (P, f, , — Pf, ,) > 0 almost surely.
C

We need at least one of the centers within a bounded region [ — M, M] to get
the uniformity. Determine how large M needs to be by invoking optimality

of (a,, b,).
W(a,, by, P,) < W(0,0, P,)
— W(0,0, P) almost surely
= P|x).

If both a, and b, lay outside [ — M, M] then

W(a,, b,, P,) = GM)?P,[ —i1M, 1M]
- (ZM)*P[—3M, iM] almost surely.

If we choose M so that P|x[* < (3M)*P[—iM,1M] then there must
eventually be at least one of the optimal centers within [ — M, M7, almost
surely. We shall later also need M so large that (a*, b*) belongs to C.

Explicit construction of the finite approximating class demanded by
Theorem 3 is straightforward, but a trifle messy. That is one of the dis-
advantages of brute-force methods. First note that

fa () < (x = M)? + (x + M)?* for (a, b)in C.

Write F(x) for the upper bound. Because PF < o0, there exists a constant D,
larger than M, for which PF[—D, D¢ < &. We have only to worry about
the approximation to f, , on [—D, D].

We may assume that both g and b lie in the interval [—-3D, 3D]. For if,
say, |b| > 3D then

Jap(x] < D} = |x — al? = £, (){|x| < D}

because |a| < M; the lower approximation for fa.a on [—D, D] will also
serve for f, ;.
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Let C, be a finite subset of [—3D, 3D]? such that each (4, b) in that
square has an (a,b') with |a — d’| < ¢/D and |b — V| < ¢/D. Then for
each xin [—D, D],

[ fap0) = fo,s()] < 1(x — a)* = (x — a)?[ + [(x — b)> — (x — b')?|
<2la—d|lx—%Ha+a)|+2|b—b]|x — b+ b)
< 2(¢/D)(D + 3D) + 2(¢/D)D + 3D)
= 16e.

The class #33, consists of all functions (£, ,(x) — 16¢){|x| < D} for (a, b’)

ranging over C,.
From Theorem 3,

liminf inf(P, £, , — Pf, ) = O.
(o}

Eventually the optimal centers (a,, b,) lie in C. Thus
liminf(W(a,, b,, P,) — W(a,, b,, P)) > 0 almost surely.
Since
W(a,, b,, P,) < W(a* b* P,) because (a,, b,) is optimal for P,
— W(a*, b*, P) almost surely
< W(a,, b,, P)  because (a*, b*) is optimal for P,
we then deduce that

W(ay, b,, Py - W(a*, b*, P) almost surely.

Notice what happened. The uniformity allowed us to transfer optimality of
(a,,b,) for P, to a sort of asymptotic optimality for P; the processes
W(-, -, P,) have disappeared, leaving everything in terms of the fixed, non-
random function W(-, -, P).

We have assumed that W(-, -, P) achieves its unique minimum at (a*, b*).
Complete the argument by strengthening this to: for each neighborhood U
of (a*, b*),

inf W(a, b, P) > W(a*, b*, P).

C\U

Continuity of W(-, -, P) takes care of the infimum over bounded regions of
C\U. If there were an unbounded sequence (a;, §;) in C with

W((xia ﬁir P) i W(a*a b*, P):

we could extract a subsequence along which, say, o; - — co and g; —» B, with
|B] < M. Dominated convergence would give

W(a*, b*, P) = P|x — BI?,

which would contradict uniqueness of (a*, b*): for every a, the pair (a, f)
would minimize W(., -, P). The pair (a,, b,), by seeking out the unique
minimum of W(-, -, P) over the region C, must converge to (a*, b*). O
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The k-means example typifies consistency proofs for estimators defined
by optimization of a random criterion function. By ad hoc arguments one
forces the optimal solution into a restricted, often compact, region. That is
usually the hardest part of the proof. (Problem 2 describes one particularly
nice ad hoe argument.) Then one appeals to a uniform strong law over the
restricted region, to replace the random criterion function by a deterministic
limit function. Global properties of the limit function force the optimal
solution into desired neighborhoods. If one wants consistency results that
apply not just to independent sequences but also, for example, to stationary
ergodic sequences, one is stuck with cumbersome direct approximation
arguments; but for independent sampling, slicker methods are available for
proving the uniform strong laws. We shall return to the k-means problem
in Section 5 (Example 29 to be precise) after we have developed these methods.

S Example. Let 0 be the parameter of a stationary autoregressive process

Yn+1 = Byn + U,

for independent, identically distributed innovations {u,}. Stationarity
requires |0| < 1. A generalized M-estimator for 8 is any value 6, for which
the random function

n—1
H)=@n-1"" ‘Zlg(yi)tﬁ(ym — 0y)

takes the value zero. We would hope that 8, converges to the * at which the
deterministic function

H(0) = Pg(y)p(y, — 0y,)

takes the value zero. If |¢| < 1 and |¢| < 1 and ¢ is continuous, we can go
part of the way towards proving this by means of a uniform strong law for a
bivariate empirical measure.

Write Q,, for the probability measure that puts equal mass (n — 1)~* on
each of the pairs (yy, y,), ..., (V4 1, V). For fixed (integrable) f(-, -),

0.f— Qf almost surely,

where Q denotes the joint distribution of (y,, y,). This follows from the
ergodic theorem for the stationary bivariate process {(y,, yn+1)}- '

Check the approximation conditions of Theorem 2, with Q in place of P,
for the class of functions

Fe1s %3, 0) = gx)p(x; — 6x;) for —1<O< L.
First, choose an integer K so large that

P{{y,| <K, |y;] <K} >1—¢
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Then appeal to uniform continuity of ¢ on the compact interval [ —2K, 2K]
to find a 6 > 0 such that |¢(a) — ¢(b)| < ¢ whenever |a — b| < & and
la] < 2K and |b| < 2K. For 0 in the interval [k6/K, (k + 1)§/K],

| f (x5 X2, 0) — f Q1 X2, kO/K)| < & + 2{|x,] > K} + 2{|x,| > K}.

With the integer k running over the finite range needed for these intervals to
cover [ —1, 1], the functions

J(x1, %2, k6/K) & & & 2{|x4| > K} + 2{|x,| > K}

provide the upper and lower approximations required by Theorem 2.

As noted following Theorem 3, the uniform strong laws also apply to
empirical measures constructed from stationary ergodic sequences. Ac-
cordingly,

(6) sup 'an(a:e) - Qf(:79)|_>0 almost SurelYa

le]<1
that is,
sup |H,(0) — H(B){ -» 0 almost surely.

18|<1
Provided 6, lies in the range [ —1, 1], we can deduce from (6) that H(6,) —» 0
almost surely. It would be a sore embarrassment if the estimate of the auto-
regressive parameter were not in this range. Usually one avoids the em-
barrassment by insisting only that H,(6,) — 0, with 6, in [—1, 1]. Such a 8,
always exists because H,(6*) — 0 almost surely.

Convergence results for 6, depend upon the form of H(-). We know 6,
gets forced eventually into the set {|H| < &} for each & > 0. If this set
shrinks to 0* as ¢ | O then 6, must converge to 6*, which necessarily would
have to be the unique zero of H(-). If we assume that H does have these
properties we get the consistency result for the generalized M-estimator. []

I1.3. The Combinatorial Method

Since understanding of general methods grows from insights into simple
special cases, let us begin with the best-known example of a uniform strong
law of large numbers, the classical Glivenko—Cantelli theorem. This asserts
that, for every distribution P on the real line,

(7) sup | P,(—o0,t] — P(—o0,t]| > 0 almost surely,
t

when the empirical measure P, comes from independent sampling on P.
The ideas that will emerge from the treatment of this special case will later
be expanded into methods applicable to other classes of functions. To
facilitate back reference, break the proof into five steps.
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Keep the notation tidy by writing |-| to denote the supremum over the
class # of intervals (—co,t], for —co <t < c0. We could restrict the
supremum to rational ¢ to ensure measurability.

FIRST SYMMETRIZATION.

Instead of matching P, against its parent distribution P, look at the difference
between P, and an independent copy, P, say, of itself. The difference P, — P,
is determined by a set of 2n points (albeit random) on the real line; it can be
attacked by combinatorial methods, which lead to a bound on deviation
probabilities for |P, — P,|. A symmetrization inequality converts this into
a bound on | P, — P| deviations.

8 Symmetrization Lemma. Let {Z(:):t € T} and {Z'(t):t € T} be indepen-
dent stochastic processes sharing an index set T. Suppose there exist constants
B > 0and a > 0 such that IP{| Z'(t)| < a} > B for every t in T. Then

©) IP{sup |Z(t)| > s} < ,B‘IIP{sup |Z(t) — Z'(t)] > & — oz}.

PROOF. Select a random 7 for which | Z(z)| > ¢ on the set {sup | Z(t)| > &}.
Since 7 is determined by Z, it is independent of Z'. It behaves like a fixed
index value when we condition on Z:

IP{|Z'(7)| < «|Z} = B.

Integrate out.

ﬁIP{sup 1Z@®)| > s} SPUZ@| <o |Z(1)] > ¢
<P{Z()—- Z'(1)| > ¢ — o}

< IP{sup [Z(t) — Z'(t)| > ¢ — oc} Ol

Close inspection of the proof would reveal a disregard for a number of
measure-theoretic niceties. A more careful treatment may be found in
Appendix C. For our present purpose it would suffice if we assumed T
countable; the proof is impeccable for stochastic processes sharing a count-
able index set. We could replace suprema over all intervals (—co, t] by
suprema over intervals with a rational endpoint.

For fixed t, P,(— o0, t] is an average of the n independent random variables
{&; < t}, each having expected value P(— o0, t] and variance P(— oo, t] —
(P(— o0, t])?, which is less than one. By Tchebychev’s inequality,

IP{|P(—0,t] — P(—o0,t]| <ie} =1 if n>8 2
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Apply the Symmetrization Lemma with Z = P, — P and Z’' = P, — P, the
class .# as index set, o = ¢, and f = 1.

(10)  P{|P, — P| > ¢} < 2IP{|P, — P.| > &} if n> 82

SECOND SYMMETRIZATION.

The difference P, — P, depends on 2n observations. The double sample
size creates a minor nuisance, at least notationally. It can be avoided by a
second symmetrization trick, at the cost of a further diminution of the &.
Independently of the observations &,,...,¢,, &,..., & from which the
empirical measures are constructed, generate independent sign random
variables o, ..., 0, for which IP{o; = +1} = IP{6; = —1} = 1. The sym-
metric random variables {¢ <t} — {¢<t}, for i=1,...,n and
— 0 <t < o, have the same joint distribution as the random variables
o:i[{¢; < 1} — {& < t}]. (Consider the conditional distribution given {s,}.)
Thus

IP{||P, — P,| > 3¢} = IP{sup
t

Y aliE <t - (&< t}]‘ . %g}

> %8}
n

nl Y efli<ty| > %8}.
i<

Write P} for the signed measure that places mass n~'g; at &;. The two sym-
metrizations give, for n > 8¢ 2,

< IP{sup
t

n! i ol <t}
i=1

-+ IP{sup
t

(11) IP{| P, — P|| > &} < 4IP{|| P}l > }e}.

To bound the right-hand side, work conditionally on the vector of observa-
tions &, leaving only the randomness contributed by the sign variables.

MAXIMAL INEQUALITY.

Once the locations of the & observations are fixed, the supremum | Py
reduces to a maximum taken over a strategically chosen set of intervals
I;=(—00,t], for j=0,1,...,n Of course the choice of these intervals
depends on &; we need one ¢; between each pair of adjacent observations.
(The t, and t,, are not really necessary.) With the number of intervals reduced
so drastically, we can afford a crude bound for the supremum.

1) POPS > delg) < 3 POPIL > def8)

< (n + 1) max IP{| PyI;| > Le|&}.
j
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This bound will be adequate for the present because the conditional proba-
bilities decrease exponentially fast with n, thanks to an inequality of
Hoefiding for sums of independent, bounded random variables.
EXPONENTIAL BOUNDS.

Let Yj,..., Y, be independent random variables, each with zero mean and
bounded range: g; < Y; < b;. For each n > 0, Hoeffding’s Inequality
(Appendix B) asserts

P{Y,+--+ Yl>n < 2exp[—2n2/ 2. (b — ai)z].
i=1
Apply the inequality with Y; = ¢,{¢; < t}. Given &, the random variable Y;
takes only two values, +{¢; < t}, each with probability 3.

IP{| P3(— o0, ]| > de|&} < 2exp[—2(ne/4>2/ Y4 < r}}
i=1

< 2 exp(—ne?/32),

because the indicator functions sum to at most n. Use this for each I ;in
inequality (12).

IP{|P7]| > %e|&} < 2(n + 1) exp(—ne?/32).
Notice that the right-hand side now does not depend on &.

INTEGRATION.
Take expectations over &.
IP{||P, — P|| > &} < 8(n + 1) exp(—ne?/32).

This gives very fast convergence in probability, so fast that
Y IP{||P, — P| > ¢} < ©
n=1

for each ¢ > 0. The Borel-Cantelli lemma turns this into the full almost sure
convergence asserted by the Glivenko—Cantelli theorem.

I1.4. Classes of Sets with Polynomial Discrimination

We made use of very few distinguishing properties of intervals for the proof
of the Glivenko—Cantelli theorem in Section 3. The main requirement was
that they should pick out at most n + 1 subsets from any set of n points.
Other classes have a similar property. For example, quadrants of the form
(— o0, t] in IR? can pick out fewer than (n + 1) different subsets from a
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set of n points in the plane—there are at most n + 1 places to set the horizontal
boundary and at most n + 1 places to set the vertical boundary. (Problem 8
gives the precise upper bound.) With (n + 1)? replacing the n + 1 factor,
we could repeat the arguments from Section 3 to get the bivariate analogue
of the Glivenko—Cantelli theorem. The exponential bound would swallow
up (n + 1), just as it did the n + 1. Indeed, it would swallow up any poly-
nomial. The argument works for intervals, quadrants, and any other class
of sets that picks out a polynomial number of subsets.

13 Definition. Let 2 be a class of subsets of some space S. It is said to have
polynomial discrimination (of degree v) if there exists a polynomial p(-)
(of degree v) such that, from every set of N points in S, the class picks out at
most p(N) distinct subsets. Formally, if S, consists of N points, then there
are at most p(N) distinct sets of the form S, n D with D in 2. Call p(-) the
discriminating polynomial for &. O

When the risk of confusion with the algebraic sort of polynomial is slight,
let us shorten the name “class having polynomial discrimination” to
“polynomial class,” and adopt the usual terminology for polynomials of low
degree. For example, the intervals on the real line have linear discrimination
(they form a linear class) and the quadrants in the plane have quadratic
discrimination (they form a quadratic class). Of course there are classes
that don’t have polynomial discrimination. For example, from every col-
lection of N points lying on the circumference of a circle in IR? the class of
closed, convex sets can pick out all 2V subsets, and 2V increases much faster
than any polynomial.

The method of proof set out in Section 3 applies to any polynomial class
of sets, provided measurability complications can be taken care of. Appendix
C describes a general method for guarding against these complications.
Classes satisfying the conditions described there are called permissible.
Every specific class we shall encounter will be permissible. As the precise
details of the method are rather delicate—they depend upon properties of
analytic sets—let us adopt a naive approach. Ignore measurability problems
from now on, but keep the term permissible as a reminder that some regularity
conditions are needed if pathological examples (Problem 10) are to be ex-
cluded. Problems 3 through 7 describe a simpler approach, based on the
more familiar idea of existence of countable, dense subclasses.
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14 Theorem. Let P be a probability measure on a space S. For every permissible
class @ of subsets of S with polynomial discrimination,

sup |P,D — PD| > 0 almost surely.
2

ProOF. Go back to Section 3, change .# to 9, replace the n + 1 multiplier
by the polynomial appropriate to &, and strike out the odd reference to
interval and real line. O

Which classes have only polynomial discrimination? We already know
about intervals and quadrants; their higher-dimensional analogues have
the property too. Other classes can be built up from these.

15 Lemma. If € and 9 have polynomial discrimination, then so do each of :

(i) {D°: D e P},
(i) {CuD:Ce%and D e I},
(iii) {CnD:Ce¥and D e D}.

Proor. Write ¢(-) and d(-) for the discriminating polynomials. We may
assume them both to be increasing functions of N. From a set S, consisting
of N points, suppose % picks out subsets S, ..., S, with k < ¢(N). Suppose
S; consists of N; points. The class & picks out at most d(N,) distinct subsets
from S;. This gives the bound d(N,) + - -- + d(N,) for the size of the class
in (iii). The sum is less than ¢(N) d(N). That proves the assertion for (iii).
The other two are just as easy. U

The lemma can be applied repeatedly to generate larger and larger
polynomial classes. We must place a fixed limit on the number of operations
allowed, though. For instance, the class of all singletons has only linear
discrimination, but with arbitrary finite unions of singletons we can pick
out any finite set.

Very quickly we run out of interesting new classes to manufacture by
means of Lemma 15 from quadrants and the like. Fortunately, there are
other systematic methods for finding polynomial classes.

Polynomials increase much more slowly than exponentials. For N large
enough, a polynomial class must fail to pick out at least one of the 2~ subsets
from each collection of N points. Surprisingly, this characterizes poly-
nomial discrimination. Some picturesque terminology to describe the
situation has become accepted in the literature. A class & is said to shatter
a set of points F if it can pick out every possible subset (the empty subset
and the whole of F included); that is, & shatters F if each of the subsets
of F hasthe form D n F for some D in &. This conveys a slightly inappropriate
image, in which F gets broken into tiny fragments, rather than an image of
a diligent @ trying to pick out all the different subsets of F; but at least it is
vivid.
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For example, the class of all closed discs in IR? can shatter each three-point
set, provided the points are not collinear. But from no set of four points, no
matter what its configuration, can the discs pick out more than 15 of the 16
possible subsets. The discs shatter some sets of three points; they shatter
no set of four points.

16 Theorem. Let S, be a set of N points in S. Suppose there is an integer
V < N such that 9 shatters no set of V points in Sy. Then @ picks out no
more than (§) + () + - -+ + (N ,) subsets from S, .

Proor. Write Fy,..., F, for the collection of all subsets of V elements
from S,. Of course k = (¥). By assumption, each F, has a “hidden” subset
H; that 9 overlooks: D n F; # H, for every D in 2. That is, all the sets of
the form D n §,, with D in 9, belong to

%, = {C < Sy: Cn F; # H,for each i}.

It will suffice to find an upper bound for the size of €,.

In one special case it is possible to count the number of sets in %, directly.
If H; = F, for every i then no C in %, can contain an F;; no C can contain a
set of V points. In other words, members of %, consist of either 0, 1,..., or
V — 1 points. The sum of the binomial coefficients gives the number of sets
of this form.

By playing around with the hidden sets we can reduce the general case to
the special case just treated. Label the points of Sy as 1,..., N. For each i
define H; = (H; U {1}) n F;; that is, augment H, by the point 1, provided
it can be done without violating the constraint that the hidden set be con-
tained in F;. Define the corresponding class

¢, ={C<c8S,:Cn F; #+ H; foreachi}.

The class € has nothing much to do with €,,. The only connection is that all
its hidden sets, the sets it overlooks, are bigger. Let us show that this implies
%, has a greater cardinality than %,. (Notice: the assertion is not that
%o = ¥,.)

Check that the map C— C\{l} is one-to-one from ¥,\ ¥, into €,\%,.
Start with any C in %,\%,. By definition, C n F; # H; for every i, but
C N F;= Hj for at least one j. Deduce that H; # Hj, so 1 belongs to C
and F; and Hj}, but not to H;. The stripping of the point 1 does define a
one-to-one map. Why should C\ {1} belong to €,\%,? Observe that

(C\{1}) n F; = H)\{1} = H},

which bars C\ {1} from belonging to ¥,. Also, if F, contains 1 then so must
H;, but C\{1} certainly cannot; and if F, doesn’t contain 1 then

(C\{IDnF;=CnF;#H;=H,.
In either case (C\{1}) n F; # Hj, so C\{1} belongs to ¥,.
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Repeat the procedure, starting from the new hidden sets and with 2 taking
over the role played by 1. Define H! = (H} u {2}) n F; and

¢, = {C = 8y:Cn F; # H{ for each i}.

The cardinality of €, is greater than the cardinality of #,. Another N — 2
repetitions would generate classes €, %, ..., €y with increasing cardirfali-
ties. The hidden sets for €y would fill out the whole of each F ;: the special
case already treated. |

17 Corollary. If a class shatters no set of 'V points, then it must have polynomial
discrimination of degree no greater than V — 1. ]

All we lack now is a good method for identifying classes that have trouble
picking out subsets from large enough sets of points.

18 Lemma. Let  be a finite-dimensional vector space of real functions on S.
The class of sets of the form {g > 0}, for g in %, has polynomial discrimination
of degree no greater than the dimension of 4.

PRrOOF. Write V — 1 for the dimension of 4. Choose any collection {sy, ..., s}
of distinct points from S. (Everything reduces to triviality if S contains fewer
than V points.) Define a linear map L from % into IRY by

L(g) = (g(s1), - . ., g(sy)).

Since L% is a linear subspace of IR” of dimension at most ¥ — 1, there exists
in IR” a non-zero vector y orthogonal to L%. That is,

Y 7:9(s;) =0 foreachgin ¥,

or
(19) {;} :g(s) = {Z} (=7)g(s;) for each g.

Here {+} stands for the set of those i for which y; > 0, and {—} for those
with y; < 0. Replacing y by —y if necessary, we may assume that {—1}is
non-empty.

Suppose there were a g for which {g > 0} picked out precisely those
points s; with i in {+}. For this g, the left-hand side of (19) would be > 0,
but the right-hand side would be < 0. We have found a set that cannot be
picked out. O

Many familiar classes of geometric objects fall within the scope of the
lemma. For example, the class of subsets of the plane generated by the linear
space of quadratic forms ax® + bxy + cy? + dx + ey + f includes all
closed discs, ellipsoids, and (as a degenerate case) half-spaces. More com-
plicated regions, such as intersections of 257 closed or open half-spaces, can
be built up from these by means of Lemma 15. You can feed them into
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Theorem 14 to churn out a whole host of generalizations of the classical
Glivenko-Cantelli theorem.

Uniform limit theorems for polynomial classes of sets have one thing in
common: they hold regardless of the sampling distribution. This happens
because the number A,(E) of subsets picked out by the class from the sample
{&4, ..., &,} can be bounded above by a polynomial in n, independently of
the configuration of that sample. Without the uniform bound the inequality
(12) would be replaced by

(20) IP{|Py| > 3¢|€} < 2A,(8) exp(—ne?/32).

Write W, for the minimum of 1 and the right-hand side of (20). Then the
argument from the INTEGRATION step gives the sharper bound

IP{|P, — P|| > &} < 4IPW,

for all n large enough. Thus a sufficient condition for ||P, — P|| to converge
in probability to zero is: IPW, — 0 for each ¢ > 0. Equivalently, because
0 < W, < 1, we could check that log A,(§) = o,(n). Theorem 16 helps here.

AG <BV-D=0@+ -+,

where V = V (¢, ..., ¢,) is the smallest integer such that & shatters no
collection of V points from {&,,...,¢&,}. Set k = V — 1. If k < in, all the
terms in the sum for B,(k) are less than (}):

n~1'log B,(k) < n !log[(k + Dn!/(n — k)! k!].

Three applications of Stirling’s approximation and some tidying up reduce
the right-hand side to

—(1 — k/n) log(1 — k/n) — (k/n) log(k/n) + o(1),

which tends to zero as k/n — 0. It follows that both n~!log A, — 0 and
[P, — P|| — 0 in probability, if ¥/n — 0 in probability.

If we don’t know how fast V/n converges to zero, we can’t use the Borel-
Cantelli lemma to deduce from these inequalities that |P, — P| converges
almost surely to zero. But there is another reason why the convergence in
probability implies the stronger result.

Symmetry properties would force |P, — P| to converge almost surely to
some constant, no matter how V/n behaved. Given P,, the unordered set
{&,,..., £,} is uniquely determined, but there’s no way of deciding the order
in which the observations were generated. Given P, ;, we know slightly less
about {¢,,..., ¢,}; it could be any of the (n + 1) possible subsets of size n
obtained by deleting one of the support points of P, ;. (Count coincident
observations as distinct support points.) The conditional distribution of P,
given P,., must be uniform on one of these (n + 1) subsets, each subset
being chosen with probability (n + 1)~!. The conditional expectation
of P, given P,,, (in the intuitive sense of the average over the n + 1
possible choices for P,) must be P,,,. The extra information carried
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by P,.2, P,y3,... adds nothing more to our knowledge about P,; the
conditional expectation of P, given the o-field generated by P, ,, P,.,,...
still equals P, ;. That is, the sequence {P,} is a reversed martingale, in some
wonderful measure-valued sense. Apply Jensen’s inequality to the convex
function that takes P, onto | P, — P| to deduce that {|P, — P|}isabounded,
reversed submartingale. (Problem 11 arrives at the same conclusion in a
slightly more rigorous manner.) Such a sequence must converge almost
surely (Neveu 1975, Proposition V-3-13) to a limit random variable, W, Since
W is unchanged by finite permutations of {¢;}, the zero-one law of Hewitt
and Savage (Breiman 1968, Section 3.9) forces it to take on a constant value
almost surely. The only question remaining for the proof of a uniform strong
law of large numbers is whether the constant equals zero or not: convergence
in probability to zero plus convergence almost surely to a constant gives
convergence almost surely to zero.

21 Theorem. Let 9 be a permissible class of subsets of S. A necessary and
sufficient condition for

sup|P,D — PD| -0 almost surely
2

is the convergence of n™ 'V, to zero in probability, where V, = V(& 1505 En)
is the smallest integer such that 9 shatters no collection of V, points from

{éla R | én}

PROOF. You can formalize the sufficiency argument outlined above ; necessity
is taken care of in Problem 12. (]

Because 0 < n™'¥, < 1, convergence in probability of n~ 1V, to zero is
equivalent to n™'IPV, — 0. This has an appealing interpretation. The uniform
strong law of large numbers holds if and only if, on the average, the class of
sets behaves as if it has polynomial discrimination with degree but a tiny
fraction of the sample size.

22 Example. Let’s see how easy it is to check the necessary and sufficient
condition stated in Theorem 21. Consider the class € of all closed, convex
subsets of the unit square [0, 1]* We know that there exist arbitrarily large
collections of points shattered by 4. Were we sampling from a non-atomic
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distribution concentrated around the rim of a disc inside [0, 1]?, the class
% could always pick out too many subsets from the sample. Indeed, there
would always exist a convex C with P,C = 1 and PC = 0. But such con-
figurations of sample points should be thoroughly atypical for sampling
from the uniform distribution on [0, 1]?. Theorem 21 should say something
useful in that case.

How large a subcollection of sample points can % shatter? Suppose it is
larger than the size requested by Theorem 21. That is, for some & > 0,

IP{n~'V, > ¢} > ¢ infinitely often.

This will lead us to a contradiction.

A set of k points is shattered by € if and only if none of the points can be
written as a convex combination of the others; each must be an extreme
point of their convex hull. So there exists a convex set whose boundary has
empirical measure at least k/n, which seems highly unlikely because P puts
zero measure around the boundary of every convex set. Be careful of this
plausibility argument; it contains a hidden appeal to the very uniformity
result we are trying to establish. An approximation argument will help us to
avoid the trap.

Divide [0, 1]? into a patchwork of m? equal subsquares, for some fixed
m that will be specified shortly. Because the class o7 of all possible unions of
these subsquares is finite,

IP{sup |P,A — PA| > %s} < %¢ for all n large enough.
o

The 4¢ here is chosen to ensure that, for some n,

IP{n~'V, > ¢and sup |P,4A — PA| < ¢} > }e.
o

Since a set with positive probability can’t be empty, there must exist a sample
configuration for which % shatters some collection of at least ne sample
points and for which |P,4 — PA| < % for every A4 in /. Write H for the
convex hull of the shattered set, and 4 for the union of those subsquares
that intersect the boundary of H. The set A contains all the extreme points
of H,so P, Ay > ¢; it belongs to o, so |P, Ay — PAy| < 3¢ Consequently
PAy > e, which will give the desired Contradiction if we make m large
enough.
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Experiment with values of m equal to a power of 3. No convex set can
have boundary points in all nine of the subsquares; the middle subsquare
would lie inside the convex hull of four points occupying each of the four
corner squares. For every convex C the P measure of the union of those

subsquares intersecting its boundary must be less than %. Subdivide each
of the nine subsquares into nine parts, then repeat the same argument
eight times. This brings the measure of squares on the boundary down to
(8. Keep repeating the argument until the power of £ falls below 3e. That
destroys the claim made for 4. O

I1.5. Classes of Functions

The direct approximation methods of Section 2 gave us sufficient conditions
for the empirical measure P, to converge to the underlying P uniformly over
a class of functions,

sup [P, f — Pf|— 0 almost surely.
F

The conditions, though straightforward, can prove burdensome to check. In
this section a transfusion of ideas from Sections 3 and 4 will lead to a more
tractable condition for the uniform convergence. The method will depend
heavily on the independence of the observations {¢;}, but the assumption of
identical distribution could be relaxed (Problem 23).

Throughout the section write |-|| to denote sup |-|.

Let us again adopt a naive approach towards possible measurability
difficulties, with only the word permissible (explained in Appendix C) to
remind us that some regularity conditions are needed to exclude patho-
logical examples.

A domination condition will guard against any complications that could
be caused by & containing unbounded functions. Call each measurable F
such that | f| < F, for every f in &%, an envelope for . Often F will be taken
as the pointwise supremum of | f | over %, the natural envelope, but it will
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be convenient not to force this. We shall assume PF < oo. With the proper
centering, the natural envelope must satisfy this condition (Problem 14) if
the uniform strong law holds.

The key to the uniform convergence will again be an approximation
condition, but this time with distances calculated using the .#! seminorm
for the empirical measures themselves. This allows us to drop the require-
ment that the approximating functions sandwich each member of %,

23 Definition. Let Q be a probability measure on S and % be a class of
functions in £*(Q). For each ¢ > 0 define the covering number N, (e, @, %)
as the smallest value of m for which there exist functions g,,..., g, (not
necessarily in %) such that min; Q| f — g;| < e for each f'in #. For definite-
ness set N (e, Q, #) = oo if no such m exists. O

If # has envelope F we can require that the approximating functions
satisfy the inequality |g;| < F without increasing N, (¢, Q, #): replace g; by

max{—F, min[F, g;]}.

We could also require g; to belong to %, at the cost of a doubling of ¢: replace
g;by an f;in & for which Q| f; — g;] < e.

24 Theorem. Let & be a permissible class of functions with envelope F.
Suppose PF < co. If P, is obtained by independent sampling from the prob-
ability measure P and if log N (e, P,, #) = 0,(n) for each fixed ¢ > 0, then
supg |P, f — Pf} — 0 almost surely.

PrOOF. Problem 11 (or the slightly less formal symmetry argument leading
up to Theorem 21 in Section 4) shows that {||P, — P||} is a reversed sub-
martingale; it converges almost surely to a constant. It will suffice if we
deduce from the approximation condition that {||P, — P|} converges in
probability to zero.

Exploit integrability of the envelope to truncate the functions back to a
finite range. Given ¢ > 0, choose a constant K so large that PF{F > K} <e.
Then

sup [P, f — Pf| < sup|P,f{F < K} — Pf{F < K}|

3
+ sup P,| f|{F > K} + sup P| f|{F > K}.
F 7
Because | f| < F for each fin &, the last two terms sum to less than
P,F{F > K} + PF{F > K}.

This converges almost surely to 2PF{F > K}, which is less than 2e. It
remains for us to show that the supremum over the functions f{F < K}
converges in probability to zero. As truncation can only decrease the £(P,)
distance between two functions, the condition on log covering numbers also
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holds if each f'is replaced by its truncation; without loss of generality we may
assume that | f| < K for each fin &

In the two SYMMETRIZATION steps of the proof of the Glivenko—Cantelli
theorem (Section 3) we showed that

IP{||[P, — P|| > &} < 4IP{||Pg|| > 4e} for n > 872,

where |-|| denoted a supremum over intervals (— o, t] of the real line. The
signed measure P put mass +n~! on each observation & ..., &, the
random + signs being decided independently of the {&;}. The argument
works just as well if ||-| denotes a supremum over &%, the interpretation
adopted in the current section. The only property of the indicator function
(— oo, f] needed in the SYMMETRIZATION steps was the boundedness, which
implied var(P,(—o0,t]) < n~!. This time an extra factor of K? would
appear in the lower bound for .

With intervals we were able to reduce ||P°|| to a maximum over a finite
collection; for functions the reduction will not be quite so startling. Given
€, choose functions gy, ..., gy, where M = N, (3¢, P,, %), such that

min P,| f — g;| < g¢ for each fin &
J
Write f* for the g; at which the minimum is achieved.

Now we reap the benefits of approximation in the #!(P,) sense. For any

function g,

|Pyg| =

n! 'Zi +9(&)

<t Y1gE)] = Palgl
Choose g = f — f* for each fin turn.
IP{SU; |Pof| > %Elé} < IP{S;P LIPRf*I + Pl f — f*11> %8|§}
< IP{max |Pog;| > %el&} because P,|f — f*| < 3e
j
< Ni(3e, P,,, ) max IP{| Pyg;| > 4e|&}.
j

Once again Hoeffding’s Inequality (Appendix B) gives an excellent bound
on the conditional probabilities for each g IE

IP{| Pg;| > %e|&} = IP{

%, % 06| > boale]

<2exp [ —2(}ne)? / .anl (2g9,¢ i))z]

< 2 exp(—ne?/128K?) because |g;| < K.
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When the logarithm of the covering number is less than ne?/256K?, the in-
equality

IP{||P;| > %e|&} < 2 exp[log N,(3¢, P,, F) — ne?/128K?]
will serve us well; otherwise use the trivial upper bound of 1. Integrate out.
IP{||P;|| > L&} < 2 exp(—ne?/256K?) + P{log N,(}e, P,, F) > ne*/256K*}.

Both terms on the right-hand side of the inequality converge to zero. O

For some classes of functions the conditions of the theorem are easily
met because N,(e, P,, #) remains bounded for each fixed & > 0. This
happens if the graphs of the functions in & form a polynomial class of sets.
The graph of a real-valued function f on a set S is defined as the subset

G, ={(1):0<t<f(s) or f(s)<t<0}

of S ® IR. We learn something about the covering numbers of a class & by
observing how its graphs pick out sets of points in S ® R.

25 Approximation Lemma. Ler & be a class of functions on a set S with
envelope F, and let Q be a probability measure on S with 0 < QF < co. If'the
graphs of functions in & form a polynomial class of sets then

N(eQF,Q, F) < Ac™" for O0<e<1,

where the constants A and W depend upon only the discriminating polynomial
of the class of graphs.

Proor. Letf}, ..., f,, be a maximal collection of functions in & for which

Qlfi — fil>eQF if i#].

Maximality means that no larger collection has the same property; each f
must lie within eéQF of at least one f;. Thus m > N,(eQF, Q, #).

Choose independent points (s, t,),..., (S, %) in S ® IR by a two-step
procedure. First sample s; from the distribution Q(-F)/Q(F) on S. Given
s;, sample t; from the conditional distribution Uniform[—F(s;), F(s;)].
The value of k, which depends on m and ¢, will be specified soon.
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The graphs G, and G,, corresponding to f; and f,, pick out the same
subset from this sample if and only if every one of the k points lands outside
the region G; A G,. This occurs with probability equal to

iljl [1 — PIP{(s;, t) e G; A GZ,Si}] = [1 = IP(| fi(s1) — fals)I/2F (s, ))]*
=0 - 91fi — £ol20(F)F*
< (1 — 3o
< exp(—%ke).

Apply the same reasoning to each of the (%) possible pairs of functions f;
and f;. The probability that at least one pair of graphs picks out the same
set of points from the k sample is less than

2

Choose k to be the smallest value that makes the upper bound strictly less
than 1. Certainly k < (1 + 4 log m)/e. With positive probability the graphs
all pick different subsets from the k sample; there exists a set of k points in
S ® IR from which the polynomial class of graphs can pick out m distinct
subsets. From the defining property of polynomial classes, there exist
constants B and V such that m < Bk" for all k > 1. Find n, so that
(1 + 4logn)” < n'? for all n > ng. Then either m < n, or m < Bm'/?¢”7,
Set W= 2Vand A = max(B?, n,). O

(m) exp(—%ke) < 4 exp(2 log m — Lke).

To show that a class of graphs has only polynomial discrimination we can
call upon the results of Section 4. We build up the graphs as finite unions and
intersections (Lemma 15) of simpler classes of sets. We establish their dis-
crimination properties by direct geometric argument (as for intervals and
quadrants) or by exploitation of finite dimensionality (as in Lemma 18) of a
generating class of functions.

26 Example. Define a center of location for a distribution P on IR™ as any
value § minimizing the criterion function

where ¢(-) is a continuous, non-decreasing function on [0, co) and |-| denotes
the usual euclidean distance. If P¢(|x|) < oo and ¢(-) does not increase too
rapidly, in the sense that there exists a constant C for which ¢(2t) < Co(r)
for all ¢, then the function H(-, P) is well defined:

H(0, P) < PLQ2I0D{Ix| < |01} + Co(Ix){Ix| > |0]}] < 0.
If trivial cases are ruled out by the requirement

@7 P{x: ¢(1x]) < ¢(o0 —)} > 0,
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the minimizing value will be achieved (Problem 21); extra regularity condi-
tions on P, which are satisfied by distributions such as the multivariate
normal, ensure uniqueness (Problem 22). For this example, let us not get
bogged down by the exact conditions needed; just assume that H(-, P) has a
unique minimum at some 6.

Estimate 6, by any value 0, that minimizes the sample criterion function
H(-, P,). To show that 6, converges to 6, almost surely, it will suffice to prove
that H(0,, P) — H(0,, P) almost surely, because H(8, P) is bounded away
from H(f,, P) outside each neighborhood of 6.

The argument follows the same pattern as for k-means (Example 4). First
show that 6, eventually stays within a large compact ball {|x| < K}. Choose
the K greater than |8, ] and large enough to ensure that

$GKIP{|x| < 3K} > Pe(|x]),

which is possible by (27): as K tends to infinity the left-hand side converges
to ¢(co —). Such a K will suffice because H(0, P,) = P,¢(|x|) and

H(O, P,) = ¢GKIP,{|x| < 7K}

for every 6 with |8| > K.
If we prove uniform almost sure convergence of P, to P over the class

F ={¢(l- - 00):10| < K3},
then we can deduce almost surely that H(6,, P) - H(0,, P) from
H(b,, P,) — H(b,, P) - 0,
H(,, P,) < H(b,, P,) > H(0,, P) < H(8,, P).

Here’s our chance to apply Theorem 24.

The class & has envelope ¢(2K) + Coé(|x]), which satisfies the first
requirement of the theorem. Bound the covering numbers by showing that
the graphs of functions in & have only polynomial discrimination. We may
assume that ¢(0) = 0. The graph of ¢(|- — 6]) contains a point (y, t), with
t > 0,if and only if |y — 8] > a(t), where a(t) denotes the smallest value of
o for which ¢(«) > t. From a collection of points {(y;, t;)} the graph picks
out those points satisfying |y;|* — 2y,-0 + |8]*> — a(z,)?> > 0. Construct
from (y;, t;) a point z; = (y;, |y;1* — a(z)?) in R™*L. On IR™*! define a
vector space % of functions

gﬁ,y,&(xa S) = ﬁ'x + ys + 0

with parameters § in IR” and 7, § in IR. By Lemma 18, the sets {g > 0}, for
g in &, pick out only a polynomial number of subsets from {z;}; those sets
corresponding to functions in ¢ with f = —260, y = 1, and § = |0]? pick
out even fewer subsets from {z;}. The graphs of functions ¢(|- — 0|) have
only polynomial discrimination.
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Buried within the argument of the last example lies a mini lemma relating
finite dimensionality of a class of functions to discrimination properties of
the graphs. It is perhaps worth noting.

28 Lemma. Let F be a finite-dimensional vector space of real functions on S.
The class of graphs of functions in F has polynomial discrimination.

PrOOF. Define on S ® IR the vector space ¢ of real functions

gs.st) = f(s) — rt.

Define
Gi=1{g;,1 20} ={(s,0): f(s) > 1}
Gr={9-5,-1 20 ={(s0): f(s) <1}
Observe that
G, =G {t >0} U G,{t <0}.
Invoke Lemmas 18 and 15. O

29 Example. Now let’s have another try at the k-means problem introduced
in Example 4. There we met the class of functions of the form

JaoX) =1x —al® A |x — bJ?

with (a, b) ranging over the subset C of IR?. We know that sup, Ja» < Ffor
an F with PF < oo, provided P|x|* < 0.

The graphs of functions | x — a|? form a class with polynomial discrimina-
tion, by Lemma 28. Intersect pairs of such graphs in all possible ways to get
the graphs of all functions f, ,. Apply Lemma 15 (to handle the intersections),
then the Approximation Lemma (to bound covering numbers), then Theorem
24:

sup|P, fo» — Pf,,| > 0 almost surely.
(5

Compare this with the direct approximation argument of Example 4. J

I1.6. Rates of Convergence

Theorem 24 imposed the condition log N, (¢, P,, #) = 0,(n) on the rate of
growth of the covering numbers. Many classes meet the condition easily.
For example, if the graphs of functions from % have only polynomial
discrimination, the covering numbers stay smaller than a fixed polynomial
in ™. The method of proof will deliver a finer result for such a class; we can
get good bounds not just for a fixed ¢ deviation but also for an g, that de-
creases to zero as n increases. That is, we get a rate of convergence for the



I1.6. Rates of Convergence 31

uniform strong law of large numbers. The method will also allow the class
of functions to change with n, provided the covering numbers do not grow
too rapidly. If the classes are uniformly bounded, and if the supremum of
Pf? over the nth class tends to zero as n increases, this will speed the rate of
convergence.

Consider the effect upon the two key steps of the argument for Theorem
24 if we let both ¢ and & depend on n. As before, replace P, — P by the:
signed measure PJ that places mass +n~! at each of £, ..., &,. The sym-
metrization inequality

(30) IP{sup \P,f — Pf| > 88,,} < 4IP{sup P2 f] > 2en}
Fn Fn

still holds provided var(P, f)/(4¢,)* < % for each fin &,. The approximation
argument and Hoeffding’s Inequality still lead to

3D H’{Sup |Paf1> 28n|§} < 2Ny(e,, P,y ) exp[—%nﬁf/<max Pngf)],
Fn j

J
where the maximum runs over all N,(g,, P,, #,) functions {g;} in the
approximating class.

If the supremum over %, of Pf? tends to zero, one might expect that the
maximum over the {P,g7} should converge to zero at about the same rate.
The next lemma will help us make the idea precise if the approximating
{g;} are chosen from %,. As squares of functions are involved, covering
numbers need to be calculated using .#? seminorms rather than the %!
seminorms of Definition 23.

32 Definition. Let Q be a probability measure on S and & be a class of
functions in £2(Q). For each ¢ > 0 define the covering number N,(¢, Q, F)

as the smallest value of m for which there exist functions g, ..., g, (not
necessarily in &) such that min;(Q(f — g;)*)*/* < ¢ for each fin &#. For
definiteness set N,(g, Q, F) = oo if no such m exists. |

As before, if # has envelope F we can require that |g;] < F; and we could
require g; to belong to %, at the cost of a doubling of ¢, by substituting for
g;an f;in & such that (Q(f; — g)))"* < .

33 Lemma. Let % be a permissible class of functions with |f| < 1 and
(PfHY? < § for each fin #. Then

IP{sup(P,,fz)”2 > 85} < 4IP[N,(6, P,, F) exp(—ndé*) A 1].
7

PrOOF. Let P, be an independent copy of P,. Write Z(f) for (P, f*)'/* and
Z'(f) for (P, f*)*/2. From the Symmetrization Lemma of Section 3,

34) IP{sup |Z(f)] > 85} < %IP{sup 1Z(f) = Z'(f)] > 65}

&
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because, for each fin &,
IP{{Z'(f)| <25} = 1 — IP(Z'(f)*)/40° = 1 — (Pf?)/45>.

The intrusion of the square-root into the definition of Z and Z' would
complicate reduction to the P, process. Instead, construct P, and P, by a
method that guarantees equal numbers of observations for both empirical
measures. Sample 2n observations X, ..., X5, from P. Independently of
the vector X of these observations, generate independent selection variables
Tis ..., T, With P{z(i) = 1} = P{z(i) = 0} = 1. Use these to choose one
observation from each of the pairs (X,;_,, X5;), for i = 1,..., n. Construct
P, from these observations, and P, from the remaining observations. For-
mally, set & = X, ;. and & = X,; ., then put mass n~' on each
point &, for P,, and put mass n™ ! on each & for P,. Set S,, = (P, + P,). It
has the same distribution as P,,,.

Temporarily write p(-) for the £*(S,,) seminorm: p(f) = (S, f ).
Given X, find functions g4, . .., ga, Where M = N,(\/28, S,,, %), for which

min p(f — g;) < ﬁé for every f'in #.
j

We may assume that [g;| < 1 for every j. The awkward \/5 will disappear at
the end when we convert to #2(P,) covering numbers.

From the triangle inequality for the #*(P,) seminorm, and the bound
28,, for P,, deduce for each f and g that

1Z(f) — Z(g) < Z(f — g) < 2So(f — 9D = /20(f — 9)

and similarly for Z'. For fin & set g equal to the g; that minimizes p(f — g;)-
Then

\Z(f) = ZON < Z(f — g + 1Z(g)) = Zg + Z'(g; — )
<4é + 1Z(g) — Z'(g));

whence
lP{sgp 1Z(f) — Z(N)) > 65)X} < IP{maXlZ(gj) - Z'(gpl > 25)"}
] <M mjz;x P{|Z(g;) — Z'(g;)| > 26(X}.
Fix a g with |g| < 1. Bound | Z(g) — Z'(g)| by

\Z(9)* — Z'(9)*|/[Z(9) + Z'(9)]

which is less than

[P.g*> — Pug?1/(255,*)"?
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thanks to the inequality a'/? + b'/? > (a + b)!/?, for a, b > 0. Apply
Hoeffding’s Inequality (Appendix B).

P{|Z(g) — Z'(9)| > 26|X}

<

<2 exp[— 16n252S2,,g2/

Z, +[*(X5i-1) — 97 (X))

> 2n8(2S,,9%)' | X}

Z 4[92(X2i—1) - gz(Xzi)]Z]
< 2 exp(—2nd?)

because the inequality |g| < 1 implies

Y 9P (Xaim1) — g2 (X12)1F < Y gH(Xpim 1) + 9°(X5) ="2nS,,97
i=1 i=1

Notice how the S,,g* factor cancelled. That happened because we sym-
metrized Z instead of P,.
Setting g equal to each g; in turn, we end up with

H’{sup 1Z() — Z'(f)| > 65[X} < 2N,(\/25, S, F) exp(—2n52)

Decrease the right-hand side to the trivial upper bound of 1, if necessary,
then average out over X:

(35)
IP{sup \Z(f) — Z/(f)| > 65} < IP[2N,(/26, Sy, F) exp(—2n6%) A 1]

The presence of the S,, is aesthetically unpleasing, especially since both
0 and & will always depend on n in applications. Problem 24 allows us to
replace it by P,, at a small cost:
P[2N,(:/28, Sy, F) exp(—2n8%) A 1]
< IP[2N,(6, P,, #)N,(6, P,, F) exp(—2né*) A 1]
< IP[2N,(6, P,, #) exp(—nd?) A 1]
+ IP[N,(S, P, F) exp(—nd?) A 1]

by virtue of the inequality xy A 1 < (x A 1) + (y A 1) for x, y > 0. The

empirical measures P, and P, have the same distribution; the sum of expec-
tations is less than

3IP[N,(8, P,, F) exp(~nd?) A 1].
Combine the last bound with (34) and (35) to complete the proof. U

The bounds we have for #! covering numbers can be converted into
bounds for #? covering numbers. For the sake of future reference, consider
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aclass # with envelope F. Set F equal to a constant to recover the inequalities
for a uniformly bounded &%,

36 Lemma. Let F be a class of functions with strictly positive envelope F, and
Q be a probability measure with QF* < co. Define P(-) = Q(-F2)/Q(F?) and
4 = {f/F:feF}. Then:

(D) N2(3(QF)'?, 0, F) < Ny(5, P, 9) < N,(30% P, %);
(i) if the class of graphs of functions in F has only polynomial discrimination
then there exist constants A and W, not depending on Q and F, such that

N,(8(QF*)'2,Q, F) < A5™Y for 0 < § < 1.
PROOF. For every pair of functions fi, f, with | f;| < F and | f,| < F,
QF)7'Q1fi — o> = PIfi/F — f,/F|* < 2P| f,/F — f,/F|.

Assertion (i) follows from these connections between the seminorms used
in the definitions of the covering numbers.

The graph of f covers a point (x, ¢) if and only if the graph of f/F covers
(x, t/F(x)); the graphs of functions in ¢ also have polynomial discrimination.
Invoke the Approximation Lemma (I1.25) for classes with envelope 1.

N.(30% P, %) < A(36%) 7.
Rechristen 42% as 4 and 2W as W. |
It is now an easy matter to prove rate of convergence theorems for uni-
formly bounded classes of functions. As an example, here is a result tailored

to classes whose graphs have polynomial discrimination. (Remember that
the notation x,, > y, means x,/y, — c0.)

37 Theorem. For each n, let %, be a permissible class of functions whose
covering numbers satisfy
supNy(e, 0, %) < Ae™” for O<e< 1
Q
with constants A and W not depending on n. Let {a,} be a non-increasing

sequence of positive numbers for which nd;0z > log n. If | f| < 1 and (Pf?)4/2
< 9, for eachfin %,, then

sup|P,f — Pf| < 8%a, almost surely,
Fn
PrOOF. Fix ¢ > 0. Set ¢, = ¢62a,,. Because
var(P, f)/(4e,)* < (16ne25202)™ ! < (log n)~?

the symmetrization inequality (30) holds for all n large enough:

IP{sup |P,f — Pf| > 88,,} < 4IP{sup [Py f] > 28"}.
Fn F
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Condition on &. Find approximating functions {g;} as in (31). We may
assume that each g; belongs to %,. (More formally, we could replace g ; by
an f; in #, for which P,|f; — g;| < ¢, then replace ¢ by 2¢ throughout the
argument.) From (31),

IP{sup |Pf| > 23,} < 24e; ¥ exp(—4ne?/6462) + IP{sup P.f*> 645,2,}.
Fn Fn

The first term on the right-hand side equals
24e™" exp[W log(1/82a,) — ne?62a2/128],

which decreases faster than every power of n because log(1/62a,) increases
more slowly than log n, while nd7«? increases faster than log n. Lemma 33
bounds the second term by

4A(ed%,) " exp(—nd?)

which converges to zero even faster than the first term. An application of the
Borel-Cantelli lemma completes the proof. ([l

Specialized to the case of constant {a,}, the constraint placed on {3,} by
Theorem 37 becomes 62 > n™ ! log n. This particular rate pops up in many
limit theorems involving smoothing of the empirical measure because
(Problem 25) it corresponds to the size of the largest ball containing no
sample points.

38 Example. Let P be a probability measure on IR? having a bounded
density p(-) with respect to d-dimensional lebesgue measure. One theoretically
attractive method for estimating p(-) is kernel smoothing: convolution of
the empirical measure P, with a convenient density function to smear out
the point masses into a continuous distribution. The estimate is

pn(x) = Pna_de,o'a
where

Kx,a(y) = K[G_l(y - X):]

for some density function K on IR and a scaling factor ¢ that depends on .
Note that the ¢~ is not part of K .

The traditional method for analyzing p, compares it with the correspond-
ing smoothed form of p,

p(x) = IPp,(x) = Po K, ,.

The difference p, — p breaks into a sum of a random component, p, — p,
and a bias component p — p. The smaller the value of o, the smaller the
bias (Problem 26); the slower ¢ tends to zero, the faster p, — p converges to
zero. These two conflicting demands determine the rate at which P, — p can
tend to zero.
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If p, — pisto converge uniformly to zero, we must not allow ¢ to decrease
too fast. Otherwise we might somewhere be smoothing P, over a region
where it puts too little mass, making |p, — p| too large. Theorem 37 will let
o decrease almost as fast as n™! log n, the best rate possible.

For concreteness take K to be the standard normal density, which enjoys
the uniform bound 0 < K, , < 1 for all x and o (the constant (2)"%? is
too awkward for repeated use.) The class of graphs of all K, , functions has
polynomial discrimination (Problem 28 proves this for a whole class of
kernel functions). Assume also that the density p(-) is bounded, say 0 <
(-} < 1. In that case

sup PK2 , < o*

X

because

PK:, < PK,,

JK((y — x)/o)p(y) dy

= ¢* fK(t)p(x + ot) dt.

Everything is set up for Theorem 37. Put «, = 1 and 62 = ¢°. Provided
o> n"tlogn,

sup |P,K, , — PK, ,| € ¢ almost surely,

that is,

sup |p,(x) — p(x)| = 0 almost surely.
Smoothness properties of p(-) determine the rate at which the bias term
converges to zero (Problem 26). For example, one bounded derivative would
give maximum bias of order O(¢) in one dimension. We would then want
something like ¢®> > n~!logn to get a comparable rate of convergence
from Theorem 37 for p, — P. O]

NOTES

Uniform strong laws of large numbers have a long history, which is described
in the first section of the survey paper by Gaenssler and Stute (1979). Theorem
2 comes from DeHardt (1971), but the idea behind it is much older. Billingsley
and Topsee (1967) and Topsee (1970, Sections 12 to 15) developed much
deeper results for the closely related area of uniformity in weak convergence.

Hartigan (1975) is a good source for information about clustering.
Hartigan (1978) and Pollard (1981b, 1982b, 1982c) have proved limit
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theorems for k-means. Engineers know the method of k-means by the
name quantization. The March 1982 IEEE Transactions on Information
Theory was devoted to the topic. Denby and Martin (1979) proposed the
generalized M-estimator of Example 5.

Ithaslong been appreciated that comparison of two independent empirical
distribution functions transforms readily into a combinatorial problem.
Gnedenko (1968, Section 68), for example, reduced the analysis of two-
sample Smirnov statistics to a random walk problem. The method in
the text has evolved from the ideas introduced by Vapnik and Cervonenkis
(1971). Their method of conditioning turned calculations for a single fixed
set into an application of an exponential bound for hypergeometric tail
probabilities. Classes with polynomial discrimination are often called VC
classes in the literature. The symmetrization described in Section 3 is a well-
known method for proving central limit theorems in Banach spaces (Araujo
and Giné 1980, Section 2; Giné and Zinn 1984, Section 1). Steele (1975, 1978)
discovered subadditivity properties of empirical measures that strengthen
the Vapnik~Cervonenkis convergence in probability results to necessary and
sufficient conditions for almost sure convergence. Pollard (1981b) introduced
the martingale tools and the randomization method described in Problem
12 to rederive Steele’s conditions. Theorem 21 and Example 22 are based on
Steele (1978); Flemming Topsee explained to me the &-trick for convex sets.
See Gaenssler and Stute (1979) for more about the history of this example.

The proof of Theorem 16, which is often called the Vapnik—Cervonenkis
lemma, is adapted from Steele (1975). Sauer (1970) was the first to publish
the inequality in precisely this form, although he suggested that Shelah had
also established the result. (I am unable to follow the two papers of Shelah
that Sauer cited.) Vapnik and Cervonenkis (1971) proved an insignificantly
weaker version of the inequality. Dudley (1978, Section 7) has dug further
into the history. Lemma 18 is due to Steele (1975) and Dudley (1978).

The sum of binomial coefficients in Theorem 16 and the randomization
method of Problem 12 suggest that a direct probabilistic path might lead
to the necessary and sufficient conditions of Theorem 21. Does there exist
a set of n independent experiments that can be performed to decide whether
a particular subset of a collection of n points can be picked out by a particular
class of sets? Or maybe the experiments could be linked in some way. For a
class that picks out only subsets with fewer than ¥ points the solution is
easy—it lies buried within the proof of Theorem 16.

The notes to Chapter VII will give more background to the concept of
covering number.

Vapnik and Cervonenkis (1981) have found necessary and sufficient
conditions for uniform almost sure convergence over bounded classes of
functions. They worked with #* and #! distances between functions. Giné
and Zinn (1984) applied chaining inequalities and gaussian-process methods
(see Chapter VII) to deduce £ necessary and sufficient conditions. The
square-root trick in Lemma 33 comes from Le Cam (1983) via Giné and
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Zinn. Kolchinsky (1982) and Pollard (1982¢) independently introduced the
symmetrization method used in Lemma 33, The Approximation Lemma is
due to Dudley (1978), who proved it for classes of sets. The extension to
classes of functions was proved ad hoc by Pollard (1982d), using an idea of
Le Cam (1983).

The density estimation literature is enormous. Silverman (1978) and Stute
(1982b) have found sharp results involving the n~!logn critical rate.
Bertrand-Retali (1974, 1978) proved that ¢? > n™!logn is both necessary
and sufficient for uniform consistency over the class of all uniformly con-
tinuous densities on IR,

Universal separability was mentioned in passing by Dudley (1978) as a
way of avoiding measurability difficulties.

Most of the results in the chapter can be extended to independent, non-
identically distributed observations (Alexander 1984a).

PROBLEMS

[1] In Example 4 relax the assumption that W(-, -, P) has a unique minimum; assume
the function achieves its minimum for each (a, b) in a region D. Prove that the
distance from the optimal (a,, b,) to D converges to zero almost surely, provided
P does not concentrate at a single point. [The condition rules out the possibility
of a minimizing pair for W(-, -, P) with one center off at infinity.]

[2] Here is an example of an ad hoc method to force an optimal solution into a
restricted region. Suppose an estimator corresponds to the f, that minimizes P, f
over a class %, and that we want to force £, into a region . Write y, for the infi-
mum, assumed finite, of Pf over #. Suppose there exists a positive function b(-)
on # such that, for some ¢ > 0,

b(f) =y, +¢ for fin F\H

P[inf f/b(f)] > 190l /[0l + ).
F\AX

Show that liminfinfz 4, P, f > 7y, almost surely. [Trivial if y, < 0.] Deduce
that f, belongs to ¢ eventually (almost surely). Now read the case 4 consistency

proof of Huber (1967). Compare the last part of his argument with our Theorem 3.

[3] Callaclass & of functions universally separable if there exists a countable subclass
%, such that each fin & can be written as a pointwise limit of a sequence in %.
If % has an envelope F for which PF < co, prove that universal separability
implies measurability of |P, — P|.

[4] For any finite-dimensional vector space ¢ of real functions on S, the class & of sets
of the form {g > 0}, for g in ¥, is universally separable. [Express each g in ¢ as
a linear combination of some fixed finite collection of non-negative functions. Let
%, be the countable subclass generated by taking rational coefficients. For each
g in ¢ there exists a sequence {g,} in %, for which g, | g. Show that {g, > 0} |
{g = 0} pointwise.]

[5] The operations in Lemma 15 preserve universal separability.
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(6]

[7]

(8]

[9]

[10]

(1]

[12]

For a universally separable class &, the quantity ¥, defined in Theorem 21 is
unchanged if 2 is replaced by its countable subclass 2. Prove that ¥, is measur-
able.

Prove that the class of indicator functions of closed, convex subsets of IR? is
universally separable. [ Consider convex hulls of finite sets of points with rational
coordinates. ]

Theorem 16 informs us that the class of quadrants in IR? picks out at most
1 + 3N + $N? subsets from any collection of N points. Find a configuration for
which this bound is achieved.

For N > 2 the sum of binomial coefficients singled out by Theorem 16 is bounded
by N¥. [Count subsets of {1, ..., N} containing fewer than V elements by arrang-
ing each subset into increasing order then padding it out with enough copies of
the largest element to bring it up to a V-tuple. Don’t forget the empty set.]

Let M be a subset of [0, 1] that has inner lebesgue measure zero and outer lebesgue

measure one (Halmos 1969, Section 16). Define the probability measure u as the

trace of lebesgue measure on M (the measure defined in Theorem A of Halmos

(1969), Section 17). Assuming the validity of the continuum hypothesis, put M

into a one-to-one correspondence with the space [0, U) of all ordinals less than

the first uncountable ordinal U (Kelley 1955, Chapter 0). Define 2 as the class

of subsets of [0, 1] corresponding to the initial segments [0, x] in [0, U).

(a) Show that @ has linear discrimination. [It shatters no two-point set.]

(b) Equip M* with its product o-field and product measure u®. Generate ob-
servations ¢, £,, ... on P = Uniform(0, 1) by taking them as the coordinate
projection maps on M®. Construct empirical measures {P,} from these
observations. Show that sup, | P,D — PD| is identically one.

(c) Repeat the construction with the same 2, but replace (M ®, u*®) by a countable
product of copies of M° equipped with the product measure A®, where A
equals the trace of lebesgue measure on M*. This time sup, |P,D — PD]| is
identically zero.

[Funny things can happen when & has measurability problems. Argument

adapted from Pollard (1981a) and Durst and Dudley (1981).]

For independent and identically distributed random elements {&,}, write " for
the o-field generated by all symmetric functions of ¢, ..., &y as N ranges over
n,n + 1,.... Forafixed function f, apply the usual reversed martingale argument
(Ash 1972, page 310) to show that IP(P, f|6"**) = P, f. If P(sups |f]) < 0,
deduce

IP(Supanf — Pf| |5”‘“) =2 sup [P, f — Pf|

for every class of functions # that makes both suprema measurable.

Here is one way to prove necessity in Theorem 21. Suppose [P, — P| — 0 almost
surely. Construct by placing mass n™ ! at each ¢, for which the sign variable
o; equals +1; construct u, similarly from the remaining ¢;’s. Notice that P2 =
#a — 1y - Let N be the number of sign variables Oy, ..., 0,equal to + 1.

(a) Prove that (n/N)u, has the same distributions as Py. [What if N = 07]

(b) Deduce that both ||, — 3P| — Oand ||u; — 1P| - 0, in probability.
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(c) Deduce that [pu] — p; | — 0 in probability.

(d) Suppose 2 shatters a set F consisting of at least ny of the points &,,...,¢,.
Without loss of generality, at least $n7 of the points in F are allocated to ;.
Choose a D to pick out just those points from F. Use independence properties
of the {o;} to show that, with high probability, y} (D\F) and 1y (D\F) are
nearly equal. [Argue conditionally on P, and the o, for those ¢, in F.]

(e) Show that uf(D) — (D) = 4y with high conditional probability. This
contradicts (c).

[13] Rederive the uniform strong law for convex sets (Example 22) by the direct

approximation method of Theorem 2.

[14] Let & be a permissible class with natural envelope F = supg | f|.If|P, — P|| - O

almost surely and if supz | Pf| < co then PF < oo. [The condition on supg | Pf]
excludes trivial cases such as & consisting of all constant functions. From
P, — Pl < eand ||P,_; — P} <& deduce n™!| f(&,) — Pf| < 2¢; almost sure
convergence implies

]P{sup |f(&) — Pf| = n infinitely often} =0.
F

Invoke the non-trivial half of the Borel-Cantelli lemma, then replace each &, by
¢, to get

00 > IP(sup | f(&) — Pfl) > IPF(¢,) — constant.
F

Noted by Giné and Zinn (1984).]

[15] Hereis an example of how Theorem 24 can go wrong if the envelope F has PF = co.

Let P be the Uniform(0, 1) distribution and let # be the countable class consisting
of the sequence {f;}, where fi(x) = x~2{(i + 1)™* < x < i"'}. Show that the
graphs have polynomial discrimination and that Pf, =1 for every i But
sup; P, f; = oo almost surely. [Find an «, with na? — 0, such that [0, «,] contains
at least one observation, for n large enough.]

[16] Let # be the class of all monotone increasing functions on IR taking values in the

range [0, 1]. The class of graphs does not have polynomial discrimination, but it
does satisfy the conditions of Theorem 24 for every P. [If {x;} and {t,} are strictly
increasing sequences, the graphs can shatter the set of points (x,, ) N G AN |

[17] For the # of the previous problem, rewrite P, f as {8 P{f >t} dt. Deduce

uniform almost sure convergence from the classical result for intervals, [Suggested
by Peter Gaenssler.]

[18] Let & and ¢ be classes of functions on S with envelopes F and G. Write & for

the class of all sums f + g with f in % and g in . Prove that
N{Q(F + G), 0, #) < N(OQF, Q, FIN(3QG, 0, %) for i=1,2.

[19] A condition involving only covering numbers for P would not be enough

to give a uniform strong law of large numbers. Let P be Uniform(0, 1). Let 9
consist of all sets that are unions of at most # intervals each with length less than
n~%forn=1,2,.... Show that sup, |P,D — PD| = 1, even though N,(e, P, &)
< oo for each & > 0.
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[20]
[21]

[22]

[23]

[24]

[25]

Deduce Theorem 2 from Theorem 24.

Under the conditions set down in Example 26, the function H(-, P) achieves its
minimum. [If H(6;, P) converges to the infimum as i > oo, use Fatou’s lemma to
show that the infimum is achieved at a cluster point of {§;}; condition (27) rules
out cluster points at infinity.] Notice that only left continuity of ¢ is needed for
the proof. Find and overcome the extra complications in the argument that would
be caused if ¢ were only left-continuous.

This problem assumes familiarity with convexity methods, as described in Section
4.2 of Tong (1980). Suppose that the distribution P of Example 26 has a density
p(-) whose high level sets D, = {p > ¢} are convex and symmetric about the origin.
Prove that H(6, P) has a minimum at § = 0. [By Fubini’s theorem,

H®, P) = ff {0<s<¢(]x — 0DHO <t < p(x)} ds dt dx

= ff volume[ B(B, «(s))* n D,] ds dt,

where B(0, r) denotes the closed ball of radius r centered at 6. The volume of
B(9, r) n D, is maximized at § = 0.] When is the minimum unique? Show that a
multivariate normal with zero means and non-singular variance matrix satisfies
the condition for uniqueness.

Suppose {¢;} are independent, but that the distribution of ¢, call it Q;, changes
with i. Write P for the average distribution of the first n observations, P™ —
n~YQy + -+ + Q,). Show for a permissible polynomial class & that

sup {P,D — P®D| -0 almost surely.
2

What difficulties occur in the extension to more general classes of sets, or functions ?
[Adapt the double-sample symmetrization method of Lemma 33: sample a pair
(X2i-1, X5;) from Q;; use the selection variable ¢, to choose which member of the
pair is allocated to P,, and which to P.,.]

Show that

N2(/28, HQ: + Q2), #) < Ny(6, 0y, FIN,(3, 0, F).

[Let h, be the density of Q, with respect to Q; + Q,. Consider the approximating
functions g, {h, > 3} + g,{h; < 4}.]

Let P be the uniform distribution on [0, 1]% For a sample of » independent
observations on P show that

P{some square of area o, contains no observations} — 1

if , is just slightly smaller than n™! log n. [Break [0, 1]? into N subsquares each
with area slightly less than n ™! log n. Set 4; = {ith subsquare contains at least one
observation}. Show that IP(4;.,]4; n--- N A4;) < IPA;,,. The probability that
each of these subsquares contains at least one point is less than (IPA,)". Bertrand-
Retali (1978).]
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[26]

£27]

(28]

[29]

II. Uniform Convergence of Empirical Measures

In one dimension, write the bias term for the kernel density estimate as

Bx) — p(o) = f K@[p(x + 02) — p(x)] d=.

Suppose p has a bounded derivative, and that ||z|K(z) dz < co. Show that the
bias is of order O(s). Generalize to higher dimensions. [If p has higher-order
smooth derivatives, and K is replaced by a function orthogonal to low degree
polynomials, the bias can be made to depend only on higher powers of ¢.]

The graphs of translated kernels K, , have polynomial discrimination for any K
on the real line with bounded variation. [Break K into a difference of monotone
functions.]

Let K be a density on IR? of the form A(]x|), where h(-) is a monotone decreasing
function on [0, c0). Adapt the method of Example 26 to prove that the graphs of
the functions K, , have polynomial discrimination.

Modify the density estimate of Example 38 for distributions on the real line by
choosing K as a function of bounded variation for which [ K(z)dz =0 and
§2K(z)dz = 1 and {|zK(z)| dz < oo. Replace p, by ¢,(x) = 6~ 2P,K, ,. Show
that IPq,(x) converges to the derivative of p. How fast can ¢ tend to zero without
destroying the almost sure uniform convergence sup,, |g,(x) — IPg,(x)| — 0?



CHAPTER III

Convergence in Distribution in
Euclidean Spaces

... which runs through some of the standard methods for proving convergence
in distribution of sequences of random vectors, and for proving weak con-
vergence of sequences of probability measures on euclidean spaces. These include:
checking convergence for expectations of smooth functions of the random vectors;
checking moment conditions for sums of independent random variables (the
Central Limit Theorems); checking convergence of characteristic functions
(the Continuity Theorems for characteristic functions); and reduction to analo-
gous problems of almost sure convergence via quantile transformations.

II1.1. The Definition

Convergence in distribution of a sequence {X,} of real random variables is
traditionally defined to mean convergence of distribution functions at each
continuity point of the limit distribution function:

IP{X, < x} > IP{X < x} whenever IP{X =x}=0.

Although convenient for work with order statistics and quantiles, this
definition does have some disadvantages. Distribution functions are not
well suited to calculations involving sums of independent random variables.
The simplest proofs of the Central Limit Theorem, for example, do not
directly check pointwise convergence of distribution functions; they show
that sequences of characteristic functions, or expectations of other smooth
functions of the sums, converge. With the extensions to sequences of random
vectors (measurable maps into multidimensional euclidean space IR?), the
difficulties multiply. And for random elements of more general spaces not
equipped with a partial ordering, even the concept of distribution function
disappears. With all this in mind, let us start afresh from an equivalent
definition, which lends itself more readily to generalization.

1 Definition. A sequence of random vectors {X,} is said to converge in
distribution to a random vector X, written X, ~ X, if IPf(X,) — IPf(X) for
every f belonging to the class Z(IR¥) of all bounded, continuous, real func-
tions on IR, O

This notion of convergence does not specify the limit random vector
uniquely. If X and Y have the same distribution, that is, if

P{XeAdA} =1P{Ye A} foreach borelset A4,
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then X, ~ X means the same as X, ~ Y. This invites slight abuses of nota-
tion. For example, it is convenient to write X, ~ N(0, 1), meaning that the
sequence of real random variables {X,} converges in distribution to any
random variable having a standard normal distribution. The symbol N(0, 1)
stands not only for a particular probability measure on the borel o-field
Z(IR) but also for any random variable having that distribution. Similarly,
we can avoid much circumlocution by writing, for example,

n~2[Bin(n, §) — 3n] ~ N(0, 3),
nstead of :

if X, has a binomial distribution with parameters n and 4, and X
has a normal distribution with mean zero and variance 4, then
VX, —in) ~ X.

In general, for probability measures on the borel o-field #(IR¥), define
P, ~ P to mean convergence in distribution for random vectors having these
distributions. This definition is equivalent to the requirement: P, f — Pf
for every fin €(IR¥). Most authors call this weak convergence.

II1.2. The Continuous Mapping Theorem

Suppose X, ~ X, as random vectors taking values in IR¥, and let H be a
measurable map from IR* into IR®. Does it follow that HX, ~ HX ? That is,
does IPf(HX,) —» IPf(HX) for every f in 4(IR%)? If H were continuous,
foH would belong to €(IR¥) for every f in ¥(IR®). The result would be
trivially true. The convergence HX, ~ HX also holds under a slightly
weaker assumption: it suffices that H be continuous at almost all points of
the range of X. This will follow as a simple corollary to the next lemma.

2 Convergence Lemma. Let h be a bounded, measurable, real-valued function
on R¥, continuous at each point of a measurable set C.

(D) Let {X,} be a sequence of random vectors converging in distribution to X.
If P{X € C} = 1, then IPh(X,) — IPh(X).

(1) Let {P,} be a sequence of probability measures converging weakly to P.
If P(C) = 1, then P,h — Ph.

PROOF. As the two assertions are similar, we need only prove (ii). Consider
any increasing sequence {f;} of bounded, continuous functions for which
fi < heverywhere and f; 1 h at each point of C. Accept for the moment that
such a sequence exists. Then weak convergence of {P,} to P implies that

€) P, f; = Pf, for each fixed i.
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On the left-hand side bound f; by h.

liminf P,h > Pf; for each fixed i.
Invoke monotone convergence as i tends to infinity on the right-hand side.
4) liminf P,k > Ph.
The companion inequality obtained by substituting — / for h combines with

(4) to complete the proof.

Now to construct the functions { /;}. They must be chosen from the family

F ={febR": f < h).

If we can find a countable subfamily of %, say {g,, g,, .. .}, whose pointwise
supremum equals h at each point of C, then setting f; = max{g,, ..., g:}
will do the trick.

Without loss of generality suppose h > 0. (A constant could be added to
h to achieve this.) For each subset 4 of IR* define the distance function
d(-, A) by

d(x, A) = inf{|x — y|: ye A}.

It is a continuous function of x, for each fixed A. For positive integral m and
positive rational r define

Jn ) =71 A md(x, {h < .

Each f,, , is bounded and continuous; it is at most r if h(x) > r; it takes the
value zero if h(x) < r: it belongs to #. Given a point x in C and an ¢ > 0,
choose a positive rational number r with h(x) — & < r < h(x). Continuity
of h at x keeps its value greater than r in some neighborhood of x. Conse-
quently, d(x, {h < r}) > O0and £, (x) = r > h(x) — ¢ for all m large enough.

O

Weak convergence of {P,} was needed only to establish the convergence
(3) for the functions { f;}. These functions were, however, not just continuous,
but uniformly continuous. The functions from which they were constructed
even satisfied a Lipschitz condition:

| fon, (%) = fou, (D) < m|x — y].
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Thus the lemma could have been proved using only convergence of expecta-
tions of bounded, uniformly continuous functions of the random vectors. In
particular, such a requirement would imply the convergence P,h — Ph for
each h in €(IR%).

S Corollary. If P, f — Pf for every bounded, uniformly continuous f then
P, ~ P.(And similarly for convergence in distribution of random vectors.) [

The lemma also provides an answer to the question asked at the start of
the section.

6 Continuous Mapping Theorem. Let H be a measurable mapping from IR¥
into IR®. Write C for the set of points in IR* at which H is continuous. If a se-
quence {X,} of random vectors taking values in IR* converges in distribution
to a random vector X for whichIP{X € C} = 1, then HX, ~ HX.

ProoF. For each fixed f in €(IR%), the bounded function f o H is continuous
at all points of C. ]

Some authors seem to regard this result as trivial and obvious; they
scarcely notice that, at least implicitly, they make use of it for many applica-
tions. It is better to recognize these covert appeals to the Continuous Mapping
Theorem. That way the more general form of the result in Chapter IV will
come as no surprise.

7 Example. If the real random variables {X,} converge in distribution to X
then IP{X, < x} - IP{X < x} at each x for which IP{X = x} = 0. That is,
the sequence converges at each continuity point x of the distribution function
of X. This holds because x is the only point of discontinuity of (the indicator
function of)) the set (— co, x]. Problem 1 shows you how to go the other way,
from pointwise convergence of distribution functions to convergence in
distribution of the random variables.

The same result is true in higher dimensions if the inequalities X, < x
and X < x are taken componentwise and (— oo, x] is interpreted as a
multidimensional orthant with vertex at x. Continuity of the multi-
dimensional distribution function of X at x requires that X lands on the
boundary of (— o0, x] with zero probability. O

8 Example. Consider the multinomial distribution obtained by independent
placement of n objects into k disjoint cells. Write F, = (F,,,..., F,) for
the column vector of observed frequencies—cell i receives F,; objects—and
p = (p1, ..., py) for the column vector of cell probabilities. Pearson’s chi-
square statistic is

k
Zn = Z(Fni - npi)z/npi'
i=1

1
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Write Z, as a function of a standardized column vector, by setting

Xn = n_l/z(Fn - np)
and
Z,=X,A"2X,,

where A denotes the diagonal matrix with \/;i as its ith diagonal element. By
the Multivariate Central Limit Theorem, which will be proved later in this
chapter (Theorem 30), the random vectors {X,} converge to a N(0, V)
distribution whose variance matrix V has (i, j)th element p, — p? if i = j
and —p;p; otherwise. Manufacture a random vector with this limit distribu-
tion by applying a linear transformation to a column vector W of indepen-
dent N(0, 1) random variables: X, ~ A(I, — uu)W, where u denotes the unit

column vector (\/py, ..., \/ITk)-

The mapping H from IR* into IR defined by
Hx = xXA7%x = |[A™x|?

is continuous. Apply the Continuous Mapping Theorem.

Z,=HX,
~ HA(I},, — wu YW
= (I — uuYW|?
~ Li-1>

because I, — uu’ represents the projection orthogonal to the unit vector u.
(The squared length of the projection of W onto any (k — 1)-dimensional
subspace has a chi-square distribution with k — 1 degrees of freedom.) [

9 Example. Suppose &, ¢,, ... are independent random variables each with
a Uniform(0, 1) distribution. Neyman (1937) developed a goodness-of-fit
test whose asymptotic properties depended on the behavior of the statistics

G=n'y, [z n,-(ci)] ,

where my, 7y, ... are given polynomials defined on [0, 1], with the ortho-
normality property:

1 1 ifi=j,
[ mm v = {0 tia)

0

Explicitly, mo(y) = 1,7,(y) = /120y — %), ma(y) = /S[6(y — 1)* — §],and
so on. Define random column vectors

X =@, ....,m(&)) for i=1,2,....
The statistic G, can then be written as
n~12 iXi 2.

i=1
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The Multivariate Central Limit Theorem (Theorem 30) and the ortho-
normality properties of the polynomials ensure that

VX -+ X)) ~ N, 1)

The Continuous Mapping Theorem (applied to which map?) allows us to
deduce that G, ~ yZ. Neyman used this to determine the approximate
critical region for his test. ()

II1.3. Expectations of Smooth Functions

There are two sorts of perturbation of a random vector X that don’t affect
the expectation IPf(X) of a smooth, bounded function of X too greatly:
changes, however gross, that occur with only small probability; and changes
that might occur with high probability but which alter X by only small
amounts. These effects are easy to quantify when the smooth function f is
uniformly continuous. Suppose |f(x) — f(z)| < &¢ whenever |x — z| < §.
Write | f|| for the supremum of f(-). Then for any random vectors X and Y,
whether dependent or not,

(10) IPf(X) — Pf(X + 1)
< P{]Y] < 8} f(X) — f(X + V)|
+ P{1Y] = (/O] + | f(X + )]
<e+ 2| fIIIP{|Y] = o}.

The inequality lets us deduce convergence in distribution of a sequence of
random vectors from convergence of slightly perturbed sequences.

11 Lemma. Let {X,}, X and Y be random vectors for which X, + c¥ ~
X + oY for each fixed positive o. Then X, ~ X.

Proor. Remember (Corollary 5) we have only to check that IPf(X,) — IPf(X)
for each bounded, uniformly continuous f. Apply inequality (10) with X
replaced by X, and Y replaced by ¢.

sup [Pf(X,) — IPf(X,, + oY)| < & + 2| fIP{| Y| = 607 '}.

Similarly
[IPf(X) — IPf(X + oY)| < ¢+ 2||f||IP{|Y| > 601}

Choose ¢ small enough to make both right-hand sides less than 2e, then
invoke the known convergence of {IPf(X, + aY)} to IPf(X + ¢¥) to
deduce that limsup |IPf(X,) — IPf(X)| < 4e. O

Now, instead of thinking of the oY as a perturbation of the random
vectors, treat it as a means for smoothing the function f. This can be arranged
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by choosing independently of X and the {X,} a random vector Y having a
smooth density function with respect to lebesgue measure—for convenience,
take Y to have a N(O, I,) distribution. Integrate out first with respect to
the distribution of ¥ then with respect to the distribution of X.

IPf(X + oY) = IPf(X),
where

f0) = j @02 (x + oy) exp(—}1y[2) dy

- j (216%)"42f (2) exp(— 4|z — x[*/o?) dz.

The function f has been smoothed by convolution. Dominated convergence
justifies repeated differentiation under the last integral sign to prove that
S5 belongs to the class #°(IR¥) of all bounded real functions on IR¥ having
bounded, continuous partial derivatives of all orders.

12 Theorem. If IPf(X,) — IPf(X) for every fin €°(IR) then X, ~ X.

PrOOF. Convergence holds for every f, produced by convolution smoothing.
Apply Lemma 11. U

For the remainder of the section assume that k = 1. That is, consider
only real random variables. As the results of Section 5 will show, no great
generality will be lost thereby—a trick with multidimensional characteristic
functions will reduce problems of convergence of random vectors to their
one-dimensional analogues.

For expectations of smooth functions of X, the effect of small perturba-
tions can be expressed in terms of moments by applying Taylor’s theorem.
Suppose f belongs to #*(IR¥). Then, ignoring the niceties of convergence,
we can write

J+9)=70) + yf'() + 32" (x) +---.

Suppose the random variable X is incremented by an independent amount
Y. Then, again ignoring problems of convergence and finiteness, deduce

(13) Pf(X +Y) = Pf(X) + P(V)IPf'(X) + SIP(YHIPf"(X) + ---.

Try to mimic the effect of the increment Y by a different increment W, also
independent of X. As long as IP(Y) = IP(W) and IP(Y?) = IP(W?), the
expectations IPf(X + Y) and IPf(X + W) should differ only by terms in-
volving third or higher moments of Y and W. These higher-order terms
should amount to very little provided both Y and W are small; the effect of
substituting W for Y should be small in that case.

This method of substitution can be applied repeatedly for a random
variable Z made up of a lot of little independent increments. We can replace
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the increments one after another by new independent random variables. If
at each substitution we match up the first and second moments, as above,
the overall effect on IPf(Z) should involve only a sum of quantities of third
or higher order. In the next section this approach, with normally distributed
replacement increments, will establish the Liapounoff and Lindeberg forms
of the Central Limit Theorem.

To make these approximation ideas more precise we need to bound the
remainder terms in the informal expansion (13). Because only the first two
moments of the increments are to be matched, a Taylor expansion to quad-
ratic terms will suffice. Existence of third derivatives for f will help to control
the error terms.

Assume f belongs to the class #3(IR) of all bounded real functions on IR
having bounded continuous derivatives up to third order. Then the remainder
term in the Taylor expansion

(14 f&x+y) = f) + yf'(x) + $5°f"(x) + R(x, y)
can be expressed as

R(x,y) = £y f"(x + 0,)

with 6, (depending on x and y) between O and 1. Write || | for the supremum
of | (+)|. Then

(15) IRG, | < 51y P,
Set C equal to |t f”|l. Then from (14) and (15),

|IPf(X + Y) — IPf(X) — P(Y)IPf'(X) — 3IP(Y*)Pf"(X)]
< IP|R(X, Y)|
< CIP(|YP).
Apply the same argument with Y replaced by the increment W, which is
also independent of X. Because IP(Y) = IP(W) and IP(Y?) = IP(W?), when

the resulting expansion for IPf(X + W) is subtracted from the expansion
for IPf(X + Y) most of the terms cancel out, leaving,

(16) |IPf(X +Y)—-IPf(X + W)| < IP|R(X, V)| + IP|R(X, W)|
< CIP(|Y]?) + CIP(|W ).

This inequality is sharp enough for the proof of a limit theorem for sums of
independent random variables with third moments.

II1.4. The Central Limit Theorem

A sum of a large number of small, independent random variables is approxi-
mately normally distributed—that is roughly what the Central Limit
Theorem asserts. The rigorous formulations of the theorem set forth condi-
tions for convergence in distribution of sums of independent random
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variables to a standard normal distribution. We shall prove two versions
of the theorem.

To begin with, consider a sum Z = ¢, + --- + &, of independent random
variables with finite third moments. Write af for IPff. Standardize, if
necessary, to ensure that IP¢; = 0 for each j and o3 + --- + 67 = 1. Inde-
pendently of the {¢;}, choose independent N(0, ¢7)-distributed random
variables {n,}, forj = 1, ..., k. Start replacing the {£;} by the {r,}, beginning
at the right-hand end. Define

Si=¢&i+ o+ & e+ + e

Notice that S + &, = Z and that S, + #, has a N(0, 1) distribution.

Choose a *(IR) function f, as in Section 3. Theorem 12 has shown that
convergence for expectations of infinitely differentiable functions of random
variables is enough to establish convergence in distribution; convergence
for functions in ¢*(IR) is more than enough. We need to show that IPf(Z)
is close to IPf(N(O, 1)).

Apply inequality (16) with X =S§;, Y=¢;, and W =p;. Because
S;+ ¢ =81+ forj=1,.., k-1,

k
(A7) |IPf(Z) — Bf(N(O, 1)) < ; IS (S; + &) — TPF(S; + 7))l

A

k
IP|R(S;, ¢)I + TPIR(S;, n)|
j=1

j=

k k
C Z IP|51.|3 + C Z IP|11j|3.
ji=1 j=1

IA

With this bound in hand, the proof of the first version of the Central Limit
Theorem presents no difficulty.

18 Liapounoff Central Limit Theorem. For each n let Z, be a sum of indepen-
dent random variables &1, &,,, . .., & With zero means and variances that
sum to one. If the Liapounoff condition,

k(n)

(19) Y P&, >0 asn— oo,

j=1
is satisfied, then Z, ~ N(0, 1).

Proor. Choose and fix an f in 3(IR). Check that IPf(Z,) — IPf(N(0, 1)).
The replacement normal random variables are denoted by #,,, ..., () -
The sum #,; + -+ + # has a N(O, 1) distribution. Write o7; for the
variance of £,;, and 2, for the sum on the left-hand side of (19). With sub-
scripting »’s attached, the bound (17) becomes
k(n)
|TPf(Z,) — IPf(N(0, 1))| < C4, + C ) o5, IP|N(O, 1) 2.

j=1
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By Jensen’s inequality, a5; = (IP£2)*? < IP|¢&,;|3, which shows that the sum
contributed by the normal increments is less than IP| N 0, 1)]?4,,. Two calls

upon (19) as n — co complete the proof. Ll

|3

The Liapounoff condition (19) imposes the unnecessary constraint of
finite third moments upon the summands. Liapounoff himself was able to
weaken this to a condition on the (2 + d6)th moments, for some & > 0.
The remainder term R(x, y) in the Taylor expansion (14) does not increase
as fast as | y|>*° though:

(20) [RCe, I = ILf(x + ) — f(x) — ()] — 391" ()|
= |29%f"(x + 0,y) — 5 f"(x)]
< [[f"Illyl* for all x and y.

The new bound improves upon (15) for large | y|, but not for small | yl- To
have it both ways, apply (15) if |y| < ¢ and (20) otherwise. Increase C to the
maximum of §| f”|| and || f”|. Then the bound on the expected remainder
is sharpened to

1) P[R(X, Y)| < PC|YP{|Y| < &} + PC|Y|*{|Y| = &}
< eCIP(Y?) + CIPY?{|Y| > &).

22 Lindeberg Central Limit Theorem. For each n let Z, be a sum of indepen-
dent random variables &,,, &2, . . ., k) With zero means and variances that
sum to one. If, for each fixed ¢ > 0, the Lindeberg condition

k(n)
(23) '21 PE{E;l > e >0 as n—o o
i=

is satisfied, then Z, ~ N(0, 1).

ProOF. Use the same notation as in the proof of Theorem 18. Denote the
left-hand side of (23) by L,(¢). Stop one line earlier than before in the ap-
plication of (17):

k(n) k(n)
IIPf(Zn) - IPf(N(Oa 1))' < 'Zl IPIR(Snja énj)l + 'Zl IP'R(Snj7 nnj)"

From (21), the first sum is less than

k(n)

C Y [Pl + PEL{|&,;] = €)]
=1

J

which equals Ce + CL,(¢) because the variance sum to one. For the second
sum retain the bound

k(n)
cy oy IP|IN(O, 1)}?
j=1

7
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but, in place of Jensen’s inequality, use:
k(n) 2 2§ kin) 2
Yot = (max o) | 3t
= ; =

= max o
j

< mz.:lx[s2 + PEL{1&,51 = €]

J

<& + Le). 0

The strange-looking Lindeberg condition is not as artificial as one might
think. For example, consider the standardized summands for a sequence
{Y,} of independent, identically distributed random variables with zero
means and unit variances: ¢,; = n~Y?Y;for j = 1,2,..., n. In this case

L,(e) = nlPn™'Y{{| Y, | = n'/%e},

which tends to zero as n tends to infinity, by dominated convergence, because
Y1 is integrable. It is even more comforting to know that the Lindeberg
condition comes very close to being a necessary condition (Feller 1971,
Section XV.6) for the Central Limit Theorem to hold.

24 Example (A Central Limit Theorem for the Sample Median). Let M, be
the median of a sample {Y;, Y,,..., ¥,} from a distribution function G
with median M. For simplicity, suppose the sample size nis odd, n = 2N + 1,
so that M, equals the (N + 1)st order statistic of the sample. Suppose also
that the underlying distribution function G has a positive derivative y at its
median. To prove that

n'"*(M, — M) ~ N, 3y7?),
it suffices to check pointwise convergence of the distribution functions.
(25) P{n'*(M, — M) < x}
=IP{M, < M + n"2x}
= IP {at least N + 1 observations < M + n~/2x}

=P[N+ 1<y {YjsM+n‘1/2x}].
j=1

j=

Define
P = IP{Y, < M 4 12 = GOM + )
by = [np,(1 — p)1*73,
&y =[{Y; < M + n~V2x} — p,1/b,,
to=(N + 1 — np,)/b,.
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Check that P&,; = 0 and IPEZ, + --- + IPE2, = 1. Continuity of G at M
gives p, — 3; differentiability of G at M gives r, » —2xy. The last probability
in (25) becomes

inj}'

As each [£,;] is less than b !, which converges to zero, both the Liapounoff
and Lindeberg conditions are easy to check.

s

1]
—_

(26) IP{t,, <

> PGP <bt Y P& =b,t
i=1 j=1

Y Pyl = =0 i &> by
j=
By either of two routes,

2. & ~> N, 1.

i=1

Problem 13 shows that substitution of —2xy for ¢, in (26) leads to the
correct result:

P{n'*(M, — M) < x} - IP{N(0, 1) > —2xy}. U

II1.5. Characteristic Functions

The smoothing argument of Section 3 showed that only expectations of
%*(IR¥) functions need be considered when checking convergence in distri-
bution of random vectors. In this section, further analysis of the method of
smoothing will show that the class of functions can be narrowed a little
more: it suffices to check the convergence

IP exp(iy - X,) — TP exp(iy - X)

for each fixed vector y inIR*. That is, pointwise convergence of characteristic
functions implies convergence in distribution.
Start again from the convolution expression

Pf(X +0Y)=1P f(27wz)_"/2f(z) exp(—%|z — X |*/0?) dz,

derived under the assumption that Y has a N(0, I,) distribution independent
of X. This holds for every bounded measurable f. Reverse the order of
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integration (Fubini) on the right-hand side to show that

Pf(X +0Y) = ff(z).](z) dz,
where
27 J(2) = PPQno?) M2 exp(— 4|z — X |*/o?).

The distribution of X + ¢Y has density function J(-) with respect to lebesgue
measure. The dependence on ¢, which will remain fixed for most of the
argument, need not be made explicit.

The integrand appearing on the right-hand side of (27) comes from the
density function of oY evaluated at (z — X). It is also proportional to the
characteristic function of Y evaluated at (z — X)/o:

exp(—4]z — XP/o?) = f (2m) ™42 exp(iy - (z — X)fo — 3 yP) dv.

Invoke Fubini’s theorem.

@8  J&= f(2m7)_"1P exp(—iy* X/o) exp(iy - z/o — 3|y|*) dy

- f n0) "k d(—y/a) exp(iy - 2/ — |y ) dy,

where ¢(-) denotes the characteristic function of X.

Formula (28) shows that the characteristic function of X uniquely deter-
mines the distribution of X + oY for each fixed 6. Because X + oY con-
verges almost surely to X as o tends to zero, this proves that the characteristic
function also uniquely determines the distribution of X. A stronger result
can be proved by exploiting continuity properties of the dependence of J

on ¢.

29 Continuity Theorem. A sequence of random vectors {X,} converges in
distribution to a random vector X if and only if the corresponding sequence of
characteristic functions converges pointwise:

IP exp(iy * X,,) — IP exp(iy - X)
for each fixed y in R*.

Proor. Prove necessity by splitting exp(ix - y) into its real and imaginary
parts, both of which define functions in Z(IR¥).



56 III. Convergence in Distribution in Euclidean Spaces

For the proof of sufficiency, denote the characteristic function of X, by
¢, and the density function of X, + oY by J,. The domain of integration
is IR*. For fixed f and o,

IIPf (X, + oY) — IPf(X + o)

= ’ f f()J (z)dz — f f@)(z)dz

< If] f 17,@) - J()| dz
= 171 [ f () = Ju(2)" dz + f (@) — Ju2)" dzJ

=211 f (@) — 1) dz,

because

0=1-1

- f (J(2) — J,(2) dz

- j (@) — Ju@)* dz — f (D)~ J(2)" dz.

Dominated convergence applied to (28) with ¢ replaced by ¢, shows that
the functions {J,} converge pointwise to J. Thus {(J — J,)*} converges
pointwise to zero. Notice that (J — J,)* < J for each n. Invoke dominated
convergence again.

2111 [() - 92" dz 0
Complete the proof by an appeal to Lemma 11. O

Perhaps this result should have been proved before we launched into the
Central Limit Theorem proofs of Section 4. At least for identically distributed
random variables, Theorems 18 and 22 could have been disposed of more
rapidly; but the general cases would have required much the same level of
effort, applied to exp(y - ix) in place of a general ¥*(IR) function. The ad-
vantages of working with characteristic functions come from the special
multiplicative properties of the complex exponential. A central limit theorem
for martingales in Chapter VIII will make use of this property.

Theorem 29 contains a bonus: convergence in distribution of random
vectors, X, ~ X, is equivalent to the convergence in distribution of all
linear functions of the random vectors: y * X,, ~ vy - X, for every y. (For the
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non-trivial half of the assertion, notice that ¢,(¢) is the expectation of a
bounded continuous function of ¢+ X,.) Convergence problems for random
vectors reduce to collections of convergence problems for random variables;
limit theorems for random vectors can be deduced from their univariate
analogues.

30 Multivariate Central Limit Theorem. For every sequence {£,} of indepen-
dent, identically distributed random vectors with IP¢; = 0 and IP(E;&}) = V,

nTV2E 4+ E) ~ N, V).

Proor. For fixed y, the random variables {y-¢,} are independent and
identically distributed with zero means and variances equal to y'Vy. If
y'Vy = 0 the random variables y - £; and y- N(0, V') degenerate to zero; the
assertion then holds for trivial reasons. Otherwise standardize to unit
variance. The standardized sequence satisfies the Lindeberg condition. By
Theorem 22,

GV Py V2 E + -+ E) ~ N0, 1)
= @'V~ 2y -NQ©, V). O

II1.6. Quantile Transformations and Almost Sure
Representations

The definition of convergence in distribution by means of pointwise con-
vergence of distribution functions does have its advantages, at least for real
random variables. Behind some of these advantages lies a construction that
reduces problems involving arbitrary distributions on the real line to the
uniform case.

For each distribution function F define a quantile function

Ow)=inf{t: Ft) > u} for O <u<1.

Right continuity of F shows that Q(u) sits at the left endpoint of the closed
interval of ¢ values for which F(t) > u; in other words,

F(t) =z u ifand onlyif Q(u) <t.
If ¢ has the Uniform(0, 1) distribution then
IP{Q({) < 1t} = IP{F(t) = &} = F().

That is, Q(¢) has distribution function F.
The same construction gives a method for representing weakly convergent

sequences of probability measures by sequences of random variables that
converge almost surely.
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31 Representation Theorem. Let {P,} be a sequence of probability measures
on the real line that converges weakly to P. There exist random variables {X.}
with distributions {P,}, and X, with distribution P, such that X, » X almost
surely.

Proor. Write F, for the distribution function of P,, and F for the distribution
function of P. Denote the quantile function corresponding to F, by Q,.
Choose ¢ with distribution Uniform(0, 1) then define X, = Q,(&). It suffices
to show that {Q,(u)} converges for each u outside a countable subset of
(0, 1), for then we can define X (almost surely) as the limit of the {X,}.
(Problem 21 gives a more concrete representation for X.)

Recall that F,(t) — F(t) for each ¢ in the dense set T, of points for which
IP{X =t} = 0. Each non-empty open interval contains points of T,. In
particular, if {Q,(u)} does not converge for some fixed u then there exist
points ¢ and s in T, for which

liminf Q,(u) <t < 5 < limsup Q,(u).

Since Q,(u) <t implies F,(t) > u, the limit along a subsequence gives
F(t) = u. Similarly, Q,(u) > s infinitely often implies that F(s) < u. Thus F
takes the constant value u throughout the interval [t, s]. There can be at
most countably many values of u (a set of zero lebesgue measure) for which
F has such a flat spot: different u values produce disjoint flat spots, and the
real line can accommodate only countably many disjoint intervals. This
proves that liminf Q,(u) = limsup Q,(u) for almost all values of u in (0, 1).

If X is to be defined as the pointwise limit of {X,} we should also exclude
the possibility of infinite limits. Given u in (0, 1), choose ¢ in T such that
F(t) > u. Convergence at points of T, gives F,(t) > u eventually, which
implies Q,(u) < t eventually, and so limsup Q,(u) < co. The liminf can be
handled similarly. O]

Some weak convergence results, such as the one-dimensional case of the
Continuous Mapping Theorem, reduce to trivialities when the Representa-
tion Theorem is invoked. Similar representations do obtain in higher
dimensions and for probability measures on abstract metric spaces, but
these require a completely different construction. More about that in
Chapter 1V.

32 Example. Given a probability measure P on #(IR) and a bounded se-
quence of measurable functions {h,} converging pointwise to a limit function,
h, under what conditions will P, h, — Ph for every sequence {P,} converging
weakly to P?

Consider first the special case where P concentrates at a single point x.
Choose P, concentrated at x,, for any sequence of real numbers {x,} con-
verging to x. In this case the requirement reduces to h,(x,) — h(x). This
shows that something stronger than mere pointwise convergence of h, to
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h is needed. (Notice that if h, = h for every n, the requirement is equivalent
to continuity of & at x.)

In general it will suffice if 4,(x,) — h(x) for every x in a set of P measure
one and every sequence {x,} converging to such an x. Represent {P,} by an
almost surely convergent sequence {X,} of random variables. Then h,(X,) —
h(X) almost surely. By dominated convergence, IPh,(X,) — IPh(X), which
implies that P, h, — Ph. d

33 Example. Let G be an open subset of IR. Suppose that P, ~ P. The
Representation Theorem can be used to show that liminf P,(G) > P(G).
(The proof of the Convergence Lemma also contains the result implicitly.)

Switch to almost surely convergent representations X, and X. For an @
at which convergence holds, if X(w) belongs to G then so does X ,(w) for all
n large enough. That is,

liminf{X, € G} > {X € G} almost surely.
Apply Fatou’s lemma.
liminf P, G = liminf IP{X, € G}

> IP liminf{X, € G}

> IP{X e G}

= P(G). 0
34 Example. Let {¢,} be the characteristic functions corresponding to a
weakly convergent sequence of probability measures {P,}, and ¢ be the
characteristic function of the limit distribution P. Take {X,} as the almost
surely convergent representing sequence of random variables. For each

fixed ¢, the sequence {exp(itX,)} converges almost surely to exp(itX).
Moreover, the convergence is uniform on each bounded interval I of t-values:

sup |exp(itX,) — exp(itX)| < sup|exp(it(X, — X)) — 1|
I I

— 0 almost surely,

by virtue of the continuity of the exponential function at zero. Because

sup |IP exp(itX,) — IP exp(itX)| < IP sup |exp(it(X, — X)) — |,
I I
the sequence {¢,(t)} converges uniformly to ¢(t) over bounded intervals. [

The argument for the proof of the Representation Theorem made little
explicit use of the limit distribution function F. The essentials were:

(i) existence of lim F,(t) for each ¢ in a dense subset Ty;
(ii) for each fixed u in (0, 1) there exists a ¢ in Ty, for which liminf F,(¢) > u,
and an s in Ty for which limsup F,(s) < w.
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The second property is equivalent to the existence, for each fixed & > 0,0of a
constant K such that

35 limsup P,[ - K, K] < e.

Of course K depends on ¢. A sequence {P,} with this property is said to be
uniformly tight. The corresponding property for a sequence of random
variables {X,} —that for each ¢ > 0 there exists a K such that

limsup IP{|X,| > K} < ¢

—is also called uniform tightness.

36 Theorem. Each uniformly tight sequence of probability measures on the
real line has a subsequence that converges weakly.

PrOOF. Use Cantor’s diagonalization procedure to select a subsequence
{P} for which {F,(r)} converges for each rational . The subsequence
satisfies both of the conditions (i) and (ii) noted above. Construct an almost
surely convergent sequence of random variables {X,.} such that X . has
distribution P, and X, — X almost surely. The sequence {P,} converges
weakly to the distribution of X. U

By providing a method for constructing probability measures on B(R),
this theorem allows specification of the limit distribution to be omitted from
some important results. For example, the Continuity Theorem for charac-
teristic functions, as proved (Theorem 29) in Section 5, can be improved
upon slightly.

37 Continuity Theorem (General Form). Let {X,} be a sequence of real
random variables whose characteristic functions {¢p.} converge pointwise to
some function ¢. If ¢ is continuous at the origin then it must be the charac-
teristic function of an X for which X, ~ X.

Proor. Once we prove that ¢ is a characteristic function, Theorem 29 will
do the rest. Let us show that {X,} is uniformly tight. Then, by Theorem 36
it will have at least one subsequence that converges in distribution. The limit
of any such subsequence must have ¢ as its characteristic function.

The inequality (35), which defines uniform tightness, calls for a constraint
to be placed on the tails of the distributions of the random variables {X,}.
Here we can use an inequality, valid for any random variable Z with charac-
teristic function p, that relates the tail behavior of a distribution to the values
of its characteristic function near the origin: there exists a positive constant
o (approximately 6.308) such that

(38) IP{|Z| > h™"} < (o/2h) fj [1 - p(®)] dr
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for every positive h. This follows (Fubini’s theorem) from the equality
h
@m~! f [1 — IP exp(iZt)] dt = IP[1 — (sin hZ)/hZ].
—h

Interpret (sin 0)/0 as 1. Because the integrand is non-negative everywhere
and greater than a~! = 1 — sin 1 on the set {|Z| > h™ '}, the expectation is
greater than o 'IP{|Z| > h™!}.

Apply 38) with Z = X, and p = ¢,.

limsup IP{| X,| > h~'} < limsup («/2h) fh [1— ¢, ()] dt
n n —h

= G2 | 0= o de

by dominated convergence. Thanks to the continuity of ¢ at the origin, the
last expression can be brought close to

af1 — $(0)] = lim a1 — ¢,(0)] =0

by choosing k small enough. O

NOTES

Everything in this chapter is classical.

The name Continuous Mapping Theorem seems to have taken hold in
the literature, despite its evident inappropriateness. Billingsley (1968,
Section 5) has more on the history of the theorem. Some authors refer to
P-almost-sure-continuity as P-Riemann-integrability.

Convolution with a normal kernel as a means of smoothing is an ancient
idea. Weierstrass (1885) used it to prove his famous approximation theorem.
Liapounoff (1900) introduced an auxiliary normal variable as a device for
smoothing a sum of independent variables. That enabled him to complete
the argument of Glaisher (1872), and thereby prove with full rigor a central
limit theorem. The Liapounoff condition did not appear in the 1900 paper;
instead Liapounoff imposed a stronger requirement on the maximum third
absolute moment. In his 1901 paper he improved this to a requirement on
the sum of (2 + d)th moments about the mean. (Problem 19 gives a minor
variation on his 1901 result.)

Section 4 follows in part the lucid exposition of Lindeberg (1922), with
a little help from Billingsley (1968, Section 7).

Uspensky (1937, Chapter XIV) attributed the Continuity Theorem to
Liapounoff (1900); the key idea was implicit in Liapounoff’s proof. Lévy
(1922) proved it explicitly. Both Liapounoff and Lévy required uniform
convergence on compacta. The dominated convergence trick in the text is
often called Scheff¢’s lemma.
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PROBLEMS

(1]

(2]

(3]

(4]

(5]

(e}
71

[8]

[°]

(10]

(1]

Suppose X, X, X,,... are real random variables such that P{X, < x}—>
IP{X < x} whenever IP{X = x} = 0. Prove that X, ~ X.[For afixed f in 4(IR)
find points {o;} with —c0o < o) <oty <--+ < o < oo such that IP{X = o} =0
and both of IP{X < «,} and IP{X > a,} are small. Choose the {x,} close enough
together to ensure that f changes by very little over each interval Lo, a4 4]-
Approximate f by a step function constant on each of those intervals.] Extend
the argument to higher dimensions.

Let {x,} be a sequence of points in R¥, and {X,} be a sequence of degenerate
random vectors with IP{X, = x,} = 1. Show that {X .} converges in distribution
if and only if {x,} converges.

Let P be a probability measure on the o-field Z(IR¥). Show that for each ¢ > 0 and
each borel set B there exists a closed set F, contained in B and an open set G,
containing B such that P(G, — F,) < & [Prove that the class of all such B forms
a o-field. It contains every closed set, because closed sets can be written as count-
able intersections of open sets.] Deduce that if IPf (X) = IPf(Y) for every bounded
uniformly continuous f then X and Y have the same distribution. [Represent open
sets as the limits of increasing sequences of uniformly continuous functions.]

A sequence of probability measures on #(IR¥) can converge weakly to at most one
limit distribution: if P, ~ P and P, ~ Q then P and 0 agree for all borel sets.
[Use Problem 3.]

If X, ~ X then X, + 0,(1) ~ X. [Appendix A explains the o,(-) notation. This
result is sometimes called Slutsky’s theorem.]

If {X,} converges in probability to X then X, ~ X. The converse is false.

If X,~ X and IP{X = ¢} = 1, for some constant c, then {X,} converges in
probability to c.

Give an example of a continuous function g and a sequence of random vectors
with X, ~ X for which {IPg(X,)} does not converge to IPg(X). [Don’t forget the
word bounded in the definition of convergence in distribution.]

Give an example of a map H from IR* into itself and a sequence of random vectors
in IR* with X, ~ X for which HX, does not converge in distribution to HX.

The set D of discontinuity points of a map H from IR* into IR® is borel measurable.
[Start from the set D,, , of all those points x for which |Hy — Hz| > m™ ! for at
least one pair of points with |x — y| < n~! and |x — z| < n~ L. Prove that D, .
is open. Topsge.]

Arandom R*-vector X and a random IR/-vector Y defined on the same probability
space can be combined into a single random IR/**vector (X, Y)IfX,~ X, as
random vectors in R¥, and ¥, ~ ¥, as random vectors in IR/, it need not follow that
(X, ¥) » (X, Y). But if IP{X = ¢} = 1 for some constant ¢ the result is true.
[Consider expectations of bounded uniformly continuous functions on R/t]
Use characteristic functions to prove that the result also holds if X is independent
of Y and X, is independent of ¥,, for each n.
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[12] ¥ X, has a ¢-distribution on » degrees of freedom then X, ~ N(0, 1) as n — oo.
[Use Problem 11.]

[13] Ifreal random variables {X,} converge in distribution to X and {x,} is a sequence
of real numbers converging to an x for which IP{X = x} =0, prove that
P{X, = x,} - IP{X > x}.

[14] If a sequence of random vectors {X,} converges in distribution then X .= 0,(1).
[Appendix A explains the O,(-) notation.]

[15] Let H be a measurable map from IR* into IR® that is differentiable at a point x,.
That is, there exists a linear map L from IR* into IR® such that

Hx = Hxy + L(x — xo) + o(x — x,) near x,.

If n''*(X, — xo) ~ Z, prove that n'>(HX, — Hx,) ~ LZ. [Some authors call
this the delta method.]

[16] If X, ~ Bin(n, 6) for some fixed § in (0, 1), find the limiting distribution of
n*?[arsin(X,/n)!"* — arsin 0/%] as n — co.

[17] For yreal,define H(y) = exp(iy) — 1 — iy — --- — (iy)*/n!l. Prove that |H,(y)| <
Y"1 /(n + 1. [Proceed inductively, using ij:) H(s)ds = H,,t) for t > 0.
Take complex conjugates for ¢ < 0. Borrowed from Feller (1971).]

[18] Use the inequality in the previous problem to show that the characteristic function
of n~ (Poisson(n) — n) converges pointwise to exp(— t2/2). [This is one way to
find the characteristic function of the N(0, 1) distribution.]

[19] For each n let Z, be a sum of independent random variables $ats - - » Epgny With
zero means and variances that sum to one. If for some & > 0,
k(n)
P&, *"° >0 as n— oo
=1

J

then Z, ~ N(O, 1). [Apply the Lindeberg Central Limit Theorem. Liapounoff.]

[20] Suppose a random vector X has a characteristic function ¢ that is integrable with
respect to lebesgue measure on IR*. Prove that the distribution of X has a bounded,
uniformly continuous density

g(z) = Qr)~* f exp(—iw - 2)p(w) dw.

[Choose a continuous f vanishing outside a bounded region of R¥. Start from the
expression for IPf(X + oY) derived in Section 5:

f f (270) 4 (2) expliz - y/o — Ly (= /o) dy dz.

Make a change of variable w = — y/o, then take the limit as ¢ — 0 under the
integral sign. Adapt Problem 3 to complete the proof.]

[21] In the proof of the Representation Theorem write Q for the quantile function
corresponding to F. Show that {Q, (1)} converges to Q(u) for each u that is a point
of continuity for Q.



CHAPTER 1V

Convergence in Distribution in
Metric Spaces

- .. in which that theory from Chapter ITI depending only on the metric space
properties of IR* is extended to general metric spaces. It is argued that the theory
should consider not just borel-measurable random elements. A Continuous
Mapping Theorem and an analogue of the almost sure Representation Theorem
survive the generalization. A compactness condition—uniform tightness—is
shown to guarantee existence of cluster points of sequences of probability
measures.

IV.1. Measurability

We write a statistic as a functional on the sample paths of a stochastic
process in order to break an analysis of the statistic into two parts: the study
of continuity properties of the functional; the study of the stochastic process
as a random element of a space of functions. The method has its greatest
appeal when many different statistics can be written as functionals on the
same process, or when the process has a form that suggests a simple ap-
proximation, as in the goodness-of-fit example from Chapter L. There we
expressed various statistics as functionals on the empirical process U, which
defines a random element of D[0, 1]. Doob’s heuristic argument suggested
that U, should behave like a brownian bridge, in some distributional sense.

Formalization of the heuristic, the task we embark upon in this chapter,
requires a notion of convergence in distribution for random elements of
D[0, 1]. As for euclidean spaces, the definition will involve convergence of
expectations of bounded, continuous functions of the processes. For this
we need a notion of distance. Equip D[0, 1] with its uniform metric, which
assigns the maximum separation

lx = yll = sup|x(z) — ¥(®)

as the distance between x and y. We shall find it easiest to prove convergence
in distribution of {U,} using this metric, even though it does create some
minor measurability difficulties. Chapter VI will examine another metric,
for which these difficulties disappear, at the cost of greater topological
complexity.

An expectation IPf(U,) is well defined only when f(U,) is measurable. If
U, lives on a probability space (Q, &, IP), we can arrange for measurability
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by equipping D[0, 1] with a o-field, £ say, then checking &/#-measurability
of U, and #-measurability of . The borel o-field will not be the best choice for
2. The definition of convergence in distribution for random elements of a
general metric space anticipates this complication for D[0, 1].

1 Definition. An £/.o/-measurable map X from a probability space (Q, &, IP)
into a set & with o-field < is called a random element of &.

If Z is a metric space, the set of all bounded, continuous, .«7/%Z(IR)-
measurable, real-valued functions on & is denoted by €(Z'; &).

A sequence {X,} of random elements of & converges in distribution to a
random element X, written X, ~ X, if IPf(X,) > IPf(X) for each f in
CX; ).

A sequence {P,} of probability measures on ./ converges weakly to P,
written P, ~ P, if P, f — Pf for every f in €(X ; o). 4

The borel o-field #(Z), the o-field generated by the closed sets, will
always contain /. For those spaces where we need &/ strictly smaller than
the borel o-field, we will usually have it generated by the collection of all
closed balls in Z. Also the trace of &/ on each separable subset of & will
coincide with the trace of the borel o-field on the same subset. Limit distri-
butions will always be borel measures concentrating on separable, o/-
measurable subsets of . We could build these properties into the definition
of weak convergence, but it would neither save us any extra work, nor
simplify the theory much.

2 Example. If D[0, 1] is equipped with the borel o-field % generated by the
closed sets under the uniform metric, the empirical processes {U,} will not
be random elements of D[0, 1] in the sense of Definition 1. That is, U, is not
&/%B-measurable.

Consider, for example, the situation for a sample of size one. (Problem 1
extends the argument to larger sample sizes.) For each subset 4 of [0, 1]
define

G4 = {x € D[0, 1]: x has a jump at some point of A4}.

Each G, is open because | x(f) — x(t —)| depends continuously upon x, for
fixed t. If U, were &/%-measurable, the set {U, € G,} = {¢; € A}-would
belong to &. A probability measure u could be defined on the class of all
subsets of [0, 1] by setting u(4) = IP{¢, € A}. This u would be an extension
of the uniform distribution to all subsets of [0, 1]. Unfortunately, such an
extension cannot coexist with the usual axioms of set theory (Oxtoby 1971,
Section 5): if we wish to retain the axiom of choice, or accept the continuum
hypothesis, we must give up borel measurability of U,. The borel o-field
generated by the uniform metric on D[0, 1] contains too many sets.

There is a simple alternative to the borel o-field. For each fixed t, the
map U,(-, t) from Q into R is a random variable. That is, if =, denotes the
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coordinate projection map that takes a function x in D[0, 1] onto its value
at t, the composition 7, o U, is §/%(IR)-measurable. Each U, is measurable
with respect to the o-field 2 generated by the coordinate projection maps
(Problem 2). Call £ the projection g-field. Problem 4 shows that £ coincides
with the o-field generated by the closed balls. All interesting functionals on
D[0, 1] are Z-measurable. g

Too large a o-field .« makes it too difficult for a map into & to be arandom
element. We must also guard against too small an .«Z. Even though the metric
on 2 has lost the right to have o/ equal to the borel g-field, it can still demand
some degree of compatibility before a fruitful weak convergence theory will
result. If ¥(Z'; /) contains too few functions, the approximation arguments
underlying the Continuous Mapping Theorem will fail. Without that key
theorem, weak convergence becomes a barren theory. An extreme example
should give you some idea of the worst that might happen.

3 Example. Allow the real line to retain its usual euclidean metric, but change
its o-field to the one generated by the intervals of the form [n, n + 1), with
n ranging over the integers. Call this ¢-field £#. Functions measurable with
respect to # must stay constant over each of the generating intervals. For a
continuous function, this imposes a harsh restriction; continuity at each
integer forces an #-measurable function to be constant over the whole real
line. This completely degrades the weak convergence concept : every sequence
of #-measurable random elements converges in distribution. It bodes ill for
a sensible Continuous Mapping Theorem.

Consider the map H from the disfigured real line into the real real line
(equipped with its usual metric and o-field) defined by Hx = 1if 0 < x <3
and Hx = 0 otherwise. It is a perfectly good %-measurable map, continuous
at the point 1. Apply it to random elements {X,} identically equal to 3, and
X identically equal to 1. Even though X, ~ X in the sense of Definition 1,
{HX,} does not converge in distribution to HX. (]

IV.2. The Continuous Mapping Theorem

Suppose X, ~ X, as o/-measurable random elements of a metric space %,
and let H be an «//2/’-measurable map from & into another metric space
Z'. If H is continuous at each point of an .7-measurable set C with
IP{X € C} = 1, does it follow that HX, ~ HX? That is, does {IPf(HX,)}
converge to IPf(HX) for every f in G(%"; #)?

We found an answer to the analogous question for random vectors in
Section II1.2 by reducing it to an application of the Convergence Lemma.
The same approach works here. We need to prove IPh(X,) — IPh(X) for
every bounded, «/-measurable, real-valued h that is continuous at each
point of C. Were .« equal to the borel o-field Z(%), the proof would go
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through almost exactly as before, with only a few words difference. For borel-
measurable random elements of metric spaces, the theory parallels the theory
in Chapter III very closely, at least as far as the Continuous Mapping
Theorem is concerned. Example 3 warns us that non-borel o-fields require
more careful handling.

With this in mind, let’s rework the Convergence Lemma of Chapter ITJ,
paying more attention to measurability difficulties. To begin with we assume
only that .o/ is a sub-¢-field of Z(Z). Define

4) F ={febX; A): f <h}.

Last time we constructed a countable subfamily of % whose pointwise
supremum achieved the upper bound h at each point of C. Functions in the
subfamily took the form

Ju ) =r A md(x, {h <1})

Continuity of f,, , suffices for borel measurability, but it needn’t imply
of-measurability. We must find a substitute for these functions. This is
possible if we impose a regularity condition, which ensures that the pointwise
supremum of & equals h at each point of C. If C is separable (meaning that
it has a countable, dense subset), we can then extract from & a countable
subfamily having the same supremum as & at each point of C. The regularity
condition will capture the key property enjoyed by f,, ,.

Without loss of generality suppose & > 0. Suppose also that h is continuous
at a point x. Choose r with 0 < r < h(x). Look for an f in & with f(x) > r.
Continuity provides a é > 0 such that h(y) > r on the closed ball B(x, §)
centered at x. If we could find a g in 4(Z; o) with 0 < g < B(x, §) and
g(x) = 1, the function rg would meet our requirements. Notice the
similarity to the topological notion of complete regularity (Simmons 1963,
Section 27). If o/ happened to contain all the closed balls centered at x, a
property enjoyed by the projection o-field on D[0, 1] (Problem 4), the
function

() g(y) =1 — o7 d(x, »)]*

would do, because {g > 1 — s} = B(x, s8). For general .« we must postulate
existence of the appropriate g.

To maintain the parallel with euclidean spaces as closely as possible,
strengthen the requirements on g to include uniform continuity. We lose
only a scintilla of generality thereby; the special g of (5) still passes the test.

6 Definition. Call a point x in & completely regular (with respect to the

metric d and the o-field /) if to each neighborhood V of x there exists a

uniformly continuous, .e/-measurable function g with g(x) = 1 and g < V.
O

You might well object to yet another mathematical notion attaining the
status of regularity; the world is already overloaded with instances of
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“regular” as a synonym for “amenable to our current theory.” At least it
has the virtue of reminding us of its topological counterpart. (A more
sadistic author might have called it T3,.) The terminology would not be
wasted if we were to expand our weak convergence theory to cover borel
measures on general topological spaces, for there topological complete
regularity seems just the thing needed for a well-behaved theory.

7 Convergence Lemma. Let h be a bounded, of-measurable, real-valued
JSunction on Z. If his continuous at each point of some separable, o/ -measurable
set C of completely regular points, then:

(1) X, ~ X and IP{X € C} = 1 imply PPh(X,) — IPh(X);

(i} P, ~» P and PC = 1 imply P,h — Ph.

PROOF. As the arguments for both assertions are quite similar, let us prove (ii)
only. Assume that # > 0 (add a constant to h if necessary). Define & as in
(4), but with the continuity requirement strengthened to uniform con-
tinuity. At those completely regular points of Z where k is continuous, the
supremum of & equals h. This applies to points in C.

Separability of C will enable us to extract a suitable countable subfamily
from #. Argue as for the classical Lindelsf theorem (Simmons 1963, Section
18). Let C, be a countable, dense subset of C. Let {g,, g,, ...} be the set of
all those functions of the form rB, with r rational, B a closed ball of rational
radius centered at a point of Cy, and rB < f for at least one f in & For each
g: choose one f satisfying the inequality g; < f. Denote it by f;. This picks out
the required countable subfamily:

(8) sup f; =sup % onC.

To see this, consider any point z in C and any f in %. For each rational
number r such that f(z) > r > 0 choose a rational ¢ for which f > r at all
points within a distance 2¢ of z. Let B be the closed ball of radius ¢ centered
at a point x of C for which d(x, z) < e. The function rB lies completely
below f; it must be one of the {g;}. The corresponding f; takes a value greater
than r at z. Assertion (8) follows.
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Complete the argument as for the Convergence Lemma of Section III.2.
Assume without loss of generality that f; T h at points of C. Then

liminf P,h > liminf P, f; for each i
= Pf; because P, ~ P
— Ph asi— co, by monotone convergence.

Replace h by —h + (a big constant) to get the companion inequality for the
limsup. L

9 Corollary. If IPf(X,) > IPf(X) for each bounded, uniformly continuous,
&/ -measurable f, and if X concentrates on a separable set of completely
regular points, then X, ~ X. O

The corollary flows directly from the decision to insist upon uniformly
continuous separating functions in the definition of a completely regular
point. As with its counterpart for euclidean spaces, it makes some weak
convergence arguments just a little bit more straightforward than the corre-
sponding arguments with continuous functions.

10 Example. Let & be a space equipped with a ¢-field o and metric d, and
% be a space equipped with a ¢-field % and metric e. Equip & ® # with its
product o-field and the metric ¢ defined by

ol(x, y), (x', )] = max[d(x, x"), e(y, y)].

Suppose X, ~ X, as random elements of Z If IPy concentrates on a separable
set of completely regular points, and ¥, — y, in probability for some fixed
completely regular point y, in %, then (X,, Y,) ~ (X, y,), asrandom elements
of the product space  ® #.

Of course the assertion only makes sense if X, and Y, are defined on the
same probability space. Given that prerequisite, measurability with respect to
the product o-field presents no problem, because

(Xm Y;l)_l(A ® B) = (Xn_ IA) N (Yn_ 1B)a
and similarly for (X, y,).

Write C for the separable set on which IPy concentrates. Then Py
concentrates on the product set C ® {y,}, which is separable. Each point
of this set is completely regular: if f(¢) = 1 and f = 0 outside the ball of
d-radius ¢, and g(y,) = 1 and g = 0 outside a ball of e-radius &, then the
product f(x)g(y) equals 1 at (c, y,) and vanishes outside a ball of g-radius &.
The product is uniformly continuous if both f and g are bounded and uni-
formly continuous; it is &/ ® %-measurable if f is «/-measurable and g is
Z-measurable.

By virtue of Corollary 9, to prove (X,, ¥,) ~ (X, y,) we have only to
check that IPAW(X,, Y,) —» IPh(X, y,) for each bounded, uniformly con-
tinuous, &/ ® #-measurable, real function h on ¥ ® #. Given ¢ > 0 choose
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6 > 0'so that |A(x, y) — h(x', y)| < & whenever o[(x, y), (x', ¥)] < 6. Write
k(-) for the bounded, uniformly continuous, .«/-measurable function h(-, yo)-
Then

|PA(X,, Y,) — PH(X, yo)| < & + 2| IP*{e(Y,, yo) > 6}
+ |IPk(X,) — IPk(X)|.
Convergence in probability of Y, to y, makes the middle term converge to
zero. (Notice the outer measure IP*. By definition, IP*Z equals the infimum
of IPW over all &-measurable real functions with W > Z. For most applica-

tions e(-, y,) will be .«/-measurable, in which case IP* can be replaced by IP.)
The last term converges to zero because X, ~ X. O

11 Example (Convergence in Distribution via Uniform Approximation).
Let X, X, X,,... be random elements of & with IPy concentrated on a
separable set of completely regular points. Suppose, for each ¢ > 0 and
0 > 0, there exist approximating random elements 4X, AX,, AX,, ...such
that:

@) IP*{d(X, AX) = 6} < ¢;
(i) limsup IP*{d(X,, AX,) = &} < ¢;
(iii)) AX, ~ AX.
Then X, ~ X. Notice again the use of outer measure to guard against non-
measurability.

We have already met a special case of this result in Lemma IIL.11, where
AX, = X, + oY.Inapplications to stochastic processes, the approximations
are typically constructed from the values of the processes at a fixed, finite
set of index points. For such approximations, classical weak convergence
methods can handle (iii). The assumptions (i) and (ii) place restrictions on
the irregularity of the sample paths. Chapter V will take up this idea.

The convergence X, ~ X follows from convergence of expectations for

every bounded, uniformly continuous, .o/-measurable f. If | f(x) — fyi<e
whenever d(x, y) < d then |IPf(X,) — IPf(X)| is less than

PIf(X,) — fAX,)] + |Pf(AX,) — IPf(AX)| + IP| f(AX) — f(X)|.

The convergence (iii) takes care of the middle term. Handle the first term by
splitting it into the contributions from {d(X,, 4X,) > ¢} and its comple-
ment; and similarly for the last term. O

The Convergence Lemma has one other important corollary, the result
that tells us how to transfer convergence in distribution of random elements of
Z to convergence in distribution of selected functionals of those random
clements. For substantial applications turn to Chapter V.

12 Continuous Mapping Theorem. Let H be an .o/ /.<f'-measurable map from
% into another metric space X". If H is continuous at each point of some
separable, s/-measurable set C of completely reqular points, then X, ~ X and
IP{X € C} = 1 together imply HX, ~ HX. O
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IV.3. Representation by Almost Surely
Convergent Sequences

In Section II1.6 we used the quantile transformation to construct almost
surely convergent sequences of random variables representing weakly con-
vergent sequences of probability measures. That method will not work for
probabilities on more general spaces; it even breaks down for IR?. But the
representation result itself still holds.

13 Representation Theorem. Let {P,} be a sequence of probability measures
onametric space. If P, ~ P and P concentrates on a separable set of completely
regular points, then there exist random elements {X,} and X with distributions
{P,} and P such that X,, - X almost surely. O

The new construction makes repeated use of a lemma that can be applied
to any two probability measures P and Q that are close in a weak convergence
sense. Roughly speaking, the idea is to cut up the metric space & into pieces
By, By, ..., B, for which PB; ~ QB, for each i, so that the set B, has small
P measure and each of the other B/’s has small diameter. We use these sets
to construct a random element Y of &, starting from an X with distribution
P.If X lands in B; choose Y in B, according to the conditional distribution
Q(-|B;). For i = 1 this forces Y to lie close to X, because B; doesn’t contain
any pairs of points too far apart. The random element Y has approximately
the distribution Q:

(14) P{Ye A} IP{Ye A|X e B})IP{X € B}

2
i=0
. 0(41B)P(B)

~ Z;JQ(A | B)O(B;)
= Q(4).

A slight refinement of the construction will turn the approximation into an
equality. When applied with Q = P, and partitions growing finer with n, it
will generate the sequence {X,} promised by the Representation Theorem.

15 Lemma. For each ¢ > 0 and each P concentrating on a separable set of
completely regular points, the space & can be partitioned into finitely many
disjoint, s/ -measurable sets By, By, ..., B, such that:

(1) the boundary of each B; has zero P measure (a P-continuity set);
@ii) P(By) < ¢;
(iii) diameter(B;) <2¢ fori=1,2,...,k.
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Proor. Call the separable set C. To each x in C there exists a uniformly
continuous, «/-measurable f with f(x) = 1 and f = 0 for points a distance
greater than ¢ from x. The open sets of the form {f > «}, for 0 < & < 1, are
all «7-measurable and of diameter less than 2¢. At each point on the boundary
of {f > «}, the continuous function f takes the value o. Because P{f =a}
can be non-zero for at most countably many different values of «, there must
exist at least one « for which the probability equals zero. Choose and fix such
an «, then write G(x) for the corresponding set { f > «}. It has diameter less
than 2¢ and is a P-continuity set.

The union of the family of open sets {G(x): x € C} contains the separable
set C. Extract a countable subfamily {G(x;):i=1,2,...} containing C.
(Every open cover of a separable subset of a metric space has a countable
subcover: Problem 5.) Because

P[O G(xi)] 1 P[D G(xi)] > P(O) = 1,

i=1
there exists a k such that

k
P[ G(xi)] >1—e
i=1

Define B; = G(x)\[G(x,) U--- U G(x;_;)] for i=1,...,k and B, =
[G(x,) U --- U G(x)]", a process known to the uncouth as disjointification.
The boundary of B; is covered by the union of the boundaries of the P-
continuity sets G(x,), ..., G(x;). Each B; lies completely inside the cor-
responding G(x;), a set of diameter less than 2¢ if i > 1. O

ProoF oF THEOREM 13. Holding ¢ fixed for the moment, carry out the con-
struction detailed in the proof of the lemma, generating P-continuity sets
By, By, ..., B, as described.

The indicator function of B; is almost surely continuous [P] because it has
discontinuities only at the boundary of B;. So by the Convergence Lemma
P,(B;) - P(B;). When n is large enough, say n > n(e),

(16) PB) > (1 — &)P(B) for i=0,1,... k

Write n,, for n(2™™). Without loss of generality suppose 1 = n, < n, < --- .
For n, <n < n,.,, construct X, using the {B,} partition corresponding to
&n = 27 ™. Notice that B; now depends on n through the value of m.

Let £ be a random variable that has a Uniform(0, 1) distribution in-
dependent of X. If £ < 1 — ¢, and X lands in B;, choose X » according to the
conditional distribution P,(-|B;). So far no B; has received more than its
quota of P, measure, because of (16). The extra probability will be distributed
over the space ' to bring X, up to its desired distribution P,. If ¢ > 1 — ¢,
choose X, according to the distribution g, determined by

k

i=0
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That is,

k
Ha(A) = & " Zo P,(A|B)[P,(B) — (1 — &,)P(B)].
By (16), the right-hand side is non-negative. And clearly u, & = 1.

Except on the set Q,, = {X € B, or £ > 1 — ¢,}, which has measure at
most 2¢,, the random elements X and X, lie within 2¢, of each other.
On the complement of the set {Q,, infinitely often}, the sequence {X,}
converges to X. By the Borel-Cantelli lemma IP{Q,, infinitely often} = 0.

O

The applications of Theorem 13 follow the same pattern as in Section
I11.6. Problems of weak convergence transform into problems of almost sure
convergence, to which the standard tools (monotone convergence, dominated
convergence, and so on) can be applied.

17 Example. Most of the proof of the Convergence Lemma did not use the
full force of almost sure continuity for the function h. To get the inequality
for the liminf we only needed lower-semicontinuity of h at points of C.
(Remember that semicontinuity imposes only half the constraint of con-
tinuity: only a lower bound is set on the oscillations of 4 in a neighborhood
of a point. Problem 9 will refresh your memory on semicontinuity.) The
Representation Theorem gives a quick proof of the same result.

If g is bounded below, lower-semicontinuous, and .«/-measurable (auto-
matic if .o/ equals the borel o-field), then liminf P,g > Pg whenever P, ~ P
with P concentrated on a separable set of completely regular points. To
prove it, switch to almost surely convergent representations. Lower-semi-
continuity at X () plus almost sure convergence of the representing sequence
imply

liminf g(X (w)) = g(X(w)) almost surely.
Take expectations.

liminf P,g = liminf IPg(X,)
> IPg(X) by Fatou’s lemma
= Pg.

A similar inequality holds for upper-semicontinuous, .«/-measurable func-
tions that are bounded above. As a special case,

(18) limsup P, F < PF
for each closed, o/-measurable set F. If inequality (18) holds for all such F
then necessarily P, ~ P (Problem 12). |

19 Example. Let ¢ be a uniformly bounded class of «/-measurable, real
functions on #. Suppose that P, ~ P, with P concentrated on a separable
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set of completely regular points. Suppose also that ¢ is equicontinuous at
almost all points [P] of . That is, for almost all x and each ¢ > 0 there exists
a ¢ > 0, depending on x but not on g, such that |g(y) — g(x)| < ¢ whenever
d(x, y) < 9, for every g in 4. Then

20) sup|P,g — Pg| - 0.
@

This result underlies the success of most of the functions that have been

constructed in the literature to metrize the topology of weak convergence.
To prove (20), represent the probability measures by almost surely

convergent random elements {X,}, then deduce from equicontinuity that

(21) sup [g(X,) — g(X)| - 0 almost surely.
k2

It would be tempting to appeal to dominated convergence to get
sup |IPg(X,) — PPg(X)| < IP sup |g(X,) — g(X)| - O,
K7 2

but that would assume measurability of the supremum in (21). Instead, note
that (20) could fail only if, for some ¢ > 0, there were functions {g,} in %
for which [P,g, — Pg,| > ¢ infinitely often. Apply the dominated conver-
gence argument to the countable family 4, = {g,, g5, ...} to reach a con-
tradiction. O

22 Example (The Bounded-Lipschitz Metric for Weak Convergence).
Suppose that .«/ contains all the closed balls, as in the case of D[0, 1] under
its uniform metric. The function f(-) = r[1 — md(-, z)]*, which serves to
separate z from points outside a small neighborhood of z, has the strong
uniformity property

f(X) = fD] < mr d(x, y).

A function satisfying such a condition, with mr replaced possibly by a
different constant, is called a Lipschitz function. For the proof of the Con-
vergence Lemma, P, f — Pf for each bounded, .o/-measurable Lipschitz
function would have sufficed; convergence for bounded Lipschitz functions
implies weak convergence. From Example 19 we draw a sharper conclusion.

Define .Z to be the set of all .o/-measurable Lipschitz functions for which
| f(x) — f(M] < d(x, y) and sup, | f(x)| < 1. The class .# is equicontinuous
at each point of Z. Every bounded Lipschitz function can be expressed as a
multiple of a function in &,

Define the distance between two probability measures on .o by

AP, Q) = sup{|Pf — Of |: fe Z}.

You can check that A has all the properties required of a metric. If P con-
centrates on a separable set and P, ~ P, the distance A(P,, P) converges to
zero, in obedience to the uniformity result of Example 19. Conversely, the
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convergence of A(P,, P) to zero would ensure that P,f — Pf for each
bounded Lipschitz function f, which, as noted above, implies weak con-
vergence. O

23 Example (The Prohorov Metric for Weak Convergence). Suppose & is
a separable metric space equipped with its borel ¢o-field. For each § > 0 and
each borel subset A of Z define

A = {xeZ:dx, A) < &}

(Visualize the open set 4° as A wearing a halo of thickness 6.) Define the
Prohorov distance between two borel probability measures as

p(P, Q) = inf{§ > 0: PA° + 6 > QA for every A}.

This distance has great appeal for robustniks, who interpret the delta halo
as a way of constraining small migrations of Q mass and the added delta as
insurance against a small proportion of gross changes. To us it will be just
another metric for weak convergence.

It is not obvious that p is symmetric, one of the properties required of a
metric. We need to show that QA4° + 6 > PA for every A, whenever
p(P, Q) < 4. Set B equal to the complement of A%. We know that OB <
PB° + 6. Subtract both sides from 1, after replacing B® by the complement
of A, a larger set. (No point of 4 can be less than § from a point in B.) We
have symmetry.

If p(P, Q) =0 then certainly PF° + 6 > QF for every closed F and
every 6 > 0. Hold F fixed but let ¢ tend to zero through a sequence of values.
The sequence {F°} shrinks to F, giving PF > QF in the limit. Interchange
the roles of P and Q then repeat the argument to deduce that P and Q agree
on all closed sets, and hence (Problem 11) on all borel sets.

For the triangle inequality, suppose that p(P, Q) < ¢ and p(Q, R) < #.
Temporarily set B = A" Then

RA<QA"+n=QB+n<PB +1yn+34d.

Check that A°*" contains B°. Deduce that p(R, P) < n + 6.

Next, show that weak convergence implies convergence in the p metric.
It suffices to deduce that p(P,, P) < 6 eventually if P, ~ P. For each borel
set A define

fa(x) = [1 — 67 d(x, AT
Notice that A% > f, > A. Also, because
| fa(%) — fa)| < 871 d(x, A) — d(p, Al < 671 d(x, v),
the class of all such f, functions is equicontinuous. By Example 19,

sup |P, f4 — Pf4| = 0.
4
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Call this supremum A,.. Then
PA&prAZPan_AnZPnA_An

for every A. Wait until A, < 6 to be able to assert that p(P, P,) < 6.
Finally, if p(P,, P) — O then, for fixed closed F,

limsup P,F < PF® + §

for every & > 0. Let & decrease to zero then deduce from Problem 12 that
P, ~ P. Convergence in the p metric is equivalent to weak convergence. [

IV.4. Coupling

The Representation Theorems of Sections IIL6 and IV.3 both depended
upon methods for coupling distributions P, and P. That is, we needed to
construct random elements X, and X, on the same probability space, such
that X, had distribution P, and X had distribution P. Closeness of P, and
P, in a weak convergence sense, allowed us to choose X, and X close in a
stronger, almost sure sense. This section will examine coupling in more
detail.

A coupling of probability measures P and Q, on a space &, can be realized
as a measure M on the product space ¥ ® &, with X and Y defined by the
coordinate projections. The product measure P ® Q is a coupling, albeit
a not very informative one. More useful are those couplings for which M
concentrates near the diagonal. For example, in the Representation Theorem
we put as much mass as possible on the set {(x, y): d(x, y) < &}.

Roughly speaking, one can construct such couplings in two steps. First
treat the desired property—that as much mass as possible be allocated to a
particular region D in the product space—as a strict requirement. Imagine
building up M slowly by drawing off mass from the P marginal measure and
relocating it within D, subject to a matching constraint: to put an amount §
near (x, y) one must deplete the P supply near x by § and the Q supply near
y by 6. When as much mass as possible has been shifted into D by this method,
forget about the constraint imposed by D. In the second step, complete the
transfer of mass from P into the product space subject only to the matching
constraint. The final M will have the correct marginals, P and Q.

A precise formulation of the coupling algorithm just sketched is easiest
when both P and Q concentrate on a finite set of points. The first step can
be represented by a picture that looks like a crossword puzzie. Label the
points on which Q concentrates as 1, .. ., r; let these correspond to rows of
a two-way array of cells. Similarly, let 1,..., ¢ label both the points on
which P concentrates and the columns of the two-way array. The stack beside
row i represents the mass Q puts on point i, and the stack under column j
represents the mass P puts on j. The unshaded cells correspond to D. The
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aim is to place as much mass as possible in the unshaded cells without
violating the constraint that the total mass in a row or column should not
exceed the amount originally in the marginal stacks.

This formulation makes sense even if the marginal supplies don’t both
correspond to measures with total mass one. In general we could allow any
non-negative masses R(i) and C(j) in the supply stacks for row i and column
J. We would seek a non-negative allocation M(i, j) of as much mass as possible
into the unshaded cells, subject to

Y M@, j) < C() and Y M(,)) < R()

for each i and j. A continuous analogue of the classical marriage lemma (a sort
of fractional polygamy) will give the necessary and sufficient conditions for
existence of an M that turns the inequalities for the columns into equalities.

Treat C and R as measures. Write C(J) for the sum of supply masses in a
set of columns J. Denote by D, the set of rows i for which cell (i, j) belongs
to D for at least one column j in J. It is easy to see that M can have column
marginal C only if R(D;) > C(J) for every J, because the rows in D, contain
all the D-cells in the columns of J. Sufficiency is a little trickier.

24 Allocation Lemma. If R(D;) = C(J) for every set of columns J, then
there exists an allocation M(i, j) into the cells of D such that

Y MG,j) = C() and Y M(,)) < R()

for every i and j.

Proor. Use induction on the number of columns. The result is trivial for

¢ = 1. Suppose it is true for every number of columns strictly less than c.
Construct M by transferring mass from the column margins into D.

Shift mass at a constant rate into each of the D-cells in row . For any mass
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shifted from C(j) into (r, ) discard an equal amount from R(r). If R(r)
becomes exhausted, move on to row r — 1, and so on. Stop when either:

(i) some C(j) is exhausted; or
(ii) one of the constraints R(D;) > C(J) would be violated by continuation
of the current method of allocation.

Here R and C are used as variable measures that decrease as mass is drawn
off; the supply stacks diminish as the allocation proceeds. Notice that the
mass transferred at each step can be specified as the largest solution to a
system of linear inequalities.

If the allocation halts because of (i), the problem is transformed into an
allocation for ¢ — 1 columns. The inductive hypothesis can be invoked to
complete the allocation.

If allocation halts because of (ii), then there must now exist some K for
which R(Dg) = C(K). Continued allocation would have caused R(Dy) <
C(K). The matching-constraint prevents K from containing every column:
the total column supply always decreases at the same rate as the total row
supply. Write K° for the non-empty set of columns not in K.

Kc

If the marginal demands of the columns in K are to be met, the entire
remaining supply R(Dg) must be devoted to those columns. With this
requirement the problem splits into two subproblems: rows in D may match
only mass drawn off from the columns in K; from the rows D% not in Dy,
match mass from the columns in K°. Both subproblems satisfy the initial
assumptions of the lemma. For subsets of K this follows because allocation
halted before R(D;) < C(J) for any J. For subsets of K, it follows from

R(D; n Dy) = R(D; x) — R(Dg)
> C(J v K) - C(K)
= C(J).

Invoke the inductive hypothesis for both subproblems to complete the proof
of the lemma. U
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25 Corollary. If R and C have the same total mass and R(D;) > C(J) for
every J, then the allocation measure M has marginal measures R and C. [

The Allocation Lemma applies directly only to discrete distributions
supported by finite sets. For distributions not of that type a preliminary
discretization, as in the proof of the Representation Theorem, is needed.

26 Example. Let P and Q be borel probability measures on a separable
metric space. The Prohorov distance p(P, Q) determines how closely P
and Q can be coupled, in the sense that p(P, Q) equals the infimum of those
values of € such that

27 P{d(X,Y)>¢} <e
with X having distribution P and Y having distribution Q. We can use the

Allocation Lemma to help prove this.
Half of the argument is easy. From (27) deduce, for every A,
04 =1P{Ye 4}
<IP{XeAd} +P{dX,Y) = ¢}
< PA® + ¢,
whence p(P, Q) < &.

For the other half of the argument suppose p(P, Q) < & Construct X
and Y by means of a two-stage coupling. Apply the method of Lemma 15
twice to partition the underlying space into sets By, By, ..., B, with both
0B, < d and PB, < 0, and diameter(B;) < é fori = 1, ..., k. Choose é as
a quantity much smaller than ¢; it will eventually be forced down to zero
while ¢ stays fixed. The requirement that each B; be a Q- or P-continuity set
is irrelevant to our present purpose.

Set R(i) equal to @B; and C(j) equal to PB;. Into the region D allow only
those cells (i, j), for 1 <i <k and 1 <j < k, whose corresponding B; and
B; contain a pair of points, one in B; and one in B;, a distance < ¢ apart.
Augment the double array by one more row, call it co, whose row stack
contains mass ¢ + 24. Include (o0, 0), ..., (oo, k) in the region D.

BO B1 PN Bk




80 IV. Convergence in Distribution in Metric Spaces

The hypotheses of the Allocation Lemma are satisfied. For any collection
of columns J,

C(J) < PB, + P( U Bj)

JA{0}

<5+Q(UBJ.>8+3

J\{0}

<d+ Q( U Bi) + @By + ¢ by definition of D
Dj\{c0}

<6+ RDN\{o}) + 6+ ¢
= R(Dy).

Distribute all the mass from the column stacks into D, as in the Allocation
Lemma. The oo row acts as a temporary repository for the small amount of
mass that cannot legally be shifted into the desired small-diameter cells.
Return the mass in this row to the column stacks, leaving at least 1 — ¢ — 26
of the original C mass in the desired cells.

Strip away the oo row. Allocate the remaining mass in the column stacks
after expanding D to include all cells (i, j), for 0 < i < kand 0 < j < k.

So far we have only decided the allocation of masses M(i, j) between the
cells. Within the cells distribute according to the product measures

MG, j) Q(-1B)® P(:| By.

The resulting M on & ® & has marginal measures P and Q. For example,
within B, the column marginal is

2. M(i, 0)Q(B:| B)P(-| Bo) = P(Bo)P(-| Bo) = P(-Byy).

The M measure concentrates at least 1 — ¢ — 25 of its mass within the
original D, a cluster of cells each of diameter less than & in both row and
column directions. For a point (x, y) lying in a cell (i, j) of this cluster, there
exists points z; and z; with

d(xa Zi) < 5: d(zi, Zj) < &, d(zj, Y) < 5:

which gives d(x, y) < ¢ + 26. Put another way, if X and Y denote the co-
ordinate projections then

P{d(X, Y) > ¢ + 28} < & + 20.

As 6 can be chosen arbitrarily small, and ¢ can be chosen as close to p(P, Q)
as we please, we have the desired result.

Problem 17 gives a condition under which the bound p(P, Q) can be
achieved by a coupling of P and Q. U
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IV.5. Weakly Convergent Subsequences

A reader not interested in existence theorems could skip this section, which
presents a method for constructing measures on metric spaces. The results
will be used in Section V.3 to prove existence of the brownian bridge. The
method will be generalized in Chapter VII.

We saw in Section IIL.6 how to modify the quantile-transformation
construction of the one-dimensional Representation Theorem to turn it
into an existence theorem, a method for constructing a probability measure
as the distribution of the almost sure limit of a sequence of random variables.
We had to impose a uniform tightness constraint to stop the sequence from
drifting off to infinity. The analogous result for probabilities on metric
spaces plays a much more important role than in euclidean spaces, because
existence theorems of any sort are so much harder to come by in abstract
spaces. Again the key to the construction is a uniform tightness property,
which ensures that sequences that ought to converge really do converge.
The setting is still that of a metric space & equipped with a sub-o-field .7 of
its borel o-field.

28 Definitions. Call a probability measure P on «f tight if for every ¢ > 0
there exists a compact set K(g) of completely regular points such that
PK(e) > 1 —¢.

Call a sequence {P,} of probability measures on &7 uniformly tight if for
every ¢ > 0 there exists a compact set K(¢) of completely regular points such
that liminf P,G > 1 — ¢ for every open, «/-measurable G containing K(g).

tl

Problem 7 justifies the implicit assumption of .o/-measurability for the
K(¢) in the definition of tightness; every compact set of completely regular
points can be written as a countable intersection of open, .=/-measurable
sets.

If G is replaced by K(¢), the uniform tightness condition becomes a
slightly tidier, but stronger, condition. It is, however, more natural to retain
the open G. If P, ~ P and P is tight then, by virtue of the results proved in
Example 17, the liminf condition for open G is satisfied; it might not be
satisfied if G were replaced by K(g). More importantly, one does not need
the stronger condition to get weakly convergent subsequences, as will be
shown in the next theorem.

For the proof of the theorem we shall make use of a property of compact
sets:

If {x,} is a Cauchy sequence in a metric space, and if d(x,, K) - 0
for some fixed compact set K, then {x,} converges to a point of K.
This follows easily from one of a set of alternative characterizations of

compactness in metric spaces. As we shall be making free use of these charac-
terizations in later chapters, a short digression on the topic will not go amiss.
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To prove the assertion we have only to choose, according to the definition
of d(x,, K), points {y,} in K for which d(x,, y,) - 0. From {y,} we can
extract a subsequence converging to a point y in K. For if no subsequence
of {y,} converged to a point of K, then around each x in K we could put an
open neighborhood G, that excluded y, for all large enough values of n.
This would imply that {y,} is eventually outside the union of the finite
collection of G, sets covering the compact K, a contradiction. The cor-
responding subsequence of {x,} also converges to y. The Cauchy property
forces {x,} to follow the subsequence in converging to y.

A set with the property that every sequence has a convergent subsequence
(with limit point in the set) is said to be sequentially compact. Every compact
set is sequentially compact. This leads to another characterization of
compactness:

A sequentially compact set is complete (every Cauchy sequence
converges to a point of the set) and totally bounded (for every
positive ¢, the set can be covered by a finite union of closed balls
of radius less than ¢).

For clearly a Cauchy sequence in a sequentially compact K must converge
to the same limit as the convergent subsequence. And if K were not totally
bounded, there would be some positive ¢ for which no finite collection of
balls of radius ¢ could cover K. We could extract a sequence {x,} in K with
Xp+1 at least e away from each of x,, ..., x, for every n. No subsequence of
{x4} could converge, in defiance of sequential compactness.

For us the last link in the chain of characterizations will be the most
important:

A complete, totally bounded subset of a metric space is compact.

Suppose, to the contrary, that {G,} is an open cover of a totally bounded
set K for which no finite union of {G;} sets covers K. We can cover K by
a finite union of closed balls of radius 4, though. There must be at least
one such ball, B, say, for which K n B, has no finite {G,} subcover. Cover
K n B, by finitely many closed balls of radius . For at least one of these
balls, B, say, K n B; n B, has no finite {G;} subcover. Continuing in
this way we discover a sequence of closed balls {B,} of radii {27"} for
which K~ B; n---n B, has no finite {G;} cover. Choose a point x,
from this (necessarily non-empty) intersection. The sequence {x,} is
Cauchy. If K were also complete, {x,} would converge to some x in K.
Certainly x would belong to some G;, which would necessarily contain
B, for n large enough. A single G, is about as finite a subcover as one could
wish for. Completeness would indeed force {G,} to have a finite subcover
for K. End of digression.

29 Compactness Theorem. Every uniformly tight sequence of probability
measures contains a subsequence that converges weakly to a tight borel
measure.
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ProoF. Write {P,} for the uniformly tight sequence, and K, for the compact
set K(g,), for a fixed sequence {¢,} that converges to zero. We may assume
that {K,} is an increasing sequence of sets.

The proof will use a coupling to represent a subsequence of {P,} by an
almost surely convergent sequence of random elements. The limit of these
random elements will concentrate on the union of the compact K, sets; it
will induce the tight borel measure on & to which the subsequence {P,} will
converge weakly.

Complete regularity of each point in K, allows us to cover K, by a collec-
tion of open «/-measurable sets, each of diameter less than ¢,. Invoke
compactness to extract a finite subcover, {U,;: 1 <i < i,}. Define &,
to be the finite subfield of .« generated by the open sets U,;for 1 <k <m
and 1 < i <. '

The union of the fields {«/,} is a countable subfield .« of /. Apply
Cantor’s diagonalization argument to extract a subsequence of {P,} along
which lim P, A exists for each A4 in 7. Write A4 for this limit. It is a finitely
additive measure on the field o/ . Avoid the mess of double-subscripting
by assuming, with no loss of generality, that the subsequence is {P,} itself.

If {P,} were weakly convergent to a measure P we would be able to deduce
that P(interior of 4) < 14 < P(closure of A) for each A in &/ . If we could
assume further that P put zero mass on the boundary of each such A, we
would know the P measure of enough sets to allow almost surely convergent
representing sequences to be constructed as in the Representation Theorem.
Unfortunately there is no reason to expect P to cooperate in this way.
Instead, we must turn to 4 as a surrogate for the unknown, but sought after,
probability measure P.

Since A need not be countably additive, it would be wicked of us to presume
the existence of a random element of 4 having distribution A. We must take
a more devious approach.

We can build a passable imitation of .7 , on the unit interval. Partition
(0, 1) into as many intervals as there are atoms of .o/, making the lebesgue
measure of each interval 4 equal to the A measure of the corresponding 4 in
o |. These intervals generate a finite field .&7, on (0, 1). Partition each atom
Ain </, into as many subintervals as there are atoms of o7, in 4, matching
up lebesgue and A measures as before. The subintervals together generate a
second field <7, on (0, 1), finer than .o7,. Continuing in similar fashion, we
set up an increasing sequence of fields {.7,} on (0, 1) that fit together in the
same way as the fields {«/,} on &. The union of the .&,’s is a countable
subfield 7 , of (0, 1). There is a bijection 4 <> A between .o/ » and & that
preserves inclusion, maps <7, onto .,, and preserves measure, in the sense
that the lebesgue measure of 4 equals A4. The construction ensures that,
if 7 has a Uniform(0, 1) distribution, IP{n e 4} = 14 for every 4 in «,.
The random variable # chooses between the sets in ., in much the same
way as a random element X with distribution P would choose between the
sets in 7.
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By definition of A, there exists an n(k) such that
30) P,A > (1 — g)AA for every A in of, whenever n > n(k).

Lighten the notation by assuming that n(k) = k. (If you suspect these
notational tricks for avoiding an orgy of subsequencing, feel free to rewrite
the argument using, by now, triple subscripting.) As in the proof of the
Representation Theorem, this allows us to construct a random element X,
with distribution P,, by means of an auxiliary random variable ¢ that has a
Uniform(0, 1) distribution independent of #:

For each atom 4 of .«7,,, if # falls in the corresponding 4 of .7, and
<1 —g, distribute X, on A according to the conditional
distribution P,(-|A4). If & > 1 — ¢, distribute X, with whatever
conditional distribution is necessary to bring its overall distribution
up to P,.

We have coupled each P, with lebesgue measure on the unit square.

To emphasize that X, depends on #, £, and the randomization necessary
to generate observations on P,(-| A), write it as X (w, #, £). Notice that the
same # and £ figure in the construction of every X,,.

It will suffice for us to prove that {X,(w, 5, &)} converges to a point
X(w, 1, §) of K, for every w and every pair (y, £) lying in a region of prob-
ability at least (1 — ¢,)?, a result stronger than mere almost sure convergence
to a point in the union of the compact sets {K,}. Problem 16 provides the
extra details needed to deduce borel measurability of X.

For each m greater than k, let G, be the smallest open, .«7,,-measurable
set containing K. Uniform tightness tells us that

A‘Gmk = llminf PnGmk > 1 - 8k9

which implies IP{n € G} > 1 — g. Define G, as the intersection of the
decreasing sequence of sets {G,,} for m = k, k + 1,.... The overbar here
is slightly misleading, because G, need not belong to 7. But it is a borel
subset of (0, 1). Countable additivity of lebesgue measure allows us to deduce
that IP{n € G,} > 1 — ¢,. Notice how we have gotten around lack of count-
able additivity for 4, by pulling the construction back into a more familiar
measure space.

Whenever 7 falls in G, and £ < 1 ~ ¢, which occurs with probability at
least (1 — ¢,), the random elements X, X, ,,... crowd together into a
shrinking neighborhood of a point of K. There exists a decreasing sequence
{4,.} with:

(i) A, is an atom of of,,;
(ii) A4,, is contained in G,,;
(iti) X, (w,n, &) liesin A4,,.

Properties (i) and (iii) are consequences of the method of construction for
X,,; property (ii) holds because G, is a subset of G,. The set G, being the
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smallest open, &/ ,-measurable set containing K, must be contained within
the union of those U, that intersect K. The atom 4,, must lie wholly within
one such U,,;, a set of diameter less than ¢,. So whenever 7 falls in G, and
& <1 — ¢, the sequence {X,,} satisfies:

(1) d(Xm(ws 113 6)5 X"(CO, 71, 5)) S Sm for k S m _<_ n;
(1) d(X (0,1, 8),K) <e¢, fork<m.

As explained at the start of the digression, this forces convergence to a point
X(CO, , é) of Kk' D

NOTES

Any reader uncomfortable with the metric space ideas used in this chapter
might consult Simmons (1963, especially Chapters 2 and 5).

The advantages of equipping a metric space with a o-field different from -
the borel o-field were first exploited by Dudley (1966a, 1967a), who developed
a weak convergence theory for measures living on the o-field generated by
the closed balls. The measurability problem for empirical processes (Example
2) was noted by Chibisov (1965); he opted for the Skorohod metric. Pyke
and Shorack (1968) suggested another way out: X, ~ X should mean
IPf(X,) — IPf(X) for all those bounded, continuous f that make f(X,) and
f(X) measurable. They noted the equivalence of this definition to the defini-
tion based on the Skorohod metric, for random elements of D[0, 1] con-
verging to a process with continuous sample paths.

Separability has a curious role in the theory. With it, the closed balls
generate the borel o-field (Problem 6); but this can also hold without
separability (Talagrand 1978). Borel measures usually have separable
support (Dudley 1967a, 1976, Lecture 5).

Alexandroff (1940, 1941, 1943) laid the foundation for a theory of weak
convergence on abstract spaces, not necessarily topological. Prohorov (1956)
reset the theory in complete, separable metric space, where most probabilistic
and statistical applications can flourish. He and LeCam (1957) proved
different versions of the Compactness Theorem, whose form (but not the
proof) I have borrowed from Dudley (1966a). Weak convergence of baire
measures on general topological spaces was thoroughly investigated by
Varadarajan (1965). Topsee (1970) put together a weak convergence theory
for borel measures; he used the liminf property for semicontinuous functions
(Example 17) to define weak convergence. These two authors made clear
the need for added regularity conditions on the limit measure and separation
properties on the topology. One particularly nice combination —a completely
regular topology and a r-additive limit measure—corresponds closely to my
assumption that limit measures concentrate on separable sets of completely
regular points.

The best references to the weak convergence theory for borel measures on
metric spaces remain Billingsley (1968, 1971) and Parthasarathy (1967).
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Dudley’s (1976) lecture notes offer an excellent condensed exposition of both
the mathematical theory and the statistical applications.

Example 11 is usually attributed to Wichura (1971), although Hajek
(1965) used a similar approximation idea to prove convergence for random
elements of C[0, 1].

Skorohod (1956) hit upon the idea of representing sequences that converge
in distribution by sequences that converge almost surely, for the case of
random elements of complete, separable metric spaces. The proof in Section 3
is adapted from Dudley (1968). He paid more attention to some of the points
glossed over in my proof—for example, he showed how to construct a
probability space supporting all the {X,}. Here, and in Section 5, one needs
the existence theorem for product measures on infinite-product spaces. Pyke
(1969, 1970) has been a most persuasive advocate of this method for proving
theorems about weak convergence. Many of the applications now belong
to the folklore.

The uniformity result of Example 19 comes from Ranga Rao (1962);
Billingsley and Topspe (1967) and Tops¢e (1970) perfected the idea. Not
surprisingly, the original proofs of this type of result made direct use of the
dissection technique of Lemma 15. Prohorov (1956) defined the Prohorov
metric; Dudley (1966b) defined the bounded Lipschitz metric.

Strassen (1965) invoked convexity arguments to establish the coupling
characterization of the Prohorov metric (Example 26). My proof comes
essentially from Dudley (1968), via Dudley (1976, Lecture 18), who introduced
the idea of building a coupling between discrete measures by application of
the marriage lemma. The Allocation Lemma can also be proved by the
max-flow-min-cut theorem (an elementary result from graph theory; for a
proof see Bollobas (1979)). The conditions of my Lemma ensure that the
minimum capacity of a cut will correspond to the total column mass.
Appendix B of Jacobs (1978) contains an exposition of this approach,
following Hansel and Troallic (1978). Major (1978) has described more
refined forms of coupling.

PROBLEMS

[1] Suppose the empirical process U, were measurable with respect to the borel o-field
on D[0, 1] generated by the uniform metric. For each subset 4 of (1, 2) define J ,
as the open set of functions in D[0, 1] with jumps at some pair of distinct points
ty and t, in [0, 1] with ¢, + ¢, in 4. Define a non-atomic measure on the class of
all subsets of (1, 2) by setting p(4) = IP{U, € J ;}. This contradicts the continuum
hypothesis (Oxtoby 1971, Section 5). Manufacture from y an extension of the
uniform distribution to all subsets of (1, 2) if you would like to offend the axiom
of choice as well. Extend the argument to larger sample sizes.

[2] Write o for the o-field on a set 4 generated by a family {f;} of real-valued func-
tions on % That is, .o is the smallest o-field containing f; *B for each i and each
borel set B. Prove that a map X from (Q, &) into & is &/.«/-measurable if and only
if the composition f; o X is &/%(IR)-measurable for each i.
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(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

[11]

Every function in D[0, 1] is bounded: [x(¢t,)| = oo as n — co would violate either
the right continuity or the existence of the left limit at some cluster point of the
sequence {t,}.

Write £ for the projection o-field on D[0, 17 and 4, for the o-field generated by
the closed balls of the uniform metric. Write r, for the projection map that takes
an x in D[0, 1] onto its value x(¢).

(a) Prove that each 7, is #-measurable. [Express {x: m,x > a} as a countable
union of closed balls B(x,, n), where x, equals « plus (n + n~!) times the
indicator function of [, t 4+ n~').] Deduce that %, contains &

(b) Prove that the o-field £ contains each closed ball B(x, r). [Express the ball
as an intersection of sets {z: |m,x — m,z] < r}, with ¢ rational.] Deduce that
2 contains 4, .

Let {G;} be a family of open sets whose union covers a separable subset C of a
metric space. Adapt the argument of Lemma 7 to prove that C is contained in the
union of some countable subfamily of the {G,}. [This is Lindelsf’s theorem.]

Every separable, open subset of a metric space can be written as a countable union
of closed balls. [Rational radii, centered at points of the countable dense set.]
The closed balls generate the borel o-field on a separable metric space.

Every closed, separable set of completely regular points belongs to 7. [Cover it
with open, &/-measurable sets of small diameter. Use Lindelof’s theorem to
extract a countable subcover. The union of these sets belongs to .«7. Represent the
closed set as a countable intersection of such unjons.]

Let C,, be the countable subset of C[0, 1] consisting of all piecewise linear func-
tions with corners at only a finite set of rational pairs (t;, r;). Argue from uniform
continuity to prove that C[0, 1] equals the closure of C,. Deduce that C[0, 1]
is a projection-measurable subset of D[0, 1].

A function / is said to be lower-semicontinuous at a point x if, for each M < h(x),
h is greater than M in some neighborhood of x. To say h is lower-semicontinuous
means that it is lower-semicontinuous at every point. Show that the upper envelope
of any set of continuous functions is lower-semicontinuous. Adapt the construction
of Lemma 7 to prove that every lower-semicontinuous function that is bounded
below can be represented on a separable set of completely regular points as the
pointwise limit of an increasing sequence of continuous functions. How would one
define upper-semicontinuity? Which sets should have upper-semicontinuous
indicator functions? What does a combination of both semicontinuities imply?

If X, ~ X as random elements of a metric space & and d(X,, ¥,) — 0 in prob-
ability, then ¥, ~ X, provided that IPy concentrates on a separable set of completely
regular points. [Convergence in probability means IP*{d(X,, ¥,) > &} — 0 for
each ¢ > 0.]

Let P be a borel measure on a metric space. For every borel set B there exists an
open G, containing B and a closed F, contained in B with P(G\F,) < ¢ [The
class of all sets with this property forms a o-field. Each closed set has the property
because it can be written as a countable intersection of open sets.] Deduce that
P is uniquely determined by the values it gives to closed sets. Extend the result
to measures defined on the o-field generated by the closed balls.
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[12] Suppose limsup P,F < PF for each ¢losed, .«/-measurable set F. Prove that
P, ~ P by applying the inequalities

ISR < f o< K KOS (2 ik

for each non-negative f in 4(&'; «7). [The summands are identically zero for all
i large enough. Apply the same argument to —f + (a big constant).]

[13] If P,B — PB for each «/-measurable set B whose boundary has zero P measure
then P, ~ P. [Replace the levels i/k of the previous problem by levels ¢, for which
P{f=1}=0]

[14] The functions in 4(Z'; «/) generate a sub-o-field &, of o, A map X from (Q, &)
into % is /% -measurable if and only if f(X) is &/#(IR)-measurable for each fin
CX; A).

[15] (Continued). The trace of %, on any separable set S of completely regular points
of &' coincides with the borel o-field on S. [Sets of the form {f > 0} n S, with f
in G(Z'; o), form a basis for the relative topology on S. Every relatively open
subset of § is a countable union of such sets, by Lindelsf’s theorem.]

[16] (Continued). Let {X,,} be a sequence of &/s/-measurable random elements of &
that converges pointwise to a map X. Prove that X is &/%,-measurable. If X

takes values only in a fixed separable set of completely regular points, then it is
&/B(Z)-measurable.

[17] Let P and Q be tight probability measures on the borel o-field of a separable metric
space Z There exists a coupling for which IP{d(X, Y) > A} < A, where A =
p(P, Q), the Prohorov distance between P and Q. [From Example 26, there exist
measures M, on & ® Z; with marginals P and @, for which

MA(x1):dx, )2 A+n 1} <A+nt.

The sequence {M,} is uniformly tight. The limit of a weakly convergent subse-
quence defines the required coupling. Is separability of & really needed ?]

[18] Let Z be a compact metric space, and 4(2) be the vector space of all bounded,
continuous, real functions on . Let T be a non-negative linear functional on
#(Z) with T1 = 1. These steps show that Tf = Pf for some borel probability
measure P:

(a) Given y > 0 find functions g,, ..., g, in €*(%) with diameter{g, > 0} < 2y
and g; +--- + g, = 1. [Find f, in ¥¥ (%) with f,(x) > 0 and f,(y) = 0 for
d(y, x) > y. Cover K by finitely many open sets {f, > 0}. Standardize the
corresponding functions to sum to one everywhere.]

(b) Choose x; with g,(x;) > 0. Define P, as the discrete probability measure that
puts mass Tg; at x;, for each i. If h belongs to (%), show that [P,h — Th| -0
asy — 0.

(©) Extract a subsequence of {P,} that converges weakly. Show that the limit
measure P has the desired property.



CHAPTER V

The Uniform Metric on Spaces of
Cadlag Functions

... in which random elements of metric spaces of cadlag functions—stochastic
processes whose sample paths have at worst simple jump discontinuities—are
treated. Necessary and sufficient conditions for convergence in distribution are
found then specialized to prove limit theorems for empirical processes and
processes with independent increments. The two most commonly occurring
limit processes, brownjan motion and brownian bridge, are studied.

V.1. Approximation of Stochastic Processes

The theory developed in Chapter IV justifies its existence by what it has to
say about the limiting distributions of functionals defined on sequences of
stochastic processes. Processes {X,(t):t € T} are identified with random
elements of some space Z of functions on T, a space large enough to contain
the sample paths of every X,,; the functionals are maps defined on & to which
the Continuous Mapping Theorem can be applied. In this chapter we shall
specialize the general theory to the particular function space D[0, 1], under
its uniform metric. It will turn out that most applications, especially those
that come up with brownian bridges and brownian motions as limit pro-
cesses, require no fancier setting than this.

Recall that for a function defined on a subset T of the extended real line
[ — o0, 0o] to deserve the title cadlag it must be right continuous (“continue a
droite”) and have left limits (“limites & gauche™) at each point of T
Many of the well-studied stochastic processes—processes with independent
increments, or the markov property, or some form of martingale structure—
have versions with cadlag sample paths. For T = [0, 1], these processes can
be analyzed as random elements of D[0, 1], the set of all real-valued cadlag
functions on [0, 1]. Notice that right continuity at 1 and existence of the
left limit at 0 become empty requirements for this space. The analysis for
other spaces of cadlag functions on compact intervals (such as D[ — o0, 0],
the natural space in which to study empirical distribution functions over the
real line), and the extensions to non-compact index sets (Section 5), will call
for only slight variations on the methods developed for D[0, 1].
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For each finite subset S of [0, 1] write =g for the projection map from
D[0, 1] into IR® that takes an x onto its vector of values {x(t): t € S}. Abbre-
viate my, to m,. These projections generate the projection o-field, 22 Questions
of measurability in this chapter will always refer to this o-field. A stochastic
process X on (Q, &, IP) with sample paths in D[0, 1], such as an empirical
process, is &/#-measurable provided =, o X is &/%(IR)-measurable for each
fixed ¢ (Problem IV.2).

Probability measures on 2 are uniquely determined by the values they
give to the generating sets {ng 'B}, with S a finite subset of [0, 1] and B a
borel subset of IRS. Equivalently, the distribution of a random element of
D[O0, 1] is uniquely specified by giving the distributions of all its finite-
dimensional projections.

As every cadlag function on [0, 1] is bounded (Problem IV.3), the uniform
distance

dx,y) = |x — yl = sup{|x(t) — y®)|: 0 < < 1}

defines a metric on D[0, 1]. No other metric will be used for D[0, 1] in this
chapter. The closed balls for d generate 2 but not the larger borel o-field
(Problem IV .4). Every point in D[0, 1] is completely regular—see Definition
IV.6 and the discussion preceding it.

The difficulty with the o-field, which can be blamed on the lack of a
countable, dense subset of functions in D[0, 1], has dissuaded many authors
from working with the uniform metric. Chapter IV showed that the difficulty
can be surmounted, at least when limit distributions concentrate on separable
subsets of D[0, 1]. As compensation for persisting with the uniform metric,
we shall find its topological properties much easier to understand and
manipulate than those of its main competitor, the Skorohod metric, which
will be discussed in Chapter V1. That will make life more pleasant for us in
Section 3 when we come to apply the Compactness Theorem.

The limit processes for the applications in this chapter will always con-
centrate in a separable subset of D[0, 1], usually C[0, 1], the set of all con-
tinuous, real functions on [0, 1]. As a closed (uniform convergence preserves
continuity), separable, #-measurable subset of D[0, 1] (Problems IV.8),
C[0, 1] has several attractive properties. For example, it inherits complete-
ness from D[O0, 1], and its projection o-field coincides with its borel o-field
for the uniform metric (Problem IV.6).

How do we establish convergence in distribution of a sequence {X,} of
random elements of D[0, 1] to a limit process X ? Certainly we need the
finite-dimensional projections {rngX,} to converge in distribution, as
random vectors in IR®, to the finite-dimensional projection ngX, for each
finite subset S of [0, 1]. Continuity of ng and the Continuous Mapping
Theorem make that a necessary condition. The methods of Chapter I usually
help here. But that alone could hardly suffice. Continuous functionals such
as Mx = ||x|, a typical non-trivial example, depend on x through more than
its values at a fixed, finite S. Indeed, direct examination of that very functional
gives the clue to the extra condition needed.
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Intuitively, it should be possible to approximate MX, by taking the
maximum of | X,(s)| over a large, finely spaced, finite subset S of [0, 1]. If
S expands up to a countable, dense subset of [0, 1] containing 1, then

Mg X, = max|X,(s)| > MX,
S

for every sample path of X,,. The cadlag property assures us of this. (Notice
the special treatment demanded by 1.) Given any 6 > 0 and ¢ > 0, a large
enough S could be found to ensure that

1) P{|MsX, — MX,| > 0} <e

At first sight this seems to have solved the problem. Because M X, depends
continuously on 75X, it converges in distribution to MgX as n — co. For
f bounded and uniformly continuous, IPf(M;sX,) - IPf(MsX). From (1)
with J§ chosen appropriately,

|IPf(MsX,) — IPf(MX,)| <&+ 2| f]e

A similar inequality holds for X. Taken together, these seem to add up to
convergence in distribution of M X, to MX. But the argument is flawed.

The problem lies with the choice of S in (1). If the sample paths of X,
jumped about more and more wildly as nincreased, S would have to get bigger
with n. That would undermine the convergence of {MsX,} to MsX, since
finite-dimensional convergence says nothing about {ngX,} for S varying
with n. We need the same S to work for each n.

A similar argument can be invoked for any other continuous functional
H on D[0, 1]. We approximate HX, by a continuous function of ng X, for
some large, finite set S not depending on n. We construct the approximation
by applying H to an element As X, in D[0, 1]. For simplicity, suppose S has
been rearranged into increasing order and augmented by the points 0 and 1,
if necessary, to form a grid 0 = sy <s; <--- < s, = 1. For x in D[0, 1]
define the approximating path Agx by

2 (Asx)(t) = x(s;) for s; <t <,

and (45x)(1) = x(1). Notice that Agx depends on x only through 7gx.

In order that H(Asx) be close to Hx, it suffices that ||4sx — x| be small.
Consider, for example, a uniformly continuous H. There exists a 6 > 0 such
that |[H(Agx) — Hx| < e whenever |Agx — x|| < §; the random variable HX,
lies within & of H(Ag X ,) with probability no less than IP{||As X, — X,I| < 6}
Again, the same grid would have to work for every X,—or at least for every
X, with n large enough—to allow finite-dimensional convergence to imply
convergence in distribution of {45 X,} to A5 X. (The example of the empirical
process U,, whose sample paths have jumps of size n~ /2, shows that uniform
approximation of X, by AsX, can only be required for large values of n,
anyway.) If such a map Ay does exist, the argument sketched above for the
supremum functional M will carry over to the functional H, proving that
HX,~ HX. (The argument might seem familiar—it is a special case of
Example IV.11).
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For the sake of brevity, from now on shorten “finite-dimensional distri-
butions” to fidis and “finite-dimensional projections” to fidi projections.

3 Theorem. Let X, X, X,,... be random elements of D[0, 1] (under its
uniform metric and projection o-field). Suppose IP{X € C} = 1 for some separ-
able subset C of D[0, 1]. The necessary and sufficient conditions for {X,} to
converge in distribution to X are:

(1) the fidis of X, converge to the fidis of X; that is, ngX, ~ ngX for each
finite subset S of [0, 1];

(i) to each ¢ > 0 and 6 > O there corresponds a grid 0 =ty <t; <--- <t,=1
such that

€)) limsup IP{max sup | X () — X, ()| > 5} <g,

i Ji
where J; denotes the interval [t;, t;1 (), fori=0,1,...,m — 1.

PrOOF. Suppose that X, ~ X. The projection map ng is both projection-
measurable (by definition) and continuous. Condition (i) follows by the
Continuous Mapping Theorem.

To simplify the proof of (ii) suppose that the separable subset C equals
C[0, 1]. Continuity of the sample paths makes the choice of the grid in (ii)
easier. (Problem 4 outlines the extra arguments needed for the general case.)
Let {so, 51, ...} be a countable, dense subset of [0, 1]. To avoid trivialities,
assume that s, = 0 and s; = 1. Write A, for the interpolation map con-
structed as in (2) from the grid obtained by rearranging s,, ..., S into
increasing order. For fixed x in C[0, 1], the distance ||4,x — x| converges
to zero as k increases, by virtue of the uniform continuity of x. Applied to
the sample paths of X, this shows that |4, X — X|| - 0 almost surely.
Convergence in probability would be enough to assure the existence of
some k for which

(5) P{4.X — X| =} <«

Choose and fix such a k. Because || 4,x — x{| varies continuously with x, the
set

F = {xeD[0,1]: |[Axx — x|| = 6}
is closed. By Example 1V.17 (inequality IV.18 to be precise),
limsup IP{X,e F} < IP{X e F}.

The left-hand side bounds the limsup in (4). We could require “> 6~
rather than “ > 6” in (4), but that would create a minor complication in the
next lemma.

Now let us show that (i) and (ii) imply X, ~ X. Retain the assumption
that X has continuous sample paths (see Problem 4 for the general case),
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so that (5) still holds. Choose any bounded, uniformly continuous, projection-
measurable, real function f on D[0, 1]. Given & > 0 find ¢ > 0 such that
| f(x) — f(¥)| < & whenever ||x — y| < 6. Write Ay for the approximation
map constructed from the grid in (ii) corresponding to this § and &. Condition
(4) becomes

limsup IP{|4, X, — X,|| > 8} <=

With no loss of generality we may assume that the A4, of (5) equals Ay,
because if we combine the two underlying grids we have at worst to replace
0 by 26 to preserve the two approximations. For example, if t; < s; <t <t;;
then, whenever |4, X, — X, || <,

| XA(0) — Xu(s)] < [X(0) — Xt + [ X,(s)) — Xt < 26.

T T i T
4 s; t fiss

The argument now follows the lines sketched out before. Write the com-
position fo Ar as gomy where g is a bounded, continuous function on
D[0, 1]—a fancy way of saying that f(4;x) depends on x continuously
through the values that x takes at the grid points.

[Pf(X,) — IPf(X)]
< IP|f(X,) — f(Ar X,)| + [IPf (A7 X)) — IPf (A X)|
+ Pl f(4rX) — f(X)]
<&+ 2| fIP{IX, — Ar X, | > 0} + [Pg(nr X,) — Pg(nr X)|
+e+ 2| fIP{X — Ar X| > &}

The middle term in the last line converges to zero as n — oo, because of the
fidi convergence n; X, ~ s X. O

We now know the price we pay for wanting to make probability state-
ments about functionals that depend on the whole sample path of a stochastic
process: with high probability we need to rule out nasty behavior between the
grid points. For uniform approximation of sample paths, a large value
of | X, (t) — X,(t;))| would be nasty; inequality (4) rules it out. So how do we
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control the left-hand side of (4)? It involves the probability of a union of m
events, which we may bound by the sum of the probabilities of those events,

m—1
©) 2
i=0
Then we can concentrate on what happens in an interval J, between adjacent
grid points. For many stochastic processes, good behavior of the increment
X(ti+1) — X,(t;) forces good behavior for the whole segment of sample
path over J;.

IP{SUP 1 Xu(1) — X,(t)] > 5}.
Ji

7 Lemma. Let {Z(t):0 <t < b} be a process with cadlag sample paths

taking the value zero at t = 0. Suppose Z(t) is &,-measurable, for some in-

creasing family of o-fields {€,: 0 < t < b}. If at each point of {|Z(t)| > o},
IP{|Z(b) — Z()| < 31Z(1)|| 6.} = B,

where f is a positive number depending only on 6, then

]P{ sup |1Z(@®)| > 5} < B7UP{|Z(b)| > 16}.
o<t<h
PROOF. Let S be a finite subset of [0, b] containing the point b. By virtue of
right continuity, as S expands up to a countable, dense subset of [0, b],
max|Z(t)| - sup|Z(z)| for every sample path of Z.
N {0,b]

Notice the minor complication here if “ > §” were replaced by “ > §”. It is
good enough to establish the inequality with the supremum taken over S.

Define 7 as the first point of S for which |Z(¢)] > § if there is such a ¢,
otherwise set © = oo. The event {t = ¢} belongs to &,. For distinct points ¢
and ¢ in S the events {t = ¢} and {tr = ¢’} are disjoint. This justifies a first-
passage decomposition.

IP{msalx|Z(t)l > 5} =Y Pi=y
<p! ;IP[{T = tIP{|Z(b) — Z®)| < 31Z(1)||€,}]
= ﬁ_lg IP{z = 1,{Z(b) — Z(1)| < 31Z(1)|}
<p %llP{f = 1,|Z(b)| > 34}

< B7IP{| Z(b)| > 16} O

For the lemma to help us we need to know something about the condi-
tional distribution of Z(b) — Z(t) given what has happened up to time .
When do we have such information? Here are some possibilities. The
distribution of the increment might not depend on the past at all—the
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process might have independent increments. In that case the requirement
imposed by the lemma reduces to something involving the marginal
distributions of the increments. Or the distribution of Z(b) — Z(t) might
depend on the past only through the value of Z(t)—the markov property.
In that case the requirement turns into a condition on the transition proba-
bilities. Or Z(b) — Z(t) might merely have zero conditional expectation—the
martingale property. And then we have all those clever stopping time and
maximal inequality tricks to play with.

In each of these cases it turns out to be quite easy to find sufficient condi-
tions for strengthening fidi convergence to the full convergence in distribution
of the processes as random elements of D[0, 1]. Sections 4 and 2 illustrate
the first two possibilities; Chapter VIII will play tricks with martingales. In
each case the limit process will be either a brownian bridge, a brownian
motion, or a close relative.

8 Definition. A brownian motion is a process with continuous sample

paths and

1) B(0) = 0;

(ii) for 0 < t, < --- < t, the increments B(t,) — B(ty), ..., B(ty) — B(tx—1)
are mutually independent; each B(t;) — B(f;—;) has a N(0,¢; — t;_4)
distribution.

A brownian bridge, or tied-down brownian motion, is a process on [0, 1]
with continuous sample paths and

(i) U@©) = U() = 0;

(ii) for each finite subset S of [0, 1] the random vector 7gU has a multi-

variate normal distribution with zero means and covariances given by
IPU(SYU@®) = s(1 — t)fors <t O

The name tied-down brownian motion comes from one method for
constructing a random element distributed like U. Apply to B the continuous
transformation that takes the function x(t) onto the function x(¢) — tx(1).
That is, tie down the loose end of B at t = 1 to force upon it the constraint
(i) placed on U. The tied-down process has gaussian fidi projections whose
means and covariances agree with those for the brownian bridge; the pro-
cesses generate the same distribution on the projection o-field.

V.2. Empirical Processes

From a sequence {&;} of independent random variables, each having a
Uniform(0, 1) distribution, construct the empirical process

Uf)=n"12 i[{éi <t} -1t} for 0<t<l
i=1

1
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For fixed finite S, the projection ngU, is a normed sum of independent,
identically distributed random vectors. By the Multivariate Central Limit
Theorem (II1.30) it converges to a zero-mean multivariate normal distribu-
tion with the same covariance structure as the brownian bridge; that is, the
fidis of U,; converge to the fidis of U. (No accident of course—that’s why U
got the covariances it did.) By design, the first condition of Theorem 3 is
satisfied. A markov property of U, will strengthen this to convergence in
distribution.

9 Empirical Central Limit Theorem (Uniform Case). The empirical processes
{U,} constructed by independent sampling from Uniform(0, 1) converge in
distribution, as random elements of D[0, 1], to the brownian bridge.

PrOOF. We need to find a grid 0 =1, <, <--- <t, = 1 satisfying (4),
for fixed ¢ and 6. Do this by making the sum in (6), with X, replaced by U,,,
small. Take the {t;} equally spaced. By reasons of symmetry, or stationarity
if you prefer, the sum reduces to mIP{supg ., |U,(t)} > 8}, where b = m™ 1,
We seek an m that makes it less than &.

Take &, as the o-field generated by U (s) for 0 < s < ¢. 1t tells us how many
of the observations &, ..., &, have landed in [0, ¢], and where they lie.

Suppose we know that [0, ¢] contains exactly k of the observations.
Given this information, the other n — k observations distribute themselves
uniformly in the interval (¢, 1]. Formally, on {Ut) = n~'*(k — nt)} the
conditional distribution of U,(b) — U,(¢) given &, is

n~Y2[Bin(n — k, ) — n(b — 1)},

where 8 = (b — 1)/(1 — t). Notice the markov property: the conditional
distribution depends only on U,(t). Apply Tchebychev’s inequality on the
set where | U ()] > §, that is, where |k — nt| > n'/25.

P{{U(b) — U, 0| > 31U0)|63
— IP{|Bin(n — k, 6) — n(b — )] > 3|k — nt]}
< 4[(n — KO — 6) + [(n — KO — n(b — 017 /(k — nt)?
< 4nb/(k — nt)* + 46*
< [4b/(1 — BY]/62 + 4b%/(1 — b)?
<1 for small enough values of b.

Notice that the argument would break down if we replaced 3| U,(t)| by 4o
in the first line. Apply Lemma 7 with = 4 and m large enough.

mIP{ sup |U0)] > 5} < 2mIP{|U (b)| > 15).
0<t<b

With m fixed, let n — oo. Invoke fidi convergence to make the right-hand
side of the inequality converge to

2mIP{|N(0, b — b*)| > 36} < 2m[(b — b*)*(3) ™ *1P|N(0, DI*
< 32m” 6 T4IPIN(O, 1)},
which is less than ¢ for m large enough. O
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The restriction to samples from the uniform distribution was unnecessary.
A similar result holds for the empirical process

Er) = n'P[For) — FO = n'2 Y, [ini < r} — FOL,
i=1

constructed by independent sampling from any distribution function F on
the real line. Think of E, as a random element of D[ — o0, o], the space of
cadlag functions on [ — oo, o0]. Right continuity at — oo can be achieved by
setting E,(— o0) equal to zero; the left limit at +co also equals zero, the
natural value for E (+ c0).

It would cause us no great hardship to carry all the theory for D[0, 1]
over to D[ — oo, oo] then track through the proof of the general Empirical
Central Limit Theorem. The uniform metric is well-defined, because of the
boundedness (Problem 6) of functions in D[ — oo, o0]; the projection o-field
plays the same role as in D[O0, 1]. This time the limit gaussian process E
would have sample paths in D[ — co, 0] and multivariate normal fidis with
zero means and covariance kernel

(10) IPE(r)E(s) = F(r) — F(r)F(s) for r <s.

The E process need not have continuous sample paths; it jumps where F
jumps.

Some small complications would arise with the choice of grid points for
the general empirical process, but these could be overcome easily (Problem
7). Everything else would go through in much the same way as for the
uniform distribution. There is, however, a much simpler way to prove the
general Empirical Central Limit Theorem: use the quantile transformation
(Section I11.6) to represent E, as a continuous image of U,,.

11 Empirical Central Limit Theorem. The empirical processes {E,} con-
structed by independent sampling from a distribution function F converge in
distribution, as random elements of D[ — oo, o0], to the gaussian process E with
covariance kernel given by (10).

ProOF. Define a map H from D[0, 1] into D[ — o0, c0] by setting (Hx)(r) =
x(F(r)). It is measurable (both spaces are equipped with their projection
g-fields) and uniformly continuous:

[Hx — Hy| = sup |x(F(r)) — yF()I < lIx — yl.
By the uniform case of the Empirical Central Limit Theorem and the Con-
tinuous Mapping Theorem, HU, ~ HU. Remember from Section IIL6 that
the quantile function has the property: & < F(r) if and only if Q(&;) < r.

(HU)0) =07 Y [(E < FO) — FO))

— w2 YOG < 1) — FO)
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The random variables {Q(£)} form an independent sample from the distri-
bution F; the last sum has the same distribution as E,. You can complete the
proof by checking that HU satisfies the defining requirements for E. (This
provides one method for proving the existence of E.) J

Even though the quantile transformation worked like a charm here, you
should beware of applying it unnecessarily to force processes that want to
live in D[ o0, 0] into migrating to D[0, 1]. Gratuitous rescaling of the
time axis, perhaps with the aim of reducing a problem to a case involving
only uniformly distributed random variables, can complicate an otherwise
straightforward argument.

12 Example. The Central Limit Theorem for the sample median, proved by
direct methods in Section I11.4, can be deduced from the Empirical Central
Limit Theorem. As before, assume that the sampling distribution F has a
continuous, positive density f in a neighborhood of its median m.

To finesse the problems caused by the jumps in the empirical distribution
function F,, regard any random variable m, for which

Fym,) =3 + o,(n" 1%
as a sample median. From the condition on f,
Ft) =%+ @ — m[f(m) + o(1)].
Because m, must converge to m (Example I1.1), we deduce that
F(m,) = 3 + (m, — m[f(m) + o, (D)].
Combine the expressions for F,(m,) and F(m,) to get
Emy) = —n'*(m, — m)[f(m) + 0,(DT + 0,(1),

which rearranges to
(13) n'2(m, — m) = [—E,(m,) — 0,(DI/Lf(m) + 0,()].

Think of the right-hand side as a function of the four random elements E,,,
m,, 0,(1), and o,(1). (Perhaps we should distinguish between the two o0,(1)
symbols—they stand for different variables.) Better still, think of it as a
function of the random element (E,, m,, 0,(1), 0,(1)) of D[ — 0, 0] ® R3.
Since (m,, 0,(1), 0,(1)) = (m,0,0) in probability and E, ~ E, and since
Problem 8 shows that E concentrates on a separable subset of D[ — o0, o0],
Example IV.10 lets us deduce that

(14) (Ey, my, 0,(1), 0,(1)) ~ (E, m, 0, 0).

The right-hand side of (13) can be constructed from the left-hand side of (14)
through application of the map H from D[ — oo, 00] ® IR? into IR defined by

H(x, o, B, y) = [—x() — BY/Lf(m) + 7).
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H is continuous at (x, m, 0, 0) for every x that has m as a point of continuity.
Almost every sample path of E has this property because, as shown by the
representation of E given in the proof of Theorem 11, each such sample path
can be written in the form u o F, where u belongs to C[0, 1]. (Don’t forget
that F is continuous at m.) Call out the Continuous Mapping Theorem.

n'*(m, — m) = H(E,, m,, 0,(1), 0,(1))
~ H(E, m, 0, 0)
= —E(m)/f(m),
which has the desired N(O, 1 f(m)~?) distribution. O

15 Example. What happens to the limit distribution of Kolmogorov’s
goodness-of-fit statistic when parameters are estimated? That is, if F, is
obtained by independent sampling on the distribution function F(-, 8,),
with 8, the true value of an unknown parameter 6, what is the asymptotic
behavior of the statistic

Dn = n1/2 sup an(t) - F(ta en)l
t

constructed using an estimator 6, for 6?

Suppose F were uniformly differentiable, in the strong sense (Problem 9)
that

1F(-, 8) = F(-, 80) — (0 — 00)AC)| = 0(6 — 6o), near b,

for some fixed function A(-) in D[ — o0, oo]. Then, provided 8, were one. of
those nice estimators that converge in towards 6, at the O, (n”~ 172y rate, D,
could be written as

D, = n'2|F,(-) = F(-, 60) = (8, — 00)AC)| + 0,(n"'*(8, — 6,))
= [IE, — n'(6, — o)Al + 0,(1).

We know how E, behaves for large n—like the gaussian process E—but what
will be the effect of adding on the extra term n'/*(6, — 6,)A? That depends
upon the joint distribution of E, and 6,.

According to the statistical folklore, good estimators can often be coerced
into the form

0, =00 +n"1 Y L) + o (n"1?)
i=1

for some function L satisfying IPL(y;) = 0 and IPL(5,)® = 0% < 0. Let’s
assume that our estimator has such a representation. That makes it much
easier to analyze the random elements Z, = (E,, n*%(8, — 0,)) of
D[~ 0, 00] ® R. Look at the fidis. Write (E,(t,), ..., E,(ty), n'/*(6, — 0,))
as

n12 2,1 ({n; < t1} = F(t, 00), - .., {m: < tx} — F(ty, 00), L(n)) + 0,(1).

13
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The Multivariate Central Limit Theorem gives convergence in distribution
to a zero mean multivariate normal random vector (E(ty), ..., E(t), 1),
where the covariances amongst the first k components follow (10) and
PE(t)y = IP{y,; < t}L(n,). That suggests a limit process (E, y) for Z,,, with E
and y having a sort of gaussian distribution in D — w0, 0] ® R.

We actually already have all the tools needed to formalize the limit result
for Z,. All that maximal inequality and finite-dimensional approximation
stuff goes through as for the Empirical Central Limit Theorems; most of the
brain work has been carried out, and only very messy details remain. But
that would be terribly inelegant. Why not wait for the neater proof in Section
VILS5, and just accept the fidi proof as sufficient evidence in the meantime?
Elegance will return when the functions {; < ¢t} and L(#;) are accorded
equal status.

Check continuity and measurability for the map from D[ — o0, 0] @ R
into IR that sends (x, r) onto ||x(-) — rA(-)|, then bring out the Continuous
Mapping Theorem, yet again, to deduce that D, ~ D = [E(-) — yA(-)|.
The parameter estimation propagates through to the limit to add a random
drift term yA(-) onto the gaussian process E(-). If only we could calculate the
distribution of D then we would have solved the problem completely.
Problem 10 looks at a special case to show what difficulties this can present.

Try reworking the example with all the processes in Df — oo, co] rescaled
using F(-, 8,) if you want to discover some of the perils of too automatic a
recourse to the quantile transformation. ]

V.3. Existence of Brownian Bridge and
Brownian Motion

This section proves the existence of gaussian processes satisfying the re-
quirements of Definition 8. The proof uses the Compactness Theorem from
Section IV.5. This is neither the simplest nor the fastest method known to
mankind; but it will generalize readily into an existence proof for more
exotic gaussian processes. Any reader who found Section IV.5 too tedious
could safely skip onto the next section, with perhaps just a quick look at
Problem 11.

A good way to construct a process is to set up a sequence of approxima-
tions that should converge to the process, if it exists. One then needs to show
that the approximating sequence, or one of its subsequences, actually does
converge to something. One hopes this something has all the required
properties of the desired process.

We have not yet considered any sequence of processes that should con-
verge to a brownian motion, but in the uniform empirical processes {U,}
we do have a sequence converging to a close relative, the brownian bridge.
Let us extract a brownian bridge as the limit of a convergent subsequence.
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16 Theorem. There exists a brownian bridge.

Proor. Check the uniform tightness condition in the Compactness Theorem
of Section IV.5. We need to find a compact subset K of D[0, 1] for which

amn liminf IP{U,€ G} > 1 — ¢,

whenever G is an open, projection-measurable set containing K. To force
the brownian bridge to live in C[0, 1], we shall also want K to contain only
continuous functions.

Our K will be represented as the intersection of a sequence of closed sets
{D,}, with D, a finite union of closed balls of radius 2/k (any sequence of radii
decreasing to zero would suffice). As the digression after the start of Section
1V.5 pointed out, such a K is compact: it inherits completeness from D[0, 1]
and, by the choice of {D,}, it is certainly totally bounded.

The closed balls making up each D, center themselves on piecewise
linear, continuous functions obtained by linear interpolation between a
finite set of vertices (0, rq), ..., (¢, Fio - -+ » (1, 70):

/'(tis ri)

4 4 L 4 4
L T T t T 1

— ; !

With T standing for the grid 0 =ty < --- < t,, = 1, write L for the map
from IRT to C[0, 1] that takes the vector r = (r, ..., F,) onto this inter-
polated function. The map satisfies a Lipschitz condition,
(18) IL7(r) — Ly(s)ll < max|r; — s;].
The composition Ly o ny defines a map from D[0, 1] into C[0, 1], a piecewise
linear, continuous approximation map for which

Ly mr(x) — x|l < 2 max sup | x(£) — x(t;)],

i Ji

where J; = [t;, t;+1). The right-hand side should look familiar. It is the

functional of x, call it hp(x), that lurks behind the convergence criterion of
Theorem 3.

l Lyo nT(X)\,

o
—
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For given § > Oand ¢ > 0, the proof of Theorem 9 came up with a grid T
for which

limsup P{hp(U,) > 8} < e.
You should convince yourself that it was unnecessary to assume the existence
of the brownian bridge process to get this inequality. Reinterpret it as a

statement of how well U, can be approximated by linear interpolation:
given ¢ and ¢ there exists a grid T for which

limsup IP{[| Ly o n7(U,) — U,| > 8} < &.

Why are there no measurability difficulties here?
Now come back to the task of specifying the closed balls for the D, sets.
For each k choose a grid T(k) such that

liminf P{||Lygy © Troo(Un) — Unll < 1k} > 1 — g/2k* 1,

Because the random vectors {n4,(U,)} converge in distribution, there exists
a compact subset H of RT® such that

liminf P{nyg U, € Hy} > 1 — g/2¢*!
hence
hmlnf IP{LT(k) °© nT(k)(Un) € LT(k)(Hk)} >1 - 8/2k+ 1.

As a continuous image of a compact set, Ly, (H,) is compact, and so can
be covered by a finite collection of closed balls with radius 1/k. Set D, equal
to the union of the finite collection of closed balls with the same centers,
but radius 2/k.

The larger radius allows for a 1/k distance between U, and its linearly
interpolated approximation Ly, o 7ty (U,):

liminf IP{U,e D,} > 1 — ¢/2* for every k.
The ¢/2* was contrived so that
liminf P{U,eD; n---nD,} > 1 —¢ foreveryk.

Of course we cannot just let k tend to infinity now and hope to replace the
finite intersections by their limit K. We really do need that open set G in the
definition of uniform tightness.

Inequality (17) will follow from what we have proved about the {D,} if
we show that G =2 D, n---n D, for some k. If there were no such k, we
could choose an x; from each closed set F, = G~ D; n--- n D,. As shown
in the next paragraph, we could then apply Cantor’s diagonalization argu-
ment to extract a Cauchy subsequence from {x,}. The limit of the Cauchy
subsequence (remember that D[0, 1] is complete) would belong to F, for
every k, an impossibility because

NF,=GnK=0.
k

The existence of the desired k would follow.
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Here is how we would construct the Cauchy subsequence. D, is a finite
union of closed balls of radius 2; some subsequence of {x,} would lie com-
pletely within one of these, B; say. B, n D, would be contained in a finite
union of closed balls of radius 1; some sub-subsequence would lie completely
within B; n B,, with B, a closed ball of radius 1. B; n B, n D; would be
contained in a finite union of closed balls of radius %; a sub-sub-subsequence
would lie within B; n B, N B;, with B; a closed ball of radius 2. And so on.
The desired Cauchy sequence would take the first element of the first sub-
sequence, the second element of the sub-subsequence, the third element of the
sub-sub-subsequence, and so on.

Every function in K is continuous, a uniform limit of piecewise linear,
continuous functions from the sets Ly, (H,).

By the Compactness Theorem, some subsequence of the uniformly tight
{U,} converges in distribution to a probability measure concentrating on a
countable union of compact subsets of C[0, 1]. Its fidis, the limits of the
corresponding empirical process fidis, identify it as the distribution of the
sought-after brownian bridge. O

There are two ways of constructing brownian motion from the brownian
bridge U. One can either set

Bi())=U@®)+tZ for 0<t<1,

where Z has a N(0, 1) distribution independent of U, or one can rescale by
setting

B,t)=(1 + t)U(ﬁ—;) for 0<t< c0.

In both cases one gets a gaussian process with continuous sample paths.
Direct calculation of means and covariances, which uniquely determine
multivariate normal distributions, shows that B, has the right fidis to identify
it as a brownian motion on [0, 1] and B, has the right fidis for brownian
motion on [0, o).

V.4. Processes with Independent Increments

A stochastic process Z indexed by an interval of the real line is said to have
independent increments if Z(to), Z(t;) — Z(ty), ..., Z(t,) — Z(ty,_,) are
mutually independent whenever t, < t; < --- < 1,. For random elements
{X,} of D[0, 1] with independent increments satisfying a mild regularity
condition, the criterion for convergence in distribution given in Theorem
3 reduces to a particularly simple form when the limit process has continuous
sample paths. Essentially we have only to check convergence for each
increment X (1) — X (s). Just one thing can spoil the nice clean charac-
terization. Because the increments would be unchanged by the addition of an
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arbitrary constant to X, they surely cannot determine uniquely its finite-
dimensional distributions; X,(0) must be specified.

19 Theorem. Letr X, X, X5, ... be random elements of D[O, 1], each with
independent increments. Suppose X has continuous sample paths. Then X,, ~ X
if and only if :

(i) X,(0) ~ X(0);
(1) for each pair s < t, the increment X (t) — X ,(s) converges in distribution
to X(t) — X(s);
(ii1) given 6 > O there exist o >0 and B > 0 and an integer n, such that
IP{| X (t) — X ()| <36} = B whenever [t — s| < aand n > n,.

Proor. Forgive the mysterious factor of 4 in (iii); it’s there to make the
notation fit better with Lemma 7.

Suppose X, ~ X. Conditions (i) and (ii) follow from convergence of the
fidis. Condition (iii) is a simple consequence of the Continuous Mapping
Theorem applied to the continuous map from D[0, 1] into R defined by

H,x = sup{|x(t) — x(s)|: |t — s| < a}.

(Take the supremum over rational pairs to check measurability.) At each
continuous x the supremum converges to zero as « — 0, because continuity
on a compact interval implies uniform continuity. As this applies to every
sample path of X, there must exist an « >0 and B> 0 such that
IP{H,X < 36} = 2p. Because H,X, ~ H,X and because (— oo, 16) is open,

liminf IP{H X, < 6} > 28

by authority of Example IV.17. For all n large enough,
P{| X,(t) — X,(s)| <30} = P{H X, < }5} > B,

whenever |t — s| < a.

Now let us show that the two requirements listed in Theorem 3 follow
from conditions (i), (ii), and (iii). Choose 0 = s, < 5; < --- < s,. The joint
characteristic function of the random vector

(Xn(SO): Xn(sl) - Xn(SO)5 e Xn(sk) - Xn(sk— 1))

factorizes into a product of one-dimensional characteristic functions,
because X, has independent increments. By (i) and (ii), the product converges
to the corresponding product for X, the joint characteristic function of the
random vector

(X (0} X(s1) — X(s0), - - -» X(si) — X(sp-1)-

With a continuous (linear, even) transformation, recover the desired fidi
convergence.

For the second requirement of Theorem 3tryagrid 0 = £, < --- < t,, =1
for which max(t;,; — t;) <y < a, with « as given by (iii). The value of y
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will be specified at the end of the proof. Fix for the moment a value of n
greater than n,. Write &, for the o-field generated by {X,(s): s < t}. Suppose
; <t < t;4+. Then, on the set {| X,(t) — X, (t,)| > 6},

IP{|Xn(ti+1) - Xn(t)| < %[Xn(t) - Xn(ti)l Iéat}
> IP{]| X,(ti+ 1) — X, ()] < 36}
> B
Apply Lemma 7 to the process X,(-) — X,(t;) on each interval J; = [t;, t;1,).

limsup IP{max sup | X,(t) — X, (t)| > 5}
S 2
m—1

< limsup )

i=0

IP{Sup IXn(t) - Xn(ti)l > 5}
Ji
m—1

<p! Z limsup IP{| X, (t;+,) — X(t;)] > 6}
i=0

1

which is less than
m—1
gt Z P{|X(t;41) — X(@)| = 36}
i=0

because (X,(t;+1), Xu(t) ~ (X(t;+1), X(2))) and {(u, v) e R?: |u — v| > 35}

is closed. Write E,, ..., E, _, for the independent events appearing in the
last summation. From the inequality exp(—IPE;) > 1 — IPE, deduce that
m—1

IPE; < —logIP () E§
i=0 i

1

= —log<1 —IP UE)

—log(1 — IP{H,X > 36}) because max(t;+; — t;) < 7.

IA

Argue as before that H,X | 0 for each sample path, as y | 0, to see that y
could have been chosen to make the logarithmic expression less than fe.  [J

Notice how we used the sample path continuity of the limit process X.
The argument would break down if X were allowed to grow by jumps. For
example, if X were a poisson process, with X(¢) — X(r;_,) distributed
Poisson(A(t; — t;-,)), the sum would not decrease as y tended to zero:

¥ (X5 = X@)| 235} = Y ey — 1)+ oty — 1))
Fom i=0

= A+ o(l).

The uniform metric is inappropriate for such an X. A better metric, which
can tolerate a jumpy limit process, will be introduced in Chapter V1.
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Theorem 19 really only says something about convergence in distribution
to gaussian limit processes. If X(0) has a normal distribution, the combina-
tion of independent increments and continuous sample paths forces X to be
a rescaled and recentered brownian motion (the gaussian process described
in Definition 8). An approximation argument shows why. Because H LX)=0
almost surely as y — 0, there exists a sequence {¢,} with ¢, |0 and
IP{H,,(X) > ¢,} = 0. Set &,; = X ,(i/n) — X,((i — 1)/n). Define step-func-
tion approximations to X by

X,0 = XO + Y lin < ullend < o

Whenever H,,(X) < ¢,, the X, process lies uniformly within ¢, of X. Thus
[ X, — X]| — 0in probability.

Fix t. Write o2 for the variance of the sum appearing in the definition of
X,(t), and a, for its expectation. If o, — 0, then X,(t) = X(0) + a, + 0,(1)
from which we get X(t) — X(0) = constant, a degenerate sort of normality.
If, on the other hand, {s,} does not tend to zero, then, along some subse-
quence, (X,(t) — X(0) — a,)/a, ~ N(0, 1) by the Lindeberg Central Limit
Theorem. (Necessarily ¢,/0, — 0 along any subsequence for which o, is
bounded away from zero.) Convergence of types (Breiman 1968, Section 8.8)
allows nothing but normality for the distribution of X(rf) — X(0). A similar
argument works for any other increment of X.

Even with the gloss of apparent generality rubbed off the limit distribution,
Theorem 19 still has enough content to handle some non-classical problems
about sums of independent random variables.

20 Example. Let {,;:i=1,...,k(n);n = 1, 2,...} be a triangular array of
random variables satisfying the conditions of the Lindeberg Central Limit
Theorem. That is, they are independent within each row, they have zero
means, they have variances {¢2} that sum to one within each row, and

1) 2P = 8} =0

for each fixed ¢ > 0. Set S, = &,y + --- + &,;. What is the asymptotic
behavior of a random variable such as max; S,;? We may write it as a func-
tional of the partial-sum process S,(-), the random element of D[0, 1]
defined by

S{t)=S, for varS, <t<varS, ..

The curious choice for the location of the jumps of S,(-) has the virtue that
var S,(t) - tasn — oo, for each fixed ¢, because max; g2 — 0. The increments
of S,(-) over disjoint subintervals of [0, 1] are sums over disjoint groups of
the {{,;}; the process has independent increments. If we joined up the
vertices, to produce an interpolated partial-sum process with sample paths
in C[0, 1], we would destroy this property.
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For fixed s and ¢, with s less than ¢, the increment S,(t) — S,(s) is also a
sum of the elements in a triangular array of independent random variables.
Because

var[S,(t) — S, (s)] = ¢t — s

and because (21) also holds for summation over any subset of the {&,,;}, the
Lindeberg Central Limit Theorem makes S,(t) — S,(s) converge to a
N(O,t — s5) distribution—one of the conditions we need to make S,(-)
converge in distribution to a brownian motion.

What about condition (iii) of Theorem 19? Tchebychev’s inequality
is good enough.

IP{[S,(t) — S,(s)] < 33} = 1 — var[S,(t) — S,(s)]/(36)*
-1 — (t — 9)/(36)%,
uniformly in ¢ and s. You can figure out what « should be from this.
Only our ingenuity in thinking up functionals that are continuous at the

sample paths of brownian motion can curtail our supply of limit theorems
for the partial sums. One example:

max S,; = sup S,(t) ~ sup B(t).
i t t

Calculation of the limit distribution in closed form awaits us in Section 6,
where this and several other functionals of brownian motion and brownian
bridge will be examined. [

V.5. Infinite Time Scales

Both the spaces D[0, 1] and D[ — oo, c0] have compact intervals of the
extended real line as their index sets; the theories for convergence in distri-
bution of random elements of these spaces differ only superficially. For spaces
with non-compact index sets some extra complications arise. As a typical
example, consider D[0, ), the set of all real-valued cadlag functions on
{0, o0).

A function x in D[0, co) must be right-continuous at each point of [0, o),
with a finite left limit existing at each point of (0, o0). Because the limit point
+ 00 does not belong to the index set, no constraint is placed on the behavior
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of x(t) as t — o0} it could diverge or oscillate about in any fashion. Such a
function need not be bounded. The uniform distance between two functions
in D[0, co) might be infinite.

Even for bounded random elements of D[0, <o), convergence in distribu-
tion in the sense of the uniform metric may impose far stronger requirements
on their tail behavior (that is, on what happens as t — co0) than we can hope to
verify. Sometimes the best we can try for is control over large compact sub-
intervals of [0, co). That corresponds to convergence in the sense of the
metric for uniform convergence on compacta.

22 Definition. A sequence of functions {x,} in D[0, c0) converges uniformly
on compacta to a function x if sup, ., | x,(t) — x(t)| = 0 as n — oo for each
fixed k. Equivalently, d(x,, x) — 0, where

d(xn: X) = Z 2_k min[L dk(xn7 x)]
k=1

dk(xnv x) = Suplxn(t) - X(I)I. D

t<k

In all that follows, D[0, oo) will be equipped with the metric d and the
projection o-field. With that combination, each x in D[0, o0) is completely
regular (Problem 12).

For each k define a truncation map L, from D[0, «) into D[0, k]; set
L, x equal to the restriction of x to the interval [0, k]. By construction, {x,}
converges to x if and only if {L,x,} converges uniformly to L, x for each k.
Convergence in distribution has a similar characterization.

23 Theorem. Let X, X |, X 5, ...berandom elements of D[0, ), withIP{X € C}
Jfor some separable set C. Then X,, ~ X if and only if L, X, ~ L, X, as random
elements of D[O, k], for each fixed k.

Proor. Necessity of the condition follows from the Continuous Mapping
Theorem, because each L, is both continuous and measurable.

For sufficiency, define a continuous, measurable map H, from D[0, k]
into D[0, co) by (H, z)(t) = z(t A k). It comes as close as possible to defining
an inverse to the map L,: the function H, o L, x equals x on [0, k]. Deduce
that d(x, H, o L, x) < 27 * for every x in D[0, o).

Suppose L, X, ~ L, X. Because H, is continuous, H, o L, X, ~ H, o L, X.
Pick k large enough to make 27* < & Then both IP{d(X,, H, > L, X,) > ¢}
and IP{d(X, H, - L, X) > ¢} equal zero. Example IV.11, with H, - L, playing
the role of the approximation map, does the rest. d

Typically C equals C[0, o), the set of all continuous functions in D[0, c0).
As in the case of compact time intervals, C[0, o) sits inside D[0, o0) as a
closed, separable, measurable subset (Problem 13). The borel o-field on
C[0, o0), generated by the open sets for the d metric, coincides with the
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projection o-field. The most important of the limit processes living in
C[0, ) is brownian motion on [0, o).

24 Example. Let S, denote the nth partial sum of a sequence €1, &gy 00 Of
independent, identically distributed random variables for which IP¢, = 0
and IP&? = 1. What is the asymptotic behavior of the hitting time

7, = inf{j: n7125; > 1}

as n tends to infinity? Define Hx = inf{t > 0: x(t) > 1}, with the usual
convention that the empty set has infimum + oo. Right continuity of functions
in D[0, co) allows us to take the infimum over rational ¢ values to verify
measurability of H. Express n~ 'z, as the functional HX, of the process

X () =n""2S;,  jmn<t<(+ D

Use Theorem 23 to check that X, ~ B, a brownian motion on [0, o).
For fixed k, the truncated process L, X, has the same form as the partial-sum
process of Example 20, but stretched out and rescaled to fit the interval
[0, k] instead of [0, 1]. The modifications have little effect on the arguments
adduced there to prove convergence to brownian motion; exactly the same
idea works in D[0, k].

If we are to use the Continuous Mapping Theorem to prove HX, ~ HB
we will need H continuous at almost all sample paths of B. By itself, continuity
of a sample path x will not suffice for continuity of H at x. You can construct
sequences of functions {x,} that converge uniformly to a bad continuous x
without having Hx, converging to Hx.

BAD: /
- 1

Hx

The functional H has better success with a good path like this:
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Here Hx = ©. If x(t) < 1 — ¢ for t < t — § (a continuous function achieves
its maximum on a compact interval) and x(t + &) > 1 + ¢, then any
y in D[0, o) with d,, (x, y) < & must satisfy 1 — 6 < Hy < 7 + 6. That
brownian motion has only good sample paths, almost surely, can best
be shown by arguments based on a strong markov property, a topic to be
taken up in the next section. The distribution of the functional HB of brown-
ian motion will also be derived in that section. For the moment, we must
content ourselves with knowing that n™ 'z, has a limiting distribution that
we could calculate if we were better acquainted with the limit process of the
sequence {X,}. O

V.6. Functionals of Brownian Motion and
Brownian Bridge

From the definition of brownian motion on [0, co) it is easy to deduce
(Problem 14), for each fixed 1, that the shifted process

B()=B(zr+1t)—B(x) for 0<t<

is a new brownian motion, independent of the o-field &, generated by the
random variables {B(s): 0 < s < t}. Equivalently,

(25) IPf(B)A = IPf(B)IPA
for every A in &, and every bounded measurable f on C[0, ).
B,

B A

new origin for B,

IV A — !

The assertion is also valid for a wide class of random t values. The precisely
formulated generalization, known as the strong markov property, underlies
most of the clever tricks one can perform with brownian motion. It will get
us the distributions of a few interesting functionals.

The random variable t will need to be a stopping time, that is, a random
variable, taking values in [0, co0], for which {r < t} belongs to &, for each t.
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Interpret &, as the smallest g-field containing every &,—we learn everything
about the brownian motion if we watch it forever. Define

B(w, t) = [B(w, t + H(w)) — B(w, H(w)){t1(w) < o}.

Problem 17 shows that B, is projection-measurable, as a map from Q into
C[0, o0).

The stopping time t determines a o-field &, which captures the intuitive
idea of an event being observable before time 7. By definition, an event A
belongs to &, if and only if A{r < ¢} belongs to &, for every t. The strong
markov property asserts that B, is a brownian motion independent of &, on
{tr < «}. Equivalently, (25) holds for every & -measurable A contained in
{t < ©} and every bounded, measurable f on C[0, «0). To prove the
assertion it suffices that we check the equality for each bounded, uniformly
continuous f. (Apply Problem 15 to the distributions induced on C[0, o)
by B, under IP, and B,, under IP(-| 4).) With such an f, continuity of sample
paths implies

f(B)A =lim Y f(BywA{(k — 1)/n <t < k/n}.
k=1
Of course only one term in the sum will be non-zero for each fixed n.

B

0o Vv

The event A{(k — 1)/n < v < k/n} belongs to &,,; the independence
asserted in (25) can be invoked for each k/n value.

Pf(B)A = lim i IPf (By)A{(k — 1)/n <t < kjn}
k=1

= lim f IPf(B)IPA{(k — 1)/n <t < k/n} by (25)
k=1

= IPf(B)IPA because t < oo on A.

The strong markov property is established.
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26 Example. The classical reflection principle for brownian motion involves
a hidden appeal to the strong markov property. It enables us to find the
distribution of the stopping time t = inf{t: B(t) = o} for fixed o > 0.

The reflection principle uses the symmetry of brownian motion—the
processes B, and — B, have the same distribution—to argue that B should
be just as likely to hit « and end up with B(z) > « as it is to hit « and end up
with B(t) < . The probability that B hits « before time ¢ should be twice
the probability that B(t) > a. A formal proof works backwards.

IP{B(t) > o} = IP{B(t) > o, T < t}
=IP{B(t) + Bt — 1) >a,1 <1t}
=IP{B(t —1)>0,7 <t} because B(r) =aift < w0
= IP[{r < }IP{B,(t — 7) > 0|&}].
Because 7 is & -measurable it can be treated as a constant inside the condi-
tional probability. (A slightly more formal justification would invoke

Fubini’s theorem.) On {t < ¢}, symmetry of the normal distribution allows
us to replace the conditional probability by 1, and then deduce

IP{B(t) > o} = 3IP{r < t}.

An explicit expression for IP{t <} can be found by using the N(O, t)
distribution for B(r).

For our later purposes it will be more important that we know the Laplace
transform L,(A) = IP exp(— A1) for A > 0. Two applications of Fubini’s
theorem, then a differentiation, will lead to a simple differential equation
for L,.

L) =1P f{‘r <t< ole Hdr

= f le MIP{t < t} dt
0

- f Ae=H2IP{N(0, £) > o} dt
4]
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=1P fle_lt{t > a?/N(0, 1)?} dt
= IP exp(—Aa?/N(0, 1)?)

= (2/m)1? f exp(— A’z 2 — 122) dz.

0

Differentiate with respect to 4, then change variables by setting y =
QA 2az L,

Ly(2) = (2/m)'? f —o’z7 2 exp(—Aa?z"2 — 17%) 4
0

= Q) Cm [ ep(—3 ~ 1y dy
¢
= —aA)” 2L (A).
The only solution with L,(0) = 1is L,(1) = exp(—a(24)"/2). O
Doob (1949), in the non-heuristic part of his paper, was able to parlay
the result from Example 26 into an expression for the distribution function
of [[U]|, which his heuristic argument suggested as the limit for Kolmogorov’s
goodness-of-fit statistic. His approach provides a case study in the application

of the strong markov property.
First one transforms the brownian bridge U by a scale change:

t
B(t) = (1 —_— < .
=01+ t)U(1 n t) for 0<t<

The means and covariances of this gaussian random element of C[0, o)
identify it as a brownian motion (the same trick as in Section 3). Because

Uuil) =0,
U(—t )’ >a:0<t < oo}
1+t

P{|U| > a} = IP{SUP
= IP{|B(t)| = a(1 + t) for at least one t}
= IP{B hits « + af or B hits —a — ar}.

>
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To find the probability that B ever leaves the region bounded by the two
sloping lines + (o + at), one first solves the simpler problem where there is
only one sloping line. For a fixed 8 > 0 (and not just f = a) set

¢(e) = IP{B hits o« + fr},

the dependence on f being suppressed for the while. If B is ever to hit the line
ay + oy + Bt, for ¢y > 0 and o, > 0, it must first hit the line ; + ft. Call
the stopping time at which this happens ¢. Invoke the strong markov property.

¢y + ay) = IP{Bhits a; + a, + ft}
= IP{o < oo, B, hits o, + ft}
= IP{o < co}IP{B hits a, + ft}
= ¢(oy)p(t).

The equation ¢(o; + o) = ¢(a;)P(e,) has non-negative, decreasing solu-
tions with ¢(0) = 1 only of the form ¢(x) = exp( ca) for o > 0. The positive
constant ¢ remains to be determined.

BT

1
ot’fﬁ

\J :

Another strong-markov argument, working with the stopping time 7 at
which B first hits level o, gives the value of the constant.
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exp(—ca) = IP{B hits « + St}
= IP{t < o0, B, hits ft + St}
= IP[{r < «0}IP{B, hits fr + St|& }]
= IP{1 < w0}¢(f7)
= IP exp(—cpr)
= L/(cf) in the notation of Example 26
= exp(—o(2cp)’?).
Solve for c.
X)) IP{B hits o + ft} = exp(—2af) for & >0, >0.

Notice that the hitting probability depends on a and § only through their
product. The probability of B hitting the line ko + k™18t is the same for
each k > 0.

The two barrier problem is slightly harder. For brevity write, temporarily,
I for the line o + St and II for the line —a — fz. Then

IP{|B(t)| = o« + Bt for at least one ¢t} = IP{B hits I or B hits II}.

The two events {B hits I} and {B hits II} are not disjoint. An inclusion-
exclusion argument is needed. The infinite sum
{hit I} — {hit I then IT} + ¢{hit I then II then I} — - --
+ ¢{hit IT} — {hit II then I} + {hit II then I then II} — - --

might hit

need not .
again

hit I before
it hits II
11

takes the value O if B never hits a barrier, it takes the value 1 if B makes a
finite (positive) number of alternating hits, and it is undefined if B makes
infinitely many alternating hits. If we prove that

28) IP{B makes infinitely many alternating hits} = 0
then dominated convergence will justify
(29) IP{B hits I or B hits IT} v
= IP{hit I} — P{hit I then IT} + IP{hit I then Il then I} — ...
+ IP{hit I} — IP¢hit I then I} + IP{hit II then I then II} — --- .
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Our success with the calculation for one barrier will extend, in strongly
markov fashion, to each of the individual terms in this sum of probabilities.

To avoid notational indigestion let us chew on just one of the terms,
IP{hit T then II}, say. Define the stopping time 7 (different from the last 7)
as the first ¢ at which B hits I. From the perspective of B,, barrier II is
defined by the line of slope —f and intercept —2(« + f7). (We can treat
7 as if it were a constant if we condition on &,.) By symmetry, B, has the
same probability of hitting the line 3(x + f7) + B(t — 1), which it sees
as having slope § and intercept 2(« + f7). Formula (27) allows B, to double
the slope and halve the intercept of the line it is trying to hit. That is,

IP{B, hits I1|&,} = IP{B, hits 3(x + fr) + f(t — 7)|&.}
= IP{B, hits 2(x + Br) + 28(t — 7)| &}
= IP{B, hits 20 + 2¢|&,).

B.

II

Notice that the new line sits above « + ft for t > 0. Integrate out over the
event {t < oo}.
IP{B hits I then I} = IP{z < o, B, hits II}
= IP{t < oo, B, hits 2a + 2f¢}
= IP{B hits 2o + 28t}
= exp[ —2Qu)(28)1 from (27).
Similar reasoning succeeds with higher numbers of alternating hits. For
example, if ¢ denotes the time of the first hit on II after a hit on L, then
IP{B hits I then Il then I} = IP{zr < o0, ¢ < oo, B, hits I}
= IP{r < o0, 0 < 0, B, hits ~2u — 2t}
= IP{t < oo, B, hits —20 — 28t}
= IP{r < oo, B, hits 3a + 3t}
= IP{B hits 3a + 38t}
= exp[ —2(3x)(38)].
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You will observe the significance of the point —a/8 on the t axis if you draw
a picture for the argument.

In general, for a string of m alternating hits on barriers I and I, the
probability is exp(—2m?*«f). Let m tend to infinity to prove (28). Formula
(29) with o = B provides the solution to the problem with which we began:

P(U,| 2 2} » PU| 2 2} = 2 3, (= 1y"* ! exp(—2m%a2).

m=1

Read Doob’s paper.

NOTES

Most authors avoid the uniform metric once they recognize the measurability
problems it creates with the empirical process. Billingsley (1968, Section 18)
made the case against it clear. Dudley (1966a, 1967a) had already pointed
the way around the problem, but his solution has been mostly overlooked in
the literature. Dudley (1966a) had even proved a multivariate version of the
Empirical Central Limit Theorem. He used a markov property of the
empirical process.

The idea of interpreting conditions like (4) as a means for constructing
simple approximations to stochastic processes appears explicitly in
Wichura (1971). Hajek (1965) had already applied the idea to characterize
weak convergence in C[0, 1]. Skorohod (1956) based his study of weak
convergence in D{0, 1] under its various Skorohod metrics on the same
idea. Unfortunately this simple approach seems to have lost out to the
uniform tightness approach (exposited by Billingsley (1968), for example),
possibly because the approximation method appears to demand a separate
proof for existence of the limit process as a random element of a space such
as C[0, 1]. Actually, (4) plus fidi convergence imply uniform tightness; the
argument in Section 3 is easily generalized. Lemma 7, specialized to pro-
cesses with independent increments and with 36 replacing 1[Z(¢)| in the
hypothesis, is sometimes attributed to Skorohod (1957), although it clearly
has a strong similarity to Lévy’s symmetrization inequality. Notice that the
51 Z(t)| does gain us something—one benefit was noted during the proof of
the Empirical Central Limit Theorem, in Section 2. Gihman and Skorohod
(1974, V1.5) made more systematic use of a form of the lemma in a study of
weak convergence for markov processes. Stute (1982a) obtained delicate
oscillation results for empirical processes by exploiting their markovian
properties.

The Empirical Central Limit Theorem usually goes by the name of
Donsker’s theorem; Donsker (1952) proved it (using the uniform metric) in
Justifying Doob’s (1949) heuristic approach to the Kolmogorov and Smirnov
theorems. Donsker (1952) used a poissonization trick in his proof; he got it
from Chung (1949), who got it from Kolmogorov (1933). Kac (1949) knew
that a poissonized process was easier to analyze, because of its independent
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increments. Breiman (1968, Section 13.6) used another version of the trick —
representation of uniform order statistics as rescaled points of a poisson
process—in relating the empirical process to a partial-sum process. The
quantile-transformation trick belongs to the folklore.

The interest aroused when Durbin (1973a) applied weak convergence
methods to get limit distributions for statistics analogous to those of
Kolmogorov and Smirnov, but with estimated parameters, died down when
the intractable limit processes asserted themselves. The papers in the con-
ference on empirical processes (Gaenssler and Révész 1976), the lecture
notes by Durbin (1973b), and Pollard (1980), offer several perspectives on
minimum distance methods. Parr (1982) has compiled a bibliography.

The existence proof in Section 3 adapts an argument of Dudley (1966a,
Proposition 2; 1978, Lemma 1.3).

Erdds and Kac (1946, 1947) proved that the limit distributions for certain
functions of partial sums of independent random variables depend on the
summands only through their first two moments. Their paper led Donsker
(1951) to formulate the results as limit theorems for functionals on a partial-
sum process. Donsker proved convergence of the process to brownian
motion. Skorohod (1957) studied processes with independent increments in
great detail; a nice account of some of his results has appeared in Gihman
and Skorohod (1969, Chapter IX).

Infinite time scales with various topologies (uniform or Skorohod) of
convergence on compacta often cause minor confusion. The simple theory
for C[0, c0) (Whitt 1970) proves remarkably unwilling to carry over to
D[0, ), at least for Skorohod metrics (Lindvall 1973, Stone 1963). The
obvious nature of the main theorem (Theorem 23) for uniform metrics makes
it hard to appreciate why Skorohod metrics should be any more difficult.
More about this in Chapter VI,

Billingsley (1968, Section 11) has derived distributions for functionals of
brownian motion by taking limits for functionals of simple random walks
(partial-sum processes). Stopping-time arguments for brownian motion give
other first-exit distributions (Breiman 1968, Section 13.7). The results can
also be derived by elegant martingale methods (Lo¢ve 1978, Complements
to Section 42).

PROBLEMS

[1] D[O, 1]is complete under its uniform metric. [If {x,} is a uniform Cauchy sequence
prove pointwise, and then uniform, convergence. Show that uniform convergence
preserves the cadlag property.]

[2] Let C be a separable subset of D[0, 1] under its uniform metric. There exists a
countable subset T, of [0, 1] such that functions in C can have discontinuities
only at points of T,. [A function in D[0, 1] has only finitely many jumps > ¢,
otherwise the cadlag property would fail at a cluster point of those jumps. Take
the union over rational e. If x is a uniform limit of {x,} then it can jump only where
one of the {x,} jumps.]
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(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Calculate the covariances of the tied-down process B(t) — tB(1) to show that its
fidis agree with those of the brownian bridge. [Means and covariances determine
a multivariate normal distribution.]

Extend the proof of Theorem 3 to limit processes with jumps. [If X has paths
in a separable set C, and if the grid points for the approximation maps 4, pick up
every jump point of C as k — oo, then [|4, X — X|| — 0 almost surely.]

Would the argument in the proof of Theorem 9 for bounding U ,(t) over [0, b]
work for a different interval, say [1 — b, 1]? This would be necessary if U, were
not stationary; direct analysis of the non-uniform empirical process would
require such an extension. [Try a different definition for &,.]

Every function in D[ — co, oo] is bounded. [If |x(z,)| = n then x would not have
the cadlag property at a cluster point of {¢t,}.]

Give a direct proof of the Empirical Central Limit Theorem for sampling from a
general F. [Make sure the jump points of F appear in the sequence of grids from
which fidi approximations are calculated.]

The image of a separable metric space under a continuous map is separable. The
empirical process E concentrates on a separable subset of D[ —o0, co]. [The
image of a dense subset is dense.]

Suppose the distribution function F(x, #) has a bounded partial derivative A(x, 6)
with respect to 0. If A(-, -) is uniformly continuous (or even just A(x, -) equi-
continuous), then

sup [ F(x, ) — F(x, 8,) — (6 — 6)A(x, 8)| = o(8 — B,).

Find the limiting distribution of Kolmogorov’s goodness-of-fit statistic for
sampling from the N(6, 1) distribution, when @ is estimated by the sample mean.
Show that this limit does not depend on the true value 8, ; express it as a functional
of the gaussian process with covariance function ®(s)[1 — ®()] — H(s)p(t),
where ® and ¢ denote the distribution function and density function of the N(0, 1)
distribution.

Here is another construction for the brownian bridge.

(a) Temporarily suppose there exists a brownian bridge U. Define, recursively,
new processes Yy, Yy,...and Zy, Z,... bysetting ¥, = U, Y,,, = Y, — Z,,
and

Z,(t) = _Zlh.,,-(t)Y..((Zj — D2y,

where h,; is the function whose graph is an isosceles triangle of height one
sitting on the base [(j — 1)/2", j/2"]. Show that Y, ; and Z, are independent.
Deduce that the {Z,} are mutually independent. [Calculate covariances. The
process Y, would be obtained from the brownian bridge by tying it down at the
points {(2j — 1)/2"}; it is made up of 2" independent, rescaled brownian
bridges sitting side by side. The covariance calculations all reduce to the same
thing.]

(b) Show that the process Z, + - - + Z, interpolates linearly between the vertices
G/2mt, uerr ), for j=0,..., 2" L
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[12]

[13]

[14]

[15]

[16]

[17]
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(c) Now run the argument the other way. Construct processes {X,} with the
same distributions as the {Z,}, then recover the brownian bridge as a limit of
sums of the {X,}. Let {ajii=1,...,2"; n=0,1,...} be independent
random variables, with &,; distributed N(0, 1/2"*2). Define

on
Xn(t) = Z hnj(t)fnr

At the points {j/2"*1:j = 0,...,2"*'} the sum X, + --- + X, has the right
fidis for a brownian bridge. [Only the fidis of U, which we know are well
defined, were needed to calculate the distributional properties of
Zo++2,]

(d) Show that IP{||X,| > ¢,} <2""!exp(—2"*1¢2). [Apply the exponential
inequality from Appendix B for normal tails: ||X,|| is 2 maximum of 2" in-
dependent [ N(0, 1/2"*2)| random variables.]

(e) By choosing ¢, = (2n/2"*!)*/2 and then applying the Borel-Cantelli lemma,
show that Y =, X,(¢) converges uniformly in ¢, almost surely; it defines a
process X with continuous sample paths, almost surely.

(f) At dyadic rational values for ¢, the series for X contains only finitely many
non-zero terms. The fidi projections of X at a dense subset of [0, 1] have the
distributions of a brownian bridge.

The process X, with a negligible set of sample paths discarded, is a brownian

bridge.

Every point of D[0, c0) is completely regular. [The distance d,(x, y) can be ex-
pressed as a supremum involving only rational time points. For each x and k, the
function dy(x, -) is projection measurable. Use [1 — md,(x, )]* as a separating
function.]

C[0, o) is a closed, separable subset of D[0, co). [It is the closure of a countable
collection of piecewise linear, continuous functions, each constant over an interval
of the form [z, «).]

For each fixed 7 and each finite subset S of [0, o), the random vector s B, is
independent of &, because brownian motion has independent increments. Deduce
independence of B, and &,. [The projection maps {ng} generate the projection
o-field on C[0, ).}

Let P and Q be probability measures on the o-field %, generated by the closed
balls of a metric space. If Pf = Qf for every bounded, uniformly continuous,
%o-measurable f then P = Q. [Every closed ball is a pointwise decreasing limit
of a sequence of such functions. The same is true for the intersection of any finite
collection of closed balls. These sets form a generating class for 4, that is closed
under the formation of finite intersections.]

The borel o-field on the product & @ # of two separable metric spaces
coincides with the product o-field Z(%) ® #(#¥). [Every open set in the product
space is a countable union of sets of the form G, ® G,, with both G, and G, open.
Compare with Problem IV.5.]

Show that the shifted process B, is projection measurable for each random time .
[Prove measurability of B(w, t + 7(w)) by writing it as a composition of two
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measurable maps: w — (7(w), B(w, -)) from Q into [0, co] ® C[O0, o) and (s, x) —
lim, x((t + s) A B)[1 A (n — $)*] from [0, c0] ® C[0, o) into R.

[18] In the sense of Example 24, almost all brownian motion sample paths are good.
If 7 denotes the first time that B hits level 1, prove that

IP{B(s) <O0for0<s<d}=0.

Let 6 tend to zero through a sequence to show that bad paths belong to a set of
probability zero. [You could try letting the level « in Example 26 sink to zero.]



CHAPTER VI
The Skorohod Metric on D[0, oo)

... in which an alternative to the metric of uniform convergence on compacta
is studied. With the new metric the limit processes need not confine their jumps
to a countable set of time points. Amongst the convergence criteria developed is
an elegant condition based on random increments, due to Aldous. The chapter
might be regarded as an extended appendix to Chapter V.

VI.1. Properties of the Metric

The uniform metric on D[O0, 1] is the best choice for applications where the
limit distribution concentrates on C[0, 1], or on some other separable subset
of D[O, 1]. It is well suited for convergence to brownian motion, brownian
bridge, and the gaussian processes that appear as limits in the Empirical
Central Limit Theorem. But it excludes, for example, poisson processes and
other non-gaussian processes with independent increments, whose jumps
are not constrained to lie in a fixed, countable subset of [0, 1]. To analyze
such processes, Skorohod (1956) introduced four new metrics, all weaker
than the uniform metric. Of these, the J, metric has since become the most
popular. (Too popular in my opinion—too often it is dragged into problems
for which the uniform metric would suffice.) But Skorohod’s J ; metric on
D[0, 1] will not be the main concern of this chapter. Instead we shall in-
vestigate a sort of J; convergence on compacta for D[0, co), the space where
the interesting applications live.

With the results from Section V.5 in mind, and even without seeing the J,
metric defined, you might suspect that convergence X, ~ X of random
elements of D[0, co) should reduce to convergence of their restrictions to
each finite interval [0, T], in the sense of the J 1 metric on D[0, T]. This is
almost true. We need to avoid those values of T at which X has positive
probability of jumping. The difficulty arises because projection maps are
not automatically continuous for J, metrics. Both the points 0 and T require
special treatment from the J; metric on D[0, T], whereas only O has an
a priori right to special treatment in D[0, o). That tiny distinction makes it
slightly more convenient to study D[0, oo) directly than to deduce all its
properties from those of D[0, T]. As we shall not be concerned with
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Skorohod’s J,, M,, and M, metrics, let us drop the J, designation from
DnOw on.

1 Definition. For each finite T and each pair of functions x and y in D[0, c0)
define the distance d(x, y) as the infimum of all those values of ¢ for which
there exist grids 0 =5 <t < -+ < g, with, > T,and 0 = sq < 5y < -+
< s, with s, > T, such that |t; — s;| < dfori=0,...,k, and

[x@®) —y@)| <6 if t;<t<t;,; and 5, <85 <844,

fori =0,...,k — 1. The weighted sum

[+ 9]

d(x, y) = ). 27 min[1, d,(x, y)]

k=

defines the Skorohod metric on D[0, o0). O

The proof that d is a metric contains no surprises (Problem 1). The
requirement ¢, > T prevents discontinuities near T from overinflating the
distance dp(x, y): if, say, y jumps just before T then it can be matched by a
similar jump in x just a little beyond T. By allowing d; to depend on more
than the segment of path over [0, 7], we avoid a difficulty that other authors
have encountered in defining a metric for J; convergence on compacta.

The main difference between convergence in the uniform sense and
convergence in the J, sense appears at the discontinuity points of a limit
function. If {x,} converges uniformly on compacta to x and if x has a jump

ati,,then each x,, for nlarge, must have a jump of almost the same magnitude
precisely at t,. Skorohod’s metric still forces each x, to have a jump of almost
the same magnitude, but not precisely at ¢,.
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Straight from the definition we deduce that convergence of x, to x under
the d metric is equivalent to dy(x,, x) — O for each finite T. Another equiv-
alent form is (Problem 2):

d(x,, x) — 0if and only if there exist continuous, strictly increasing
maps {4,} from [0, co) onto itself such that, uniformly over compact
sets of ¢ values, 4,(t) — t - 0 and x(4,(t)) — x,(t) — 0.

Sometimes continuity of a functional on D[0, o) can be verified more easily
when convergence is invoked in this form.

2 Example. Consider once again the first passage time functional from
Example V.24: for x in D[0, o),

Hx = inf{t > 0: x(t) > 1}

with the infimum over an empty set defined to be + co. The functional
is continuous, in the sense of the Skorohod metric, at every good path x.

A
X
I
o~
S .
{ Hx ] -

If d(x,, x) — O then the functions {y,} constructed from {x,} and {,} by
setting y,(t) = x,(4, '(¢)) converge uniformly to x over compact sets of ¢
values. The argument from Example V.24 gives Hy, — Hx. Complete the
proof of continuity of H by checking that Hy, = A,(Hx,). Cl

As in Chapter V, we shall find a criterion for weak convergence in D[0, o)
by considering the approximations to processes built from the values they
take at a fixed, finite grid of points 0 = ¢, < t; < --- < t,. Define the inter-
polation map A from D[0, o0) into D[0, o) by

Ax)(t) = x(t ){tx <t < 0} + kilx(ti){ti <t <t}
i=0
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e

t
t k

All the jumps of Ax occur at grid points. For a fine grid, x and Ax will be
close if x does not vary much between the grid points, except possibly for a
single jump in each interval. In that case values of x before the jump are
close to the value at the left grid point; values of x after the jump are close
to the value at the right grid point:

1 : :
L Livy

Multiple jumps, though, could be missed completely:

[ o

L e

i Livy

Bad behavior of x in [t,, o) affects d(x, Ax) only through those d; with
T > 1,. Good behavior of x in [0, T] may be quantified by a modulus
function.

3 Definition. For each x in D[0, «0) and each finite interval [a, b], the
modulus function A(x, [a, b]) equals the infimum of those positive ¢ for
which there exists a point s in (a, b] such that |x(f) — x(a) <eifagt<s
and |x(¢) — x(b)| < eifs <t < b. O
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4 Lemma. Let Ax be the approximation to x constructed from the values
taken at grid points 0 =ty <--- <t, =T, with t; — t,_, < & for each i.
Then

dr(x, Ax) < 6 v max A(x, [t;—s, t;]).

i<k

Proor. Write A for the maximum A(x, [;_;, t;]) value. Choose ¢ > 0. The
definition of the modulus function gives points {s;} with

O=so=1 <5, <t; <5 - <85 <t
and
[x(s) = x(t)| <A +¢ if s;<s<s;.; for i=0,...,k—1,
[x(s) = x(t )| <A+e if s <s<t.

Possibly s, will be strictly less than T. Add on one more point s, , with
ty < Sgeq < tp + 6 and

[x(s) = x(@)| <A+ e for 1 <5< s34,

Set tx+1 = Sx+1. The extra points make {s;} and {t;} suitable grids for the
calculation of d(x, Ax). Since (Ax)(t) = x(t;) throughout [¢;, t,, ),

[(AX)(t) — x(s)| < A+¢ for ;<t<t;y, and s <s<s4.;.
Deduce that d(x, Ax) < § v (A + &), then let ¢ tend to zero. |
The lemma shows that the error committed in the approximation of x by
Ax depends upon the variability of x, as measured by the modulus function.
If we sufficiently refine the grid used to construct Ax, the approximation

improves; for a fixed x, we can make the error as small as we please by
choosing the grid fine enough.

5 Lemma. For each fixed x in D[0, o0), each fixed T, and each ¢ > 0, there
exists a & > 0 such that

max A(x, [t;-4,t]) < &

Jor every grid0 =ty < --- < t, = T witht; — t;_; < 6 for each i.
PrOOF. If A(x, [, o']) > ¢, we get points « < 7 < f < o with
Ix(r) — x(0)] = 3¢ and |x(x) — x(B)| = %e
by setting
T = inf{t > a: |x(t) — x()] > e},

B = inf{t > t: |x(t) — x(7)| > ie}.
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So if the assertion were false there would exist sequences of points o, < 1, <
B, < T for which 8, — o, — 0 and

|X(Tn) - X(OC,,)| = %8 and |x(7:n) - x(.Bn)I = %8'

We could extract subsequences along which «, — @, 7, — g, B, — o, for some
o in [0, T']. This would violate the cadlag property at ¢: there must exist a
o > 0 for which

|x(s) — x(c—)| <3¢ for 6 —6<s<o,
|x(s) — x(c)] <de for 6 <s<oa+4,

but eventually both members of at least one of the pairs (o, 7,) Or (z,, 8,)
would have to lie on the same side of 4.

Our main use for Lemmas 4 and 5 will be the construction of finite-
dimensional approximating processes to characterize convergence in
distribution for random elements of D[0, co). They also help us dispose of
measurability complications.

6 Theorem. Under its Skorohod metric D0, o0) is separable. The borel
o-field coincides with the projection o-field.

Proor. Write D, for the countable class of functions that take constant,
rational values on each of the intervals [0, 1/N),...,[(N* — 1)/N, N),
[N, o)for N = 1,2,.... Let us show that the class D is dense in D[0, c0).

Write S(N) for the set of grid points {j/N:j=0,..., N*}. As usual,
Ty denotes the map that projects an x in D[0, cc) onto its vector of values at
the points of S(N). Define hy as the continuous map from IRS®™ into D[0, o)
that takes a vector r = (ry, ..., ry2) onto the step function with constant
value r; on the jth grid interval. If the components of r are rational, hy(r)
belongs to Dy.

Given x and an ¢ > 0, choose N with 27" less than ¢ and N~ ! less than
the 6 of Lemma 5. We may assume that 6 < ¢. Construct the approximation
Ay xto x using the grid points S(N). That is,set Ay = hy o mgy,. From Lemma
4, dy(x, Ayx) < &. Hence d(x, Ayx) < 2e. Find rational numbers r; with
[r; — x(j/N)| < e. Then hy(r) belongs to D, and d(x, hx(r)) < 3e.

For the moment write 4 for the borel o-field and £ for the projection
o-field on D[0, o0). To prove that £ = £, observe that x(ty) = lim H,(x)
for fixed t,, where

H,(x) = sup x(1)s,(1),

$«t) = (1 — n|t — 1o — 2/n|)".

For fixed n, the functional H, is continuous (Problem 3). As a pointwise
limit of continuous functions on D[0, c0), the projection x,, must be %-
measurable. The projections generate %
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To prove that # < 2, it is enough to establish that each continuous, real
function f on D[0, o) is #/%(IR)-measurable. (Every closed set in a metric
space can be represented as f~*{0} for some continuous f.)

We know that d(x, hy o mgy,(x)) = 0 as N — co. Thus f o hy o Tgn(X) —
£ (x) for each x, by continuity of f. The map f o hy is continuous from IRS™
into IR, and hence Z(IR*™)/%(IR )-measurable. The map Tisv, I8, by definition,
P/B(R>™)-measurable. Thus their composition fohy o Ty must be
2/%(IR)-measurable. As a pointwise limit of such functions, f must also
be 2/%(IR)-measurable. O

Needless to say, from now on we shall always equip D[0, oo) with its
projection ¢-field, alias the borel o-field for the Skorohod metric. Every
point of D[0, co) is completely regular under this o-field.

7 Example. The asymptotic theory for maxima of independent random
variables bears some similarity to the theory for sums of independent random
variables. The role played by the normal is taken over by the extreme-value
distributions, whose distribution functions are of the form exp(— G(x)) for
G(x) equal to one of e ™*, or x *{x > 0}, or (—x) " %{x < 0}, withxa positive
parameter. If the maximum M, of n independent observations from a distri-
bution function F can be standardized to converge in distribution, then the
limit must be one of these: for constants a, (positive) and b,,

8) IP{M, < a,x + b,} = F'(a,x + b,) - exp(— G(x)).

This convergence implies a much stronger result for the joint asymptotic
behavior of the maxima at different sample sizes, a result analogous to the
convergence of the partial-sum process to brownian motion (Example V.20).

Define the maxima process Y,(-) as the random element of D[0, c0) with

Y(t) = (M; — b,)/a, for jm<t<(+

The assumption (8) gives convergence for {Y,(1)}. Using only the facts about
the Skorohod metric that we have so far accumulated, we can strengthen
this to convergence in distribution of the {Y,} process.

The method of proof depends upon a representation of Y, as a continuous
transformation of a poisson process. To minimize extraneous detail, assume
G(x) = x™*{x = 0}. Trivial modifications of the argument would cover the
other two cases.

Define a sequence of measures {H,} on (0, o) by means of their distribu-
tion functions:

Hy(0, x] = exp(—G(x)),
H,(0, x] = nexp(—G(x)/n) — (n — 1) exp(— G(x)/(n — 1)).

Calculate their density functions if you doubt that these are well-defined
measures. On S = [0, c0) ® (0, o) generate independent poisson processes
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{m,} with intensity measures {1 ® H,}, where 1 denotes lebesgue measure
on [0, 00). The sum 6, = m; + --- + 7, is also a poisson process. As 1 tends
to infinity, o, increases to a poisson process ¢ on S with intensity measure

Y, A®H; = AQ®lim Y H, = 1®7,
i=1 i=1

n

the measure y being determined on (0, co0) by

y(x, ©) = limf[n — n exp(—G(x)/n)] = G(x).

Label the points of o, as (#,;, h,;), where 1, < 3,, < ---. The {r,;} form
a poisson process on [0, o), with intensity ni, independent of the {h,};
the gaps between adjacent #,; have independent exponential distributions
with mean n™'. The {h,;} are independent observations on the distribution
function exp(—G/n). When subjected to a slight vertical perturbation they
will become standardized observations on F.

Let Q be the quantile transformation corresponding to the distribution
function F (Section IIL.6). Define

T.(y) = [Q(exp(—G(y)/n)) — b,])/ay.

For large n, this transformation hardly disturbs y:

T.(y) = inf{(z — b,)/a,: F(z) > exp(—G(y)/n)}
= inf{x: F*a,x + b) > exp(—G(»))}
— inf{x: exp(— G(x)) > exp(—G(¥))} by (8)
= y.

The transformed variables {a, T,(h,;) + b,} form a sequence of independent
observations on F, because h,,; has distribution function exp(— G/n):

P{a, T,(hw) + b, < x} = P{Q(exp(— G(h,;)/n)) < x}
= IP{Uniform(0, 1) < F(x)}
= F(x).

The T, has the desired effect, in the vertical direction, on the points of o,
Define a random element Z, of D[0, o) by setting

Zn(t) = Sup{’]—;l(hni): M < t}'

If Z, had its jumps at n™*, 2n™ 1, .. . instead of at #,4, 77,5, . . . it would be a
probabilistic copy of Y,. Remedy the defect by applying to the time axis the
random, piecewise linear transformation y, that sends 0 onto 0 and j/n onto
N> for j = 1,2, ... . The processes Y,(-) and Z, - y,(-) have the same distri-
bution as random elements of D[0, ).

By the weak law of large numbers, y,(f) — ¢ in probability uniformly on
compact intervals (Problem 4). Thus d(Z,, Z, - y,) — 0 in probability. The
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random elements {Z,} themselves converge almost surely to the random
element

Z(t) = sup{h;:n; < t},

where (171, k), (15, hy), . . . denote the points of the poisson process o arranged
in order of increasing time coordinate. Deduce that {Z,}, and hence {Y,},
converges in distribution to Z. O

VI.2. Convergence in Distribution

In Section V.1 we found a necessary and sufficient condition for convergence
in distribution of random elements {X,} of D[0, 1], under its uniform metric,
to a limit process X concentrating on a separable subset. The separability
allowed X to have discontinuities only at fixed locations. For the proof we
constructed an approximation AX, to each X, based on the values it took
at a fixed finite grid on [0, 1]. The conditions we imposed ensured that, with
high probability, the AX, process was uniformly close to X,.

A similar method of proof will apply for convergence in distribution of
random elements of D[0, co) under d, its Skorohod metric. The constraint
on the limit process will disappear, because D[0, o) itself is separable under
d. Each approximation A4X, will, with high probability, be close to its X,
in the sense of d distance. But one extra complication will arise because the
fidi projections are not automatically continuous.

If x belongs to D[0, o0) and x(r) # x(t—), the projection map =, is not
continuous at x. For example, if x,(t) = x(nt/(n + 1)) then d(x,, x) = 0 but
n.x, = x(t—) # n.x. For 7 a continuity point of x, however, 7, is continuous
at x (Problem 5). Necessarily, n, is continuous at every x, because every
increasing 4 that maps [0, c0) onto itself must set A0) equal to 0. For a
random element X of D[0, o), the projection =, will be continuous at all
sample paths except those that have a jump at 7.

9 Lemma. For each random element X of D[0, o) there exists a subset I'y
of [0, o) such that [0, 00)\Tk is countable and IP{X(r) = X(t-) =1 for
tin Uy. The projection m, is Py almost surely continuous at each t in Ty.

PRrOOF. It is enough to show that if ¢ > 0 then
P{|X() — X@t—)|=¢e}>¢

for at most finitely many ¢ values in each bounded interval [0, T]. Write
J(®) for {|X(t) — X(t—)| = &}, f PJ(z,) > ¢ for an infinite sequence {¢,} of
distinct points in [0, T] then IP{J(z,) infinitely often} > &. There would exist
an o belonging to infinitely many of the J(t,) sets. At some cluster point ¢ in
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[0, T7] the inequality | X(w, t,) — X(w, t,—)| = ¢ would hold for infinitely
many distinct ¢, values in every neighborhood of t. This would violate the
cadlag property of X(w, -) at t. O]

Because the projection 7, is continuous at every x in D[0, o), let us also
admit 0 as a point of I'y, even though X(0—) is not defined.

10 Theorem. Let X, X, X,, ... be random elements of D[0, c0). Necessary
and sufficient conditions for X, ~ X, in the sense of the Skorohod metric, are:

(1) the fidis of X, corresponding to finite subsets of I'y converge to the fidis
of X;

(ii) for each ¢ > 0, each n > 0, and each finite T in Ty, there exists a grid
0=ty <--- <tg = Tof points from I'y with

limsup IP{max AX,, (o t]) > r]} <&

PROOF OF NECESSITY. Appeal to the Representation Theorem (I\QB) for a
new sequence {X,}, with the same distributions as {X,}, and an X with the
same distribution as X, for which

(11) d(X (o, ), X(w,-)) - 0 for almost all .
Fortin I'y,
X, (0, 1) > X(w,t) at almost every w.

Fidi convergence for {X,} at points of I'y follows.
Findagrid0 =, < --- < t;, = T of points from I'y with

(12) IP{mgx AX, [t t]) = 11} <e.

Such a grid exists by virtue of Lemma 5: as a sequence of grids is refined
down to a countable, dense subset of [0, T, the maximum value of A over
the grid intervals converges to zero at each sample path of X. Write Ap(x)
as an abbreviation for max; A(x, [t;_;, ;1)

Consider an o at which the convergence (11) holds. Write x,(-) for
X (o, ), and x(-) for X(w, -). If we show limsup Ar(x,) < 2A4(x), then it will
follow that

limsup P{A-(X,) > 2y} = limsup IP{A(X,) = 27}
< P{limsup Ap(X,) = 21}
< P{AK(X) = 1}
<& by(12)

as required by hypothesis (ii).
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Choose § > 0. By definition of Ax(x), there exists points {s;} with ¢,_; <
$; <t and
1x(t) — x(t;- )] < Ap(x) + 0 for ¢, <i<s;,
[x() — x(t;)] <Agx)+6 for s;<t<t.
Continuity of x at both ¢;_, and ¢; allows us to assume that the strict in-
equality s; < t;holds, and also that the range of validity for the first inequality
ist,_; —& <t<s;,and for the second 5; < ¢t < t; + &, for some &' > 0.
Because d(x,, x) — 0, there exists a sequence of continuous, increasing
maps {4,} from [0, co) onto [0, c0) such that
Af) —t—>0 and x(A) — x,(t)—0
uniformly on compacta. When n is large enough, 1;_; < 4, !(s;) < t;. Use
Si.n = Ay '(s;) as the split point in [#;_,, ¢;] for bounding Az(x,). If t;_; <
t < s, and nis large enough,
[xu(8) = xu(ti- D] < [X(A(8)) — x(Au(t;i= )] + 6
< x(Au(8)) = x(ti- )| + |%(ti= 1) — x(Aulti- )] + 0
< 2A4(x) + 36,
because, eventually, ;- — & < A,(t;—1) < 4() < A(s,,) = s;. A similar
argument applies to ¢ in [s; ,, ¢;].

PROOF OF SUFFICIENCY. Let f be a bounded, uniformly continuous, real
function on D[0, c0). We need to show that IPf(X,) - IPf(X). Given ¢ > 0,
find # > 0 so that | f(x) — f(¥)| < ¢ whenever d(x, y) < 25. Choose from
T’y a T large enough to ensure d(x, y) < d(x, y) + 5 for every pair x, y.
Let Ax(:) have the same meaning as in the proof of necessity. According

to hypothesis (ii) there exists a grid on [0, T] for which

IP{A(X,) >n} <¢ if n=n,.
Also we may assume that the grid points are less than # apart and, by the
same reasoning as for (12), that IP{A(X) > #} < &. Lemma 4 shows that
the approximations constructed from this grid are, with high probability,
close to the sample paths of the processes:

P{d(X,, AX,) >n} <¢ if n>=ng,
P{d(X,AX) > n} <e.

Complete the proof in the usual way. Write A for the interpolation map
constructed from the values at the grid points.

IPf(X,) — Pf(X)]
< PIf(X,) — f(AX)] + [IPf(AX,) — Pf(AX)]|
+ P f(4X) — f(X)I
<+ 2 fIP{d(X,, AX,) > 2n} + |Pf(AX,) — Pf(AX)]
+ ¢ + 2| fIP{d(X, AX) > 24}
<e+2flle+ e+ e+ 2| flle eventually,
because 4X, ~ AX and d(x, Ax) < dy(x, Ax) + n for every x. O
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Roughly speaking, the modulus A(X,, [t;_, t;]) will be small if X, has at
worst one large jump in the interval [t;_,, t;]. To prove convergence in
distribution, we need some way of stopping large jumps from piling up in a
small interval. If X, has a jump at 7,, which in general will be a random
time, then we need

IP{| X, (7, + 1) — X ,(z,)] small, for all small ¢} ~ 1,

and the approximation should hold uniformly in n. A maximal inequality
seems required. Contrast this vague, formidable task with an elegant suffi-
cient condition due to Aldous (1978): X, ~ X if the fidis converge and, for
each fixed T,

(13) X, (o, + 8,) — X,(p,) — 0 in probability,

whenever {§,} is a sequence of positive numbers converging to zero and
{pn} is a sequence of stopping times taking values in [0, T]. (The stopping
time property means that the event {p, < t} should belong to the o-field
generated by the random variables X,(s), for 0 < s < t)

An equivalent form of (13) is: for each T, each # > 0, and each ¢ > (,
there exists a 6 > 0 and an #n, such that

(14) P{|X.(pn + 0) — Xi(p)| = 1} <& for n=n,,

whenever p, is a stopping time for X, that takes values in [0, T] and ¢’ is a
real number with 0 < ¢’ < é. The proof of Aldous’s result is built up by
repeated application of inequality (14).

15 Lemma. Let Z be a random element of D[O0, o) for which
P{{Z(p + 6) — Z(p)l 2 n} <&

for each real &' in [0, 8] and each stopping time p taking values in [0, T]. If
o and T are stopping times for whicho < tand | Z(z) — Z(0)| = 2non {t < o0},
then P{t < T A (¢ + 19)} < 4e.

ProoOF. Integrate both sides of the inequality for p with respect to lebesgue
measure on [0, 4], interchange the order of integration, then make a change
of variable in the inner integral.

6 > 1Pf{|2(s)— Z() =} {p <s <p+ 0} ds.

Apply this inequality twice with p equal to the stopping times 6 =T A ¢
and 74 = T A 1, then add.

25> P ({129 = Zlo)| = 1} {or < 5 < o7 + 3}
F{1ZE) — ZGD)| = 0} {1r < 5 < o + 6} ds
2 P [[(26) - Zon)| 2 ) + (126) ~ ZG) 2 1))

x {tr <s<op+ d}ds.
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On the set {t < T}, the sum of the two indicators is at least 1, because at
least one of the inequalities

12(s) — Zlep)| = m,  |Z(s) — Z(rp)| = 7
must hold if 67 = 0, 77 = 7, and | Z(6) — Z(7)| > 2n. Deduce that

285>Pf{r$T}{r$s£a+5}ds

ZIPJ{TST/\(a+%5)}{a+%5£s.<_a+5}ds
> 30IP{t < T A (¢ + 10)}. O

16 Theorem. Let X, X, X5, ... be random elements of D[0, oo) for which:

() the fidis of X, corresponding to finite subsets of I'y converge to the fidis
of X,
(i1) Aldous s condition (13) holds.

Then X, ~ X in the sense of the Skorohod metric.

Proor. Verify condition (ii) of Theorem 10. Set down a grid 0 = ¢, <
<ty = T of points from I'y with the maximum grid interval shorter than
%, for a value of « that will be specified soon.

Fix an n, then define stopping times for X, by

TO = O,
Tjer = 0f{t > ;1 [ X,(0) — X,(x))| = 21}

with the usual convention that the infimum of the empty set equals + 0. We
should perhaps add an extra subscript n to each T;.

If (t,_,t;] contains at most one of the {r i} then we must have
AX,, [ti- 1, t:]) < 4. For fr, <t ,<7<y< ;41 then

[Xu(t) = Xo(t;-)l <2 if 6, <t< Tjs

1X,0) — X,(z)l <2n if 1,<t<y
and hence

| Xu@) — Xt <dn if 4, <t <7,

| X(0) — X))l <4y if 1;<t<,.

Apply the same reasoning to each grid interval.
{max A(Xru [ti—b tl]) > 47’}

< {some (¢;_{, t,;] contains at least two of the {t;}}

< {some pair t;_;, 7;has 1; < T A (t;_, + o)}
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Fix an integer m, whose value will be specified soon. Bound the last indicator
function by

2m

2m
Z {t; ST A (tjoy + 300} +m™? Z {t;, <TA@—y + T/m}

J

The reasoning here is: either 7,, > T, in which case the pair 7;_,, 7; would
be detected by the first sum; or 7,,, < T, in which case at least m terms of the
second sum must equal one, for otherwise [0, T] would have to contain
(m + 1) disjoint intervals (z;_, 7;) of length greater than T/m. Take expec-
tations.

a7 IP{mgx AKX, Ttie 1o 1)) > 4;7}

< 2m max IP{‘L'j <Tnh (Tj—1 + %O()}

ig2m

+2max P{t; < T A (1;-, + T/m)}.
Jj<2m
Now we choose m and «.
Invoke Lemma 15 for Z = X, with ¢ = 7;_4, 7 = 7; and the J provided
by (14). For n = n,,

IP{t; < T A (1j-1 + 30)} < 4.

Choose m so that T/m < 15;hold it fixed. The second term in the bound (17)
is then less than the 8¢ if n > n,. From (14) find the « for which

IP{IXn(pn + 5,) - Xn(pn)| = ’7} < s/m for n = ny

if 0 <& <« and if p, is a stopping time for X, with 0 < p, < T. Invoke

Lemma 15 again, but replace ¢ by « and ¢ by ¢/m. For n > ny,
IP{t; < T A (1j-; + 300} < 4e/m.

The first term in the bound (17) is less than 8¢ if n > n,. In summary:
]P{max AX,, [ti_1, t]) > 417} < 16¢ for n > max(ngy,n,),
which completes the proof. ]

18 Example. For processes with independent increments, the criterion for
convergence in distribution is particularly simple. Under the uniform
metric for D[0, 1], Theorem V.19 showed that fidi convergence plus an
equicontinuity condition on the increments suffices if the limit process X
has continuous sample paths. With a minor variation we get Aldous’s
condition; essentially, we can drop the constraint on the sample paths of X
if we reinterpret the result as convergence in the Skorohod sense.
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Suppose that for each ¢ > 0,7 > 0, and T < oo, there exists a & > 0 and
an ny such that IP{|X,( + &) — X, (t)| = n} <¢ whenever 0 <t < T,
0 <& <d,and n = ny. If p, is a stopping time that takes only finitely many
different values, and these values all lie in [0, 7], then for n > n,,

= Y P{p, = BIP{|X,(t + &) — X,()| = n|p, = t}]
< &.

Every stopping time can be approximated arbitrarily closely from above by
a stopping time that takes only finitely many different values (round up to
the next value on a finely spaced grid); the cadlag property of the sample
paths carries the inequality over to the stopping times covered by Aldous’s
condition. [

Problem VITL8 will give a more interesting application of Theorem 16
to convergence of martingales.

NOTES

Much of this chapter draws ideas from Billingsley (1968, Chapter 4) and
Gihman and Skorohod (1974, Sections I11.4 and VL.5).

Skorohod (1956) defined on D[O0, 1] several metrics, which allowed
different sorts of behavior of a convergent sequence near a discontinuity of
the limit function. Billingsley (1968) introduced a variation on Skorohod’s
J, metric, thereby making D[0, 1] complete. This is not so important if we
consider only convergence to a known limit process, but it does greatly
simplify the theory if existence of the limit process must be proved by com-
pactness arguments. The metric of Definition 1 is modeled on the metric
of Kolmogorov (1956) for D[O, 1].

Whitt (1980), and Lindvall (1973) have shown how difficult it is to write
down a metric for J; convergence on compacta, as defined by Stone (1963).

The modulus function is a fixed-grid analogue of Skorohod’s (1956)
A;,, or the A, of Gihman and Skorohod (1974, page 423). Billingsley (1968,
Section 14) has defined other moduli for D[0, 17. If existence of the limit
process is not assumed in Theorem 10, the conditions will not guarantee its
existence; the conditions of the theorem do not translate directly into a
characterization of uniform tightness.

Theorem 6 borrows from Parthasarathy (1967, Section VIL6). The
elegant argument for inclusion of the borel o-field in the projection o-field
was attributed by Straf (1969, page 67) to Wichura.

Example 7 is based on the method of Resnick (1975). The idea of embedd-
ing the maxima process into a two-dimensional poisson process comes from
Pickands (1971).
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The convergence criterion of Theorem 10 corresponds to Theorem VI1.5.2
of Gihman and Skorohod (1974).

Aldous (1978) proved a result slightly different from Theorem 16; he gave
a sufficient condition for uniform tightness in D[O0, 1]. I found Kurtz’s
(1981, Chapter 2) rearrangement of the proof helpful.

Skorohod (1957) studied convergence of processes with independent
increments. His paper contains many fascinating sample-path arguments.

PROBLEMS

[1] Prove that the d of Definition 1 is a metric on D[0, o). [To show that d(x, y) = 0
implies x = y,fix at, then choose T larger than r. For each T witht < 7 < T, deduce
from the definition of d the existence of a sequence {s,} with s, — 7 and y(s,) - x(7).
Deduce that either x(z) = y(z) or x(r) = y(r—). Choose a sequence {7;} strictly
decreasing to ¢. Right continuity of y at ¢ gives both y(z;) - y(t) and y(z;—) — ¥();
right continuity of x gives x(z;) - x(¢).]

[2] Show that d(x,, x) — 0 if and only if there exist continuous, strictly increasing
maps {A,} from [0, c0) onto itself such that, uniformly on compact sets of ¢ values,

At) —t =0 and x(4,()) — x,(t) = 0.

[Construct 1, as a piecewise linear map that takes gridpoints for x, onto gridpoints
for x, for pairs of grids chosen according to the definition of di(x,, x) with T
depending on n.]

[3] Prove continuity of the functional H, that appeared in the proof of Theorem
6. [If d(x, x;) > 0, choose continuous, increasing {A;} with x(1(t)) — x(t) - 0
and A(r) — t - 0 uniformly on compact ¢ sets. For i large enough, bound
|H,|(X) - Hn(xi)| by

sup|x(6) [sup|s,(4( 1)) — s5,(D)| + sup |x(A(1)) — x(1)|
t<c t t<c

for some constant c.]

[4] Let {y,} be a sequence of random, increasing maps from [0, c0) onto itself such that
ya(t) = t in probability, for each fixed ¢. Show that

sup |y,(t) —t| >0 in probability

0<t<T
for each fixed T. [If [y.(s) — s| < eand |y,(t) — t| < ethen |y, () — u| <&+ [s—1]
for u between s and t.]

[5] Suppose d(x,, x) — 0 and that x is continuous at 7. Show that x,(t) — x(z). [Use
X(1(7)) — x,(7) = 0 and 1,(x) - .]

[6] If d(x,, x) » 0 and x belongs to C[0, c0) then x, converges to x uniformly on
compacta.

[7] If X, ~ X in the Skorohod sense, and if X has sample paths in C[0, ), then
X, ~ X in the sense of the metric for uniform convergence on compacta. [Switch
to versions that converge almost surely in the Skorohod sense.]



CHAPTER VII
Central Limit Theorems

... in which the chaining method for proving maximal inequalities for the
increments of stochastic processes is established. Applications include con-
struction of gaussian processes with continuous sample paths, central limit
theorems for empirical measures, and Justification of a stochastic equicontinuity
assumption that is needed to prove central limit theorems for statistics defined
by minimization of a stochastic process.

VIL1. Stochastic Equicontinuity

Much asymptotic theory boils down to careful application of Taylor’s
theorem. To bound remainder terms we impose regularity conditions, which
add rigor to informal approximation arguments, but usually at the cost of
increased technical detail. For some asymptotics problems, especially those
concerned with central limit theorems for statistics defined by maximization
or minimization of a random process, many of the technicalities can be
drawn off into a single stochastic equicontinuity condition. This section
shows how. Empirical process methods for establishing stochastic equi-
continuity will be developed later in the chapter.

Maximum likelihood estimation is the prime example of a method that
defines a statistic by maximization of a random criterion function. Indepen-
dent observations ¢, ..., &, are drawn from a distribution P, which is
assumed to be a member of a parametric family defined by density functions
{p(-, 0)}. For simplicity take § real-valued. The true, but unknown, 6, can
be estimated by the value 6, that maximizes

G, (0) = n~" Y log p(&;, 6).
i=1

Let us recall how one proves asymptotic normality for 6,, assuming it is
consistent for 0.

Write g, (-, 6) forlog p(-, §),and g,(-, 6), g2(+, 0), gs(-, 0), for the first three
partial derivatives with respect to 6, whose existence we impose as a regularity
condition. Using Taylor’s theorem, expand g,(-, ) into

90(:> 00) + (6 — 00)g1(-, o) + 30 — 06)gs(-, B) + 40 — 05)°gs(-, 6%)
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with 6* between 0, and 6. Integrate with respect to the empirical measure P, .
Gu(8) = G(bo) + (0 — 00)P,g;, + (O ~ 0,)*P,g, + R,(6).
If we impose, as an extra regularity condition, the domination
lgs(+, 0)] < H(-) for all 6,
then the remainder term will satisfy
[RAO)| < 410 — 061> Pulgs(-, 0%)| < 516 — 6,|°P,H.

Assume PH < oo and P|g,| < oo. Then, by the strong law of large numbers,
for each sequence of shrinking neighborhoods of 8, we can absorb the re-
mainder term into the quadratic, leaving

(1) G,(0) = G,(00) + (8 — O5)P,g, + 3(0 — 6,)*(Pg, + 0,(1)) near 6.

The 0,(1) stands for a sequence of random functions of § that are bounded
uniformly on the shrinking neighborhoods of 8, by random variables of
order o,(1). Provided Pg, < 0, such a bound on the error of approximation
will lead to the usual central limit theorem for {n'/3(8, — 6,)}. As a more
general result will be proved soon, let us not pursue that part of the argument
further. Instead, reconsider the regularity conditions.

The third partial derivative of go(-, §) was needed only to bound the
remainder term in the Taylor expansion. The second partial derivative enters
(1) only through its integrated value Pg,. But the first partial derivative plays
a critical role; its value at each &; comes into the linear term. That suggests
we might relax the assumptions about existence of the higher derivatives and
still get (1). We can. In place of Pg, we shall require a second derivative
for Pgo(-, 0); and for the remainder term we shall invoke stochastic equi-
continuity.

In its abstract form stochastic equicontinuity refers to a sequence of
stochastic processes {Z,(t): t € T} whose shared index set T comes equipped
with a semimetric d(-, -). (In case you have forgotten, a semimetric has all
the properties of a metric except that d(s, ) = 0 need not imply that s equals
t.) We shall later need it in that generality.

2 Definition. Call {Z,} stochastically equicontinuous at t, if for each # > 0
and ¢ > 0 there exists a neighborhood U of t,, for which

limsup IP{sup | Z,(t) — Z,(to)| > r/} <e. O
U

There might be measure theoretic difficulties related to taking a supremum
over an uncountable set of t values. We shall ignore them as far as possible
during the course of this chapter. A more careful treatment of measurability
details appears in Appendix C.

Because stochastic equicontinuity bounds Z, uniformly over the neigh-
borhood U, it also applies to any randomly chosen point in the neighborhood.
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If {z,} is a sequence of random clements of T that converges in probability
to ¢4, then

3) Z,(t,) — Z,(ty) > 0 in probability,

because, with probability tending to one, 7, will belong to each U. When we
come to check for stochastic equicontinuity the form in Definition 2 will be
the one we use; the form in (3) will be easier to apply, especially when be-
havior of a particular {z,} sequence is under investigation.

The maximum likelihood method generalizes to other maximization
problems, where {log p(-, 8)} is replaced by other families of functions. For
future reference it will be more convenient if we pose them as minimization
problems.

Suppose # = {f(-,1):te T}, with T a subset of IR, is a collection of
real, P-integrable functions on the set S where P lives. Denote by P, the
empirical measure formed from n independent observations on P, and
define the empirical process E, as the signed measure n'/>(P, — P). Define

Fn(t) = Pnf('7 t)'
We shall prove a central limit theorem for sequences {t,} that come close
enough to minimizing the {F,(-)}.

Suppose f(-, t) has a linear approximation near the ¢, at which F (-)takes
on its minimum value:

) G0 = (o) + (8 = to)AC) + |t — tolr(-, ).
For completeness set (-, t,) = 0. The A(+) is a vector of k real functions on
S. Of course, if the approximation is to be of any use to us, the remainder
function r(-, t) must in some sense be small near ¢,. If we want a central
limit theorem for {z,}, stochastic equicontinuity of {E,r(-, )} at ¢, is the ap-
propriate sense.

Usually r(-, £) will also tend to zero in the #2(P) sense:P|r(-, £)|*> - 0 as
t - to. That is, f(-, t) will be differentiable in quadratic mean. In that case,
we may work directly with the #2(P) seminorm p, on the set # of all re-
mainder functions {r(-, t)}. Stochastic equicontinuity of {E,r(-, )} would
then follow from: for each ¢ > 0 and # > 0 there exists in % a neighborhood
V of 0 such that

limsup ]P{sup |E,r| > r/} < e
14

The neighborhood ¥V would take the form {re %: pp(r) < 0} for some
6 > 0. This would be convenient for empirical process calculations. Differ-
entiability in quadratic mean would also imply that PA = 0. For if PA were
non-zero the integrated form of (4),

P, 1) = Pf(-,t0) + (t — to) PA + o(t — to) near t,,
would contradict existence of even a local minimum at t,,.
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5 Theorem. Suppose {t,} is a sequence of random vectors converging in
probability to the value t, at which F(-) has its minimum. Define r(-, t) and the
vector of functions A(-) by (4). If

(i) t, is an interior point of the parameter set T ;
(ii) F(-) has a non-singular second derivative matrix V at ty;
(iil) F,(1,) = 0,(n™ ") + inf, F,(t);
(iv) the components of A(-) all belong to L*(P);
(v) the sequence {E,r(-, t)} is stochastically equicontinuous at t, ;
then n'?(t, — ty) ~ N(O, V™ [P(AA") — (PAYPAYTV 1)

Proor. Reparametrize to make ¢, equal to zero and V equal to the identity
matrix. Then (ii) implies

F(t) = F(0) + 1[t]* + o(|t]*) near 0.

Separate the stochastic and deterministic contributions to the function F (t)
by writing P, as the sum P + n~ Y2E,. Write Z,(t) for E,r(-, t). Stochastic
equicontinuity implies Z,(t,) = 0,(1). For values of  near zero,

(6) F,() — F0)=PLf(,0) = (.00 + n"2E,[f(-, 1) — f(-, 0)]
=3t + o(|t]?) + n"Y2E,A + n” Y3t Z,(0).
Invoke (iii). Because F,(t,) comes within o,(n~') of the infimum, which is
smaller than F,(0),
Op(n_l) = Fn(Tn) - Fn(o)
= 3ltl® + 0p(Itl?) + n7 2 E,A + 0,(n” 127, |).
The random vector E,A has an asymptotic N(0, P(AA") — (PA)(PAY)
distribution; it is of order O,(1). Consequently, by the Cauchy-Schwarz in-
equality, 7, E,A > — |1,]0,(1). Tidy up the last inequality.
Op(n_l) = [% - Op(l)]lfnlz - n_l/zlfnlop(l) - Op(n_l/ZITnD
=[5 = 0,(DIIwul = 0,(n™3)]* — O, (n™").
It follows that the squared term is at most O (n~ '), and hence 7, = 0, (n™ /).
(Look at Appendix A if you want to see the argument written without the
0,(-) and O,(-) symbols.) Representation (6) for ¢ = 7, now simplifies:
F(t) = F(0) + 3lt,|* + n” 20, E,A + 0,(n™")
— F,(0) + 315, + nTPE, AP — inTHE,AP + 0,(n7Y)
The same simplification would apply to any other sequence of t values of
order O,(n~'?). In particular,
F(—n"'PE,A) = F0) — 3n '|E,A® + o,(n™ ).

Notice the surreptitious appeal to (i). We need n~ /2E, A to be a point of T
before stochastic equicontinuity applies; with probability tending to one as
n — o0, it is.
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Now invoke (iii) again, comparing the values of F natt,and —n~Y2E A
to get
31t + nTPE,AR = 0,(n7Y),
whence n'?z, = —E,A + 0,(1). When transformed back to the old para-
metrization, this gives
n2yi (e, —t) = —V"2E A 4 0,(1)
~ V72N, P(AA') — (PAY(PAY). O

Examples 18 and 19 in Section 4 will apply the theorem just proved. But
before we can get to the applications we must acquire the means for verifying
the stochastic equicontinuity condition.

VIL.2. Chaining

Chaining is a technique for proving maximal inequalities for stochastic
processes, the sorts of things required if we want to check the stochastic
equicontinuity condition defined in Section 1. It applies to any process
{Z(1): te T} whose index set is equipped with a semimetric d(-, -) that
controls the increments:

P{IZ(s) — Z(Ol > n} < Ay, d(s, 1)) for n > 0.
It works best when A(-, -) takes the form
A(n, 0) = 2 exp(—31*/D?6?),

with D a positive constant. Under some assumptions about covering numbers
for T, the chaining technique will lead to an economical bound on the tail
probabilities for a supremum of | Z(s) — Z(t)| over pairs (s, t).

The idea behind chaining, and the reason for its name, is easiest to under-
stand when T is finite. Suppose T}, T, ..., T,+1 = T are subsets with the
property that each ¢ lies within §; of at least one point in T;. Imagine each
point of T;., ; linked to its nearest neighbor in T,fori=1,..., k Fromevery
t stretches a chain with links t = 1, , ¢,, .. ., t; joining it to a point in T;.

@ = point of T;
O = point of T,

® = point of T,
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The value of the process at ¢ equals its value at ¢, plus a sum of increments
across the links joining ¢ to t,. The error involved in approximating Z(t) by
Z(t,) is bounded, uniformly in t, by

Mw

max |Z(ti+ 1) - Z(ti)l-

1

i
If T; contains N, points, the maximum in the ith summand runs over N ir1
different increments, each across a link of length at most ;. The probability

of the summand exceeding #; is bounded by a sum of N, ; terms, each less
than A(y;, §;).

@) IP{max |Z(t) — Z¢)| > + - + Wk} < Z N 1A®;, 65).
t i=1

This inequality is useful if we can choose ;, §;, and T; to make both the right-
hand side and the sum of the {;} small. In that case the maximum of
| Z(s) — Z(t)| over all pairs in T is, with high probability, close to the maxi-
mum for pairs taken from the smaller class T;.

When A(y, 6) = 2 exp(—4%?/D?62), a good combination seems to be:
{0;} decreasing geometrically and {5;} chosen so that N, ,;A(x;, 6, = 24;,
that is,

M = D6;[2 log(N, 4 1/9))] vz,

With these choices the right-hand side of (7) is bounded by the tail of the
geometric series ) ; §;, and the sum of the {5,} on the left-hand side can be
approximated by an integral that reflects the rate at which N ; Increases as
d; decreases.

8 Definition. The covering number N(J), or N(8, d, T) if there is any risk of
ambiguity, is the size of the smallest d-net for T. That is, N(5) equals the
smallest m for which there exist points ¢, ..., t,, with min, d(z, t;) <6 for
every t in T. The associated covering integral is

J(6)=J(3,d, T) = fé[Z log(N(u)*/u)]**du for 0< o< 1. O

The N(u)?, in place of N(u), will allow us to bound maxima over more than
just the nearest-neighbor links from T;.., to T,.

If we interpret P as standing for the £!(P) or #?(P) semimetrics on %,
the notation N (6, P, #) and N,(6, P, %) used in Chapter II almost agrees
with Definition 8. Here we implicitly restrict ¢, ..., t,, to be points of T.
In Chapter II the approximating functions were allowed to lie outside %
They could have been restricted to lie in & without seriously affecting any
of the results.

The proof of our main result, the Chaining Lemma, will be slightly more
complicated than indicated above. To achieve the most precise inequality,
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we replace 77; by a function of the link lengths. And we eliminate a few pesky
details by being fastidious in the construction of the approximating sets
1;. But apart from that, the idea behind the proof is the same.

As you read through the argument please notice that it would also work
if N(-) were replaced throughout by any upper bound and, of course, J()
were increased accordingly. This trivial observation will turn out to be most
important for applications; we seldom know the covering numbers exactly,
but we often have upper bounds for them.

9 Chaining Lemma. Let {Z(t):t € T} be a stochastic process whose index
set has a finite covering integral J(-). Suppose there exists a constant D such
that, for all s and t,

(10)  TP{|Z(s) — Z(®)| > nd(s, t)} < 2 exp(—3n*/D*) for 5> 0.

Then there exists a countable dense subset T* of T such that, for 0 < ¢ < 1,
IP{1Z(s) — Z(t)| > 26D J(d(s, 1)) for some s, t in T* with d(s, ) < &} < 2¢

We can replace T* by T if Z has continuous sample paths.

Proor. Write H(u) for [2 log(N(u)?/u)]'/%. It increases as u decreases. Set
0; =¢/2 fori=1,2,.... Construct 25;-nets T, in a special way, to ensure
that T, < T, < ---. (The extra 2 has little effect on the chaining argument.)

Start with any point ¢,. If possible choose a t, with d(t,, t;) > 26,; then
a ty with d(t3, t;) > 26, and d(t3, t,) > 26,; and so on. After some t,,, with
m no greater than N(6,), the process must stop: if m > N(§,) then some pair
t;, t; would have to fall into one of the N(,) closed balls of radius §, that
cover T. Take T, as the set {ty, ..., t,}. Every ¢ in T lies within 25, of at least
one point in Tj.

Next choose ¢, 4, if possible, with d(t,,. ;, t;) > 268, for i < m;then t,,, ,
with d(t,.,,t) > 26, for i <m + 1; and so on. When that process stops
we have built T, up to T, a 2d,-net of at most N(,) points.

The sets T3, Ty, ... are constructed in similar fashion. Define T* to be
the union of all the {T;}.

For the chaining argument sketched earlier (for finite T') we bounded the
increment of Z across each link joining a point of 7;, ; to its nearest neighbor
in T;. This time T;,, contains T;; all the links run between points of T}, 1
With only an insignificant increase in the probability bound we can increase
the collection of links to cover all pairs in T;, , provided we replace the
suggested #; by a quantity depending on the length of the link. Set

A; = {|Z(s) — Z(t)| > Dd(s, t)H(9,) for some s, t in T;}.

It is a union of at most N(5;)* events, each of whose probabilities can be
bounded using (10).

IPA; < 2N(5,)* exp[ —1H(5,)*] = 24;.
The union of all the {4}, call it 4, has probability at most 2.
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Consider any pair (s, t) in T* for which d(s, t) < e. Find the # for which
6, < d(s, t) < 20,. Because the {T;} expand as i increases, both s and ¢t
belong to some T,,,; with m > n. With a chain s = s,,, 4, s, ..., s, link s
to an s, in T,, choosing each s; to be the closest point of T; to s;, ;, thereby
ensuring that d(s;,, s;) < 26,. Define a chain {t;} for ¢ similarly. Break
Z(s) — Z(t) into Z(s,) — Z(t,) plus sums of increments across the links of
the two chains; | Z(s) — Z(t)| is no greater than

1Z(s,) — Z(t,)| + i LIZGsie ) — Z(DI + | Z(t+1) — Z()1]-

Both s;,, and s; belong to T, ,. On A%, |,
[Z(s;i+1) — Z(s)] < Dd(s;4 1, s)H(0;4 1) < 2D6; H(0; 4 ).

On A%, these bounds, together with their companions for (s,,, ¢,) and (¢, 4, t,),
allow | Z(s) — Z(t)] to be at most

Dd(sns tn)H(an) +2 z 2D51H(51+1)

i=n

The distance d(s,, t,) is at most

ds, D) + Y dlsia15) + Y d(tis s, 1) < 26, + 2 Y 26, < 105,

i=n i=n i=n

Also 6; = 4(6;, 1 — 6,4 ,). Thus, on A4°,

|Z(s) — Z(1)| < 10D5,H(é,) + 4D i4(5i+1 — 0i+2)H(d;+ 1)

< 10D6,H(S,) + 16D Y f{am <u <6,y H®) du

< 10D, H(3,) + 16D J(S,, ,)
< 26D J(d(s, 1)).

If Z has continuous sample paths, the inequality with T* replaced by T is
the limiting case of the inequalities for T* with ¢ replaced by e + n=t. [0

Often we will apply the inequality from the Chaining Lemma in the weaker
form:

IP{|Z(s) — Z(t)| > 26D J(e) for some s, t in T* with d(s, t) < &} < 2e.

A direct derivation of the weaker inequality would be slightly simpler than
the proof of the lemma. But there are applications where the stronger result
is needed.
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11 Example. Brownian motion on [0, 1], you will recall, is a stochastic
process {B(-,):0 <t < 1} with continuous sample paths, independent
increments, B(:,0) = 0, and B(f) — B(s) distributed N@©,t —s) for t > s.
If we measure distances between points of [0, 1] in a strange way, the Chain-
ing Lemma will give a so-called modulus of continuity for the sample paths
of B.

The normal distribution has tails that decrease exponentially fast: from
Appendix B,

IP{|B(t) — B(s)| > n} < 2 exp(—37°/|t — s)).

Define a new metric on [0, 1] by setting d(s, £) = |s — ¢|"/2 Then B satisfies
inequality (10) with D = 1. The covering number N(J, d, {0, 1]) is smaller
than 26~ 2, which gives the bound

J(@6) < fs[Z log 4 + 10 log(1/u)]*'? du
0

< (2log 4)*28 + /10[log(1/5)]~ 12 f 6log(1/u) du
0

< 46[log(1/6)]""* for & small enough.
From the Chaining Lemma,
IP{|B(s) — B(t)| > 26J(d(s, 1)) for some pair with d(s, t) < 6} < 26.

The event appearing on the left-hand side gets smaller as & decreases. Let
6 | 0. Conclude that for almost all w,

|B(w, 5) — B(w, )| < 74](s — 1) log|s — t]|"/?

for |s — t|Y? < &(w). Except for the unimportant factor of 74, this is the
best modulus possible (McKean 1969, Section 1.6). J

VII.3. Gaussian Processes

In Section 5 we shall generalize the Empirical Central Limit Theorem of
Chapter V to empirical processes indexed by classes of functions. The limit
processes will be analogues of the brownian bridge, gaussian processes with
sample paths continuous in an appropriate sense. Even though existence of
the limits will be guaranteed by the method of proof, it is no waste of effort
if we devote a few pages here to a direct construction, which makes non-trivial
application of the Chaining Lemma. The direct argument tells us more about
the sample path properties of the gaussian processes.

We start with analogues of brownian motion. The argument will extend
an idea already touched on in Example 11.
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Look at brownian motion in a different way. Regard it as a stochastic
process indexed by the class of indicator functions

F={0,1:0<t<1).

The covariance IP[B(-, f)B(-, g)] can then be written as P(fg), where P =
Uniform{0, 1]. The process maps the subset & of #*(P) into the space
&*(IP) in such a way that inner products are preserved. From this perspec-
tive it becomes more natural to characterize the sample path property as
continuity with respect to the #?(P) seminorm pp on &. Notice that

(1[0, s] — [0, 2]1) = (PI[0, s1 — [0, ]2 = |s — t|'2
It is no accident that we used the same distance function in Example 11.
The new notion of sample path continuity also makes sense for stochastic

processes indexed by subclasses of other #*(P) spaces, for probability
measures different from Uniform[0, 17.

12 Definition. Let & be a class of measurable functions on a set S with a
o-field supporting a probability measure P. Suppose # is contained in
#2(P). A P-motion is a stochastic process {Bp(-, f): f € #} indexed by &F
for which:

() Bp has joint normal finite-dimensional distributions with zero means
and covariance IP[By(-, f)Bp(-, 9)] = P(fg);

(i1) each sample path Bp(w, -) is bounded and uniformly continuous with
respect to the #*(P) seminorm pp(-) on Z.

The name does not quite fit unless one reads “ Uniform[0, 1]” as
“brownian,” but it is easy to remember. The uniform continuity and bounded-
ness that crept into the definition come automatically for brownian motion
on the compact interval [0, 1]. In general & need not be a compact subset
of #?(P), although it must be totally bounded if it is to index a P-motion
(Problem 3); uniformly continuous functions on a totally bounded & must
be bounded.

We seek conditions on P and & for existence of the P-motion. The
Chaining Lemma will give us much more: a bound on the increments of the
process in terms of the covering integral

]
J) = 96, pp. #) = | T2 108N, pp, #))]" du
0
Finiteness of J(-) will guarantee existence of Bp.

13 Theorem. Let & be a subset of #*(P) with a finite covering integral,
J(), under the L*(P) seminorm pp(-). There exists a P-motion, Bp, indexed
by &, for which

[Br(@, f) — Bew, 9| < 26J(pp(f — 9)) if pp(f — g) < 8(w),
with dw) finite for every w.
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Proor. Construct the process first on a countable dense subset % = {f}
of Z. Such a subset exists because & has a finite -net for each § > 0 (other-
wise J could not be finite). Apply the Gram-Schmidt procedure to %,
generating an orthonormal sequence of functions {u;}. Each f in &% is a
finite linear combination Zj {uj, fu; because {u,, ..., u,} spans the same
subspace as {f}, . .., f,}. Here, temporarily, <u, > denotes the inner product
in Z%(P): {u, f» = P(uf). Choose a probability space (Q, &, IP) supporting
a sequence {U;} of independent N(0, 1) random variables. For each f
in % and w in Q define

Zw, ) = Y <y U )

The sum converges for every w, because only finitely many of the coefficients
{u;, f> are non-zero. The finite-dimensional distributions of Z are joint
normal with zero means and the desired covariances:

PLZ(-, N)Z(-, 9)] = ). <us, 5 <u;, gV, U
= Z <ui’f><uia g>
=L

as required for a P-motion.
The #2(P) seminorm is tailor-made for the chaining argument. Because
IP{|N(0, 1)| = x} < 2 exp(—3x?) for x > 0 (Appendix B),

IP{{Z(f) — Z(g9)| = n} < 2 exp(—3*/IPLZ(f) — Z(9)]?)
= 2 exp(—3n°/pe(f — 9)®).

Apply the Chaining Lemma to the process Z on %,. Because %, itself is
countable we may as well assume the countable dense subset promised by
the Lemma coincides with %,. Let G(J) denote the set of w for which

1Z(f) — Z(9)| > 26J(pp(f — g)) for some pair with pp(f — g) < 0.

Then IPG(5) < 20 for every § > 0. As § decreases, G(6) contracts to a
negligible set G(0). For each w not in G(0),

|Z(, f) = Z(w, 9)| < 26J(pp(f — 9)) 1 pp(f — g) < &(w).

Reduce Q to Q\ G(0). Then each sample path Z(w, -) is uniformly continuous.
Extend it from the dense %, up to a uniformly continuous function on the
whole of #. The extension preserves the bound on the increments, because
both J and pp are continuous. Complete the proof by checking that the
resulting process has the finite dimensional distributions of a P-motion. [

For brownian motion, continuity of sample paths in the usual sense
coincides with continuity in the pp sense, with P = Uniform[0, 1]. The
P-motion processes for different P measures on [0, 1] (or on IR, or on IR¥)
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do not necessarily have the same property. If P has an atom of mass « at a
point ¢,, the sample paths of the B, indexed by intervals {[0, t1} will all have
a jump at t,. The size of the jump will be N(0, o) distributed independently
of all increments that don’t involve a pair of intervals bracketing t,. All
sample paths are cadlag in the usual sense.

We encountered similar behavior in the gaussian limit processes for the
Empirical Central Limit Theorem (V.11) on the real line. We represented
the limit as U(F(-)), with U a brownian bridge and F the distribution function
for the sampling measure P. We can also manufacture the limit process
directly from the P-motion, in much the same way that we get a brownian
bridge from brownian motion. Denote by 1 the function taking the constant
value one. Then the process obtained from B, by setting

EP(':f) = BP(,f) - (Pf)BP(a 1)7

is a gaussian process analogous to the brownian bridge.

14 Definition. Call a stochastic process E, indexed by a subclass # of
#*(P) a P-bridge over & if

(1) Ep has joint normal finite-dimensional distributions with zero means
and covariance IP[Ex(-, )Ep(-, 9)] = P(fg) — (Pf)(Pg);

(ii) each sample path Ep(w, -) is bounded and uniformly continuous with
respect to the #2(P) seminorm on %, O

The P-bridge will return in Section 5 as the limit in a central limit theorem
for empirical processes indexed by a class of functions.

VIL.4. Random Covering Numbers

The two methods developed in Chapter I, for proving uniform strong laws
of large numbers, can be adapted to the task of proving the maximal in-
equalities that lurk behind the stochastic equicontinuity conditions in-
troduced in Section 1. The second method, the one based on symmetrization
of the empirical measure, lends itself more readily to the new purpose because
it is the easier to upgrade by means of a chaining argument. We have the
tools for controlling the rate at which covering numbers grow; we have a
clean exponential bound for the conditional distribution of the increments
of the symmetrized process. The introduction of chaining into the first
method is complicated by a messier exponential bound. Section 6 will tackle
that problem.

Recall that the symmetrization method relates P, — P to the random
signed measure PP that puts mass + n~ ! at each of 15 -5 &, the signs being
allocated independently plus or minus, each with probability 1. For central
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limit theorem calculations it is neater to work with the symmetrized empirical
process E; = n'/?P;. Hoeflding’s Inequality (Appendix B) gives the clean
exponential bound for E; conditional on everything but the random signs.
For each fixed function f,

IP{|E; f|>n|E} = IP{

;if(éi)‘ > nn”zli}

i

< 2exp| — 2012y’ / > 4f(é,~)2]

= 2exp[~31*/P, f*].
That is, if distances between functions are measured using the #2(P,)
seminorm then tail probabilities of E; under IP(-|€) satisfy the exponential
bound required by the Chaining Lemma, with D = 1. For the purposes of
the chaining argument, E? will behave very much like the gaussian process
Bp of Section 3, except that the bound involves the random covering number
calculated using the £*(P,) seminorm. Write

¥e]
6, P, F) = f [2 log(N (4, Py, ) /)12 du
0

for the corresponding covering integral.

Stochastic equicontinuity of the empirical processes {E,} at a function
fo in # means roughly that, with high probability and for all n large enough,
|E, f — E, fol should be uniformly small for all f close enough to f,. Here
closeness should be measured by the #?(P) seminorm pp. With the Chaining
Lemma in hand we can just as easily check for what seems a stronger property
—but if you look carefully you’ll see that it’s equivalent to stochastic equi-
continuity for a larger class of functions. Of course we need # to be per-
missible (Appendix C).

15 Equicontinuity Lemma. Let & be a permissible class of functions with
envelope F in &*(P). Suppose the random covering numbers satisfy the uni-
formity condition: for each n > 0 and ¢ > O there exists a y > 0 such that

(16) limsup IP{J,(y, P,, #) > 5} < &.
Then there exists a 6 > 0 for which
limsup IP{sup E.f — | > '7} <eg,
[6]

where [0] = {(f,9): f,g € F and pp(f — g) < 6}.

Proor. The idea will be: replace E, by the symmetrized process EZ; replace
[6] by a random analogue,

205 ={(f,9): f.g e F and (P,(f — 9))"'* < 26};
then apply the Chaining Lemma for the conditional distributions IP(- | €).



VIL4. Random Covering Numbers 151

For fixed f and ¢ in [6] we have var(E,(f — g)) = P(f — g)* < 62
Argue as in the FIRST and SECOND SYMMETRIZATION steps of Section IL.3:
when ¢ is small enough,

IP{S[I;]p |E.(f — @) > n} < 4IP{sup [Ex(f — )| > %n}

(o1
That gets rid of E,,.

If with probability tending to one the class (26> contains [0], we will
waste only a tiny bit of probability in replacing [5] by (26):

IP{SS]p |EXf — 9] > %n} < IP{SUP E(f — 9l > %17} + IP{[6] & <26>}.

(26
It would suffice if we showed supg, |P,h — Ph| — 0 almost surely, where
% ={(f —9)*: f,ge F}. This follows from Theorem I1.24 because the
condition (16) implies
an log Ny(6, P,, %) = 0,(n) foreach & > 0.

Problems 5 and 6 provides the details behind (17). That gets rid of [5].

The reason we needed to replace [6] by <26> becomes evident when we
condition on & Write p,(-) for the #?(P,) seminorm. We have no direct
control over p,(f — g) for functions in [§]; but for (28), whose members
are determined as soon as § is specified, p,(f — g) < 2. Apply the Chaining
Lemma.

P{|ES(f — g)| > 26J,(26, P,, F) for some (f, g) in <26)*|E} < 45

The countable dense subclass (26>* can be replaced by <26 itself, because
Ey is a continuous function on & for each fixed &:

|EX(f — @) < n'PP|f — gl <n'Pp(f - g).

Integrate out over &, then choose 6 so that both IP{26J,(26, P,, %) > in
and 46 are small. O

Now that we have the maximal inequalities for empirical processes, we
can take up again the central limit theorems for statistics defined by minimiza-
tion of a random process, the topic we left hanging at the end of Section 1.

Recall that we need the processes {E,(-, t)}, which is indexed by the
class # = {r(-,t):te T} of remainder functions, stochastically equi-
continuous at t,. If f(-, ) is differentiable in quadratic mean at 1, it will
suffice if we find a neighborhood V = {r e %: pp(r) < 6} for which

limsup IP{sup |E,r| > n} < &
14

Notice that V' < {r; — ry:pp(r; — 1,) < 8}, because r(-, t,) = 0 by defini-
tion. Thus we may check for stochastic equicontinuity by showing:

(i) The class £ has an envelope belonging to .#2(P).
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(i) f(-, ¢)is differentiable in quadratic mean at ¢,. From (i), this follows by
dominated convergence if r(-, t) — 0 almost surely [P] as t — ¢,.
(iii) Condition (16) is satisfied for # = 4.

These three conditions place constraints on the class { f(-, £)}.

18 Example. The spatial median of a bivariate distribution P is the value
of 0 that minimizes M(f) = P|x — 6. Estimate it by the 6, that minimizes
M, (6) = P,|x — 0|. Example I1.26 gave conditions for consistency of such
an estimator. Those conditions apply when P equals the symmetric normal
N(0, I,), a pleasant distribution to work with because explicit values can be
calculated for all the quantities connected with the asymptotics for {6,}.
For this P, convexity and symmetry force M(-) to have its unique minimum

at zero, so f, converges almost surely to zero. Theorem 5 will produce the
central limit theorem,

n''20, ~ N(0, (4/m)1),

after we check its non-obvious conditions (ii), (iv), and (v).
Change variables to reexpress M(#) in a form that makes it easier to find
derivatives.

M) = 2n)~ ! J|x| exp(—%ix + 0)?) dx.

Differentiate under the integral sign.

M’'(0) = 0, of course,
M"(0) = 2m)~! fIXI(XX' — I,) exp(—3|x/*) dx.

A random vector X with a N(0, I,) distribution has the factorization X = RU
where R? = [X|* has a y2-distribution independent of the random unit
vector U = X/|X|, which is uniformly distributed around the rim of the
unit circle.

V = M"(0) = P(RUU’ — RI,)
= PR3IPUU’ — (IPR)I,
= (n/8)"21,.

Condition (i) wasn’t so hard to check.
To figure out the A(x) that should appear in the linear approximation

lx — 0] = |x| + O'A(x) + |0]r(x, 0),

carry out the usual pointwise differentiation. That gives A(x) = x/|x| for
x # 0. Set A(0) = 0, for completeness. The components of A(-) all belong
to £?(P). Indeed, PAA' = TPUU’ = 11,. That’s condition (iv) taken care of,
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Now comes the hard part—or at least it would be hard if we hadn’t
already proved the Equicontinuity Lemma. Start by checking that the class
% of remainder functions (-, 6) has an envelope in Z*(P). For § + 0,

Ir(x, )] = |1x — 6] — x| — 'A(x)|/16]
<1017 (x — 0P — [xP)/(Ix — 6] + |x]) + 1
< @Ix+10D/(x = 01 + |x]) + 1
<4

It follows that |- — 8] is differentiable in quadratic mean at & = 0. We have
only to verify condition (16) of the Equicontinuity Lemma to complete the
proof of stochastic equicontinuity.

Each r(-, ), for 6 # 0, can be broken into a difference of two bounded
functions:

ri(-, 0) = 0'A()/|6,
r2( 0) = (Ix — 0] — |x])/|6].

Write #, and £, for the corresponding classes of functions.

The linear space spanned by %, has finite dimension; the graphs have
polynomial discrimination, by Lemma IL.28; the covering numbers
N,(u, P,, ;) are bounded by a polynomial Au~" in u~!, with 4 and W
not depending on P, (Lemma I1.36).

The graphs of functions in %, also have polynomial discrimination,
because {(x, 1):|x — 8] — |x| > |0|t} can be written as

{=20% +161* 2 216/ [x]t + [0}  {Ix| + 6]t > O} U {|x| + |0]¢ < O}

This is built up from sets of the form {g > 0} with g in the finite-dimensional
vector space of functions

Go, 8, 9,6.6.0(6 1) = &% + BIx| + y[x|t + 6t + e + ¢,

The covering numbers for %, are also uniformly bounded by a polynomial
inu L

These two polynomial bounds combine (Problem I1.18) to give a similar
uniform bound for the covering numbers of #, which amply suffices for the
Equicontinuity Lemma: for each # >0 there exists a v such that
J2(y, P,, ) < n for every P,. The conditions of Theorem 5 are all satisfied ;
the central limit theorem for {6,} is established. O

19 Example. Independent observations are sampled from a distribution P
on the real line. The optimal 2-means cluster centers a,, b, minimize
Wi(a, b, P,) =P, f,,, where f, ,(x)=|x —af> A [x — b|®>. In Examples
I1.4 and 11.29 we found conditions under which a,, b, converge almost surely
to the centers a*, b* that minimize W(q, b, P) = Pf, ,. Theorem 5 refines
the result to a central limit theorem.
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Keep the calculations simple by taking P as the Uniform{0, 1] distribu-
tion. The argument could be extended to other P distributions, higher
dimensions, and more clusters, at the cost of more cumbersome notation
and the imposition of a few extra regularity conditions.

The parameter set consists of all pairs (a, b)) with 0 < a < b < 1. For the
Uniform[0, 1] distribution direct calculation gives explicitly the values
a*, b* that minimize W(a, b, P).

W(a, b, P) = f{OSx <ia+b)}|x — a)?
+ {3a+b) < x < 1}|x — b|* dx
= 30> + J(1 ~ b + (b — a)*.

Minimizing values: a* = }, b* = 2, as you might expect. Near these optimal
centers,

W(a,b,P) =35 +3a—3>—3a - Db —D + 30 — H?
+ cubic terms

The function f, ,(x) has partial derivatives with respect to a and b except
when x = 4(a + b). That suggests for A(x) the two components

Afx) = —2(x — D0 < x <1,
A = —2x — D < x < 1}.

Both functions belong to #*(P). The remainder function is defined by
subtraction of the linear approximation from f, ,. Simplify the notation by
writing s = a — 4, t = b — 3; change f, , to g, , and (-, a, b) to R(-, s, t).
(Is] + [tDR(x, s, ) = g, (X) = go,0(x) + 25(x — D{0 < x < 3}
+22(x —HE<x<1}
= a piecewise linear function of x.

envelope

X

\

fR(-,s, t)

)|

/
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The remainder functions are bounded by a fixed envelope in £*(P).

IR, s, )l < [Ix —F -9 — (x — 2|+ |(x — 5 — 1) — (x — D
+2[sl1x — gl + 20el1x = 3/(Us| + [2])
<4d|x —% +4|x -2+ 2

Deduce differentiability in quadratic mean of f, , at the optimal centers.

The graphs of the piecewise linear functions in £ have only polynomial
discrimination, and they have an envelope in #?(P). Lemma I1.36 gives a
uniform bound on the covering numbers that ensures J,(y, P,, #) < n for
every P, if y is chosen small enough. The Equicontinuity Lemma applies;
the processes {E,r(-, a, b)} are stochastically equicontinuous at (3, 3); the
optimal centers obey a central limit theorem

(n'"*(a, — ), n'?(b, — D) ~ NO, V" IP(AA)V 1),

where
3 -4 % 0
V= [_l é], P(AN) = [0 L]. O
4 4 2

VIL.5. Empirical Central Limit Theorems

As random elements of D[0, 1], the uniform empirical processes {U,}
converge in distribution to a brownian bridge. More generally, the empirical
processes {E,} for observations from an arbitrary distribution on the real
line converge in distribution, as random elements of D[ — o0, 0], to a
gaussian process obtained by stretching out the brownian bridge. Both
results treat the empirical measure as a process indexed by intervals of the
real line. In this section we shall generalize these results to empirical measures
indexed by classes of functions.

Convergence in distribution, as we have defined it, deals with random
elements of metric spaces. Once we leave the safety of intervals on the real
line it becomes quite a problem to decide what metric space of functions
empirical process sample paths should belong to. Without the natural
ordering of the intervals, it is difficult to find a completely satisfactory sub-
stitute for the cadlag property; without the simplification of cadlag sample
paths, empirical processes run straight into the measure-theoretic complica-
tions we have so carefully been avoiding. Appendix C describes one way of
overcoming these complications. A class of functions satisfying the regularity
conditions described there is said to be permissible. Most classes that arise
from specific applications are permissible.

Let # be a pointwise bounded, permissible class of functions for which
supgz |Pf| < c0. The empirical processes {E,} define bounded functions on
& ; their sample paths belong to the space & of all bounded, real functions
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on Z. To avoid some of the confusion that might be caused by the hierarchy
of functions on spaces of functions on spaces of functions, call members of
Z functionals. Equip 2 with the metric generated by the uniform norm,
Ixll = supgz |x(f)|. Be careful not to confuse the norm [-]} on & with the
F*(P) seminorm pp(-) on Z.

The choice of o-field for & is tied up with the measurability problems
handled in Appendix C. We need it small enough to make E, a measurable
random element of Z, but large enough to support a rich supply of measur-
able, continuous functions. The limit distributions must concentrate on sets
of completely regular points (Section IV.2), That suggests that the o-field
should at least contain the balls centered at the functionals that are uniformly
continuous for the pp seminorm.

20 Definition. Write C(#, P) for the set of all functionals x(-) in & that are
uniformly continuous with respect to the #2(P) seminorm on %. That is, to
each ¢ > 0 there should exist a § > 0 for which |x(f) — x(g)| < ¢ whenever
pp(f — g) < 6. Define #* as the smallest o-field on & that: (i) contains all
the closed balls with centers in C(&, P); (ii) makes all the finite-dimensional
projections measurable. O

Notice that C(Z, P) is complete, because it is a closed subset of the
complete metric space (Z, ||-||). Notice also that ° depends on the sampling
distribution P. Each E, is 2 #*-measurable random element of & under mild
regularity conditions (Appendix C).

The finite-dimensional projections of {E,} (the fidis) converge in distri-
bution to the fidis of Ep, the P-bridge process over % (Definition 14). Of
course some doubts arise over the existence of Ep; getting a version with
sample paths in C(&, P) is no simple matter, as we saw in Section 3. Happily,
the questions of existence and convergence are both taken care of by a single
property of the empirical processes, uniform tightness.

Recall from Section IV.5 that uniform tightness for {E,} requires existence
of a compact set K, of completely regular points in & such that

liminf IP{E,e G} > 1 — ¢
for every open, #°-measurable set G containing K,. From uniform tightness
we would get a subsequence of {E,} that converged in distribution to a tight
borel measure on Z. If C(#, P) contained each K,, the limit would con-
centrate in C(%, P). Its fidis would identify it (Problem 8) as the P-bridge
over 4.

Uniform tightness of {E,} would also imply convergence of the whole
sequence to Ep. For if {IPh(E,)} did not converge to IPh(Ep) for some
bounded, continuous, #°-measurable h on & then

|IPh(E,) ~ IPH(E;)| > ¢ infinitely often

for some ¢ > 0. The subsequence along which the inequality held would
also be uniformly tight; it would have a sub-subsequence converging to a
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process whose fidis still identified it as a P-bridge. That would give a con-
tradiction: along the sub-subsequence, {IPA(E,)} would converge to IPh(Ep)
without ever getting closer than e.

21 Theorem. Let & be a pointwise bounded, totally bounded, permissible
subset of Z*(P). If for each n > 0 and & > 0 there exists a & > 0 for which

(22) limsup IP{sup IELf —g)| > r/} < g,

t)]
where [0] = {(f,9): f,ge F and pp(f — g) < 6}, then E, ~ E, as random
elements of . The limit P-bridge process Ep is a tight, gaussian random
element of & whose sample paths all belong to C(%, P).

ProoF. Check the uniform tightness. Given ¢ > 0 find a compact subset K
of C(Z#, P) with liminf IP{E, € G} > 1 — ¢ for every open, #7-measurable
G containing K. Construct K as an intersection of sets D;, D,, ..., where D,
is a finite union of closed balls of radius k™! centered at points of C(%, P).
Every functional in D, will lie uniformly within k~* of a member of C(Z, P);
every functional in K will therefore belong to C(#, P), being a uniform limit
of functionals in C(#, P). The prooffollows closely the ideas used in Theorem
V.16 to prove existence of the brownian bridge. Only the continuous inter-
polation between values taken at a finite grid requires modification.

Fix # > 0 and ¢ > 0 for the moment, and choose & according to (22).
Invoke the total boundedness assumption on & to find a finite subclass F; =
{fi,- s fu} of &F such that each f in & has an f* in % for which
pp(f — f*) < 36.

We need to find a finite collection of closed balls in &, each with a specified
small radius and centered on a functional in C(#, P), such that E, lies with
specified large probability in the union of the balls. Construct the centers
for the balls by a continuous interpolation between the values taken on at
each f; in % by realizations of an E,,.

For each f;, the sequence of random variables {E,(f)} converges in
distribution. There exists a constant C for which

limsup IP{max |E(f)] > C} <e

Define

Q, = {w:SUPIEn(w,f — ¢)| < n and max |E (o, f)| < C}.
181 i

By the choice of § and C we ensure that liminf IPQ, > 1 — 2&. Write S, for

the bounded set of all points in IR™ with coordinates E,(w, f;) for an o in Q,,,

and S for the union of the {S,}. If r belongs to S then |r;| < C for each

coordinate and |r; —r;] < 2y whenever there exists an f in & with

pp(f — f) < dand pp(f — fj) < 0.
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Construct weight functions A(-) on & by
vl(f) =[1 = pp(f = /81,
ALS) = oo () + -+ + v(D]

Each v(-) is a uniformly continuous function (under the p, seminorm) that
vanishes outside a ball of radius & about f;. For every f there is at least one
fi> its f*, for which v(f) > %; the denominator in the defining quotient for
A; is never less than . The A(-) are non-negative, uniformly continuous
functions that sum to one everywhere in %.

For r in S define an interpolation function by x(f,r) = Y™, A()r;.
Each x(-, r) belongs to C(Z, P). If pp(f — f;) < 4, all the r; values corre-
sponding to non-zero {A(f)} satisfy |r; — r;] < 2. As a convex combination
of these values, x(f, r) must also lie within 2z of r ;- An E (o, -) corresponding
to an w in €, has a similar property:

|Ei@, f) — Ef(w, f)| <1 when pp(f — f)) < 4.
Thus, if w belongs to Q, and | E (o, f) = r;] < nfor every j then

S;l_plEn(w, ) = x(f,0] < 4n.

Choose from the bounded set S a finite subset {r(1), ..., r(p)} for which

min max |r; — ri(k)| < n foreveryrin S.
ko
Abbreviate x(-, r(k)) to x,(-), fork = 1, .. ., p- Then from what we have just
proved

min sup | E(w, /) — x(f)] < 4y,
k F

whenever o belongs to Q,. If we set D equal to the union of the balls
B(xy,4n),. .., B(x,, 41), then

liminf IP{E, € D} > 1 — 2.

Repeat the argument with # replaced by (4k) ™! and & replaced by &/2%* !, for
k=1,2,...,to get each of the D, sets promised at the start of the proof:
D, is a finite union of closed balls of radius k~! and

liminf IP{E, € D,} > 1 — ¢/2%,

The remainder of the proof follows Theorem V.16 almost exactly.

The intersection of the sets Dy, D,, ... is a closed and totally bounded
subset of the complete metric space C(Z, P); it defines the sought-after
compact K. The open G contains some finite intersection D, N - - - N D,. If
not, there would exist a sequence Y = {y,} with y, in G D, " --- N D,
for each k. Some subsequence Y’ of Y would lie within one of the balls making
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up Dy ; some subsequence Y” of Y’ would lie within one of the balls making
up D,; and so on. The sequence constructed by taking the first member of
Y’, the second member of Y”, and so on, would be Cauchy; it would con-
verge to a point y (¥ is complete) belonging to all the closed sets
{G° n Dy n--- n D,}. This would contradict

GnDin---NnD,=GnK=g.
1

k=
Complete the uniform tightness proof by noting that
liminf IP{E, € G} > liminf IP{E,eD; n---nD,} >1—¢

if G contains D; N --- N D,. (|

Condition (22) points the way towards mass production of empirical
central limit theorems. The Chaining Lemma makes it easy. For example,
from the Equicontinuity Lemma of Section 4, we get conditions on the
random covering numbers under which {E,} converges in distribution. The
next section will describe other sufficient conditions.

23 Example. We left unfinished back in Example V.15 a limit problem for
goodness-of-fit statistics with estimated parameters. The empirical processes
were indexed by intervals of the real line; the estimators took the form

6, = 0o+ 11 Y LE) + o,(n" 1)
i=1

H

for an L with PL = 0, PL? < co. We wanted to find the limiting distribution
of

D, = sup |E,(— 0, t] — n*"(8, — 05)A(®)| + 0,(1)

the A(-) being a fixed cadlag function on [ — oo, c0].
Set # equal to {L} U {(—o0,t]: —o0 < t < o0}. Express D, in terms of
a function on the corresponding Z. Define

H(x) = sup |x((— oo, £]) — x(L)A®)|.

Guard against measurability evils by restricting the supremum to rational
t values: it makes no difference to E,, A, or the limiting P-bridge. Clearly
H(-) is a continuous function on %.

You can check condition (22) by means of the Equicontinuity Lemma.
The intervals have only polynomial discrimination; the inclusion of the
single extra function L has a barely perceptible effect on the covering num-
bers. Deduce that D, = H(E,) + o,(1) ~ H(Ep). O
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VIL.6. Restricted Chaining

In this section the method of the Chaining Lemma is modified to develop
another approach to empirical central limit theorems. The arguments for
three representative examples are sketched. You might want to skip over the
section at the first reading.

The chaining arguments in Section 2 assumed that the increments of the
stochastic process had exponentially decreasing tail probabilities,

Q4)  IP{Z(s) — ZO®)| > n} < 2exp(—n¥/D?6?) if d(s, 1) < 6.

The inequality held for every # > 0 and 6 > 0. We shall carry the argument
further to cover processes, such as the empirical process, for which the
inequality holds only in a restricted region 2 of (#, d) pairs.

Suppose f is a bounded function, | f| < C. Let 6% be an upper bound
for the variance o*(f) = Pf? — (Pf)% Bennett’s Inequality (Appendix B)

gives
(25) P{IE,f|>n} = IP{ Z 1)~ Bf| > nn”z}

< 2 exp[ —3(n*/6*)BQ2Cn/(n*1*6%))]
< 2exp(—iA?/8?) if 8%y = 2C/(n'*B~1(A))

for any fixed 4 between 0 and 1, because B(-) is a continuous, decreasing
function, with B(0) = 1.

The restricted range complicates the task of proving maximal inequalities
for the stochastic process {Z(¢): t € T}. We can chain as in Section 2 as long
as the (;, 6;) pairs remain within £ but eventually the chain will hit the
boundary of #, when the links are getting down to lengths less than some
tiny a, say. That leaves the problem of how to bound increments of Z across
little links from points in T to their nearest neighbors in an a-net for T.

Remember the abbreviations N(8), for the covering number N@,d, T),
and J(6), for the covering integral

JS,d, T) = f 6[2 log(N(u)*/u)] 2 du.
4]

The chaining argument will work for maximal deviations down to about
J(a). That explains the constraint J(x) < y/12D in the next theorem. The
other constraints on o and y are cosmetic.

26 Theorem. Let {Z(1):te T} be a stochastic process that satisfies the
exponential inequality (24) for every n > 0 and & > 0 with § > an'/?, for some
constant o. Suppose T has a finite covering integral J(-). Let T(x) be an a-net
(containing N(a) points) for T'; let t, be the closest point in T(a) to t; and let
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[0] denote the set of pairs (s, t) with d(s, t) < 6. Given ¢ > 0 and y > 0 there
exists a 6 > 0, depending on ¢, v, and J(-), for which

]P{sup |Z(s) — Z(t)| > SV} < 2+ IP{sup | Z(t) — Z(t,)| > y}
2] T

provided o < 3¢ and y < 144 and J(2) < min{y/12D, 3/D}.

PRrOOF. The argument is similar to the one used for the Chaining Lemma.
Write H(u) for [2 log(N(u)?/u)]'/?, as before. Choose the largest J for which
6 < 3¢ and J(5) < y/12D. The assumptions about o ensure é > . Find the
integer k for which 6 < 3%« < 36 then define

6;=3"% and u; = D§;H(,,,) for i=0,..., k
Notice that §; < 6 < §, and §, = «. Also
k-1
o+ -+ My = 2 3DG;vy — 6;42)H(G44)
i=0
<3D ) | {is; <u <6y }H()du
i=0
< 3DJ(5,)
<7y because J(6,) < J(6) < y/12D.
Choose é;-nets T; containing N(d;) points, making sure that T, = T(x). Link
each ¢ to a ¢, in T through a chain of points,

t=1lyy1, ty=1, tkmt1s -5 tos
with t; being the closest point of T; to t; , ;. By this construction, d(t,, ,, ;) < §,.
The smallest value of the ratios {6/n,}, for i =0, ...,k — 1, occurs at
i = k — 1; all the ratios are greater than

30/DH(%) = 302/DJ(a) > a?.

The (;, 6;) pairs all belong to the region in which the exponential inequality
(24) holds. Apply the inequality for increments across links of the chains.

k-1
IP{maX |Z(t,) — Z(to)| > V} < Z IP{maX | Z(t; 1) — Z(t)| > ﬂi}
T(x) i=0 Ti+1
k-1

< Y N(3i+1)2 exp(—3n7/D*67)
i=0

IA

> IN(is 1) expl —1og(N (5, )2/61s )]
=0

< 22014,
i=0

Notice how one of the N(8;, ;) factors was wasted ; both factors will be needed
later. The last series sums to less than ¢ because §, < 3¢ and the {§,} decrease
geometrically.
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So to

A
\
\

s,,\ )Ia T(x)

i
N t

Join each (s, £) pair in [§] by two chains leading up to T, plus a link
between s, and t,,.

sup | Z(s) — Z(t)| < 2sup | Z(t) — Z(t,)| + 2 max |Z(t,) — Z(t,)|
] T

T(a)

+ sup|Z(se) — Z(to)|-
i)
Partition the 5y correspondingly.

IP{sup | Z(s) — Z(t)| > 5))} < IP{suplZ(t) — Z(t,)] > y} + ¢
[3] T

{41

The distance between the s, and ¢, of each pair appearing in the last term
is less than

+ IP{sup 1 Z(s0) — Z(ty)] > y}.

d(So, s,) + d(s,, 8) + d(s, ) + d(t, t,) + d(t,, t,)
k=1 k-1
S Y&h+a+d+a+ Y4
i=0

i i=0
<30, +20+6
< 126.

There are at most N(5,) such pairs. The exponential inequality holds for
each pair, because 125/(ay*?) > 12y~ 12 > 1.

IP{SS}) | Z(s0) — Z(to)| > v}
< N(60)%2 exp(—%y?/144D%5?) because d(so, o) < 126
< 26 exp[log(N(6)*/6) — $7%/144D?6%] because N(5,) < N(5)

< 26 exp[6™X(H(0)25? — 72/144D?)]

<26 because H(4)d < J() < y/12D

<eé& |
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Theorem 21 states a sufficient condition for empirical processes indexed
by a pointwise bounded, totally bounded, permissible subclass # of £3*(P)
to converge in distribution to a P-bridge: given # > 0 there exists a § > 0
for which

limsup IP{sup |E.(f — )] > 11} < e
61

For a permissible class of bounded functions, say 0 < f < 1, any condition
implying finiteness of N(-, P, &) or N,(-, P, #) will take care of the total
boundedness. Finiteness of a covering integral will allow us to apply Theorem
26, leaving only a supremum over the class # = {f — f,: fe #} of little
links. It will then suffice to prove supy |E, k| = 0,(1) to get the empirical
central limit theorem. Notice that «, and hence #, will depend on n. The
next three examples sketch typical methods for handling 5#.

27 Example. Equip & with the semimetric d(f, g) = (P|f — g|)"2. (This
is the £*(P) seminorm applied to the function | f — g|!/2.) The square root
ensures that the variance o*(f — g) is less than d(f, g)°. If we take A = 1,
the exponential bound (25) becomes, for d(f, g) < 4,

IP{{E(f — 9)| > n} < 2exp(—gn°/6%) if &%/n = 2/(n'*B~'()).

That is, D = 2 and a = (2/B~1(3))!/%n~ V/* for Theorem 26.
The covering numbers for d(-, -) are closely related to the #*(P) covering
numbers: in terms of the covering integral,

]
(28) J@S,d, F) = f [21og(N,(u2 P, #/w)]"* du for 0<6 < 1.
0

If J is finite, Theorem 26 can chain down to leave a class J# of little links with
|[h| < 1 and P|h| < o If we add to this the condition

(29) log Ny(cn™ Y2, P, #) = o,(n*'?) for eachc¢ > 0,

the empirical central limit theorem will hold.

The methods of Section IL.6 work for the class #,,, = {|h|V?:he #}.
Notice that

N2(5> Pm e%1/2) < Nl(aza Pna ‘#)
because P,(|h,|V* — |hy|M?)? < P,|h; — h,|. From Lemma I1.33,
(30) IP{sup(P,,lhl)”2 > 80(} < 4IP[N,(o?, P,, #) exp(—na?) A 1]
>

= 4IP[exp(log N,(«?, P,, #) — na?) A 1]
0 by (29).
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Symmetrize. For n large enough,

IP{sup |E k] > 4))} < 4]P{sup |ESh]| > y}.
H #H

Condition on & Cover # by M = N,(3yn~ V2, P,, #) balls, for the & Y,
seminorm, with centers gy, ..., g,, in 3 Then as in Section IL6,

IP{sup |E2h| > y[&} < M max IP{|Eyg;| > %y‘f;}.
# J
On the set of § where sup,, P,|h| < 6402, Hoeflding’s Inequality bounds the
right-hand side by
2 expllog M — 3(37)*/(640%)]

which is of order o,(1) because (29) says log M = 0,(n'’?). The central limit
theorem follows. [

31 Example. The direct approximation method of Section IL.2 gave uniform
strong laws of large numbers. With a suitable bound on the number of
functions needed for the approximations, we get central limit theorems.

Define a direct covering number A(9, P, #) as the smallest M for which
there exist functions g, . . ., g,, such that, for every hin J,

|h| <g; and Pg, <6+ P|h| forsomei.
We may assume 0 < g; < 1. If
(32) log A(cn™"%, P, #) = o(n'/?) foreachc > 0,

and if the covering integral (28) from the previous example is finite, then the
empirical central limit theorem holds.

Given y > 0, choose A in the exponential inequality (25) so that
2/B~1(4) = y. The dependence of A on 7 does not vitiate the chaining argu-
ment in Theorem 26; it does ensure that functions in # satisfy

Plh) < a® = =12,

Find g,,..., gs according to the definition of A(yn~Y/2, P, #). Because
Pg; < 2yn™1/2 for each i, the contributions of the means to E, are small.

IP{sup |E,h| > 4y} < IP{sup n'2p |h| > 3)} because n'2P|h| < y
# H

< IP{max n'?pP,g; > 3y} because |h| < g; for some i
< M max IP{E,g; > 7} because n'/2Pg, < 2y
< M max 2 exp[ —3(y*/Pg))B(2y/(n*/*Pg,))] from (25)

< 2exp[log M — Lyn'/2B(1)]
=o(1) by (32) =
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33 Example. In the previous two examples, the method of chaining left
links of small .#!(P) seminorm at the end of the chain; #* approximation
methods took care of # If we chain instead with #2(P) covering numbers,
we need ¥ approximation methods for #,

Set d(-, -) equal to the #?*(P) semimetric. Because ¢*(f — g) < d(f, 9)°,
the chaining down to # requires J,(1, P, %) finite. At the end

Ph? < o® = (2/B~'(E)n~ Y2,

Invoke Lemma I1.33.
IP{sup(P,,hZ)”2 < Szx} -1 as n—ow
F 4

if the random covering numbers satisfy
log N,(cn™ Y4, P,, #) = 0,(n'’*) for eachc > 0.
This would follow from
(34) Jy(en™ Y4, P, #) = o,(1) foreach ¢ > 0,
because
0,(n'*) = (en™ V)" (en™ V4, P,, )
> [2 log(N,(cn™ Y4, P,, #)*n'4/c)]Y2.

Symmetrize. For all n large enough,

]P{sup |E k| > 4);} < 4IP{sup |Esh| > y}.
H H

Now we are back to the sort of problem we were solving in Section 4. Condi-
tion on & On the set of those & for which sup (P, h*)*/? < 8«, chain using
the Hoeffding Inequality to bound the tail probabilities. Apply the Chaining
Lemma for IP(-|&), the #?(P,) seminorm, and & = 8.

]P{sup {ESh| > 26J,(8a, P,, %)ya} < 16a if sup(P,h*)'V? < 8.
H H

Condition (34) and finiteness of J,(1, P, #) are sufficient for the empirical
central limit theorem to hold. O

NOTES

Theorem 5 draws on ideas from Chernoff (1954), but substitutes stochastic
equicontinuity where he placed domination conditions on third-order
partial derivatives. The theorem also holds if ¢, is just a local minimum for
F(.), or if 7, is a minimum for F,(-) over a large enough neighborhood of ¢,.
Huber (1967, Lemma 3) made explicit the role of stochastic equicontinuity
in a proof of the central limit theorem for an M-estimator.
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The chaining argument abstracts the idea behind construction of processes
on a dyadic rational skeleton. It appears to have entered weak convergence
theory through the work of Kolmogorov and the Soviet School; it is closely
related to the arguments for construction of measures in function spaces
(Gihman and Skorohod 1974, Sections II14, IIL.5). The Chaining Lemma
is based on an arrangement by Le Cam (1983) of an argument of Dudley
(1967a, 1973, 1978). Le Cam’s approach avoids the complications introduced
into Dudley’s proof by the nuisance possibility that covering numbers N(§)
might not increase rapidly enough as § decreases to zero. Alexander (1984a,
1984b) has refined Dudley’s form of the chaining argument to prove the most
precise maximal inequalities for general empirical processes to be found in
the literature.

Theorem 13 is based on Theorem 2.1 of Dudley (1973), but with his
modulus function increased slightly to take advantage of Le Cam’s (1983)
cleaner bound for the error term. The extra (5 log(1/8))/? does not change
the order of magnitude of the modulus for most processes.

The argument in Section 4 is based on Pollard (1982c), except for the
substitution of convergence in probability (condition (16)) for uniform
convergence. Kolchinsky (1982) developed a similar technique to prove a
similar central limit theorem for bounded classes of functions. He imposed
finiteness of J,(-, P, #) plus a growth condition on N {5 Py, F) to get
results closer to those of my Example 27. Giné and Zinn (1984) have found
a necessary and sufficient random entropy condition for the empirical
central limit theorem.

Brown (1983) sketched the large-sample theory for the spatial median. He
referred to Brown and Kildea (1979) and the appendix he wrote for Maritz
(1981) for rigorous proofs, which depend on a form of stochastic equi-
continuity.

The central limit theorem for k-means was proved by Pollard (1982b,
1982d) for a fixed number of clusters in euclidean space. The one-dimen-
sional result was proved by Hartigan (1978), using a different method.

Dudley (1978, 1981a, 1981b, 1984) has developed the application of
metric entropy (covering numbers) to empirical process theory. These papers
extended his earlier work on entropy and sample path properties of gaussian
processes (1967b, 1973), and on the multidimensional empirical distribution
function (1966a).

Dudley (1966a, 1978) introduced most of the ideas needed to prove
central limit theorems for empirical processes indexed by sets. He extended
these ideas to classes of functions in (1981a, 1981b). His lecture notes (1984)
provide the best available overview of empirical process theory, as of this
writing. The proof of my Theorem 21 was inspired by Chapter 4 of those
lecture notes, which reworked ideas from Dudley and Philipp (1983). If
Pf =0 for each f in #, a standardization that can be imposed without
affecting E, or Ep, the conditions of Theorem 21 are also necessary for the
empirical central limit theorem.
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The first central limit theorems for empirical processes indexed by classes
of sets were proved by the direct approximation method. Bolthausen (1978)
worked with the class of compact, convex subsets of the unit square in IR2.
He applied an entropy bound due to Dudley (1974). Révész (1976) indexed
the processes by classes of sets with smooth boundaries. Earlier work of
Sun was, unfortunately, not published until quite recently (Pyke and Sun
1982). Dudley’s (1978) Theorem 5.1 imposed a condition on the “metric
entropy with inclusion” that corresponds to finiteness of a covering integral.
Strassen and Dudley (1969) proved a central limit theorem for empirical
processes indexed by classes of smooth functions. They deduced the result
from their central limit theorem for sums of independent random elements
of spaces of continuous functions. All these theorems depend on existence
of good bounds for the rate of growth of entropy functions (covering num-
bers). For more about this see Dudley (1984, Sections 6 and 7) and Gaenssler
(1984).

Theorem 26 resets an argument of Le Cam (1983). Such an approximation
theorem has been implicit in the work of Dudley. Giné and Zinn (1984) have
pointed out the benefits of stripping off the #?(P) chaining argument, to
expose more clearly the problem of how to handle the little links Ieft at the
end of the chain. They have also stressed the strong parallels between
empirical processes and gaussian processes. The examples in Section 6
follow the lead of Giné and Zinn: Example 27 is based on their adaptation
of Le Cam’s (1983) square-root trick; Example 31 is based on their im-
provement of Dudley’s (1978) “metric entropy with inclusion” method;
Example 33 is based on their Theorem 5.5.

PROBLEMS

[1] Prove that the stochastic equicontinuity concept of Definition 2 follows from:
Z,(t,) — Z,(t;) > 0 in probability for every sequence {r,} that converges in
probability to t,. [Suppose the defining property fails for some # > 0 and ¢ > 0.
For a sequence of neighborhoods {U,} that shrink to ¢, find positive integers n(1) <
n(2) < --- with

IP{SUP | Z () — Zp(to)] > "I} > 3¢
Us

for every k. Choose random elements {7,} of T such that, for n(k) < n < n(k + 1),
|Z(@, T(@)) — Z,(o, to)| 2 Fsup|Z,(w, £) — Z,(, t,)]
Ur

and 1,(w) belongs to U,. Appendix C covers measurability of 7,,.]

[2] Let {f(-, t): t € T} be acollection of IR*-valued functions indexed by a subset of IR¥,
Suppose P|f(-,t)|* < oo for each . Set F(t) = Pf(-,t) and F,(t) = P, f(-, t). Let
{z.} be a sequence converging in probability to a value ¢, at which F(t,) = 0. If
(a) F()has a non-singular derivative matrix D at t,;

(b) F(z,) = 0,(n™2);
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(c) {E, f(-, 1)} is stochastically equicontinuous at t,;
then n'/*(z, — t5) ~ N(O, D™*Pf (-, to)f (-, toY]D™Y). [Compare with Huber
(1967).]

[3] For a class # to index a P-motion it must be totally bounded under the F(P)
seminorm pp. [First show & is bounded: otherwise | Bp(f,)| — oo in probability
for some {£,}, violating boundedness of P-motion sample paths. Total boundedness
will then follow from: for each ¢ > 0, every f lies within ¢ of some linear combination
of a fixed, finite subclass of &. If for some ¢ no such finite subclass exists, find {f}
such that

n
Jot1 = Gusr + Zanjfj’
j=1

where pp(g,+1) = ¢and g, , is orthogonal to fi, . . ., f,. Fix an M. Show that there
exists a 6 > 0, depending on M and ¢, for which

P{Be(fu+1) = M|Bp(f1), -, Bo(f,)} 2 6.

Deduce that IP{sup, Bp(f,) > M} = 1 for every M, which contradicts boundedness
of the sample paths. Notice that continuity of the sample paths does not enter the
argument. Dudley (1967b).]

[4] If sups | Pf|is finite then # must be totally bounded under the Z(P) seminorm
pe il it supports a P-bridge. [Choose Z with a N(0, 1) distribution independent of
Ep. The process B(f) = Ep(f) + Z Pf is a P-motion with bounded sample paths.
Invoke Problem 3. The condition on the means is needed — consider the % con-
sisting of all constant functions. The P-bridge is unaffected by addition of arbitrary
constants to functions in #; it depends only on the projection of & onto the sub-
space of #£2(P) orthogonal to the constants.]

[5] Let 5#, be a class of functions with an envelope H in #2(P). Set #, = {h*: he #}.
Show that

Ni(4(QH?)'2, Q, #)) < Ny(2¢, Q, #)).
[By the Cauchy-Schwarz inequality,
Qlht — k3| < QQRH|hy — hy]) < AQH?Y*(Q[hy — hy )12
if both |h,| < H and |h,] < H.]
[6] Let & be a permissible class of functions with envelope F. Suppose
J3(0, P,, F) = 0,(n''*) foreach &> 0.

[Condition (16) of the Equicontinuity Lemma implies that J,(5, P,, #) = o,
for each & > 0.] Show that #, = {(f — g)*: f — ge F} satisfies the sufficient
condition (Theorem I1.24) for the uniform strong law of large numbers:

log Ny(s, P,, #,) = o,(n), foreache > 0.
[Set H = 2F and o, = {f — g:f, g #}. Show that, for | > ¢ > 0,
N2(28, Pn’ e%1) < N2(85 Pn’ 37)2 <e eXp(%Jz(& Pn: '?7)2/82)'
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[7]

(8]

(9]

Deduce from this inequality, Problem 5, and the strong law of large numbers for
{P,H?)} that,if 1 > ¢ > 0,

P{log N,(462PH?)2, P,, #,) > nn}
< IP{log N,(4e(P, H?)'2, P,, #,) > nn} + P{P,H? > 2PH?)
< IP{log N,(2¢, P,, #,) > my} + IP{P,H* > 2PH%*}
< P{4J,(e, P,, F)*/e* > ny} + IP{P,H? > 2PH?}
- 0.

A weaker result was proved by Pollard (1982c).]

If # is totally bounded under the .#?(P) seminorm, then the space C(&, P) of
bounded, uniformly continuous, real functions on & is separable. [Suppose
|x(f) — x(g)| < ¢ whenever pp(f — g) < 28. Choose {f},..., f.,} as a maximal
set with pp(f; — f)) = 36. Use the weighting functions A() from the proof of
Theorem 21 to interpolate between rational approximations to the {x(£)}.]

Suppose & is totally bounded under the #?(P) seminorm. If two probability
measures A and p on the o-field #° have the same fidis, and if both concentrate on
C(#, P), then they must agree everywhere on 4”. [Show that A and p agree for all
finite intersections of fidi sets and closed balls with centers in C(#, P). For example,
consider a closed ball B(x, r) with x in C(&, P). Let {fi, f5, ...} be a countable,
dense subset of C(#, P). Define

B,={zeC(# P):|z(f) — x(f))| <rfor 1 <i<n}

Show that uB(x, r) < uB, = AB, —» AB(x, r) as n — oo. Extend the result to finite
collections of closed balls and fidi sets, then apply a generating-class argument.]

The property that the graphs have only polynomial discrimination is not preserved
by the operation of summing two classes of functions. That is, both &% and ¢ can
have the property without the class & = {f + g: fe #,ge ¥} having it. Let
2 = {Dy,D,,...} be the set of indicator functions of all finite sets of rational
numbers in [0,1]. Let # = 2n + D,:n=1,2,...}and ¥ = {—-2n:n=1,2,...}.
The graphs from neither class can shatter two-point sets, but & can shatter arbi-
trarily large finite sets of rationals in [0, 1]. [The roundabout reasoning used to
bound the covering numbers in Example 18 may not be completely unnecessary.]



CHAPTER VIII
Martingales

... in which martingale central limit theorems in discrete and continuous time
are proved. An extended non-trivial application to Kaplan—Meier estimators—
estimation of distribution functions from censored data—is sketched.

VIIL.1. A Central Limit Theorem for
Martingale-Difference Arrays

Martingale theory must surely be the most successful of all the attempts to
extend the classical theory for sums of independent random variables to
cover dependent variables. Many of the classical limit theorems have
martingale analogues that rival them for elegance and far exceed them in
diversity of application. We shall explore two of these martingale theorems
in this chapter. .

One main change in technique will become apparent. Where proofs for
independent summands use truncation to protect against occasional ab-
normally large increments—the sort of thing implicit in something like the
Lindeberg condition—martingale proofs can resort to stopping time
arguments. Optional stopping preserves the conditional expectation connec-
tion within a martingale sequence as long as the decision to stop is based
only on past behavior of the sequence. The prohibition against peering into
the future to anticipate abnormally large increments imposes a characteristic
feature on martingale theorems. One needs conditions that protect against
the behavior of the worst single increment, because the decision to stop can
be taken only after that increment has had its effect.

In central limit theorems, independence allows one to factorize expecta-
tions of products and separate out the contribution of a particular increment
from contributions of past and future increments. The martingale property
allows a weaker factorization, for expectations conditional on the past alone.
Conditional variances take over the role played by variances of independent
summands. But apart from that, the arguments for martingales share the
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same inspiration as the proof of the Lindeberg Central Limit Theorem in
Section I11.4.

We shall prove asymptotic normality for row sums of martingale-differ-
ence arrays. That is, for each n we have random variables &,,,..., &,, (we
avoid some messy notation, and lose no generality, by assuming exactly »
variables in the nth row) and ¢-fields &,, = - -- = &,, for which

(a) IP(indgn,j—l) = 0 forj = 19 EEP (O
(b) &,;is &,;-measurable.

Define conditional variances
Upj = IP(&,?jlé",,,j_l) for j=1,...,n

Notice that v,; is an &, ;. ;-measurable random variable. Convergence of
sums of conditional variances will be the only connection tying together the
variables in different rows of the array.

1 Theorem. Let {&,;} be a martingale-difference array. If as n — o,

() Y; vn; — o2 in probability, with 62 a positive constant;
(i) for every ¢ > 0, the sum Zj IP(C,Z,j{lé,,jl > &}| &, ;1) converges in prob-
ability to zero (a Lindeberg condition);

then &,y + -+ + &,, ~ N(O, ¢?).

Proor. Without loss of generality set 6> = 1. Let us check pointwise con-
vergence of characteristic functions:

P exp[it(énl +oeee 4t énn)] - exp(——%tz).

We really will need some of the special multiplicative properties of the
complex exponential function, and not just its smoothness by way of three
bounded, continuous derivatives as in Section IIL.4. The randomness of the
conditional variances fouls up the argument based on successive substitution
of matching normal increments, which worked for independent summands.

At the risk of notational abuse (more will follow) abbreviate the condi-
tional expectation IP(-|&,;) to IP(-). Write R(x) for the remainder term
e” —1—ixand §,;for the partial sum &, + - - - + ;. Define r,; as the condi-
tional expectation IP;_;R(¢{,;). When the {&,;} are small, in a sense to be
made precise by condition (ii), we shall get r, i~ =, i

The proof will work by successive conditioning. We pin down the effect
of individual increments by evaluating

P eXp(itSnn) = IP(IPO(IPI(EZ( o (]Pn— 1 eXp(itsnn) te )))))5

a layer at a time. Start with the innermost conditional expectation. Factorize
out the part depending on &, ;_ ; then expand the remaining exp(it¢,,).

exp(itsn,n— I)IPn— 1[1 + it énn =+ R(ténn)] = eXp(itSn,n— 1)(1 + rnn)'
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The 1 + r,, factor foils the attempt to work the same idea with P,_,;it
won’t cooperate by slipping outside the conditional expectation, leaving
exp(itSy, ,~ 1) to enjoy the same treatment from IP, _, that exp(itS,,) received
from IP,_,. We could clear away the obstacle by dividing out the offending
factor.

IPn—ZIPn— 1[(1 + rnn)~ ! exp(itsnn)] = IPn—Z exp(itSn,n— 1)
= exp(it‘sn,n—z)(l + rn,n— 1)'
We could get rid of the (1 + r, ,_,) in a similar fashion.
If you pursue this idea through each layer of conditioning, you will see
the sense in starting from

n

[T+ a1 exp(itS,,).

j=1
The remote possibility that one r,; might get close to — 1 could cause minor
difficulty when we come to bound the product term. To avoid this, replace
(1 +r,)” ' by (1 — r,)). When r,; = 0 the change has little effect. Define

k
Ty = 1_[ (1 —r, and Z, = T, exp(itS,,).
j=1

If we could show IP| T,,, — exp(3¢?)| - O and IPZ,, — 1, then it would follow
that

[P exp(itS,,) — exp(—3t?)|
< exp(—3t*)[IP |exp(itS,, + 31%) = Z,u| + |IPZ,, — 1]]
- 0.
We would get the desired results for {T,,} and {Z,,} from:

(@) Y ;r,;— —4t2 in probability;

(b) Zj Irnjl = tz;
(¢) max;|r,;| — 0 in probability.

The second of these requirements need not be satisfied but, without loss of
generality, we may act as if it were.

We replace ¢,; by &,;{j < 0,}, where o, = max{k: Y*_, v,; < 2}. Inter-
pret o, as zero if v,; > 2. Because v,;is &, ;_,-measurable, the event {j < 6,}
is &, ;- -measurable; o, is a stopping time. The new variables are martingale
differences. The new row sums have the same asymptotic behavior as the
original row sums:

IP{i Cnj # Z": &uili < an}}s IP{n > o,} =IP{ZH: Upj > 2}—>0,
j=1 j=1

j=1
The quantities w,; = IP;_,R(t&,;{j < g,}) satisfy analogues of the require-
ments (a), (b), and (c). The argument depends on the inequalities (Problem 1)
for real x,
IR < 32
|R() + $x*| < min{|x[?, §|x|*}.
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For the analogue of (¢): if § > 0, no |w,;| exceeds

max P, 3t%6{i <o} < %tz[éz + ZIPj—1ffj{|§nj] > 5}]
J

J

Set & small, then invoke the Lindeberg condition. For the analogue of (b):

n n
Z 'anl < %tz ZIPj-—lér%j{j < Un}
j=1 j=1

2
n

=3t* ) {j < 0,}v,; because {j < 5,} is &, ;_;-measurable
ji=1

< t* by definition of g,.

For the analogue of (a), fix § > 0:
D, Waj 3t Y 0
j=1 j=1

< ZIPj—1|R(t§nj{j < a,}) + 3% 5,{] <o, +3t? 31{1 > 0.}
J
< ZIPj—l[—é—lténj{j < o.n}lg‘{lénjl < 5}
i
+ tzifj{j < an}{lénjl > 5} + %tzép%j{j > O-n}]
< Zé5|t|3vnj + ¢ Z IPj—léﬁj{lénjl > 0} + 3% {n > o,} Zvnj'
j J J

The first sum can be made small with high probability, by an appropriate
choice of ; the last two terms converge in probability to zero.

We could carry o, along throughout the rest of the argument, but that
would clutter up the notation. Instead, let us assume that (a), (b), and (©)
hold. While we are at it, let us drop the n subscript for variables in the nth
row of the array; all calculations take place within the nth row. Our task is
to prove that

) P|T, — exp(®)| >0 and IPZ, -1,

where T, = [ [52,(1 — r)) and Z, = T, exp(itS,).
The path leading from (a), (b), and (c) to the first assertion in (2) is well-
worn (Chung 1968, Section 7.1). For complex 6,

llog(1 — 6) + 6| <|0)> if |0]<i
Apply the inequality to each r;- When max; |r;| < 3,
Zlog(l O RN ESWIAL
Jj J J

< t* max|r;] by (b).
J
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It follows from (a), (c), and continuity of the exponential function that {T,}
converges in probability to exp(3¢2). Each | T} | is bounded, because of (b):

3) ITI< 1A+ 15D < exp(er,-l) < exp(r?).

J

Boundedness plus convergence in probability imply convergence in L.
For the proof of the second assertion in (2), bound the errors that accrue
during the calculation of conditional expectations layer-by-layer.

P, Z;=1P; [T, exp(itS;_; + it))]
= T exp(itS;_ )IP;_, exp(ité;)
=0 =r)Z;_([1 + P;_,(it) + IP;_; R(t¢)]
=(1 - ;- (1 + r;)

=Z; 1 —1Z;_,.
Thus [IPZ; — PZ;_,| < PP|r?Z;_,| < exp(t*)IP|r |, because inequality (3)
implies |Z;_, | = |T;_,| < exp(t?). Sum over j.

IIPZ, — 1] < exp(t>)IP Y |1, >0 as n— oo,
ji=1
because ) ; |7;|> < min{t*, 12 max; |r;|}. O

4 Example. A sequence of real random variables X 0> X1, ... 18 called an
autoregression of order one if X, = 6,X,_, + u, for some fixed By. The
innovations {u,} are assumed independent and identically distributed with
zero mean and finite variance ¢. The initial value X, is independent of the
{u,}. The least-squares estimator 6, minimizes

ZI(X‘] - HXJ_ 1)2.
j=

Solving for 6, and standardizing, we get

(5) n'(0, — 8,) = ["_1/2 > ”ij—l]/[”_l > Xi 1]-
j=1 =1
With the help of Theorem 1 we can prove
n1/2(0n - 00) ~ N(Oa - 0%)
provided |0,] < 1 and IPX3 < co. This will follow from convergence results
for the denominator and numerator in (5):
n~! Y X2 | > 0?1 —03) in probability,
j=1
YTV X,  ~ N, 6*/(1 — 62)).
i=1

Start with the denominator.
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Square both sides of the defining equation of the autoregression, then
sum over j.

Y X2= Yu 420, YuX; , +63 Y X2,
j=1 i=1 i=1 i=1

Rearrange then divide through by n.

(6) (1= o5mn~? ZX] y=n"t Z” + 20007 Y u;X;

j=1 i=1
+n NXE - X2).
On the right-hand side, the first term converges almost surely to 2, by the
strong law of large numbers. The third term converges in L! to zero, because
repeated application of the equality
IPX? = IPu} + 20,Pu,IPX,_, + 02IPX2_, = ¢2 + 0:IPX?
yields

n-1

PX2 = 62(1 + 62 + -+ + 02"~ 2) + 2" IPX2 6%/ — 62).

The n™! brings the limit down to zero. The middle term on the right-hand
side of (6) converges in L? to zero:

n 2
n‘ZIP< Y quj—l)
ji=1

2 Y TPu?X? | independence kills the cross-product terms
P P p
=~

=12y PX2,
j=1
= O0(n™') because {IPX?} is convergent.
So much for the denominator.
Write &, for the o-field generated by {X,, u, ..., u,}. Abbreviate IP(- &)
to IP,(-). The variables {u;X;_,} are martingale differences for {&;}. Apply
Theorem 1 to the sum in the numerator of (5). For condition (i):

Uy = By (n” “2X2 ) =n"le"X7 4,

b, = g?n1 XZ 1 = 0*/(1 — 62) in probability.
. 1 ]
=

The Lindeberg condltlon demands a more delicate argument if higher-
moment constraints on the innovations are to be avoided.

n
nt Z P i X2 {|u;X;_ | > en'/?}
=
n

Z Ui X5 [{u] > en'?} + (X2 > en'l?}]

n n
Z F-Pui{ui > en'?} + 07t Y 2X2 (X2, > en'/?).

i=1
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The first sum converges to zero in probability, because u? is integrable. The
second sum converges in L' to zero because the sequence {X?2} is uniformly
integrable (Problem 2). [

VIIL.2. Continuous Time Martingales

A stochastic process {Z(1):0 <t < oo} is said to be a martingale with
respect to an increasing family of ¢-fields {&,: 0 < t < oo} if Z(¢) is adapted
to the o-fields (that is, Z(r) is §,-measurable) and IP(Z(s) | £,) = Z(¢) whenever
s > t. After some fiddling around with sets of measure zero it can usually be
arranged that such a process has cadlag sample paths (Dellacherie and Meyer
1982, Section VL.1), in which case it may be studied as a random element of
D[O, o).

Call Z an L*-martingale if it has cadlag sample paths and PZ(t)* < o0
for each t. The behavior of an L?-martingale is largely determined by the
conditional variances of its increments. The conditional expectation of
[Z(t + 8) — Z(t)]* given &, plays a role similar to that of the conditional
variance v,; in Section 1. The most economical way to explain this uses some
deeper results from the Strasbourg theory of stochastic processes. We could
avoid the appeal to the deeper theory by building its special consequences
into the martingale calculations for each particular application. That would
always work for martingales that evolve by discrete jumps; the calculations
would be similar to those in Section 1. The theory would be more self-
contained, but it would disguise the unifying concept of the conditional
variance process.

According to the Doob-Meyer decomposition (Theorem VIL12 of
Dellacherie and Meyer (1982), applied to the supermartingale —Z?), for
each L*-martingale Z, the process Z2 has a unique representation as a sum
V + M of a martingale M and an increasing, predictable, conditional
variance process V with V(0) = 0. Both M and V have cadlag sample paths.
(Strictly speaking, for this decomposition we need the o-fields {&,} to satisfy
the “usual conditions”: &, should contain all IP-negligible sets and each &,
should equal the intersection of the o-fields & for s > t.) The adjective
“predictable” has the technical meaning that V(w, f) is measurable with
respect to the o-field on Q ® [0, co) generated by the class of all adapted,
left-continuous processes. So V behaves something like a process with
left-continuous sample paths; its paths can be predicted a tiny instant into
the future. We will need the predictability property only in Lemma 11.

If the martingale Z changes only by jumps ¢,, &,, ... occurring at fixed
times t; <t, <---,and if & = &, for t, <t < t,,,, then V is just a sum
of conditional variances:

Q) V() = P& 16o) + IP(E31&,) + - + P16, )
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whenever t;, <t < t,,;. You can check directly that Z> — V is a martingale
and that there exists a sequence of left-continuous, adapted processes con-
verging pointwise on Q ® [0, o) to V. The value of V at t, corresponds to
what we would have written as v; + --- + v, in Section 1. You might take
this as your guiding example for the rest of the section if you wish to avoid
all appeals to the Strasbourg theory.

The process V carries information about the conditional variances of the
increments of Z. If s > ¢,

() IP([Z(s) — Z(t)]*|6))
= P(Z(s)*16,) — Z(t)* — 2Z(OP(Z(s) — Z(1)| &)
=P(V(s)|6) + IP(M(s)|6,) — V(1) — M(t)
=P(V(s) — V()| &)
For s very close to t, the predictability of V makes V(s) — V(t) almost
& -measurable; the last conditional expectation almost equals V(s) — V(z),
in a sense that will receive a more rigorous meaning later.
By means of a simple Tchebychev inequality we get from V a bound on
the size of the increments of Z in precisely the form required by the stopping
time argument of Lemma V.7. The maximal inequality provided by that

lemma lies at the heart of any proof for convergence in distribution in spaces
of cadlag functions.

9 Lemma. Let {Z(t):0 <t <b} be an L*martingale with conditional
variance process V. If, for every t,

P(V(b) — V(1)|6,) < 6*/12  almost surely,

then IP{suplZ(t) — Z(0)| > 5} < 3P{|Z(b) — Z(0)| > 15).

t<b

ProoF. With no loss of generality we may assume Z(0) = 0. Write IP(-) for
expectation conditional on &,. Lemma V.7 invites us to check that

P{|Z(b) — Z()| < 31Z®)|} =5 on {|Z(t)| > &}
We shali do this by bounding the conditional probability from below by
(10) 3= 41Z@)|721P, | Z(b) - Z(v)?,

which is greater than § — 46~2(6%/12) on the set {|Z(r)| > &}. Start from
the inequality

|Z(b)| < 1Z(b) — Z(1)| + | Z()]

<3HZWI{1ZB) — Z@)| < 3|1Z@)|}
+3|Z(b) — ZWOI{I1Z(b) — Z(2)| > 31 Z(1)]}.
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Keeping in mind that the absolute value of a martingale is a submartingale,
take conditional expectations given &,.

|Z(0)] < TP, | Z(b)|
<3ZOIP{1Z}) - Z©)| < 51Z(1)|}
+ 3P| Z(b) — ZO{IZ(b) — Z(1)| > 3|1ZO|}
< 3ZO|P{|Z() - Z(1)| < 31 Z(0)1}
+61Z@)| 7P, Z(b) — Z(1)|*.

On {{Z(r)| > ¢} we may divide through by 3| Z(z)| to get the bound (10).
O

Martingales with cadlag sample paths define random elements of the
space D[0, co) under its projection o-field. As we shall be concerned only
with convergence in distribution to limit processes having continuous sample
paths, we equip D[0, co) with its metric for uniform convergence on compacta
(Section V.5).

The main theorem will give conditions for a sequence of L2-martingales to
converge in distribution to a stretched-out brownian motion By, the process
constructed from brownian motion by applying a continuous, strictly
increasing transformation H(-) to the time scale: By(t) = B(H(¢)). This new
gaussian process is an L*-martingale with conditional variance process
H(¢), provided H(0) = 0.

One hypothesis of the theorem will be pointwise convergence of the
conditional variance processes to H. It is analogous to the hypothesis in
Theorem 1 that the sum of conditional variances converges to one. As in the
proof of that theorem, we shall use the hypothesis to introduce stopping
times for the martingales. For fullest generality we must draw upon the
Strasbourg theory for the properties of predictable stopping times; for the
special case of martingales with conditional variance processes as in (7),
the argument from Theorem 1 would suffice.

11 Lemma. Let {X,} be a sequence of L%-martingales whose conditional
variance processes converge pointwise to a fixed, continuous, increasing
function: V,(t) - H(t) in probability, for each fixed t. Then there exists a
sequence of stopping times {¢,} and constants {g,}, with ¢, - o in probability
and &, | O, such that sup, |V(t A o,) — H(t A 6,)| < ¢, almost surely.

Proor. First fix an ¢ > 0, and define a stopping time
7, = inf{t > 0: |V, (t) — H(@®)| > &}.

The hypothesis implies that 7, — o in probability: if 0 = s, < s; < --- < s,
are chosen so that H(s;) — H(s;_,) < ¢ for each i, then (by monotonicity of
V, and H)

IP{t, < s} < P{|V,(s;) — H(s;)| > Le for some i} — 0.
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From the definition of z,,
(12) V() — Ht)| <e for t<r1,.

Only the time ¢t = 7, might cause trouble; V, might have a jump there. That
is where predictability comes to the rescue.

There exists an increasing sequence of stopping times {7,;} with 7,; < 1,
and 1,; T 7, almost surely (Dellacherie and Meyer 1978, IV.69, 1V.77),
because predictability allows us to peer just a little distance into the future
for V. Replace 1, by 1, j, for some j(n) such that 7, ;, — co in probability.
This lops off the troublesome point ¢ = 7, in (12); the inequality holds for
every t in the range [0, 7, 1.

If the argument works for fixed ¢ it must also work for a sequence {e,}
decreasing slowly enough. Write ¢,(¢) for the stopping time 7, j, just
identified. There exist integers n(1) < n(2) < - - - such that

Plo k™) >k <k~ for n3 nk).
Sete, = k™! and 6, = o,(k™!) when n(k) < n < n(k + 1). O

Stopping time tricks like the one used in this proof pop up all over the
place in martingale limit theory. Sample path properties that hold with
probability tending to one can often be made to hold with probability one
by enforcing an appropriate stopping rule.

Something must be added to the convergence of conditional variance
processes. Otherwise we could specialize the result to processes with in-
dependent increments, obtaining as a by-product the Central Limit Theorem
for sums of independent random variables without having to impose any-
thing like a Lindeberg condition. The extra something takes the form of a
constraint on the maximum jump in the sample path. Define the jump
functional J; on D[0, o) by:

Jr(x) = max{|x(s) — x(s=)|:0<s < T}

It is both continuous and measurable (Problem 4). If X, ~ By, then certainly
J7(X,) ~» Jr(By) = 0; convergence in probability of {J;(X,)} to zero is a
necessary condition. The theorem assumes just a little bit more to get a
sufficient condition.

13 Theorem. Let {X,} be a sequence of L*-martingales with conditional
variance processes {V,}. Let H be a continuous, increasing function on [0, o0)
with H(0) = 0. Sufficient conditions for convergence in distribution of {X,},
as random elements of D[0, ), to the stretched-out brownian motion By are:

(i) X,(0) — 0 in probability;

(ii) V() - H(t) in probability, for each fixed t;
(iii) IPJ(X,)* — O for each fixed k, as n — 0.
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PrOOF. By virtue of Theorem V.23, we have only to prove convergence in
distribution for the truncations of the processes to each compact interval
[0, T]. The argument for the typical case T = 1 will suffice. According to
Theorem V.3 we shall need to establish

(a) Fidi Convergence: the fidis of the {X,} converge to the fidis of By
(b) The Grid Condition: to each ¢ > 0 and § > 0 there corresponds a grid
0=ty <t; <---<t, =1suchthat

limsup IP{max sup | X,(1) — X,(t)] > 5} <e
n i byt

Theorem 1 will take care of (a); Lemma 9, applied to the X . Processes stopped
appropriately, will take care of (b).

By Lemma 11 there exist stopping times {s,} and constants {e,}, with
g, = co in probability and ¢, | 0, such that |V,(t A o,) — H(t A 0,)] <,
almost surely. We may assume that X, has at most one jump of size greater
than ¢, up to time ¢,. Formally, we would replace {¢,} by a more slowly
decreasing sequence such that

P{Jw(X,) > e} >0 as n— o

for some slowly diverging sequence {k(n)}. Such sequences exist because of
(ii1). Then we would replace g, by

inf{t < 0, | X(0) — X,(t=)| > &,).

These modifications would not disturb the other properties of {s,} and {g,}.
The stopped martingale X}(t) = X,(t A 6,) has conditional variance
process V() = V(- A o,). It enjoys (i), (ii), and (iii) in strengthened form:
(1) X¥(0) = X,(0) - 0 in probability;
(i) |VXt) — H(t A 0,)| < ¢, for all ¢;
(1)’ X3 has at most one jump of size > ¢, and IPJ,(X*)2 — 0.

These will make it easy to prove that X* ~ Bj,. The required convergence
of the truncation of X, to [0, 1] will thqn follow because

P{X,(t) = X} for0<t <1} > P{s, > 1} > L.
Simplify the notation by dropping the star.

Fidi Convergence

Let us prove only that X,(1) ~ N(0, H(1)). Problem 6 extends the result to
higher-dimensional fidis. Because of (i)Y, we can do this by breaking
X,(1) — X,(0) into a sum of martingale differences that satisfy the conditions
of Theorem 1.

Focus for the moment on a fixed X, by setting Z(¢) = X ) — X,(0) and
writing V instead of V, for its conditional variance process. Break Z(1) into



VIIL.2. Continuous Time Martingales 181

a sum of increments Z(t;) — Z(t;-,), with 0 = 7, < 7, < --- a sequence of
stopping times defined inductively by

Tjvq =1nf{t > ;1 [Z() — Z(z)| = &,} A 1 A (1; 4 6,).
Choose {0,} so that |[H(t + o,) — H(t)| < ¢, for every t in [0, 1]. Denote

expectations given &, by IP(-); write A, f for the increment f(z )= fmy)
of any function f between successive stopping times. Then

Z() = Y AZ.
j=1
Along any particular sample path of Z all except finitely many of these
increments equal zero; there is no problem with convergence of the sum.
Check the conditions of Theorem 1 for the martingale differences {A;Z}.
Strictly speaking the theorem applies only to triangular arrays with a finite
number of variables in each row, but there may be infinitely many AZ
increments. We would need to apply the theorem to a finite sum of A; Z
for 1 <j < j(n), with j(n) chosen so that both

Y A2) and Y P i-1(A,Z)
J(n) Jmy

converge to zero in probability.
By property (8) of the conditional variance process,

Z P,_,(A;Z)* = Z IP,_,(A; V).
Informally speaking, predictability of ¥ almost makes A;V measurable with
respect to &, _,; the last sum almost equals ) ; AV, Wthh we know will

converge in probablhty to H(1) as n — co. Formally, ZJ AV — 1A V)
is a sum of martingale differences with zero mean and variance less than

Y IP(A ;V)? because the cross-product terms vanish
j

< Y P[(2e, + AH(- A o)A V] by (ily

< 38,,IP<Z A, V) by the choice of {5,}
j

< 3e,(e, + H(1))
-0 as n-— oo.

That takes care of condition (i) of Theorem 1.
For the Lindeberg condition it suffices to check the stronger L! conver-
gence.

PY P, (A ZP{IAZ] > &} = P Y. (A, 27|10, Z] > ¢}

<P, + J,(X,)? ife> 2,
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The inequality follows, by the definition of 7 S, from:
1Z(t) = Z(;- )| < | Z(z)) — Z(5; —)| + | Z(x;—) — Z(z;_,))
< |jump at 7;| + ¢,

At most one increment A;Z can exceed 2, in absolute value, and that
happens only if Z has its one jump greater than &, at 7;. An appeal to the
second part of (iii)’ completes the proof of the fidi convergence.

The Grid Condition

Choose 0 =ty < --- < t, = 1 so that H(t;: 1) — H(t;) < 6°/24 for each j.
For n large enough to make 2, < §%/24, the strengthened condition (i)’
implies

(14) P(V(tj+1) — V()| &) < 6%/12  almost surely

ift; < t < t;4,. Invoke Lemma 9.

(15 limsup IP{ max sup |[X,() — X,(t)| > 5}

n J oo lytien)

< z limsup 31P{| X, 1) — X,(6)| = 46

< iiol 3IP{|Bu(t;+1) — Bu(t;)| = 46} by fidi convergence.
_ Z 3IP{|N(Q, H(ty 1) — H(t))| = +5)

< 48574 m;: [H(t;+ 1) — H(tpJ*IP|N(O, 1)[*

< 485™* max[H(t.,) — H(t)JHOP|N(Q, D[*

which is less than ¢ if the grid points are close enough together. O

VIIL.3. Estimation from Censored Data

The empirical distribution function based on an independent sample
15+ -5 &, from P is a natural estimator for the distribution function of P,
How should one modify it when the observations are subject to censorship?
One possibility, the Kaplan-Meier estimator, can be analyzed by the martin-
gale methods from the previous section. What follows is a heuristic account.
The notes to the chapter will point you towards more rigorous treatments,
which draw on results from the theory of stochastic integration.
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Consider the simplest model for censorship. Independent variables
Cys -+ -5 Cy, drawn from a censoring distribution C, cut short the natural
lifetime ¢;; we observe the value y;, = &; A ¢;. Bach y, has distribution Q,
where Q(s, o0) = P(s, o0)C(s, ). In addition, we can tell whether the
y; represents natural death, &; < ¢;, or a case of death by censorship, &; > ¢;.

EFENENNF ¥ SF ¥ SN

Y1 Va Yo ool

To construct the Kaplan-Meier empirical measure K, start from the usual
empirical measure Q, for the observations y,, ..., y,. Working from the
left-hand end, distribute successively all the mass from each censored point
equally amongst all the {y;} lying to its right. In the situation pictured, y,
keeps its mass 3; then y, surrenders mass + x 4 to each of its seven successors
Y3>--.» Yo then y; surrenders § x (3 + 4 x 4) to each of y,,..., y,; and
so on. At the last point, y,, there are no more {y;} to inherit its mass, so
dump it all down on a fictitious super-survivor out at + oo. If y, had not
been censored, it would have kept all its inherited mass. In any case, K, will
distribute its total mass of one amongst the naturally deceased {y;}, with
maybe a little bit on + oco. Notice that K,[0, t] < Q,[0, ] for each ¢.

Make the analysis as simple as possible by assuming that both P and C
are continuous distributions living on [0, co), with neither concentrated on
a finite interval. Write &, for the o-field corresponding to everything we
learn up to time ¢ about which ¢&; have died or been censored. Write IP,(-)
for IP(-|&)). _

Calculate (to first-order terms) the conditional distribution of the incre-
ment AK, = K,(t,t + h] given &,, for tiny positive h. From &, we learn the
value Q,[0, t]. Define m to be nQ,[0, ¢]. The remaining n — m observations
in (¢, o0) are generated by choosing each ¢, from the conditional distribution
P(-|¢ > 1), then censoring it by a ¢; chosen from C(-|c > t). Write AP for
P(t,t + h] and AK, for K,(t,t + h]. To first order, each of the n — m
observations has conditional probability AP/P(t, oc) of registering a natural
death during the interval (¢, t + h]. A single such observation would receive
a fraction (n — m)~! of the K, measure for (¢, co]. Thus, to first order,

IP,AK, = (n — m)™ 'K (t, o ]1(n — m)AP/P(t, o).
This suggests that
IP,AK, /K, (t, 0] = AP/P(t, c0) + lower order terms,

which would lead us to believe that log K,(t, o] — log P(t, o) is a contin-
uous-time martingale for each n.

An attempt to add rigor to the first-order analysis would reveal a few
illegal divisions by zero. There is a positive probability that either n — m
or K,(t, co] could equal zero. A suitable stopping time can save us from
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embarrassment. Let {«,} be a sequence of positive numbers converging to
zero. Make sure that ne, is an integer. Define p, as the first ¢ for which Q.(t, )
equals o,,. Then certainly

Kyt A py, 0] = Qut A py, ©) >0, >0 forallr

The first-order analysis could be made rigorous enough to show that the
process

Xn(t) = IOg Kn(t A Prs OO] - lOg P(t A Pns OO)

is a continuous-time martingale for each n..
On the set {p, > ¢}, the increment in ¥, the conditional variance process
of X,,, would be

IP(AX,)* = (n — m)"*(n — m)AP/P(t, c0) + smaller order terms

On {p, < t} the increment would be zero. Recover V, as a limit of sums of
conditional variances (see Problem 5).

Vi) =n"1 f{O <5<t AP 3Q.(s, 00) L P(s, c0)” 1P(ds).
By definition of p,,
V() < (no,) 7! f P(s, c0)~ 1 P(ds).
0

Thus {V,} converges in probability to zero uniformly over compact sets.
Apply Lemma 9. For b fixed and n large enough,

IP{SUPIX,.(t)I > 5} < 3P{|X,(b)| > 76}

t<b

IA

1267 2IPX (b)?
126 21PV,(b)
- 0.

That is, for each fixed b,
sup [log K,(t A p,, 0] — log P(t A p,, 00)| — 0 in probability.
t<b

Because both K, and P are probability measures, and because p, — 00 in
probability, it follows that

(16) sup | K, [0, ] — P[0, r]] - O in probability.
t

The Kaplan—Meier measure estimates P consistently, in the sense of uniform
convergence of distribution functions.

Now consider the normalized martingale n'/2X ,(¢). It has conditional
variance process nV,, which converges in probability to the continuous
function

H@ = J{O < s < t30(s, )~ L P(s, 00) ™ L P(ds).
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That suggests {n'/2X,} converges in distribution to a brownian motion
stretched out by H. Theorem 13 proves it.

We already have the first two requirements of the theorem holding. What
about the maximum jump of n'/2X, on an interval [0, £]? It can only occur
at one of the {y;} that died naturally. In the worst case, where all except the
largest y;in [0, ¢] are censored, the measure K, puts mass (nQ,(¢ A Pus 0)) 1
at that largest y;,. The corresponding jump J in n'/2X, cannot exceed
n'?(na,) ‘o !, which converges to zero provided o, > n~ /4. That is more
than enough to force IPJ> — 0 as n — oo. Thus n'/2X, ~ By.

The effect of the stopping wears off as n — oo, because p, — o0 in proba-
bility. So we get from the convergence result for {X,} that

n'? log[K,(t, 01/P(t, )] ~ By
as random elements of D[0, oc). Rewrite the left-hand side as
n'?log[1 + (P[0, t] — K, [0, 1)/P(t, o0)]
= — n'*(K,[0, 1] — P[0, {])(1 + 0,(1))/P(t, ©)

with the o,(1) converging in probability to zero uniformly over compact
intervals, by virtue of (16). Deduce that

n''*(K,[0, £] — P[0, 1])/P(t, 0) ~ By,
or, equivalently,
n'2(K,[0, £] — P[0, £]) ~ P(t, c0)By.

The covariances of the gaussian process P(-, c0)Bg(-) depend on both P
and C.

NOTES

Martingales have been one of the hottest topics on the weak convergence
market for some years now, partly because of a boom in stochastic integral
stocks. For discrete-time martingales key papers are Brown (1971), McLeish
(1974), and Aldous (1978). Both McLeish and Aldous obtained results
sharper than those in Sections 1 and 2. Hall and Heyde (1980, Section 6.4)
gave a much fancier version of Example 4. The literature on continuous time
martingales has grown rapidly; the Shiryayev (1981) survey, Métivier (1982),
the two-volume monograph by Liptser and Shiryayev (1977, 1978), and
- Gihman and Skorohod (1979), are accessible. Méyer (1966), and Dellacherie
and Meyer (1978, 1982), make harder reading. Dellacherie (1972) contains
much about subtle o-fields.

What I called the conditional variance process usually gets written as
{Z, Z). The more widely definable quadratic variation process [Z, Z] has
taken over the role I gave to {Z, Z> in Section 2. In the discrete-time theory,
[Z, Z] would be the sum of squared increments; {Z,Z» would be the sum
of conditional variances.
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Martingales and stochastic integrals simplify the theory for estimation of
distribution functions from censored data. Gill (1980) covered this in some
detail; Jacobsen (1982) explained the essential prerequisites from the
Strasbourg theory of processes. Brémaud (1981) gave applications to point
processes. The martingale proof of the central limit theorem for Kaplan—
Meier estimators makes an interesting comparison with a more traditional
weak convergence approach of Breslow and Crowley (1974).

PROBLEMS

[1] For y real, define H,(y) =¢” — 1 — iy — --- — (iy)"/n!. Prove that |H,(y)| <
[yI"*1/(n + D). [Proceed inductively, using ifoHfs)ds = H,, (t) for ¢t > 0]
Deduce that [¥ — 1 — iy + 3| < min{}y? + 4% 3|y}

[2] Prove uniform integrability of the squared autoregressive process {X f} from
Example 4. Break u;into asumv; + wj, Wherev; = u{|u;| < M} — Pu{|u;l < M}
for some large truncation level M. Define

Yn = Uy + 60Un—1 +oee+ 0’(‘)_11]1:
Zy =W, + oW,y + -+ + 657wy,

Show that X, =Y, + Z, + 63 X,. The sequence {Y?} is uniformly bounded.
Because IPZ2 = IPw] + - - + 03"~ 2IPw?, the M can be chosen to make IPZ2 < ¢
for every n. [A similar argument would work for {u;} a sequence of martingale
differences. Solution provided by Kai Fun Yu.]

[3] For the uniform empirical process U, prove that {U, ()1 —1):0 <t < 1} isa
martingale with respect to an appropriate family of o-fields. Bound
P{sup, ., | U(t)] > &} for small enough b, then deduce the Empirical Central
Limit Theorem. Generalize to E,. [Over [a, b] take &, as the o-field determined
by the locations of sample points in [a, t], fora < ¢ < b.]

[4] The jump functional is projection measurable; Jy(x) is the limit of
max; |x(¢;) — x(t;~,)| as the grid 0 =ty <--- <t, = T is refined down to a
countable dense subset of [0, T].

[5] Let Z be an L* martingale on [0, 1] with conditional variance process V. If
V has continuous sample paths, adapt the arguments in the Fidi Convergence part
of the proof-of Theorem 13 to show that

2IP(Z(t) — Z(t:- )16, ) » V(1) in probability,

as the maximum spacing in the grid 0 =z, < -+~ <t,, = 1 tends to zero. [The
intuitive interpretation of V as a limit of a sum of conditional variances of incre-
ments is close to the mark.]

[6] Suppose that martingales {X,} satisfy the conditions of Theorem 13. Prove that
their fidis converge to the fidis of By. [If 0<t; <--- <1, < I, then Y,(t) =
*_10;X,(t A t)is a martingale with Y,(1) = Yo X(t).]
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[7] Using the notation from Section 3, show that

(8]

Z,(t) = K,[0,t A p,] — f {0<s<t A pK(s A p,, 0]P(s, 00)~ 1P(ds)

is a martingale. Deduce from the consistency result for K, that {n'/2Z,} converges
in distribution to a stretched-out gaussian process. Reprove the central limit
theorem for the Kaplan-Meier estimator.

Let {X,} be a sequence of L*-martingales with conditional variance processes
{V,}. Suppose the fidis converge to the fidis of a stretched out brownian motion
By, with H continuous. If ¥,(t) — H(t) in probability for each fixed ¢, then X, ~ By.
[If p, is a stopping time taking only finitely many different values, then

]P[Xn(pn + 571) - Xn(pn)]z = IP[V;l(pn + 571) - V;l(pn)]
Check Aldous’s condition (V1.13) for suitably stopped processes. Use Lemma 11.]



APPENDIX A
Stochastic-Order Symbols

Mann and Wald (1943) defined the symbols O,(-) and o,(-), the stochastic
analogues of O(-) and o(-), as a way of avoiding many of the messy details
that bedevil asymptotic calculations in probability theory.

Let {X,} and {Y,} be sequences of random vectors. Write X, = O,(Y,) to
mean: for each ¢ >0 there exists a real number M such that
P{|X,| > M|Y,|} <e if nis large enough. Write X, = 0,(¥,) to mean:
P{|X,| > ¢|Y,|} - 0 for each ¢ > 0. Of course X, and Y, must be defined
on the same probability space.

Typically {Y,} will be non-random. For example: X, = o,(1) is another
way of writing X, — 0 in probability; a sequence of order O ,(1) is said to be
stochastically bounded; statistical estimators commonly come within
0,(n™'/?) of the parameters they estimate.

With the O,(:), 0,(:) notation, Problem IIL.15 (the delta method) has a
quick solution. Differentiability of the map H means

H(x) = H(xg) + L(x — x¢) + o(x — x,) near x,,
where L is a fixed s x k matrix. If n'/*(X,, — x,) ~ Z then
H(X,) = H(xo) + L(X, — x0) + Op(Xn -~ Xo)
= H(xo) + L(X, — Xo) + 0,(n™1/?).
Thus
n'2(H(X,) — H(x,)) = Ln"*(X, — x,) + 0,(1) ~» LZ.
A few hidden assertions here need justification. For example:
n'*(X, — xo) »Z implies X, — x, = 0,(n"'?);
o(0,(n™12)) = 0,(n™*1?);
if Z,~Z then LZ, + o,1)~LZ
These conceal the asymptotic details of the proof.
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For comparison, here is part of the proof of Theorem VILS written
without the benefit of the notation. Remember that

S0 =fC,0) + PAC) + efr(-, 1),
F(t) =P, f(-, 1),
F(t) = Pf(-, 1) = F(O) + 3|t]* + h(®),
where for each ¢ > 0 there exists a 6 > 0 such that
()| < elt|* if |t] < 4.
By assumption,

&y Fy(z,) = X, + inf F,(5),

where nX, — 0 in probability as n — co. Also we know that
n!#(F(t,) — F(t,)) = E, (-, 0) + 1, E, A + |1, Y,
or
() F(t) = F(t,) + n"E,f(-,0) + n VP E,A + n7 21, | ¥,
where Y, = E,r(-, 1,) — 0 in probability.
From (1) and (2),
X, = Fy(r,) — F(0)
= F(z,) + n”*qE,A + n” V2|, | Y, — F(0)
= Hwl* + 3h(z,) + n PR EA + 072, )Y,
Take absolute values. Because X, > 0,

an = %nlrnlz - %nlh(r,,)l - nl/zlrnl IEnAl - nl/zl‘cnl 'Ynl
> (1l = g, —n'? | |(|E,Al + Y1) i Jr,] <9
= %(1 - 8)(}71/2"%] - Wn)2 - %(1 - 8) Wr%a

where W, = (1 — &) Y(|E,A| + | Y,|). For fixed M deduce that

P{(n'?|7,| — W)? > 2M} < P{[z,| > 3} + PP{2(1 — )" 'nX, > M}
+ IP{W} > M}.

The first and second terms converge to zero. If M is large enough, the third
term is eventually less than any fixed « because ... well, because W, is of
order O,(1). The mess gets too great if we try to avoid the stochastic-order
symbols any longer.

If you need further convincing read the beautiful expository article by
Chernoff (1956).



APPENDIX B
Exponential Inequalities

The central limit theorem leads one to expect sums of independent random
variables to behave as if they were normally distributed; tail probabilities
for standardized sums can be approximated by normal tail probabilities.
For the limit theorems proved in this book, we need upper bounds rather
than approximations. A few such bounds are collected together here.

The tails of the normal distribution decay rapidly. For # > 0,

1 1 \exp(—314? Lexp(—37°)
S I’ A S AV - it 0
<’1 173) N <IP{N@©O,1) > n} < 1 Jan

The important factor is the exp(—4#n?). We need a similar upper bound for
the tail probabilities of a sum of independent random variables Y,, ..., Y,.
SetS =Y, +---+ ¥, . Foreacht > 0,

n

) IP{S > 5} < exp(—nt)IP exp(tS) = exp(— nt) H IPexp(t Y)).

i=1
The trick will be to find a ¢ that makes the last product small. For the normal
distribution it is easy to find the best ¢ directly:
IP{N(0, 1) > #} < inf exp(:t* — nt) = exp(—1n?).
t>0

For other distributions we have to work harder. We must maneuver the
moment generating function of Y; into a tractable form that gives us some
clue about which value of ¢ to choose.

2 Hoeffding’s Inequality. Let Y,, Y,, ..., Y, be independent random variables
with zero means and bounded ranges: a; < Y, < b;. For eachn > 0,

IP{Y, +---+ Y, 295} < eXp[—an/ i(bi - ai)z}

i=1
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ProoF. Use convexity to bound the moment generating function of Y;. Drop
the subscript i temporarily.

e’ < b — Y)/(b - a) + &Y — a)/(b — a).
Take expectations, remembering that IPY = 0.
Pe’” < &“b/(b — a) — e®af(b — a).
Seta=1—f= —a/(b —a)andu = (b — a).Note:a > Obecausea < 0 < b.
log IPe"" < log(Be™* + aef) = —au + log(B + ae®).

Write L(u) for this function of u. Differentiate twice.

L'(u) = —o + ae"/(f + ae’) = —a + af(a + Pfe™¥),

L'(u) = afe™ /(e + Be™)* = [af(a + Be™")I[fe™ /(e + fe™*)] < &

The inequality is a special case of: x(1 — x) < 4 for 0 < x < 1. Expand by
Taylor’s theorem.

L(u) = L) + uL'(0) + $y*L"(u*) < 1u% = 4%(b — a)>.
Apply the inequality to each Y, then use ¢))
Py + -+ Y20} <exp[—nt + 422 Y (b, — a)?].
i=1
Set t = 44/}, (b; — a;)* to minimize the quadratic. O

3 Corollary. Apply the same argument to {—Y,} then combine with the in-
equality for {Y;} to get a two-sided bound under the same conditions:

n

IP{|Y1+---+Y,,lZﬂ}SzeXp[_ZWZ/Z(bi“ai)z:l‘ [

i=1

In one special case the proof can be shortened slightly. If Y; takes only
two values, + a;, each with probability 4, then

Petts = il + e7] = ¥ (a;6)**/(2k)! < exp(alt?).
k=0

The rest of the proof is the same as before. We only need the Hoeffding
Inequality for this special case.

4 Bennett’s Inequality. Ler Y, ..., Y, be independent random variables with
zero means and bounded ranges: |Y;| < M. Write o? for the variance of Y.
Suppose V = 63 + - + o2. Then for each n > 0,

P{1Y; + -+ + Y| > n} < 2exp[—4n*V 'B(MyV )],
where B(1) = 2A72[(1 + A) log(1 + A) — A] for 4 > 0.
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Proor. It suffices to establish the corresponding one-sided inequality. The
two-sided inequality will then follow by combining it with the companion
inequality for {—Y;}.

Bound the moment generating function of Y;. Drop the subscript i
temporarily.

P’ =1+ (PY + Y (MkDIP(Y2Y*"?)
k=2
<1+ Y (*khe*M*2

k=2
=1+ o%g(t) where g(t) = (™ — 1 — tM)/M?
< exp[a?g(1)].

From (1) deduce IP{S > 5} < exp[Vyg(t) — nt]. Differentiate to find the
minimizing value, t = M~ ! log(1 + M»nV ~1), which is positive. |

The function B(-) is well-behaved : continuous, decreasing, and B(0+) = 1.
When 4 is large, B(A) =~ 247! log 1 in the sense that the ratio tends to one as
A — o0; the Bennett Inequality does not give a true exponential bound for #
large compared to V/M. For smaller # it comes very close to the bound for
normal tail probabilities.

Problem 2 shows that B(A) > (1 + £4)~ ! for all A > 0. If we replace B(-)
by this lower bound we get

P{|S| = n} < 2 exp[—37*/(V + $Mn)],

which is known as Bernstein’s inequality.

NOTES

Feller (1968, Chapter VII) analyzed the tail probabilities of binomial and
normal distributions—sharp results obtained by elementary methods.
Bennett (1962) and Hoeffding (1963) derived and compared a number of
inequalities on tail probabilities for sums of independent random variables.
Dudley (1984) noted the simpler derivation of Hoeffding’s Inequality when
Y, takes only values +a;. Bernstein’s inequality apparently dates from the
1920’s; it appeared as Problem X.14 in Uspensky’s (1937) book.

PROBLEMS

[1] For independent N(O, 1)-distributed random variables Y,, Y,,..., show that

(max;, Y)/(2 log n)*'? converges in probability to one. [Write M, for the maximum.
Show

IP{M, < (2nlog n)'"?} = [1 — P{N(0, 1) > (24 log n)**}T",

then use the exponential inequalities for normal tails.]
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[2] For the function B(-) appearing in Bennett’s Inequality prove that
1 +3MDBA) =1 forall 4> 0.
[Apply 'Hépital’s rule twice to reduce the left-hand side to
(L4391 + 2971 + 21og(1 + A¥)
for some A* less than 4. Then use log(1 + A*) = A*/(1 + A*)]

[3] If arandom variable Y has zero mean, finite variance 62, and is bounded above by
a constant M, then for t > 0,

IPetY < (a.zetM + Mze—taz/M)/(o.Z + MZ)_

[Subject to the constraints IPY = 0 and IPY2 < o2, the value of IPe' is maximized
when IPy concentrates on the two values M and —c*/M.] To prove this let o)
be the quadratic

e MM — Y1+ (C1 + )y + 6%/M)] + €MC2(y + o?/M)?,

where C = M + ¢/M. Check that the coefficient of y? is strictly positive and that
¢ satisfies

¢(M) = e’M, ¢(—62/M) — e—zaz/M’ (f)’(—O'Z/M) — te_mz/M,

Show that ¢(y) = e” for y < M, with equality at y = M and y = —06?/M. [The
function h(y) = e~ ¢(y) has a local minimum of 1 at —c*/M. Also h(M) = 1. If
h(y*) were equal to 1 for some y* in the interval (—0*/M, y*), the quadratic evn(y)
would have three real roots: one at —g?/M, one in the interval (—d*/M, y*), and
one in the interval (y*, M).] The distribution IPy concentrated at M and —o2/M
achieves equality in IPe'Y < IP¢(Y). Bennett (1962, page 42).]

[4] For the one-sided form of Bennett’s Inequality one needs only zero means and
Y, < M for each i. Reexpress the inequality from the previous problem as

P < exp[tM + log f(1 4 o2/M?)],
where f(y) = 1 — y™' + y~le™"™ Prove that d2/dy? log 1(¥) equals
=2y TMOLe™ — 1 — tMy — HeMy)2Y/f () — LIy

which is less than zero for y > 1. Deduce from a Taylor expansion to quadratic
terms that

log f(3) <log f(1) + (v — DS W)/ f(1) for y=>1,

whence IPe” < explo?(¢™ — 1 — tM)/M?]. Complete the argument as before.
[Hoeffding (1963, page 24).]
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Measurability

The defining properties of o-fields ensure that the usual countable operations
in probability theory—countable unions and intersections, pointwise limits
of sequences, and the like—cause no measurability difficulties. In Chapters
IT and VII, however, we needed to take suprema over uncountable families
of measurable functions. The possibility of a non-measurable supremum
was brushed aside by an assurance that a regularity condition, dubbed
permissibility, would take care of everything. This appendix will supply the
missing details.

The discussion will take as axiomatic certain properties of analytic sets.
A complete treatment may be found in Sections III.1 to IIL.20, IIL27 to
I11.33, and 111.44 to 45, of Dellacherie and Meyer (1978). Square brackets
containing the initials DM followed by a number will point to the section
of that book where you can find the justification for any unproved assertions.

Suppose M is a set equipped with a ¢-field .#. The analytic (.#-analytic
in DM terminology) subsets of M form a class slightly larger than .#.
Denote it by o/(M). If .4 is complete for some probability measure y, (that
is, ./ contains all the sets of zero y measure) then /(M) = .# [DM 33].
For example, the analytic subsets generated by #[0, 1] contain that o-field
properly, but the o-field of lebesgue measurable subsets of [0, 1] coincides
with its analytic sets. You see from this example that we should be writing
& (M) rather than o/(M). The ambiguity is not serious when M is equipped
with only one o-field. For metric spaces, we will always choose .# to be the
borel o-field ; for product spaces, it will always be the product o-field.

We considered empirical processes indexed by a class of functions.
Formally, {,,¢,, ... were measurable maps from a probability space (Q, &, IP)
into a set § equipped with a o-field & A class # of &/%B(IR)-measurable,
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real-valued functions on S was given. The empirical measure P, attached to
each fin & the real number

Pof=n" ¥ f(Eo))

We were assuming measurability of functions of @ such as sup |P,f — Pf].
Let us now consider more carefully the dependence on w, which we emphasize
by writing P,(w, -) instead of P,(-).

PERMISSIBLE CLASSES

Suppose that the class & is indexed by a parameter ¢ that ranges over some
set T. That is, # = {f(-, t):t € T}. We lose no generality by assuming & so
indexed; T could be & itself. When more convenient, write f, instead of f(-, £).

Assume T is a separable metric space. The metric on T will be important
only insofar as it determines the borel o-field #(T) on T.

1 Defimition. Call the class & permissible if it can be indexed by a T in such
a way that

(1) the function f(-,-) is & ® %(T)-measurable as a function from S ® T
into the real line;

(i) T is an analytic subset of a compact metric space T (from which it
inherits its metric and borel o-field). O

Some authors call a T satisfying (ii) a Souslin measurable space [DM 16].
The usual sorts of class parametrized by borel subsets [DM 12] of an
euclidean space are permissible. (Take T as the one-point compactification.)
So are fancier classes such as all indicator functions of compact, convex
subsets of euclidean space (Problem 2).

Assume from now on that & is permissible and that (Q, &, IP) is complete.

Here are the properties of analytic sets that make the definition of per-
missibility a good one for empirical process applications. For every measur-
able space (M, .#4),

(a) (M ® T) contains the product o-field .# ® #(T);

(b) for each H in &/(M ® T), and in particular for each .# ® 2(T)-measur-
able set, the projection 7, H of H onto M is in o/(M) [DM 13, DM 9:
the set H is also in /(M ® T), because T is analytic];

(c) for each 4 in /(M) and each &/.#-measurable map n from (Q, &, IP)
into M, the set {5 € 4} is an analytic subset of Q) [DM 11]; hence {y € «¢}
belongs to &, because (Q, &, IP) is complete.

From these properties we shall be able to deduce measurability for functions
defined by certain uncountable operations.
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MEASURABLE SUPREMA

Suppose g(-, ) is an .# ® %(T)-measurable real function on M ® T. Set
G(m) = sup, g(m, t). Then by (a), /(M ® T) contains the set
H, = {(m, t): gim, t) > a}.

The projection of H, onto M is an analytic set, by (b). It consists of all those
m for which G(m) > «. Thus {G > o} belongs to /(M) for each real o If
# is a measurable map from a complete probability space (Q, &, IP) into M
then, by (c), the set {w: G(n(w)) > o} is &-measurable. That is, sup, g(y(w), t)
is an &-measurable function of w.

If # is permissible and if P| f,| < oo for each t, requirement (i) of Defini-
tion 1 plus Fubini’s theorem make Pf, a measurable function of t. Apply the
argument given above, with M = S”, .# = the product o-field ¥, = the
vector (&4, ..., &,), and

g(S, t) =|n"1 _z [f(Sh t) - Pﬁ]

to deduce that supg | P,(w, f) — Pf | is a measurable function of w.

MEASURABLE CROSS-SECTIONS

The Symmetrization Lemma I1.8 made use of another property of analytic
sets. We had a stochastic process {Z,:t e T}; we assumed existence of a
random t for which, almost surely, |Z,| > ¢ whenever sup, |Z,| > ¢. For
this we need a cross-section theorem [DM44-45]. Under requirement (i) of
Definition 1, and for any complete probability space (M, ., 1),

(d) if H belongs to /(M & T) there exists a measurable map h from M into
T v {0} (where oo is an ideal point added to T) such that: (m, h(m))
belongs to H whenever h(m) # oo; and h(m) # oo for u almost all m in
the projection r,, H. Call & a measurable cross-section for H.

7{MH

T e

Write Z(w, t) to emphasize the role of Z as an & ® %(T)-measurable
function on Q ® T. Let {¢;} be a strictly decreasing sequence of real numbers
converging to ¢, with &; = co. Set

A; = {w: €41 < sup|Z(w, )| < 81‘};
t

B; = {(&, ) g5y < |Z(o,1)] < g5).
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The sets {4;} all belong to &. The sets {B 1 all belong to & ® %(T), and hence
are analytic. Let ¢, be any fixed element of 7. Choose a measurable cross-
section t; for each B;. Set t equal to 7; on A;, and equal to ¢, outside the
union of the {4;}. Redefine () to be t, whenever (d) would set it equal to
. For almost all w, if sup,| Z(w, £)| > & then (e, 7(w)) belongs to B; for some
Jj; that is,

gj+1 < Z(w, f(w)) < ¢; for some j,

as required.

A formal proof of the Symmetrization Lemma IL.8 is now possible.
Require Z and Z' to be defined on a product space Q ® Q' equipped with
product measure IP ® P,

Z(ow, o', t) = Z(w, 1),
Z'(w, o', t) = Z'(w, 1)
The 7 constructed above need depend only on w. For almost all ,
P'{w': |Z (v, t()| < o} = B.

The rest of the proof goes through as before, with Fubini’s theorem
formalizing the conditioning argument.

SHATTERED SETS

Theorem II1.21 placed a condition on the behavior of V&, ..., &), the
smallest integer k such that & shatters no collection of k points from
{¢1; ..., &,}. Assume that the indicator functions of sets in & form a per-
missible class #. Then V, is measurable.

For example, here is how to prove that {V, < 2} belongs to & Define

g(sla SZs tl, tzs t3’ t4) as
S0 0 (525 t) + f (54, t)[1 — f(55, t,)]
+[1 = f(s1, t3)1f (52, t3) + [1 — f(sy4, t)I[1 — S(sa, t0)]
Clearly g is ¥* ® %(T*)-measurable. The function

G(w) = max sup g(£(w), {(w), 1)

i, j t

is &-measurable. The set {V, < 2} equals {G < 4.

COVERING NUMBERS

Functions of the empirical measure that enter into arguments depending on
Fubini’s theorem demand that we take measurability seriously. But for
other functions, such as the random covering numbers appearing in Sections
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115, I1.6, V1.4, and VI.6, we do not really need all the machinery of analytic
sets. For example, we could just as well interpret a condition like

log N1(6, P, &) = 0,(n)
in terms of outer measure: for each ¢ > 0,
IP*{log N,(0, P,, #) > ne} — Q.

The proofs go through almost exactly as before. Equivalently, we could
interpret the conditions on the covering numbers to mean IP{Z, > ne} — 0
for some measurable random variable Z, greater than log N (o, P,,, ).

For permissible classes, another solution would be to replace covering
numbers by packing numbers: define M,(5, P,, #) as the smallest m for
which there exist functions fi, ..., f,, in & with P,| f; — fy| > é for j # k.
This is a measurable function of w (and even jointly measurable in w and
0); the set

{CO: M1(5> Pn(ws ')s 5;) = m}
equals the projection on Q of the & ® %#(T™)-measurable set

{(w, t):minn”* jllf(fi(w), t) — fw), 4| > 5}-

jzk i
The packing numbers are closely related to covering numbers:
M,(26,P,, F) < N, P,, ) < M,(6, P,,, F).

Theorems stated in terms of random covering numbers have equivalent
versions for random packing numbers.

I cannot prove measurability for covering numbers of permissible
classes. The set of w» where N (8, P,, #) strictly exceeds m is the complement
of a projection of a complement of an analytic set, which apparently need
not be measurable.

THE FUNCTION SPACE &

For the results in Chapter VII we required the class % to be pointwise
bounded and have sup| P f | finite. The empirical process,

Eiw.f) = 17 T L(E(o) - Pf]

had bounded sample paths; the functions E,(w, -) all belonged to the set &
of bounded, real functions on &. To avoid confusion, we called members of
Z functionals. We equipped & with the uniform norm, | x{| = supg [x(f)|.

The limit processes had sample paths in the set C(&, P) of functionals that
were uniformly continuous with respect to the #*(P) seminorm pp on .
The o-field #° was smallest for which

(i) all the closed balls (for |-||) belonged to %7 ;
(ii) all the finite-dimensional projections were %°-measurable.
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We assumed in Chapter VII that E, is /% -measurable. That is true for a
permissible # that is separable under the p, seminorm.

Because each E,(-, f) is a real random variable, the finite-dimensional
projections create no difficulty for the &/%" -measurability. The properties
of analytic sets are needed to prove that {w: || E,(w, ) — x(-)|| < r} belongs
to & whenever x(-) belongs to C(#, P). Introduce the index set T as described
in Definition 1. Problem 1 shows that x( 1) is #(T)-measurable. Equip S"
with its product o-field &”. The function

96,0 = (172 ¥ [(5,0) = PA] — x(f)

is " ® #(T)-measurable. The argument in MEASURABLE SUPREMA estab-
lishes &-measurability of sup, g(&(w), £), which equals || E (o, -) — x(-)]|.

NOTES

Dudley (1978) introduced a condition, which he termed Pe-Suslin, as a way
of handling the measurability problems for empirical processes indexed by
classes of sets. Since then he has refined the definition several times. He has
called the latest version (Dudley 1984) of the condition “image admissible
Suslin” (via a parameter space); it is almost the same as permissibility.

Le Cam (1983) has also imposed a Suslin type of condition.

Dudley and Philipp (1983) have systematically replaced measurability
assumptions by conditions framed using measurable cover functions (the
idea touched on in COVERING NUMBERS—an unfortunate clash of ter-
minology—with the Z, random variables).

PROBLEMS

[1] Suppose Z has a countable, dense subset {g;} under the £*(P) seminorm p5p.
Suppose also that & satisfies condition (i) of Definition 1. If x(-) is a bounded real
functional on # that is p, continuous, show that x(f;) is a measurable function
of t. [Assume x > 0. Represent x(f)) as

limsup sup x(g){r (1) < n™1},
n— oo i
where r(t) = pp(f, — g,). Use Fubini’s theorem to prove measurability of r;.]

[2] The class % of all non-empty, compact, convex subsets of the unit square [0, 172
is permissible. [Equip ¥ with the metric

d(C,, C,) = inf{e > 0:C, = Cyand C, < C3},

where C* denotes the set of x less than ¢ away from at least one point of C. Under
this metric, € is compact (Eggleston 1969, Section 4.2). The set of (x, C) with x in
C is a closed subset of [0, 1]* ® %. Take € as its own indexing set.]

[3] The class of sets {f > 0}, for f running through a permissible class, is itself per-
missible.
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