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Preface

These notes grew from lectures I gave at the University of Iowa in July of 1988,
as part of the NSF-CBMS Regional Conference Series. The conference was ably
organized by Tim Robertson and Richard Dykstra. I am most grateful to them
for giving me the opportunity to experiment on a live and receptive audience with
material not entirely polished. I also appreciate the suggestions and comments of
Richard Dudley. Much of the lecture material was repackaging of ideas originally
due to him.

In reworking the lecture notes I have tried (not always successfully) to resist
the urge to push the presentation to ever higher levels of generality. My aim has
been to introduce just enough technique to handle typical nontrivial asymptotic
problems in statistics and econometrics. Of course the four substantial examples
that represent the applications part of the lectures do not exhaust the possible uses
for the theory. I have chosen them because they cleanly illustrate specific aspects
of the theory, and also because I admire the original papers.

To anyone who is acquainted with the empirical process literature these notes
might appear misleadingly titled. Empirical process theory usually deals with sums
of independent (identically distributed) random variables f(ξi(ω)), with f running
over a class of functions F. However I have chosen to present results for sums
of independent stochastic processes fi(ω, t) indexed by a set T . Such a setting ac-
commodates not only the relatively straightforward generalization to nonidentically
distributed {ξi}, but also such simple modifications as a rescaling of the summands
by a factor that depends on i and ω. It has often irked me that the traditional nota-
tion cannot handle summands such as f(ξi)/i, even though the basic probabilistic
method is unaffected.

The cost of the modified notation appears in two ways. Some familiar looking
objects no longer have their usual meanings. For example, F will now stand for
a subset of R

n rather than for a class of functions. Also, some results, such as
the analogues in Section 4 of the standard Vapnik-Červonenkis theory, become a
trifle less general than in the traditional setting. The benefits include the natural
reinterpretation of the Vapnik-Červonenkis property as a sort of dimensionality

vii



concept, and the transformation of L2(Pn) pseudometrics on classes of functions
into the usual (
2) Euclidean distances in R

n.
Several friends and colleagues at Yale and elsewhere have influenced the final

form of the notes. Ariel Pakes provided well thought-out comments on the paper
Pollard (1989), in which I tried out some of the ideas for the Iowa lectures. Probing
questions from Don Andrews firmed up some particularly flabby parts of the original
lecture notes. A faithful reading group struggled through the first half of the
material, finding numerous errors in what I had thought were watertight arguments.
Deborah Nolan tested a slightly more correct version of the notes on a graduate
class at the University of California, Berkeley. (The rate at which bugs appeared
suggests there might even be other embarrassing errors lying in wait to confuse
future unsuspecting readers.) I thank them all.

Very recently I had the good fortune to obtain a copy of the manuscript by
Ledoux and Talagrand (1990), which provides an alternative (often mathematically
more elegant) treatment for some of the material in the theory part of the notes. I
am grateful to those authors for enlightening me.

As always Barbara Amato well deserves my thanks and admiration for her ability
to convert unruly drafts into beautiful TEXnical documents. Paul Shaman and Jose
Gonzalez contributed valuable editorial advice. The manuscript was prepared using
the AMS-TEX macros of the American Mathematical Society.
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SECTION 1

Introduction

As it has developed over the last decade, abstract empirical process theory has
largely been concerned with uniform analogues of the classical limit theorems for
sums of independent random variables, such as the law of large numbers, the central
limit theorem, and the law of the iterated logarithm. In particular, the Glivenko-
Cantelli Theorem and Donsker’s Theorem, for empirical distribution functions on
the real line, have been generalized and extended in several directions. Progress
has depended upon the development of new techniques for establishing maximal
inequalities for sums of independent stochastic processes. These inequalities can
also be put to other uses in the asymptotic theory of mathematical statistics and
econometrics. With these lecture notes I hope to explain some of the theoreti-
cal developments and illustrate their application by means of four nontrivial and
challenging examples.

The notes will emphasize a single method that has evolved from the concept of a
Vapnik-Červonenkis class of sets. The results attained will not be the best possible
of their kind. Instead I have chosen to strive for just enough generality to handle the
illustrative examples without having to impose unnatural extra conditions needed
to squeeze them into the framework of existing theory.

Usually the theory in the literature has concerned independent (often, also iden-
tically distributed) random elements ξ1, ξ2, . . . of an abstract set Ξ. That is, for
some σ-field on Ξ, each ξi is a measurable map from a probability space (Ω,A, P)
into Ξ. For each n, the {ξi} define a random probability measure on the set Ξ: the
empirical measure Pn puts mass 1/n at each of the points ξ1(ω), . . . , ξn(ω). Each
real-valued function f on Ξ determines a random variable,

Pnf =
1
n

∑

i≤n

f(ξi(ω)).

For fixed f , this is an average of independent random variables, which, under
appropriate regularity conditions and with the proper standardizations, will satisfy
a law of large numbers or a central limit theorem. The theory seeks to generalize
these classical results so that they hold uniformly (in some sense) for f ranging
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2 EMPIRICAL PROCESSES

over various classes F of functions on Ξ.
In asymptotic problems, F is often a parametric family, {f(·, t) : t ∈ T}, with T

not necessarily finite dimensional. One can then simplify the notation by writing
fi(ω, t) instead of f(ξi(ω), t). In my opinion, this is the most natural notation for
the methods that will be developed in these notes. It accommodates gracefully
applications where the function f is allowed to change with i (or n). For example,
in Section 11 we will encounter a triangular array of processes,

fni(ω, t) = |yi(ω)+ − (x′
iθ0 + z′nit)

+| − |yi(ω)+ − (x′
iθ0)+| for i = 1, . . . , n,

generated by a reparametrization of a censored regression. The {zni} will be con-
structed from the deterministic vectors {xi} by means of a transformation that
depends on n. Such processes do not fit comfortably into the traditional notation,
but their analysis depends on the same symmetrization and conditioning arguments
as developed in the literature for the empirical measure Pn.

The notation also allows for transformations that depend on i, as with the
fi(ω, t)/i that will appear in Section 8. It also eliminates an unnecessary nota-
tional distinction between empirical processes and partial-sum processes, bringing
both closer to the theory for sums of independent random elements in Banach
space. In these notes, however, I will concentrate on problems and methods that
are usually identified as belonging to empirical process theory.

The general problem to be attacked in the next six sections will be that of finding
probabilistic bounds for the maximal deviation of a sum of independent stochastic
processes,

Sn(ω, t) =
∑

i≤n

fi(ω, t),

from its expectation,

Mn(t) = PSn(·, t) =
∑

i≤n

Pfi(·, t).

That is, we will seek to bound ∆n(ω) = supt∈T |Sn(ω, t) − Mn(t)|. In applications
the fi will often acquire a second subscript to become a triangular array. But, since
most of the argument is carried out for fixed n, there is no need to complicate the
notation prematurely.

For a general convex, increasing function Φ on R
+, Section 2 will derive a bound

for P Φ(∆n). The strategy will be to introduce a more variable process,

Ln(σ, ω) = sup
t

∣∣∑

i≤n

σifi(ω, t)
∣∣,

defined by means of a new sequence of independent random variables {σi}, each
σi taking only the values +1 and −1, both with probability 1/2. We will find that
P Φ(∆n) is less than P Φ(2Ln).

With ω held fixed, Ln is a very simple process indexed by a subset of R
n,

Fω = {(f1(ω, t), . . . , fn(ω, t)) : t ∈ T}.
The indexing of the points of Fω by T will become irrelevant; the geometry of Fω



1. INTRODUCTION 3

will be all that matters. In terms of the usual inner product on R
n,

Ln(σ, ω) = sup
f∈Fω

|σ · f |.

Section 3 will establish a general inequality for processes like this, but indexed by
fixed subsets of R

n; it will be applied conditionally to Ln. The inequality will take
the form of a bound on an Orlicz norm.

If Φ is a convex, increasing function on R
+ with 0 ≤ Φ(0) < 1, the Orlicz norm∥∥Z

∥∥
Φ

of a random variable Z is defined by
∥∥Z

∥∥
Φ

= inf{C > 0 : P Φ(|Z|/C) ≤ 1},
with +∞ as a possible value for the infimum. If P Φ(|Z|/C0) < ∞ for some finite
C0, a dominated convergence argument shows that P Φ(|Z|/C) → Φ(0) < 1 as
C → ∞, which ensures that

∥∥Z
∥∥

Φ
is finite. If one identifies random variables that

are equal almost everywhere, ‖ · ‖Φ defines a norm on the space LΦ of all random
variables Z for which ‖Z‖Φ < ∞. (The space LΦ is even complete under this norm,
a property we will not need.) In the special case where Φ(x) = xp for some p ≥ 1,
the norm ‖ · ‖Φ coincides with the usual ‖ · ‖p, and LΦ is the usual space of random
variables with finite pth absolute moments. Finiteness of

∥∥Z
∥∥

Φ
places a constraint

on the rate of decrease for the tail probabilities via the inequality

P{|Z| ≥ t} ≤ P Φ(|Z|/C)/Φ(t/C)
≤ 1/Φ(t/C) if C =

∥∥Z
∥∥

Φ
.

The particular convex function

Ψ(x) = 1
5 exp(x2)

would give tails decreasing like exp(−Ct2) for some constant C. Such a rate of
decrease will be referred to as subgaussian tail behavior.

The inequality in Section 3 will be for processes indexed by a subset F of R
n. It

will take the form of a bound on the particular Orlicz norm,
∥∥ sup

f∈F
|σ · f |

∥∥
Ψ
,

involving the packing numbers for the set F. [The packing number D(ε,F) is the
largest number of points that can be packed into F with each pair at least ε apart.]
In this way we transform the study of maximal inequalities for ∆n into a study of
the geometry of the set Fω.

Section 4 will make the connection between packing numbers and the combina-
torial methods that have evolved from the approach of Vapnik and Červonenkis. It
will develop the idea that a bounded set F in R

n that has a weak property shared
by V -dimensional subspaces should have packing numbers like those of a bounded
subset of R

V . The three sections after that will elaborate upon the idea, with Sec-
tion 7 summarizing the results in the form of several simple maximal inequalities
for ∆n.

Section 8 will transform the maximal inequalities into simple conditions for uni-
form analogues of the law of large numbers. Sections 9 and 10 will transform them
into uniform analogues of the central limit theorem—functional limit theorems that



4 EMPIRICAL PROCESSES

are descendents of Donsker’s Theorem for the empirical distribution function on the
real line. The approach there will depend heavily on the method of almost sure
representation.

Section 9 will be the only part of these notes where particular care is taken with
questions of measurability. Up to that point any measurability difficulties could
be handled by an assumption that T is a Borel (or analytic) subset of a compact
metric space and that each of the functions fi(ω, t) is jointly measurable in its
arguments ω and t. Such niceties are left to the reader.

The challenging applications will occupy the last four sections.
The key to the whole approach taken in these notes is an important combinatorial

lemma, a refinement of the so-called Vapnik-Červonenkis Lemma. It deserves an
immediate proof so that the reader might appreciate the simplicity of the foundation
upon which all else rests.

In what follows, S will denote the set of all 2n possible n-tuples of +1’s and −1’s.
The pointwise minimum of two vectors σ and η in S will be denoted by σ∧η. The
symbol # will denote cardinality of a set. Inequalities between vectors in S should
be interpreted coordinatewise.

(1.1) Basic Combinatorial Lemma. For each map η from S into itself there
exists a one-to-one map θ from S onto itself such that θ(σ) ∧ σ = η(σ) ∧ σ for
every σ.

Proof. Replacing η(σ) by η(σ)∧σ if necessary, we may simplify the notation
by assuming that η(σ) ≤ σ for every σ. Then for each σ in S we need to choose θ(σ)
from the set K(σ) = {α ∈ S : α ∧ σ = η(σ)}. For each subset A of S define

K(A) =
⋃

σ∈A

K(σ).

The idea is to prove that #K(A) ≥ #A, for every choice of A. The combinatorial
result sometimes known as the Marriage Lemma (Dudley 1989, Section 11.6) will
then imply existence of a one-to-one map θ from S onto itself such that θ(σ) ∈ K(σ)
for every σ, as required.

For the special case where η(σ) = σ for every σ, the inequality holds trivially,
because then σ ∈ K(σ) for every σ, and K(A) ⊇ A for every A. The general case
will be reduced to the trivial case by a sequence of n modifications that transform
a general η to this special η.

The first modification changes the first coordinate of each η(σ). Define a new
map η∗ by putting η∗(σ)i = η(σ)i for 2 ≤ i ≤ n, and η∗(σ)1 = σ1. Let K∗(σ) be
the subset of S defined using η∗. We need to show that

#K(A) ≥ #K∗(A).

To do this, partition S into 2n−1 sets of pairs {β−,β+}, where each β− differs from
its β+ only in the first coordinate, with β−

1 = −1 and β+
1 = +1. It is good enough

to show that
#

[
K(A) ∩ {β−,β+}

]
≥ #

[
K∗(A) ∩ {β−,β+}

]
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for every such pair. This will follow from: (i) if β− ∈ K∗(A) then K(A) contains
both β− and β+; and (ii) if β+ ∈ K∗(A) but β− /∈ K∗(A) then at least one of β−

and β+ must belong to K(A).
Let us establish (i). Suppose β− ∈ K∗(A). Then, for some σ in A, we have

β− ∈ K∗(σ), that is β− ∧ σ = η∗(σ). For this σ we must have

−1 = min[−1, σ1] = η∗(σ)1 = σ1.

Since η(σ) ≤ σ, it follows that η(σ)1 = −1 and η(σ) = η∗(σ). Thus β+ ∧ σ =
β− ∧ σ = η(σ), as required for (i).

For (ii), suppose β+ belongs to K∗(A) but β− does not. Then, for some σ in
A, we have β+ ∧σ = η∗(σ) �= β− ∧σ. Both vectors β+ ∧σ and β− ∧σ agree with
η∗(σ), and hence with η(σ), in coordinates 2 to n. Either η(σ)1 = −1 = (β−∧σ)1
or η(σ)1 = σ1 = +1 = (β+ ∧ σ)1. Thus either η(σ) = β+ ∧ σ or η(σ) = β− ∧ σ,
as required for (ii).

We have now shown that the modification in the first coordinate of the η map
reduces the cardinality of the corresponding K(A). A similar modification of η∗

in the second coordinate will give a similar reduction in cardinality. After n such
modifications we will have changed η so that η(σ) = σ for all σ. The corresponding
K(A) has cardinality bigger than the cardinality of A, because it contains A, but
smaller than the cardinality of the K(A) for the original η. �

Remarks. Several authors have realized the advantages of recasting abstract
empirical processes as sums of independent stochastic processes. For example,
Alexander (1987b) has developed general central limit theorems that apply to both
empirical processes and partial-sum processes; Gaenssler and Schlumprecht (1988)
have established moment inequalities similar to one of the inequalities that will
appear in Section 7.

The proof of the Basic Combinatorial Lemma is based on Lemmas 2 and 3 of
Ledoux and Talagrand (1989). It is very similar to the method used by Steele (1975)
to prove the Vapnik-Červonenkis Lemma (see Theorem II.16 of Pollard 1984).



SECTION 2

Symmetrization
and Conditioning

In this section we begin the task of bounding P Φ(supt |Sn(·, t) − Mn(t)|) for a
general convex, increasing function Φ on R

+. The idea is to introduce more ran-
domness into the problem and then work conditionally on the particular realization
of the {fi}. This is somewhat akin to the use of randomization in experimental
design, where one artificially creates an extra source of randomness to ensure that
test statistics have desirable behavior conditional on the experimental data.

As a convenience for describing the various sources of randomness, suppose that
the underlying probability space (Ω,A, P) is a product space,

Ω = Ω1 ⊗ · · · ⊗ Ωn ⊗ Ω′
1 ⊗ · · · ⊗ Ω′

n ⊗ S,

equipped with a product measure

P = P1 ⊗ · · · ⊗ Pn ⊗ P
′
1 ⊗ · · · ⊗ P

′
n ⊗ Pσ.

Here Ω′
i = Ωi and P

′
i = Pi. The set S consists of all n-tuples σ = (σ1, . . . , σn) with

each σi either +1 or −1, and Pσ is the uniform distribution, which puts mass 2−n

on each n-tuple.
Let the process fi(·, t) depend only on the coordinate ωi in Ωi; with a slight

abuse of notation write fi(ωi, t). The Ω′
i and P

′
i are included in order to generate

an independent copy fi(ω′
i, t) of the process. Under Pσ, the σi are independent sign

variables. They provide the randomization for the symmetrized process

S◦
n(ω, t) =

∑
i≤n

σifi(ωi, t).

We will find that this process is more variable than Sn, in the sense that

(2.1) P Φ(sup
t

|Sn(·, t) − Mn(t)|) ≤ P Φ(2 sup
t

|S◦
n(·, t)|)

The proof will involve little more than an application of Jensen’s inequality.

6



2. SYMMETRIZATION AND CONDITIONING 7

To take advantage of the product structure, rewrite the lefthand side of (2.1) as

P1 ⊗ · · · ⊗ Pn Φ
(

sup
t

∣∣∑
i≤n

[fi(ωi, t) − P
′
ifi(ω′

i, t)]
∣∣).

We can replace the P
′
i by P

′
1 ⊗· · ·⊗P

′
n, then pull that product measure outside the

sum, without changing the value of this expression. The argument of Φ, and hence
the whole expression, is increased if we change

sup
t

|P ′
1 ⊗ · · · ⊗ P

′
n · · · | to P

′
1 ⊗ · · · ⊗ P

′
n sup

t
| · · · |.

Jensen’s inequality then gives the upper bound

P1 ⊗ · · · ⊗ Pn ⊗ P
′
1 ⊗ · · · ⊗ P

′
n Φ

(
sup

t

∣∣∑
i≤n

fi(ωi, t) − fi(ω′
i, t)

∣∣).

The last expression would be unaffected if we interchanged any ωi with its ω′
i,

because Pi = P
′
i . More formally, the 2n-fold product measure is invariant under

all permutations of the coordinates generated by interchanges of an ωi with its ω′
i.

For each σ in S, the 2n-fold expectation would be unchanged if the integrand were
replaced by

Φ
(

sup
t

∣∣∑
i≤n

σi[fi(ωi, t) − fi(ω′
i, t)]

∣∣),

which, because Φ is convex and increasing, is less than

1
2
Φ

(
2 sup

t

∣∣∑
i≤n

σifi(ωi, t)
∣∣) +

1
2
Φ

(
2 sup

t

∣∣∑
i≤n

σifi(ω′
i, t)

∣∣).

These two terms have the same 2n-fold expectation. Averaging over all choices of σ,
ωi, and ω′

i, we arrive at a (2n+1)-fold expectation that is equal to the righthand side
of the symmetrization inequality (2.1). Notice that the auxiliary ω′

i randomization
has disappeared from the final bound, which involves only ω = (ω1, ..., ωn) and σ.

For each ω, the sample paths of the processes trace out a subset

Fω = { (f1(ω, t), ..., fn(ω, t)) : t ∈ T}
of R

n. Consolidating the product P1 ⊗ · · · ⊗ Pn into a single Pω, and reexpressing
inequality (2.1) in terms of the usual inner product on R

n, we get a neater looking
bound.

(2.2) Theorem. For each convex, increasing Φ,

P Φ(sup
t

|Sn(·, t) − Mn(t)|) ≤ PωPσ Φ
(

2 sup
f∈Fω

|σ · f |
)

. �

The inner expectation, with respect to Pσ, involves a very simple process indexed
by a (random) subset Fω of R

n. The fact that T indexes the points of the sets Fnω

now becomes irrelevant. The sets themselves summarize all we need to know about
the {fi(ω, t)} processes. If we absorb the factor 2 into the function Φ, the problem
has now become: find bounds for Pσ Φ (supF |σ · f |) for various convex Φ and various
subsets F of R

n.
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Remarks. There are many variations on the symmetrization method in the
empirical process literature. In the original paper of Vapnik and Červonenkis (1971)
the symmetrized process was used to bound tail probabilities. I learned about the
simplifications arising from the substitution of moments for tail probabilities by
reading the papers of Pisier (1983) and Giné and Zinn (1984). Symmetrization via
moments also works with more complicated processes, for which tail probabilities
are intractable, as in the papers of Nolan and Pollard (1987, 1988) on U-processes.
In their comments on Pollard (1989), Giné and Zinn have traced some of the earlier
history of symmetrization, with particular reference to the theory of probability in
Banach spaces.



SECTION 3

Chaining

The main aim of the section is to derive a maximal inequality for the processes
σ · f , indexed by subsets of R

n, in the form of an upper bound on the Ψ norm of
supF |σ · f |. [Remember that Ψ(x) = 1/5 exp(x2).] First we need a bound for the
individual variables.

(3.1) Lemma. For each f in R
n, the random variable σ ·f has subgaussian tails,

with Orlicz norm ‖σ · f‖Ψ less than 2|f |.

Proof. The argument has similarities to the randomization argument used in
Section 2. Assume the probability space is a product space supporting independent
N(0, 1) distributed random variables g1, . . . , gn, all of which are independent of the
sign variables σ1, . . . , σn. The absolute value of each gi has expected value

γ = P|N(0, 1)| =
√

2/π.

By Jensen’s inequality,

Pσ exp
(∑

i≤n

σifi/C

)2

= Pσ exp
(∑

i≤n

σifiPg|gi|/γC

)2

≤ PσPg exp
(∑

i≤n

σi|gi|fi/γC

)2

.

The absolute value of any symmetric random variable is independent of its sign. In
particular, under Pσ ⊗ Pg the products σ1|g1|, . . . , σn|gn| are independent N(0, 1)
random variables. The last expected value has the form P exp

(
N(0, τ2)2

)
, where

the variance is given by

τ2 =
∑
i≤n

(fi/γC)2 = |f |2/γ2C2.

Provided τ2 < 1/2, the expected value is finite and equals (1− 2|f |2/γ2C2)−1. If we
choose C = 2|f | this gives P Ψ(σ · f/C) ≤ 1, as required. �

9



10 EMPIRICAL PROCESSES

The next step towards the maximal inequality is to bound the Ψ norm of the
maximum for a finite number of random variables.

(3.2) Lemma. For any random variables Z1, . . . , Zm,∥∥max
i≤m

|Zi|
∥∥

Ψ
≤

√
2 + log m max

i≤m

∥∥Zi

∥∥
Ψ
.

Proof. The inequality is trivially satisfied if the right-hand side is infinite. So
let us assume that each Zi belongs to LΨ. For all positive constants K and C,

Ψ (max |Zi|/C) ≤ Ψ(1) +
∫ ∞

1

{K max |Zi|/C > Kx}Ψ(dx)

≤ Ψ(1) +
∫ ∞

1

Ψ(K max |Zi|/C)
Ψ(Kx)

Ψ(dx)

≤ Ψ(1) +
∑
i≤m

∫ ∞

1

Ψ(KZi/C)
Ψ(Kx)

Ψ(dx).

If we choose C = K max ‖Zi‖Ψ then take expectations we get

P Ψ(max |Zi|/C) ≤ Ψ(1) + m

∫ ∞

1

1
Ψ(Kx)

Ψ(dx)

=
e

5
+ m(K2 − 1)−1 exp(−K2 + 1).

The right-hand side will be less than 1 if K =
√

2 + log m . (Now you should be
able to figure out why the 1/5 appears in the definition of Ψ.) �

Clearly the last lemma cannot be applied directly to bound
∥∥supF |σ · f |

∥∥
Ψ

if
F is infinite. Instead it can be used to tie together a sequence of approximations
to supF |σ · f | based on an increasing sequence of finite subsets F. The argument,
which is usually referred to as chaining , depends on the geometry of F only through
the size of its packing numbers. To begin with, let us consider a more general—
more natural—setting: a stochastic process {Z(t) : t ∈ T} whose index set T is
equipped with a metric d. [Actually, d need only be a pseudometric; the argument
would not be affected if some distinct pairs of points were a distance zero apart.]

(3.3) Definition. The packing number D(ε, T0) for a subset T0 of a metric
space is defined as the largest m for which there exist points t1, . . . , tm in T0 with
d(ti, tj) > ε for i 
= j. The covering number N(ε, T0) is defined as the smallest
number of closed balls with radius ε whose union covers T0.

The two concepts are closely related, because

N(ε, T0) ≤ D(ε, T0) ≤ N(ε/2, T0).

Both provide approximating points t1, . . . , tm for which mini d(t, ti) ≤ ε for every t
in T0. Sometimes the {ti} provided by D are slightly more convenient to work with,
because they lie in T0; the centers of the balls provided by N need not lie in T0. The
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definition of D depends only upon the behavior of the metric d on the set T0; the
value of N can depend upon the particular T into which T0 is embedded. If T = T0

the ambiguity disappears. However, it is largely a matter of taste, or habit, whether
one works with covering numbers or packing numbers. Notice that finiteness of all
the packing or covering numbers is equivalent to total boundedness of T0.

For the general maximal inequality let us suppose that some point t0 has been
singled out from T . Also, let us assume that the process Z(t) = Z(ω, t) has contin-
uous sample paths, in the sense that Z(ω, ·) defines a continuous function on T for
each ω. For the intended application, this causes no loss of generality: clearly σ · f
is a continuous function of f for each fixed σ. [Without the continuity assumption
the statement of the next lemma would have to be modified to assert existence of a
version of the process Z having continuous sample paths and satisfying the stated
inequality.]

(3.4) Lemma. If the process Z has continuous sample paths and its increments
satisfy the inequality∥∥Z(s) − Z(t)

∥∥
Ψ
≤ d(s, t) for all s, t in T ,

and if δ = supt d(t, t0), then

∥∥sup
T

|Z(t)|
∥∥

Ψ
≤

∥∥Z(t0)
∥∥

Ψ
+

∞∑
i=0

δ

2i

√
2 + log D(δ/2i+1, T ).

Proof. The inequality holds trivially if the right-hand side is infinite. So let
us assume that δ and all the packing numbers are finite.

Abbreviate δ/2i to δi. Construct a succession of approximations to the supre-
mum based on a sequence of finite subsets {t0} = T0 ⊆ T1 ⊆ · · · with the property
that

min
t∗∈Ti

d(t, t∗) ≤ δi for every t in T .

Such sets can be obtained inductively by choosing Ti as a maximal superset of Ti−1

with all points of Ti greater than δi apart. [Notice that the definition of δ ensures
that {t0} has the desired property for δ0.] The definition of packing number gives
us a bound on the cardinality of Ti, namely, #Ti ≤ D(δi, T ). Let us write mi for
this bound.

Fix, for the moment, a non-negative integer k. Relate the maximum of |Z(t)|
over Tk+1 to the maximum over Tk. For each t in Tk+1 let t∗ denote a point in Tk

such that d(t, t∗) ≤ δk. By the triangle inequality,

max
t∈Tk+1

|Z(t)| ≤ max
t∈Tk+1

|Z(t∗)| + max
t∈Tk+1

|Z(t) − Z(t∗)|.

On the right-hand side, the first term takes a maximum over a subset of Tk. The
second term takes a maximum over at most mk+1 increments, each of which has
Ψ norm at most δk. Taking Ψ norms of both sides of the inequality, then applying
Lemma 3.2 to the contribution from the increments, we get∥∥max

Tk+1

|Z(t)|
∥∥

Ψ
≤

∥∥max
Tk

|Z(t)|
∥∥

Ψ
+ δk

√
2 + log mk+1.
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Repeated application of this recursive bound increases the right-hand side to the
contribution from T0, which reduces to

∥∥Z(t0)
∥∥

Ψ
, plus a sum of terms contributed

by the increments.
As k tends to infinity, the set Tk+1 expands up to a countable dense subset T∞

of T . A monotone convergence argument shows that∥∥max
Tk+1

|Z(t)|
∥∥

Ψ
↗

∥∥sup
T∞

|Z(t)|
∥∥

Ψ
.

Continuity of the sample paths of Z lets us replace T∞ by T , since

sup
T∞

|Z(ω, t)| = sup
T

|Z(ω, t)| for every ω.

This gives the asserted inequality. �

Now we have only to specialize the argument to the process σ · f indexed by a
subset F of R

n. The packing numbers for F should be calculated using the usual
Euclidean distance on R

n. By Lemma 3.1 the increments of the process satisfy∥∥σ · (f − g)
∥∥

Ψ
≤ 2|f − g|,

which differs from the inequality required by Lemma 3.4 only through the presence
of the factor 2. We could eliminate the factor by working with the process 1/2σ · f .

To get a neater bound, let us take the origin of R
n as the point corresponding

to t0. At worst, this increases the packing numbers for F by one. We can tidy up
the integrand by noting that D(x,F) ≥ 2 for x < δ, and then using the inequality√

2 + log(1 + D)/
√

log D < 2.2 for D ≥ 2.

It has also become traditional to replace the infinite series in Lemma 3.4 by the
corresponding integral, a simplification made possible by the geometric rate of
decrease in the {δi}:

δi

√
log D(δi+1,F) ≤ 4

∫
{δi+2 < x ≤ δi+1}

√
log D(x,F) dx.

With these cosmetic changes the final maximal inequality has a nice form.

(3.5) Theorem. For every subset F of R
n,

∥∥sup
F

|σ · f |
∥∥

Ψ
≤ 9

∫ δ

0

√
log D(x,F) dx where δ = sup

F
|f |. �

The theorem has several interesting consequences and reformulations. For exam-
ple, suppose the integral on the right-hand side is finite. Then there exist positive
constants κ1 and κ2 such that

Pσ{sup
F

|σ · f | ≥ ε} ≤ κ1 exp(−κ2ε
2) for all ε > 0.

It will also give bounds for less stringent norms than the Ψ norm. For example, for
each p with ∞ > p ≥ 1 there exists a constant Cp such that |x|p ≤ Ψ(Cpx) for all x.
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This implies that ‖Z‖p ≤ Cp‖Z‖Ψ for every random variable Z, and, in particular,

(3.6)
∥∥sup

F
|σ · f |

∥∥
p
≤ 9Cp

∫ δ

0

√
log D(x,F) dx, where δ = sup

F
|f |.

Such bounds will prove convenient in later sections.

Remarks. The literature contains many different maximal inequalities derived
by chaining arguments. The method presented in this section could be refined to
produce more general inequalities, but Theorem 3.5 will suffice for the limited
purposes of these notes.

I learnt the method for Lemma 3.1 from Gilles Pisier. The whole section is based
on ideas exposited by Pisier (1983), who proved an inequality equivalent to

P sup
s,t

|Z(s) − Z(t)| ≤ K

∫ δ

0

Φ−1(D(x, T )) dx

for general convex, increasing Φ with Φ(0) = 0. This result is weaker than the
corresponding inequality with the left-hand side increased to∥∥sup

s,t
|Z(s) − Z(t)|

∥∥
Φ
.

For the special case where Φ(x) = 1/5 exp(x2) the improvement is made possible by
the substitution of my Lemma 3.2 for Pisier’s Lemma 1.6 in the chaining argument.
Ledoux and Talagrand (1990, Chapter 11) have shown how the stronger form of
the inequality can also be deduced directly from a slight modification of Pisier’s
inequality.

Both Gaenssler and Schlumprecht (1988) and Pollard (1989) have established
analogues of Theorem 3.5 for ‖ · ‖p norms instead of the

∥∥·∥∥
Ψ
.



SECTION 4

Packing and Covering
in Euclidean Spaces

The maximal inequality from Theorem 3.6 will be useful only if we have suitable
bounds for the packing numbers of the set F. This section presents a method for
finding such bounds, based on a geometric property that transforms calculation of
packing numbers into a combinatorial exercise.

The combinatorial approach generalizes the concept of a Vapnik-Červonenkis
class of sets. It identifies certain subsets of R

n that behave somewhat like compact
sets of lower dimension; the bounds on the packing numbers grow geometrically,
at a rate determined by the lower dimension. For comparison’s sake, let us first
establish the bound for genuinely lower dimensional sets.

(4.1) Lemma. Let F be a subset of a V dimensional affine subspace of R
n. If F

has finite diameter R, then

D(ε,F) ≤
(

3R
ε

)V

for 0 < ε ≤ R.

Proof. Because Euclidean distances are invariant under rotation, we may
identify F with a subset of R

V for the purposes of calculating the packing number
D(ε,F). Let f1, . . . , fm be points in F with |fi − fj | > ε for i �= j. Let Bi be the
(V -dimensional) ball of radius ε/2 and center fi. These m balls are disjoint; they
occupy a total volume of m(ε/2)V Γ, where Γ denotes the volume of a unit ball
in R

V . Each fi lies within a distance R of f1; each Bi lies inside a ball of radius
3/2R and center f1, a ball of volume (3/2R)V Γ. It follows that m ≤ (3R/ε)V . �

A set of dimension V looks thin in R
n. Even if projected down onto a subspace

of R
n it will still look thin, if the subspace has dimension greater than V . One way

to capture this idea, and thereby create a more general notion of a set being thin, is
to think of how much of the space around any particular point can be occupied by

14
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the set. The formal concept involves the collection of 2k orthants about each point
t in R

k defined by means of all possible combinations of coordinatewise inequalities.

(4.2) Definition. For each t in R
k and each subset J of {1, . . . , k}, define the

J th orthant about t to consist of all those x in R
k for which

xi > ti if i ∈ J ,
xi < ti if i ∈ Jc.

A subset of R
k will be said to occupy the J th orthant of t if it contains at least one

point in that orthant. A subset will be said to surround t if it occupies all 2k of
the orthants defined by t.

There is a surprising connection between the packing numbers of a set in R
n and

the maximum number of orthants its lower dimensional projections can occupy.
The projections that we use will differ slightly from the usual notion. For each
k-tuple I = (i(1), . . . , i(k)) of integers from the range 1, . . . , n, call (xi(1), . . . , xi(k))
the I-projection of the point (x1, . . . , xn) in R

n, even if the integers i(1), . . . , i(k)
are not all distinct. Call such a map into R

k a k-dimensional coordinate projection.
If all the integers are distinct, call it a proper coordinate projection.

(4.3) Definition. Say that a subset F of R
n has a pseudodimension of at

most V if, for every point t in R
V +1, no proper coordinate projection of F can

surround t.

The concept of pseudodimension bears careful examination. It requires a prop-
erty for all possible choices of I = (i(1), . . . , i(V + 1)) from the range 1, . . . , n. For
each such choice and for each t in R

V +1, one must extract a J from I such that
no f in F can satisfy the inequalities

fi > ti for i ∈ J ,
fi < ti for i ∈ I\J .

Clearly any duplication amongst the elements of I will make this task a triviality.
Only for distinct integers i(1), . . . , i(V + 1) must one expend energy to establish
impossibility. That is why only proper projections need be considered.

If a set F actually sits within an affine space of dimension V then it has pseudo-
dimension at most V . To see this, notice that a (V+1)-dimensional projection of
such an F must be a subset of an affine subspace A with dimension strictly less
than V + 1. There exists a nontrivial vector β in R

V +1 and a constant γ such that
β · α = γ for every α in A. We may assume that βi > 0 for at least one i. If t has
β · t ≤ γ it is impossible to find an α in A such that

αi < ti when βi > 0,
αi ≥ ti when βi ≤ 0,

for these inequalities would lead to the contradiction γ =
∑

i βiαi <
∑

i βiti ≤ γ. If
β ·t > γ we would interchange the roles of “βi > 0” and “βi ≤ 0” to reach a similar
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contradiction. For the pseudodimension calculation we need the contradiction only
for αi > ti, but to establish the next result we need it for αi ≥ ti as well.

(4.4) Lemma. Suppose the coordinates of the points in F can take only two
values, c0 and c1. Suppose also that there is a V -dimensional vector subspace Λ
of R

n with the property: for each f ∈ F there is a λ ∈ Λ such that fi = c1 if and
only if λi ≥ 0. Then F has pseudodimension at most V .

Proof. We may assume that c0 = 0 and c1 = 1. Suppose that some proper
I-projection of F surrounds a point t in R

V +1. Each coordinate ti must lie strictly
between 0 and 1. The inequalities required for the projection of f to occupy the
orthant corresponding to a subset J of I are

fi = 1 for i ∈ J,

fi = 0 for i ∈ I\J.
That is,

λi ≥ 0 for i ∈ J,

λi < 0 for i ∈ I\J.
As shown above, there exists a J such that this system of inequalities cannot be
satisfied. �

The connection between pseudodimension and packing numbers is most easily
expressed if we calculate the packing numbers not for the usual Euclidean, or �2,
distance on R

n, but rather for the �1 distance that corresponds to the norm

|x|1 =
∑
i≤n

|xi|.

To distinguish between the two metrics on R
n let us add subscripts to our notation,

writing D1(ε,F) for the �1 packing number of the set F, and so on. [Notice that
the �1 norm is not invariant under rotation. The invariance argument used in the
proof of Lemma 4.1 would be invalid for �1 packing numbers.]

A set in R
n of the form

∏
i[αi, βi] is called a box. It has �1 diameter

∑
i(βi−αi).

The smallest integer greater than a real number x is denoted by �x�.

(4.5) Lemma. Let F lie within a box of �1 diameter one in R
n. If F contains m

points, each pair separated by an �1 distance of at least ε, then: for k = �2ε−1log m�,
there exists a point t in R

k and a k-dimensional coordinate projection of F that
occupies at least m orthants of t.

Proof. We may assume that the box has the form
∏

i[0, pi], where the pi are
nonnegative numbers summing to one. Partition [0, 1] into subintervals I1, . . . , In

of lengths p1, . . . , pn. Generate i(1), . . . , i(k) and t = (t1, . . . , tk) randomly, from
a set of independent Uniform[0, 1] random variables U1, . . . , Uk, in the following
way. If Uα lands in the subinterval Ij , put i(α) equal to j and tα equal to the
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distance of Uα from the left endpoint of Ij . [That is, the method chooses edge i
with probability pi, then chooses ti uniformly from the [0, pi] interval.]

Let F0 be the subset of F consisting of the m points with the stated separation
property. To each f in F0 there corresponds a set of n points in [0, 1]: the jth

lies in Ij , at a distance fj from the left endpoint of that interval. The 2n points
defined in this way by each pair f ,g from F0 form n subintervals of [0, 1], one in
each Ij . The total length of the subintervals equals |f −g|1, which is greater than ε,
by assumption. If Uα lands within the interior of the subintervals, the coordinates
fi(α) and gi(α) will be on opposite sides of tα; the projections of f and g will then
lie in different orthants of t. Each Uα has probability at most 1 − ε of failing to
separate f and g in this way. Therefore the projections have probability at most
(1 − ε)k of lying in the same orthant of t.

Amongst the
(
m
2

)
possible pairs from F0, the probability that at least one pair

of projections will occupy the same orthant of t is less than(
m

2

)
(1 − ε)k <

1
2

exp(2 log m− kε).

The value of k was chosen to make this probability strictly less than one. With
positive probability the procedure will generate i(1), . . . , i(k) and t with the desired
properties. �

Notice that the value of k does not depend on n, the dimension of the space R
n

in which the set F is embedded.
The next result relates the occupation of a large number of orthants in R

k to the
property that some lower-dimensional projection of the set completely surrounds
some point. This will lead to a checkable criterion for an F in R

n to have packing
numbers that increase at the same sort of geometric rate as for the low-dimensional
set in Lemma 4.1. The result is a thinly disguised form of the celebrated Vapnik-
Červonenkis lemma.

(4.6) Lemma. A coordinate projection into R
k of a set with pseudodimension

at most V can occupy at most(
k

0

)
+

(
k

1

)
+ · · · +

(
k

V

)

orthants about any point of R
k.

Proof. Let H be a set with pseudodimension at most V . Its projection into R
k

also has pseudodimension at most V . So without loss of generality we may assume
that H ⊆ R

k. Let S denote the set of all k-tuples σ = (σ1, . . . , σk) with σi = ±1
for each i. Identify the 2k orthants of t with the 2k vectors in S. The orthants
of t that are occupied by H correspond to a subset A of S. Suppose #A is strictly
greater than the asserted bound, and then argue for a contradiction.

The vectors in S also index the proper coordinate projections on R
k. Let us

denote by πσ the projection that discards all those coordinates for which σi = −1.
The orthants of πσt correspond to vectors η in S with η ≤ σ: we merely ignore those
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coordinates ηi for which σi = −1, then identify the orthants by means of the signs
of the remaining ηi. For the projection πσH to occupy the orthant corresponding
to η, there must exist an α in A such that αi = ηi whenever σi = +1; that is,
α ∧ σ = η.

Let SV denote the set of all vectors σ in S with σi = +1 for at least V + 1
coordinates. The assumption of pseudodimension at most V means that πσH does
not surround πσt, for every σ in SV . Thus for each σ in SV there exists an η(σ) ≤ σ
such that α ∧ σ �= η(σ) for every α in A. For definiteness define η(σ) = σ for
σ /∈ SV .

Invoke the Basic Combinatorial Lemma from Section 1 to obtain a one-to-one
map θ from S onto itself such that θ(σ) ∧ σ = η(σ) for every σ. The assumption
about the size of A ensures that

#{θ−1(α) : α ∈ A} + #SV > 2k,

which implies that there exists an α in A for which θ−1(α) ∈ SV . But then, for
that α, we have

α ∧ θ−1(α) �= η(θ−1(α)) = θ(θ−1(α)) ∧ θ−1(α),

a contradiction that establishes the assertion of the lemma. �

The V in the statement of the last lemma plays almost the same role as the
dimension V in Lemma 4.1, which gave the O(ε−V ) bound on packing numbers.
By combining the assertions of the last two lemmas we obtain the corresponding
bound in terms of the pseudodimension.

(4.7) Theorem. Let F have pseudodimension at most V and lie within a box
of �1 diameter one in R

n. Then there exist constants A and W , depending only on
V , such that

D1(ε,F) ≤ A (1/ε)
W for 0 < ε ≤ 1.

Proof. Fix 0 < ε ≤ 1. Let m = D1(ε,F). Choose k = �2ε−1 log m� as in
Lemma 4.5. From Lemma 4.6,(

k

0

)
+ · · · +

(
k

V

)
≥ m.

The left-hand side of this inequality is a polynomial of degree V in k; it is smaller
than (1 + V )kV . [There is not much to be gained at this stage by a more precise
upper bound.] Thus

(1 + V )
(

1 + 2 log m

ε

)V

≥ m,

whence
(1 + V )
εV

≥ m

(1 + 2 log m)V
.

For some positive constant C depending on V , the right-hand side is greater
than C

√
m, for all positive integers m. The asserted inequality holds if we take

A = (1 + V )2/C2 and W = 2V . �
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For the sake of comparison with Lemma 4.1, let us see what sort of bound is
given by Theorem 4.7 when F is contained within a V -dimensional affine subspace
of R

n. If F also lies within an �1 box of diameter one, the argument from the
proof of Theorem 4.7 gives packing numbers that grow as O(ε−W ), for W = 2V .
We could reduce W to any constant slightly larger than V . [Use Cm1−δ, for some
tiny positive δ, instead of C

√
m, in the proof.] This falls just slightly short of the

O(ε−V ) bound from Lemma 4.1.
Theorem 4.7 has a slightly more general version that exploits an invariance prop-

erty of orthants. For each vector α = (α1, . . . , αn) of nonnegative constants, and
each f in R

n, define the pointwise product α � f to be the vector in R
n with ith

coordinate αifi. Write α�F to denote the set of all vectors α� f with f in F. At
least when αi > 0 for every i, a trivial, but significant, property of orthants is: F

occupies orthant J of t if and only if α�F occupies orthant J of α�t. Similarly, if
some coordinate projection of F cannot surround a point t then the corresponding
coordinate projection of α�F cannot surround α� t. The key requirement of the
theorem is unaffected by such coordinate rescalings. We can rescale any bounded
set F with an envelope F—that is, a vector such that |fi| ≤ Fi for each f ∈ F and
each i— to lie within a box of �1 diameter one, and then invoke the theorem.

(4.8) Theorem. Let F be a bounded subset of R
n with envelope F and pseudo-

dimension at most V . Then there exist constants A and W , depending only on V ,
such that

D1(ε|α � F|1,α � F) ≤ A (1/ε)
W for 0 < ε ≤ 1,

for every rescaling vector α of non-negative constants.

Proof. We may assume αi > 0 for every i. (The cases where some αi are
zero correspond to an initial projection of F into a lower dimensional coordinate
subspace.) Apply Theorem 4.7 to the rescaled set F∗ consisting of vectors f∗ with
coordinates

f∗
i =

αifi

2
∑

j αjFj
.

Then observe that, for vectors in F∗,

|f∗ − g∗|1 > ε/2 if and only if |α � f − α � g|1 > ε|α � F|1.
Absorb the extra factor of 2W into the constant A. �

Sets with an O(ε−W ) bound on packing numbers arise in many problems, as
will become apparent in the sections on applications. The main role of the pseudo-
dimension of a set F will be to provide such a geometric rate of growth for packing
numbers of F. It also applies to any subclass of F under its natural envelope. For
subclasses with small natural envelopes, this method sometimes leads to bounds
unattainable by other methods.

The added generality of an inequality that holds uniformly over all rescaling
vectors allows us to move back and forth between �1 and �2 packing numbers. The
bounds from Theorem 4.8 will translate into bounds on �2 packing numbers suitable
for the chaining arguments in the Section 3.
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(4.9) Lemma. For each bounded F with envelope F, and each ε > 0,

D2(ε,F) ≤ D1( 1
2ε

2,F � F) ≤ D2( 1
2ε

2/|F|2,F).

Proof. For each pair of vectors f ,g in F,

|f − g|22 ≤ 2|F � f − F � g|1 ≤ 2|F|2|f − g|2.
The first inequality follows from the bound (fi − gi)2 ≤ 2Fi|fi − gi|; the second
follows from the Cauchy-Schwarz inequality. �

(4.10) Corollary. If F is a bounded subset of R
n with envelope F and pseudo-

dimension at most V , then there exist constants A2 and W2, depending only on V ,
such that

D2(ε|α � F|2,α � F) ≤ A2 (1/ε)
W2 for 0 < ε ≤ 1

and every rescaling vector α of non-negative constants.

Proof. The set α � F has envelope β = α � F. Because β � α � F has
envelope β � β and |β|22 = |β � β|1, the �2 packing number is bounded by

D1( 1
2ε

2|β � β|1,β � α � F) ≤ A( 1
2ε

2)−W ,

with A and W from Theorem 4.8. �

The presence of an arbitrary rescaling vector in the bound also gives us added
flexibility when we deal with sets that are constructed from simpler pieces, as will
be explained in the next section.

Remarks. My definition of pseudodimension abstracts the concept of a Vapnik-
Červonenkis subgraph class of functions, in the sense of Dudley (1987). Most of
the results in the section are reformulations or straightforward extensions of known
theory for Vapnik-Červonenkis classes, as exposited in Chapter II of Pollard (1984),
for example. See that book for a listing of who first did what when.

The nuisance of improper coordinate projections was made necessary by my
desire to break the standard argument into several steps. The arguments could
be rewritten using only proper projections, by recombining Lemma 4.5 and The-
orem 4.7. The proof of Lemma 4.6 is a novel rearrangement of old ideas: see the
comments at the end of Section 1 regarding the Basic Combinatorial Lemma.



SECTION 5

Stability

Oftentimes an interesting process can be put together from simpler processes,
to which the combinatorial methods of Section 4 apply directly. The question then
becomes one of stability: Does the process inherit the nice properties from its
component pieces? This section provides some answers for the case of processes
σ · f indexed by subsets of Euclidean space.

Throughout the section F and G will be fixed subsets of R
n, with envelopes F

and G and σ = (σ1, . . . , σn) will be a vector of independent random variables, each
taking the values ±1 with probability 1/2. In particular, σ will be regarded as the
generic point in the set S of all n-tuples of ±1’s, under its uniform distribution Pσ.
The problem is to determine which properties of F and G are inherited by classes
such as

F ⊕ G = {f + g : f ∈ F,g ∈ G},
F ∨ G = {f ∨ g : f ∈ F,g ∈ G},
F ∧ G = {f ∧ g : f ∈ F,g ∈ G},
F 	 G = {f 	 g : f ∈ F,g ∈ G}.

The reader might want to skip the material in the subsection headed “General
Maximal Inequalities”. It is included in this section merely to illustrate one of
the more recent developments in the subject; it is based on the paper by Ledoux
and Talagrand (1989). For most applications to asymptotic problems, the simpler
results contained in the first two subsections seem to suffice.

Pseudodimension. This property is stable only for the formation of unions,
pointwise maxima, and pointwise minima.

Suppose that both F and G have pseudodimension at most V . Then, for every
t in R

k and every k less than n, Lemma 4.6 asserts that the projection of F can
occupy at most

m =
(

k

0

)
+ · · · +

(
k

V

)

21
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of the orthants around t, and similarly for G. For any two vectors α and β in R
k,

the orthants of t occupied by α ∨ β and α ∧ β are uniquely determined by the
orthants occupied by α and β. (The same cannot be said for α + β or α 	 β.)
Thus the projections of F∨G and F∧G each occupy at most m2 different orthants.
It is even easier to show that the union F ∪ G occupies at most 2m orthants. If k
could be chosen so that m2 < 2k, this would imply that none of the projections
surrounds t. So, we need to find a k such that[(

k

0

)
+ · · · +

(
k

V

)]2

< 2k.

On the left-hand side we have a polynomial of degree 2V , which increases much
more slowly with k than the 2k on the right-hand side. For k large enough the
inequality will be satisfied. Just knowing that such a k exists is good enough for
most applications, but, for the sake of having an explicit bound, let us determine
how k depends on V .

Introduce a random variable X with a Bin(k, 1/2) distribution. The desired
inequality is equivalent to [

P{X ≥ k − V }
]2

< 2−k.

Bound the left-hand side by[
9−(k−V )

P9X
]2

= 81−(k−V )25k,

then choose k = 10V to make the bound less than 2−k for every V . [It is possible
to replace 10 by a smaller constant, but this has no advantage for our purposes.]

(5.1) Lemma. If both F and G have pseudodimension at most V , then all of
F ∪ G and F ∨ G and F ∧ G have pseudodimension less than 10V . �

Unfortunately neither sums nor products share this form of stability.

Packing Numbers. Stability properties for packing or covering numbers fol-
low easily from the triangle inequality: we construct approximating subclasses {fi}
for F and {gj} for G, and then argue from inequalities such as

|f ∨ g − fi ∨ gj |2 ≤ |f − fi|2 + |g − gj |2.
In this way we get covering number bounds

N2(ε + δ, F �G) ≤ N2(ε,F)N2(δ, G),

where � stands for either + or ∨ or ∧. The corresponding bounds for packing
numbers,

D2(2ε + 2δ, F �G) ≤ D2(ε,F)D2(δ, G),
follow from the inequalities that relate packing to covering. An even easier argument
would establish a stability property for the packing numbers for the union F ∪ G.

Pointwise products are more interesting, for here we need the flexibility of bounds
valid for arbitrary rescaling vectors. Let us show that the covering numbers for the
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set F 	 G of all pairwise products f 	 g satisfy the inequality

(5.2) N2(ε + δ, α 	 F 	 G) ≤ N2(ε,α 	 G 	 F) N2(δ, α 	 F 	 G),

which implies the corresponding inequality for packing numbers

D2(2ε + 2δ, α 	 F 	 G) ≤ D2(ε,α 	 G 	 F) D2(δ, α 	 F 	 G).

Choose approximating points α	G	 f1, . . . ,α	G	 fr for α	G	F, and points
α 	 F 	 g1, . . . ,α 	 F 	 gs for F 	 G. We may assume each fi lies within the box
defined by the envelope F, and each gj lies within the box defined by G. For an
α 	 f 	 g in the set α 	 F 	 G, and appropriate fi and gj ,

|α 	 f 	 g − α 	 fi 	 gj |2
≤ |α 	 f 	 g − α 	 fi 	 g|2 + |α 	 fi 	 g − α 	 fi 	 gj |2
≤ |α 	 f 	 G − α 	 fi 	 G|2 + |α 	 F 	 g − α 	 F 	 gj |2
≤ ε + δ.

Inequality (5.2) fits well with the bounds from Section 4.

(5.3) Lemma. Suppose F and G are subsets of R
n for which

D1(ε|α 	 F|1,α 	 F) ≤ A(1/ε)W ,

D1(ε|α 	 G|1,α 	 G) ≤ A(1/ε)W ,

for 0 < ε ≤ 1 and every rescaling vector α of nonnegative weights. Then, for every
such α,

(5.4) N2(ε|α 	 F 	 G|2,α 	 F 	 G) ≤ A2(8/ε2)2W for 0 < ε ≤ 1.

A similar inequality holds for the packing numbers.

Proof. The set H = α	F	G has envelope H = α	F	G, whose �2 norm,

|H|2 =
(∑

i

α2
i F

2
i G2

i

)1/2

=
(
|H 	 H|1

)1/2

,

provides the natural scaling factor. From inequality (5.2) and Lemma 4.9, which
relates �1 and �2 packing numbers, we get

N2(ε|H|2,H) ≤ N2( 1
2ε|H|2,α 	 G 	 F)N2( 1

2ε|H|2,α 	 F 	 G)

≤ D1( 1
8ε2|H|22,H 	 α 	 G 	 F) D1( 1

8ε2|H|22,H 	 α 	 F 	 G).

The set H	α	G	F has envelope H	H, which has �1 norm |H|22, and likewise
for the set H	α	F	G. With the uniform bounds on D1 packing numbers applied
to the last two factors we end up with the asserted inequality. �

The results in this subsection are actually examples of a more general stability
property involving contraction maps. A function λ from R

n into another Euclidean
space is called an �2−contraction if it satisfies the inequality

|λ(f) − λ(g)|2 ≤ |f − g|2 for all f , g in R
n.
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For such a map λ, it is easy to show that

D2(ε,λ(F)) ≤ D2(ε,F).

When applied to various cartesian products, for various maps λ from R
2n into R

n,
this would reproduce the bounds stated above.

General maximal inequalities. It is perhaps most natural—or at least most
elegant—to start from the assumption that we are given bounds on quantities such
as PσΦ(supF |σ · f |), for a convex, increasing nonnegative function Φ on R

+. The
bounds might have been derived by a chaining argument, based on inequalities for
packing numbers, but we need not assume as much.

Without loss of generality we may assume sets such as F to be compact: by
continuity, the supremum over F in each of the asserted inequalities will be equal
to the supremum over the closure of F; and the inequalities for unbounded F may
be obtained as limiting cases of the inequalities for a sequence of bounded subsets
of F. Also we may assume that the zero vector belongs to F.

The stability property for sums follows directly from the convexity of Φ:

PσΦ
(

sup
F,G

|σ · (f + g)|
)

≤ PσΦ
(

sup
F

|σ · f | + sup
G

|σ · g|
)

(5.5)

≤ 1
2

PσΦ
(

2 sup
F

|σ · f |
)

+
1
2

PσΦ
(

2 sup
F

|σ · g|
)

.

To eliminate the extra factors of 2 from the last two terms (or from similar terms
later in this section) we could apply the same argument to the rescaled function
Φ0(x) = Φ(x/2).

More subtle is the effect of applying a contraction operation to each coordinate
of the vectors in F. Suppose we have maps λi : R → R such that

(5.6) λi(0) = 0 and |λi(s) − λi(t)| ≤ |s − t| for all real s, t.

They define a contraction map on R
n pointwise, λ(f) = (λ1(f1), . . . , λn(fn)).

(5.7) Theorem. For every subset F of R
n, and contraction maps λi,

PσΦ
(

sup
F

|σ · λ(f)|
)

≤ 3
2

PσΦ
(

2 sup
F

|σ · f |
)

,

where λ(f) = (λ1(f1), . . . , λn(fn)). �

Before proceeding to the proof, let us see how the theorem can be applied.

(5.8) Example. We can build the class F ∨ G (or F ∧ G) using sums and con-
tractions, based on the representation

fi ∨ gi = (fi − gi)+ + gi.

Arguing as for (5.5) we get a bound for the set of all differences f − g. With the
contraction maps λi(s) = s+ we get a bound for the set of vectors with components
(fi − gi)+, which we combine with the bound for G using (5.5). �
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(5.9) Example. If we impose the condition that |fi| ≤ 1 and |gi| ≤ 1 for all
components of all vectors in F and G, then we can build F 	 G using sums and
contractions, based on the representation

figi = 1
4 (fi + gi)2 − 1

4 (fi − gi)2.

Stability for sums (and differences) gives bounds for the sets of vectors with com-
ponents 1/2(fi ± gi). With the contraction map λi(s) = 1/2 min (1, s2) we get a
suitable bound for both the squared terms, which we again combine by means of
inequality (5.5). �

As the first step towards the proof of Theorem 5.7 we must establish a stronger
result for a special case, using only elementary properties of Φ.

(5.10) Lemma. If F lies within the positive orthant of R
n,

PσΦ
(

sup
F

|σ · λ(f)|
)

≤ PσΦ
(

sup
F

|σ · f |
)

for contraction maps λi, as in (5.6).

Proof. It would suffice to consider the effect of the contractions one coordinate
at a time. We would first show that

PσΦ
(

sup
F

∣∣∣ ∑
i<n

σifi + σnλn(fn)
∣∣∣
)

≤ PσΦ
(

sup
F

|σ · f |
)

.

Then we could argue similarly for the (n−1)st coordinate—replacing the right-hand
side by the quantity now on the left-hand side, and replacing fn−1 on the left-hand
side by λn−1(fn−1)—and so on.

Let us establish only the inequality for the nth coordinate. Argue conditionally
on σ1, . . . , σn−1. To simplify the notation, write λ instead of λn, write x(f) for the
contribution from the first n − 1 coordinates, and write y(f) for fn. Then we need
to show that

Φ
(

sup
F

|x(f) + λ(y(f))|
)

+ Φ
(

sup
F

|x(f) − λ(y(f))|
)

(5.11)

≤ Φ
(

sup
F

|x(f) + y(f)|
)

+ Φ
(

sup
F

|x(f) − y(f)|
)

.

The argument will be broken into four cases. Suppose the supremum in the first
term on the left-hand side is achieved at f0 and for the second term at f1. That is,
if x0 = x(f0) and so on,

|x0 + λ(y0)| ≥ |x(f) + λ(y(f))|(5.12)
|x1 − λ(y1)| ≥ |x(f) − λ(y(f))|

for all f in F. For the first two cases we will need only to appeal to the facts: Φ(t)
is an increasing function of t on R

+; both y0 and y1 are nonnegative; and

(5.13) |λ(yi)| = |λ(yi) − λ(0)| ≤ |yi| = yi for i = 0, 1,



26 EMPIRICAL PROCESSES

as a consequence of the contraction property for λ.
For notational convenience, extend the function Φ by symmetry to the whole

real line: Φ(−t) = Φ(t). Then it will be enough to show that in each case at least
one of the following inequalities holds:

(5.14) Φ(x0 + λ(y0)) + Φ(x1 − λ(y1)) ≤
{

Φ(x0 + y0) + Φ(x1 − y1)
Φ(x1 + y1) + Φ(x0 − y0)

First case: if x0 + λ(y0) ≥ 0 ≥ x1 − λ(y1), then

Φ(x0 + λ(y0)) ≤ Φ(x0 + y0),
Φ(x1 + λ(y1)) ≤ Φ(x1 − y1).

Second case: if x0 + λ(y0) ≤ 0 ≤ x1 − λ(y1), then

Φ(x0 + λ(y0)) ≤ Φ(x0 − y0),
Φ(x1 − λ(y1)) ≤ Φ(x1 + y1).

At least one of the inequalities in (5.14) is clearly satisfied in both these cases.
For the other two cases, where x0 + λ(y0) and x1 − λ(y1) have the same sign,

we need the following consequence of the convexity of Φ: if α ≤ β and β ≥ 0 and
0 ≤ s ≤ t, then

(5.15) Φ(β + t) − Φ(β) − Φ(α + s) + Φ(α) ≥ 0.

If s = 0 this inequality reasserts that Φ is an increasing function on R
+. If s > 0 it

follows from the convexity inequality

Φ(α + s) − Φ(α)
s

≤ Φ(β + t) − Φ(β)
t

and the nonnegativity of the ratio on the right-hand side.

Third case: if x0 +λ(y0) ≥ 0 and x1−λ(y1) ≥ 0, then invoke inequality (5.15)
with

α = x1 − y1, β = x0 + λ(y0), s = y1 − λ(y1), t = y0 − λ(y0) if y0 ≥ y1,

α = x0 − y0, β = x1 − λ(y1), s = y0 + λ(y0), t = y1 + λ(y1) if y0 < y1.

The inequalities (5.12) and (5.13) give α ≤ β in each case, and the inequality s ≤ t
follows from the contraction property

|λ(y1) − λ(y0)| ≤
{

y0 − y1 if y0 ≥ y1,

y1 − y0 if y0 < y1.

Fourth case: if x0 + λ(y0) ≤ 0 and x1 − λ(y1) ≤ 0, then invoke (5.15) with

α = −x1 − y1, β = −x0 − λ(y0), s = y1 + λ(y1), t = y0 + λ(y0) if y0 ≥ y1,

α = −x0 − y0, β = −x1 + λ(y1), s = y0 − λ(y0), t = y1 − λ(y1) if y0 < y1.

The required inequalities α ≤ β and s ≤ t are established as in the third case. �
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Proof of Theorem 5.7. Notice that λi(fi) = λi(f+
i ) + λi(−f−

i ), because
either

fi ≥ 0 and λi(fi) = λi(f+
i ) and λi(−f−

i ) = λi(0) = 0,

or
fi ≤ 0 and λi(fi) = λi(−f−

i ) and λi(f+
i ) = λi(0) = 0.

Convexity of Φ gives the inequality

PσΦ
(

sup
F

∣∣∣∑
i≤n

σi[λi(f+
i ) + λi(−f−

i )]
∣∣∣
)

≤ 1
2

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σiλi(f+
i )

∣∣∣
)

+
1
2

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σiλi(−f−
i )

∣∣∣
)

.

Lemma 5.10 shows that the right-hand side increases if λi(f+
i ) is replaced by f+

i

and λi(−f−
i ) is replaced by −f−

i . (For −f−
i , note that λ(−t) is also a contraction

mapping.) Argue from convexity of Φ and the inequality f+
i = 1/2(fi + |fi|) that

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σif
+
i

∣∣∣
)

≤ 1
2

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σifi

∣∣∣
)

+
1
2

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σi|fi|
∣∣∣
)

,

with a similar inequality for the contribution from the −f−
i term. The proof will

be completed by an application of the Basic Combinatorial Lemma from Section 1
to show that

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σi|fi|
∣∣∣
)

≤ 2 PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σifi

∣∣∣
)

.

Because Φ is increasing and nonnegative, and F contains the zero vector,

PσΦ
(

2 sup
F

∣∣∣∑
i≤n

σi|fi|
∣∣∣
)

≤ PσΦ
(

2 sup
F

∑
i≤n

σi|fi|
)

+ PσΦ
(

2 sup
F

∑
i≤n

(−σi)|fi|
)

.

The two expectations on the right-hand side are equal; it will suffice if we bound
the first of them by the corresponding quantity with |fi| replaced by fi.

To do this, let us construct, by means of the Basic Combinatorial Lemma, a
one-to-one map θ from S onto itself such that

(5.16) sup
F

∑
i≤n

σi|fi| ≤ sup
F

∑
i≤n

θ(σ)ifi.

For each σ in S, the compactness of F ensures existence of a vector fσ for which
the left-hand side of (5.16) equals ∑

i≤n

σi|fσ
i |.

Define the map η from S into itself by

η(σ)i =
{

+1 if σi = +1 and fσ
i ≥ 0,

−1 otherwise.
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For every σ we have η(σ) ≤ σ. The Basic Combinatorial Lemma gives a one-to-one
map θ that has θ(σ)∧σ = η(σ). In particular, θ(σ)i is equal to +1 if both σi = +1
and fσ

i ≥ 0, and equal to −1 if σi = +1 and fσ
i < 0. Thus∑

i≤n

σi|fσ
i | =

∑
σi=+1

θ(σ)if
σ
i −

∑
σi=−1

|fσ
i |

≤
∑
i≤n

θ(σ)if
σ
i

≤ sup
F

∑
i≤n

θ(σ)ifi,

as asserted by (5.16). Because θ is one-to-one, the random vector θ(σ) has a uniform
distribution under Pσ, and

PσΦ
(

2 sup
F

∑
i≤n

σi|fi|
)

≤ PσΦ
(

2 sup
F

θ(σ) · f
)

= PσΦ
(

2 sup
F

σ · f
)

,

as required. �

Remarks. The last subsection corresponds to a small fraction of the Ledoux
and Talagrand (1989) paper. Ledoux and Talagrand (1990, Chapter 4) have further
refined the method of proof. Except perhaps for the stability result for covering
numbers of products, the rest of the section merely collects together small results
that have been derived many times in the literature.



SECTION 6

Convex Hulls

Sometimes interesting random processes are expressible as convex combinations
of more basic processes. For example, if 0 ≤ fi ≤ 1 for each i then the study of fi

reduces to the study of the random sets {ω : s ≤ fi(ω, t)}, for 0 ≤ s ≤ 1 and t ∈ T ,
by means of the representation

fi(ω, t) =
∫ 1

0

{s ≤ fi(ω, t)} ds.

More generally, starting from fi(ω, t) indexed by T , we can construct new processes
by averaging out over the parameter with respect to a probability measure Q on T :

fi(ω,Q) =
∫

fi(ω, t)Q(dt).

[This causes no measure-theoretic difficulties if there is a σ-field T on T such that
fi is jointly measurable in ω and t and Q is defined on T.] Let us denote the
corresponding process of sums by Sn(ω,Q), and its expectation by Mn(Q). Because

|Sn(ω,Q) −Mn(Q)| ≤
∫

sup
t

|Sn(ω, t) −Mn(t)|Q(dt),

it is easy to verify that

(6.1) sup
Q

|Sn(ω,Q) −Mn(Q)| = sup
t

|Sn(ω, t) −Mn(t)|.

Some uniformity results for the processes indexed by probability measures on T
follow trivially from uniformity results for processes indexed by T .

The operation of averaging out over t corresponds to the formation of convex
combinations in R

n. The vectors with coordinates f1(ω,Q), . . . , fn(ω,Q) all lie
within the closed convex hull co(Fω) of the set Fω. The symmetrization analogue
of the equality (6.1) is

sup
co(Fω)

|σ · f | = sup
Fω

|σ · f |,

which suggests that there might be a connection between the packing numbers for
Fω and the packing numbers for co(Fω). A result of Dudley (1987) establishes such

29
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a connection for the ubiquitous case of sets whose packing numbers grow like a
power of 1/ε. Even though inequality (6.1) makes the result slightly superfluous
for the purposes of these lecture notes, it is worth study as a beautiful example of
a probabilistic method for proving existence theorems.

The result could be stated in great generality—for Hilbert spaces, or even for
“spaces of type 2”—but the important ideas all appear for the simple case of a
bounded subset of Euclidean space.

(6.2) Theorem. Let F be a subset of the unit ball in a Euclidean space. If there
exist constants A and W such that

D2(ε,F) ≤ A(1/ε)W for 0 < ε ≤ 1,

then for each τ with 2 > τ > 2W
2+W ,

D2(ε, co(F)) ≤ exp(C(1/ε)τ ) for 0 < ε ≤ 1.

for some constant C that depends only on A, W and τ . �

Note that the inequality 2 > τ ensures∫ 1

0

√
logD2(x, co(F)) dx < ∞.

Indeed τ = 2 represents the critical value at which the integral would diverge. For
these notes the theorem has one major application, which deserves some attention
before we get into the details of the proof for Theorem 6.2.

(6.3) Example. Let F be a bounded subset of R
n with envelope F. The convex

cone generated by F is the set G = {rf : r > 0, f ∈ F}. Suppose G has the property:
for some integer V , no (V +1)-dimensional coordinate projection of G can surround
the corresponding projections of F or −F. Then Theorem 6.2 and the results from
Section 4 will imply that D2(ε|α 	 F|2,α 	 F) ≤ exp[C(1/ε)τ ] for 0 < ε ≤ 1 and
all nonnegative α, with constants C and τ < 2 depending only on V .

Without loss of generality, suppose α has all components equal to one, and F is
a subset of the positive orthant with Fi > 0 for each i. [The projection property
of G still holds if we replace each f by the vector with coordinates f+

i or the vector
with coordinates f−

i .] By a trivial rescaling, replacing f by f/|F|2, we may also
assume that |F|2 = 1, so that F is a subset of the unit ball.

Define a new set H of all vectors with coordinates of the form

h(r, f)i = Fi{rfi ≥ Fi},
where r ranges over positive real numbers and f ranges over F. Certainly H is a
subset of the unit ball. Its closed convex hull contains F, because

fi =
∫ 1

0

Fi{fi > sFi} ds

for every nonnegative fi. We have only to check that

D2(ε,H) ≤ A(1/ε)W for 0 < ε ≤ 1
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then appeal to Theorem 6.2.
The geometric bound for packing numbers of H will follow from the results in

Section 4 if we show that (V + 1)-dimensional proper coordinate projections of H

cannot surround any t in R
V +1. Let I be the set of V + 1 coordinates that defines

the projection. Let J be the orthant of the I-projections of F that the I-projection
of G cannot occupy. Suppose, however, that the I-projection of H does surround
some point t. This could happen only if 0 < ti < Fi for each i. For the projection
of the vector h(r, f) to occupy orthant J of t we would need to have

rfi ≥ Fi for i ∈ J,

rfi < Fi for i ∈ I\J.

Increasing r slightly to make these inequalities strict, we would then have found a
projection of a vector in G occuping the orthant J . The contradiction establishes
the desired projection property for H, and hence leads to the asserted rate of growth
for the packing numbers of F. �

Proof of Theorem 6.2. We may as well assume that F is compact, because
packing numbers for a set always agree with packing numbers for its closure. This
makes co(F) the same as the convex hull co(F), which will slightly simplify the
argument.

By a succession of approximations, we will be able to construct a set with car-
dinality at most exp(C(1/ε)τ ) that approximates each vector of F within an  2
distance less than 4ε. With some adjustment of the constant C after replacement
of ε by ε/8, this would give the asserted bound for the packing numbers.

In what follows the  2 norm will be denoted by | · |, without the subscript 2.
Let α = 2/(2 + W ). Choose a maximal subset Fε of points from F at least ε

apart, then let {φ1, . . . ,φm} be a maximal subset of Fε with points at least εα

apart. By assumption,

m ≤ D2(εα,F) ≤ A(1/εα)W ,

#Fε ≤ D2(ε,F) ≤ A(1/ε)W .

Notice that m is smaller than A(1/ε)τ ; the exponent of 1/ε is 2W/(2 + W ), which
is less than τ . Each f in F lies within ε of some f∗ in Fε. Each finite convex
combination

∑
F θ(f)f lies within ε of the corresponding

∑
F θ(f)f∗. (Here the θ(f)

multipliers denote nonnegative numbers that sum to one, with θ(f) �= 0 for only
finitely many f .) It therefore suffices to construct approximations within 3ε to the
vectors in co(Fε).

Because each vector in Fε lies within εα of some φi, there exists a partition of
Fε into subsets E1, . . . ,Em for which

(6.4) |f − φi| ≤ εα if f ∈ Ei.

Each convex combination Σθ(f)f from co(Fε) can then be reexpressed as a convex
combination of vectors from the convex hulls co(Ei):∑

f∈Fε

θ(f)f =
∑
i≤m

λiei,
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where
λi =

∑
f∈Ei

θ(f)

and

ei =
∑
f∈Ei

θ(f)
λi

f .

Here the vector λ of convex weights ranges over the m-dimensional simplex

Λ = {λ ∈ R
m : λi ≥ 0 for all i, and

∑
i

λi = 1}.

Because Ei lies inside the unit ball,∣∣∑
i≤m

λiei −
∑
i≤m

µiei

∣∣ ≤ ∑
i≤m

|λi − µi|.

We can therefore approximate each point in co(Fε) within ε by means of a convex
combination with weights λ chosen from a maximal subset Λε of points from Λ at
least ε apart in  1 distance. Notice that

#Λε ≤ (4/ε)m,

because the  1 balls of radius ε/2 about each point in Λε are pairwise disjoint, and
their union lies within an  1 ball of radius 2.

Fix a λ in Λε. Define positive integers n(1), . . . , n(m) by

λi(1/ε)2−2α < n(i) ≤ 1 + λi(1/ε)2−2α.

Let Φ(λ) denote the set of all convex combinations∑
i≤m

λiyi

with yi a simple average of n(i) vectors from Ei. Its cardinality is bounded by the
number of ways to choose all the averages,

#Φ(λ) ≤
∏
i≤m

(#Fε)n(i).

The upper bound has logarithm less than∑
i≤m

n(i) log[A(1/ε)W ] ≤ (m + (1/ε)2−2α) log[A(1/ε)W ].

The nicest part of the argument will show, for each λ, that each convex combination∑
i λiei from co(Fε) can be approximated within 2ε by a vector in Φ(λ). Hence

the union of the Φ(λ) as λ ranges over Λε will approximate to the whole of co(Fε)
within 3ε. The cardinality of this union is at most

(#Λε) max
λ∈Λε

#Φ(λ),

which has logarithm less than

m log(4/ε) + [m + (1/ε)2−2α] log[A(1/ε)W ].
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The small interval between τ and
2W

2 + W
= αW = 2 − 2α

absorbs the factors of log(1/ε), leading to the desired bound, C(1/ε)τ , for an ap-
propriately large constant C.

It remains only to prove the assertion about the approximation properties of
Φ(λ), for a fixed λ in Λε. Given ei from co(Ei), we need to find simple averages yi

of n(i) vectors from Ei such that
∣∣∑
i≤m

λiei −
∑
i≤m

λiyi

∣∣ ≤ 2ε.

Existence of such yi will be established probabilistically, by means of randomly
generated vectors Yi for which

P
∣∣∑
i≤m

λiei −
∑
i≤m

λiYi

∣∣2 ≤ 4ε2.

Some realization of the Yi must satisfy the desired inequality.
Each ei, as a vector in co(Ei), has a representation as a convex combination

ei =
∑
f∈Ei

pi(f)f .

Interpret pi(·) as a probability distribution on Ei. Generate independent random
vectors Yij , for j = 1, . . . , n(i) and i = 1, . . . ,m, with

P{Yij = f} = pi(f) for f ∈ Ei.

By this construction and inequality (6.4),

PYij = ei,

P|Yij − ei|2 ≤ (diamEi)2 ≤ 4ε2α.

Define Yi to be the average of the Yij for j = 1, . . . , n(i). With independence
accounting for the disappearance of the crossproduct terms we get

P
∣∣∑
i≤m

λi(ei − Yi)
∣∣2 =

∑
i≤m

λ2
i P|ei − Yi|2

≤
∑
i≤m

λ2
i 4ε

2α/n(i).

Our choice of n(i) lets us bound λi/n(i) by ε2−2α, then sum over the remaining λi

to end up with the desired 4ε2. �

To generalize the result to subsets F of more general normed linear spaces, we
would need only to rejustify the last few assertions in the proof regarding the Yi.
Certainly the necessary cancellations are still valid for any Hilbert space. Type 2
spaces (Araujo and Giné 1980, page 158) enjoy a similar bound for L2 norms of sums
of independent random elements, essentially by definition of the type 2 property.
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Remarks. The property of F introduced in Example 6.3 corresponds to the
VC major property for classes of functions, studied by Dudley (1987). My example
merely translates his result for empirical processes indexed by classes of functions
to the more general setting, relaxing his assumption of bounded envelopes.

Dudley (1985) has shown that the Donsker-class property is preserved under the
formation of (sequential closures of) convex hulls of classes of functions. (See the
notes to Section 10 for more about Donsker classes.) This gives yet another way of
handling processes representable as convex combinations of simpler processes. The
same stability property is also implied by the first theorem of Talagrand (1987).



SECTION 7

Maximal Inequalities

Let us now pull together the ideas from previous sections to establish a few
useful maximal inequalities for the partial-sum process Sn. To begin with, let us
consider an infinite sequence of independent processes {fi(ω, t)}, in order to see how
the bounds depend on n. This will lead us to the useful concept of a manageable
triangular array of processes.

The symmetrization bound from Section 2 was stated in terms of a general
convex, increasing function Φ on R

+. The chaining inequality of Section 3 was in
terms of the specific convex function given by Ψ(x) = 1/5 exp(x2).

Section 2 related the maximum deviation of Sn from its expected value,

∆n(ω) = sup
t

|Sn(ω, t) −Mn(t)|,

to the process σ · f indexed by the random set

Fnω = {
(
f1(ω, t), . . . , fn(ω, t)

)
: t ∈ T}.

If we abbreviate the supremum of |σ·f | over Fnω to Ln(σ, ω), the inequality becomes

(7.1) P Φ(∆n) ≤ P Φ(2Ln).

We bound the right-hand side by taking iterated expectations, initially conditioning
on ω and averaging over σ with respect to the uniform distrbution Pσ.

The chaining inequality from Theorem 3.5 bounds the conditional Ψ norm of L
by

Jn(ω) = 9
∫ δn(ω)

0

√
logD(x,Fnω) dx, where δn(ω) = sup

Fnω

|f |.

Here, and throughout the section, the subscript 2 is omitted from the �2 norm | · |2;
we will make no use of the �1 norm in this section. Written out more explicitly, the
inequality that defines the Ψ norm becomes

(7.2) Pσ exp (Ln(σ, ω)/Jn(ω))2 ≤ 5.

Because Jn is a random variable, in general we cannot appeal directly to inequal-
ity (7.1) with Φ(x) = exp(x2/2J2

n), to get some sort of bound for the Ψ norm of the

35



36 EMPIRICAL PROCESSES

partial-sum process. We can, however, combine the two inequalities to get several
most useful bounds.

The simplest situation occurs when Jn(ω) is bounded by a constant Kn. As we
shall see soon, this often happens when the envelopes Fi are uniformly bounded.
Increasing Jn to Kn in (7.2), then taking expectations we get, via (7.1),

P exp( 1
2∆2

n/K
2
n) ≤ 5.

It follows that ∆n has subgaussian tails:

(7.3) P{∆n ≥ t} ≤ 5 exp(− 1
2 t

2/K2
n) for all t > 0.

This is not the best subgaussian upper bound; the constant Kn could be replaced
by a smaller constant.

If Jn(ω) is not uniformly bounded, but instead has a finite Ψ norm, we still get
an exponential bound on the tail probabilities for ∆n, by means of the inequality

2Ln/C ≤ J2
n/C

2 + L2
n/J

2
n for constant C.

With C =
∥∥Jn

∥∥
Ψ

this inequality implies

P exp(∆n/C) ≤ P exp(2Ln/C)
≤ Pω

[
exp(J2

n/C
2)Pσ exp(L2

n/J
2
n)

]
≤ 25.

Consequently,

(7.4) P{∆n ≥ t} ≤ 25 exp(−t/
∥∥Jn

∥∥
Ψ
) for all t > 0.

We have traded a strong moment condition on Jn for a rapid rate of decrease of
the ∆n tail probabilities.

With weaker moment bounds on Jn we get weaker bounds on ∆n. Remember
that for each p with 1 ≤ p < ∞ there is a constant Cp such that

‖Z‖p ≤ Cp‖Z‖Ψ

for every random variable Z. In particular,

Pσ|Ln|p ≤ (Cp Jn(ω))p,

which gives

(7.5) P|∆n|p ≤ (2Cp)p
PJp

n.

This inequality will be most useful for p equal to 1 or 2.
The preceding inequalities show that the behavior of the random variable Jn(ω)

largely determines the form of the maximal inequality for the partial-sum process.
In one very common special case, which is strongly recommended by the results
from Section 4, the behavior of Jn is controlled by the envelope Fn(ω). Let us
suppose that λn(·) is a deterministic function for which

(7.6) D(x|Fn(ω)|,Fnω) ≤ λn(x) for 0 < x ≤ 1 and all ω.

Because Fnω lies within a ball of radius |Fn(ω)|, we could always choose λn(x) equal
to (3/x)n. [We can pack D(x|Fn(ω)|,Fnω) many disjoint balls of radius 1/2x|Fn(ω)|
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into the ball of radius 3/2|Fn(ω)|. ] To be of any real use, however, the λn function
should not increase so rapidly with n. For example, if there is a fixed V such that
each Fnω has pseudodimension V we could choose λn(x) = Ax−W , with A and W
depending only on V , which would lead to quite useful bounds. In any case, we
may always assume that

√
log λn is integrable, which ensures that the function

defined by

Λn(t) =
∫ t

0

√
log λn(x) dx for 0 ≤ t ≤ 1

is well defined and finite. A simple change of variable in the integral that defines
Jn(ω) now gives

Jn(ω) ≤ 9|Fn(ω)|Λn

(
δn(ω)/|Fn(ω)|

)
(7.7)

≤ 9Λn(1)|Fn(ω)| because |f | ≤ |Fn(ω)| for every f in Fnω.

When expressed in terms of Λn the inequalities for ∆n take a particularly simple
form. Suppose, for example, the envelope functions Fi(ω) are uniformly bounded,
say Fi(ω) ≤ 1 for each i and each ω. Then Jn(ω) is bounded by 9

√
nΛn(1). If

Λn(1) stays bounded as n → ∞, the standardized processes

1√
n

∆n(ω) =
1√
n

sup
t

|Sn(ω, t) −Mn(t)|

will have uniformly subgaussian tails.
If instead of being uniformly bounded the random variables F 2

i have uniformly
bounded moment generating functions in a neighborhood of the origin, and if Λn(1)
stays bounded as n → ∞, we get another useful bound on the Ψ norms of the Jn.
For suppose that

P exp(εF 2
i ) ≤ K for all i.

Then there is a constant K ′, depending on K and ε, such that

P exp(sF 2
i ) ≤ 1 + K ′s for 0 ≤ s ≤ ε and all i.

With C = 9 supn Λn(1), independence of the Fi gives, for C ′ ≥ C2/nε,

P exp(J2
n/nC

′) ≤
∏
i≤n

P exp(C2F 2
i /nC

′)

≤ (1 + K ′C2/nC ′)n.

Certainly for C ′ ≥ K ′C2/ log 5 the last bound is less than 5. It follows that∥∥Jn

∥∥
Ψ
≤ K ′′√n for some constant K ′′,

which guarantees a uniform exponential bound for the tail probabilities of the
partial-sum processes with the usual standardization.

Finally, even with only moment bounds for the envelopes we still get usable
maximal inequalities. For 1 ≤ p < ∞, inequalities (7.5) and (7.7) give

P sup
t

|Sn(·, t) −Mn(t)|p ≤ (18Cp)p
P |Fn|pΛn

(
δn/|Fn|

)p(7.8)

≤
(
18CpΛn(1)

)p
P |Fn|p.
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In applications such moment bounds are often the easiest to apply, typically for p
equal to 1 or 2. They show that, in some sense, the whole process is only as badly
behaved as its envelope.

The special cases considered above show that maximal inequalities for ∆n can be
derived from uniform bounds on the random packing numbers D(x|Fn(ω)|,Fnω).
The concept of manageability formalizes this idea. To accommodate a wider range
of applications, let us expand the setting to cover triangular arrays of random
processes,

{fni(ω, t) : t ∈ T, 1 ≤ i ≤ kn} for n = 1, 2, . . . ,
independent within each row. Now Sn(ω, t) denotes the sum across the nth row.To
facilitate application of the stability arguments, let us also allow for nonnegative
rescaling vectors.

(7.9) Definition. Call a triangular array of processes {fni(ω, t)} manageable
(with respect to the envelopes Fn(ω)) if there exists a deterministic function λ, the
capacity bound , for which

(i)
∫ 1

0

√
log λ(x) dx < ∞,

(ii) D(x|α  Fn(ω)|,α  Fnω) ≤ λ(x) for 0 < x ≤ 1, all ω, all vectors α of
nonnegative weights, and all n.

Call a sequence of processes {fi} manageable if the array defined by fni = fi for
i ≤ n is manageable.

In the special case where λ(x) = A(1/x)W for constants A and W , the processes
will be called Euclidean. Most of the the applications in the final sections of these
notes will involve Euclidean processes.

The inequalities developed in this section all carry over to the more general
setting. In particular, for a manageable array there is a continuous, increasing
function Λ with Λ(0) = 0, for which the analogue of (7.8) holds: for 1 ≤ p < ∞
there exists a constant Kp such that

P sup
t

|Sn(·, t) −Mn(t)|p ≤ KpP |Fn|pΛ
(
δn/|Fn|

)p(7.10)

≤ KpΛ(1)p
P |Fn|p.

Remarks. When specialized to empirical processes, the exponential inequal-
ity (7.3) is inferior to the results of Alexander (1984) and Massart (1986). By
refinement of the approach in this section my inequality could be improved. How-
ever, a reader interested in better bounds would be well advised to first consult the
book of Ledoux and Talagrand (1990).



SECTION 8

Uniform Laws
of Large Numbers

For many estimation procedures, the first step in a proof of asymptotic normality
is an argument to establish consistency. For estimators defined by some sort of
maximization or minimization of a partial-sum process, consistency often follows
by a simple continuity argument from an appropriate uniform law of large numbers.
The maximal inequalities from Section 7 offer a painless means for establishing
such uniformity results. This section will present both a uniform weak law of large
numbers (convergence in probability) and a uniform strong law of large numbers
(convergence almost surely).

The proof of the weak law will depend upon the following consequence of the
first two lemmas from Section 3: for every finite subset F of R

n,

(8.1) Pσ max
F

|σ · f | ≤ C max
F

|f |2
√

2 + log(#F).

Here #F denotes the number of vectors in F, as usual, and C is a constant derived
from the inequality between L1 and LΨ norms.

(8.2) Theorem. Let f1(ω, t), f2(ω, t), . . . be independent processes with inte-
grable envelopes F1(ω), F2(ω), . . . . If for each ε > 0

(i) there is a finite K such that

1
n

∑

i≤n

PFi{Fi > K} < ε for all n,

(ii) log D1(ε|Fn|,Fnω) = op(n),
then

1
n

sup
t

|Sn(ω, t) − Mn(t)| → 0 in probability.

Proof. Let us establish convergence in L1. Given ε > 0, choose K as in
assumption (i) and then define f∗

i (ω, t) = fi(ω, t){Fi(ω) ≤ K}. The variables
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discarded by this truncation contribute less than 2ε:

1
n

P sup
t

∣∣∣
∑

i≤n

(fi − f∗
i ) − P(fi − f∗

i )
∣∣∣ ≤ 2

n

∑

i≤n

PFi{Fi > K}.

For the remaining contributions from the f∗
i (ω, t) processes, invoke the symmetriza-

tion inequality from Theorem 2.2, with Φ equal to the identity function.

1
n

P sup
t

∣∣∣
∑

i≤n

f∗
i − Pf∗

i

∣∣∣ ≤ 2
n

PPσ sup
Fnω

|σ · f∗|.

Given ω, find a set Dnω of at most Mn = D1(ε|Fn|,Fnω) many points in Fnω that
approximate each point of Fnω within an �1 distance of ε|Fn|1. By assumption (ii),
the random variables {log Mn} are of order op(n). The expectation with respect
to Pσ on the right-hand side of the last expression is less than

ε

n
|Fn|1 +

1
n

Pσ max
Dnω

|σ · f∗|.

The first of these terms has a small expectation, because assumption (i) implies
uniform boundedness of 1

nP|Fn|1. The second term is bounded by K. By virtue of
inequality (8.1) it is also less than

C

n
max
Dnω

|f∗|2
√

2 + 2 log Mn.

The square root factor contributes at most op(
√

n) to this bound. The other factor
is of order Op(

√
n), because, for each point in Fnω,

|f∗|22 =
∑

i≤n

f2
i {Fi ≤ K} ≤ K

∑

i≤n

Fi.

A uniformly bounded sequence that converges in probability to zero also converges
to zero in L1. �

When the processes {fi(ω, t)} are identically distributed, the convergence in
probability asserted by the theorem actually implies the stronger almost sure con-
vergence, because the random variables

1
n

sup
t

|Sn(ω, t) − Mn(t)|

form a reversed submartingale. (Modulo measurability scruples, the argument for
empirical processes given by Pollard (1984, page 22) carries over to the present
context.) Without the assumption of identical distributions, we must strengthen
the hypotheses of the theorem in order to deduce almost sure convergence. Man-
ageability plus a second moment condition analogous to the requirement for the
classical Kolmogorov strong law of large numbers will suffice. The stronger assump-
tion about the packing numbers will not restrict our use of the resulting uniform
strong law of large numbers for the applications in these notes; we will usually need
manageability for other arguments leading to asymptotic normality.
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(8.3) Theorem. Let {fi(ω, t) : t ∈ T} be a sequence of independent processes
that are manageable for their envelopes {Fi(ω)}. If

∞∑

i=1

PF 2
i

i2
< ∞,

then
1
n

sup
t

|Sn(ω, t) − Mn(t)| → 0 almost surely.

Proof. Define

f∗
i (ω, t) = fi(ω, t) − Pfi(·, t),

Zk,n(ω) = sup
t

∣∣∣
f∗

k (ω, t)
k

+ · · · + f∗
n(ω, t)

n

∣∣∣ for k ≤ n,

Bk(ω) = sup
i,n≥k

Zi,n(ω).

By the triangle inequality

sup
t

∣∣∣f∗
1 (ω, t) + · · · + f∗

n(ω, t)
∣∣∣ ≤ Z1,n(ω) + · · · + Zn,n(ω)

≤ B1(ω) + · · · + Bn(ω).

It therefore suffices to prove that Bn → 0 almost surely.
From inequality (7.10) applied to the processes f∗

i (ω, t)/i instead of to fi(ω, t),
manageability implies existence of a constant C such that

(8.4) PZ2
k,n ≤ C

n∑

i=k

PF 2
i

i2
for k ≤ n.

For fixed k, the random variables Zk,n for n = k, k + 1, . . . form a submartingale.
By Doob’s (1953, page 317) inequality for nonnegative submartingales, for each m
greater than k,

P max
k≤n≤m

Z2
k,n ≤ 4PZ2

k,m.

Letting m tend to ∞, we deduce for each k that

P sup
k≤n

Z2
k,n ≤ 4C

∞∑

i=k

PF 2
i

i2
.

The sum on the right-hand side converges to zero as k → ∞. From the bound

Bk ≤ 2 sup
k≤n

Zk,n

it follows that PB2
k → 0. Because {Bk} is a decreasing sequence of random variables,

it follows that Bk → 0 almost surely, as required. �

Remarks. Theorem 8.2 is based on Theorem 8.3 of Giné and Zinn (1984).
They established both necessity and sufficiency for empirical processes with in-
dependent, identically distributed summands. The direct use of inequality (8.1)
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simplifies the argument, by avoiding an appeal to a chaining inequality. Except for
the use of �2 packing numbers instead of �1 covering numbers, my proof is close to
the proof of Theorem II.24 of Pollard (1984).

Theorem 8.3 is actually a special case of the Ito-Nisio Theorem (Jain and Mar-
cus 1978, Section II.3). Zaman (1989) used a type 2 inequality analogous to (8.4) to
reduce his proof of a uniform strong law of large numbers to the Ito-Nisio theorem.
He imposed the same sort of moment condition as in Theorem 8.3.



SECTION 9

Convergence in
Distribution and
Almost Sure
Representation

Classical limit theorems for sums of independent random vectors will often sug-
gest a standardization for the partial-sum process, Sn, so that its finite dimensional
projections have a limiting distribution. It is then natural to ask whether the stan-
dardized stochastic process also has a limiting distribution, in some appropriate
sense. The traditional sense has been that of a functional limit theorem. One
identifies some metric space of real-valued functions on T that contains all the
standardized sample paths, and then one invokes a general theory for convergence
in distribution of random elements of a metric space (or weak convergence of prob-
ability measures on the space).

For example, if T = [0, 1] and the sample paths of Sn have only simple disconti-
nuities, the theory of weak convergence for D[0, 1] might apply.

Unfortunately, even for such simple processes as the empirical distribution func-
tion for samples from the Uniform[0, 1] distribution, awkward measurability com-
plications arise. With D[0, 1] either one skirts the issue by adopting a Skorohod
metric, or one retains the uniform metric at the cost of some measure theoretic
modification of the definition of convergence in distribution.

For index sets more complicated than [0, 1] there is usually no adequate general-
ization of the Skorohod metric. The measurability complications cannot be defined
away. One must face the possibility that the expectations appearing in plausible
definitions for convergence in distribution need not be well defined. Of the nu-
merous general theories proposed to handle this problem, the one introduced by
Hoffmann-Jørgensen (and developed further by Dudley 1985) is undoubtedly the
best. It substitutes outer expectations for expectations. It succeeds where other
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theories fail because it supports an almost sure representation theorem; with suit-
able reinterpretation, most of the useful results from the classical theory carry over
to the new theory.

The theory concerns sequences of maps {Xn} from a probability space (Ω,A,P)
into a metric space X. If each Xn is measurable with respect to the Borel σ-
field B(X), convergence in distribution to a probability measure P on B(X) can
conveniently be defined to mean

Pf(Xn) → Pf for every f in U(X),

where U(X) stands for the class of all bounded, uniformly continuous, real func-
tions on X. If Xn has no particular measurability properties, f(Xn) need not be
measurable; the expectation Pf(Xn) need not be well defined. But the outer (or
inner) expectation is defined: for each bounded, real-valued H on Ω,

P
∗H = inf{Ph : H ≤ h and h integrable}.

The inner expectation P∗H is defined analogously. The new definition of con-
vergence in distribution replaces P by P

∗, while retaining some measure theoretic
regularity for the limit P in order to exclude some unpleasant cases.

(9.1) Definition. If {Xn} is a sequence of (not necessarily Borel measurable)
maps from Ω into a metric space X, and if P is a probability measure on the Borel
σ-field B(X), then Xn � P (read as “Xn converges in distribution to P”) is defined
to mean P

∗f(Xn) → Pf for every f in U(X).

The equality P∗f(Xn) = −P
∗[−f(Xn)] shows that the definition could be stated,

equivalently, in terms of convergence of inner expectations. It could also be stated
in terms of convergence to a Borel measurable random element X: one replaces Pf
by Pf(X).

In requiring convergence only for f in U(X) my definition departs slightly from
the Hoffmann-Jørgensen and Dudley definitions, where f runs over all bounded,
continuous functions. The departure makes it slightly easier to prove some basic
facts without changing the meaning of the concept in important cases.

(9.2) Example. Here is a result that shows the convenience of requiring uni-
form continuity for f in Definition 9.1. If {Yn} is a sequence of random elements
of a metric space (Y, e) which converges in probability to a constant y, that is,
P
∗{e(Yn, y) > δ} → 0 for each δ > 0, and if Xn � X, then (Xn, Yn)� (X, y). For

if f is a uniformly continuous function on X ⊗ Y, bounded in absolute value by a
constant M , then, for an appropriate choice of δ,

f(Xn, Yn) ≤ f(Xn, y) + ε+ 2M{e(Yn, y) > δ}.
Taking outer expectations of both sides then letting n → ∞, we get

lim sup P
∗f(Xn, Yn) ≤ lim sup P

∗f(Xn, y) + ε.

Uniform continuity of f(·, y) ensures that the right-hand side equals Pf(X, y) + ε.
Replacement of f by −f would give the companion lower bound needed to establish
the required convergence. �
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It has long been recognized (see Pyke 1969, for example) that many arguments
involving convergence in distribution are greatly simplified by use of a technical
device known as almost sure representation. Such a representation usually asserts
something like:

If Xn � P then there exist X̃n and X̃ such that

X̃n and Xn have the same distribution, X̃ has

distribution P , and X̃n → X̃ almost surely.

The random elements X̃n and X̃ are defined on a new probability space (Ω̃, Ã, P̃).
For Borel measurable Xn, “the same distribution” is interpreted to mean that

Pg(Xn) = P̃g(X̃n) for all bounded, Borel measurable g.

Without the measurability, it would seem natural to require equality of outer ex-
pectations. Dudley’s (1985) form of the representation theorem achieves this in a
particularly strong form.

With the Dudley representation, Ã\A-measurable maps φn from Ω̃ into Ω are
constructed to be perfect in the sense that not only is P the image of P̃ under each
φn, but also

P
∗H = P̃

∗H ◦ φn for every bounded H on Ω.
The representing random elements X̃n are defined by

X̃n(ω̃) = Xn(φn(ω̃)) for each ω̃ in Ω̃.

Thus P
∗g(Xn) = P̃

∗g(X̃n) for every bounded g on X, regardless of its measurability
properties. In general the outer integrals satisfy only an inequality,

P
∗H ≥ P̃

∗(H ◦ φn) for every bounded H on Ω,

because h ◦ φn ≥ H ◦ φn whenever h ≥ H. To establish that φn is perfect it is
therefore enough to prove that

(9.3) P
∗H ≤ P̃g for all Ã-measurable g ≥ H ◦ φn.

We then get the companion inequality by taking the infimum over all such g.
The Dudley representation also strengthens the sense in which the representing

sequence converges. For possibly nonmeasurable random elements mere pointwise
convergence would not suffice for applications.

(9.4) Representation Theorem. If Xn � P in the sense of Definition 9.1,
and if the limit distribution P concentrates on a separable Borel subset X0 of X,
then there exists a probability space (Ω̃, Ã, P̃) supporting Ã\A-measurable maps φn

into Ω and an Ã\B(X)-measurable map X̃ into X0, such that:
(i) each φn is a perfect map, in the sense that P

∗H = P̃
∗(H ◦ φn) for every

bounded H on Ω;
(ii) P̃X̃−1 = P , as measures on B(X);

(iii) there is a sequence of Ã\B[0,∞]-measurable, extended-real-valued random
variables {δn} on Ω̃ for which d

(
X̃n(ω̃), X̃(ω̃)

)
≤ δn(ω̃) → 0 for almost

every ω̃, where X̃n(ω̃) = Xn(φn(ω̃)).
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It is easy to show that if (i), (ii), and (iii) hold then Xn � P ; the assertions of
the theorem are more natural than they might appear at first glance.

A sketch of Dudley’s construction will close out this section. But first an
example—a revamped Continuous Mapping Theorem—to show how perfectness
compensates for the lack of measurability. In my opinion, an unencumbered form
of Continuous Mapping Theorem is essential for any general theory of convergence
in distribution.

(9.5) Example. Suppose Xn � P with P concentrated on a separable Borel
subset X0 of X. Suppose τ is a map into another metric space Y such that

(i) the restriction of τ to X0 is Borel measurable,
(ii) τ is continuous at P almost all points of X0.

Then we can deduce from the Representation Theorem that τ(Xn) converges in
distribution to the image measure Pτ−1.

Fix an f in U(Y). Define h = f ◦τ . We need to verify that P
∗h(Xn) → Ph. With

no loss of generality we may suppose 0 ≤ h ≤ 1. Fix an ε > 0. For each positive
integer k define Gk to be the open set of all points x in X for which h oscillates by
> ε within the open ball of radius 1/k and center x. [That is, there are points y
and z with |h(y) − h(z)| > ε and d(x, y) < 1/k and d(x, z) < 1/k. The same y and
z will provide oscillation > ε for every center close enough to x.]

As k → ∞ the set Gk shrinks down to a set that excludes all continuity points of
τ , and thereby has zero P measure. We can therefore find a k such that PGk < ε.

The definition of Gk ensures that if X̃(ω̃) /∈ Gk and if δn(ω̃) < 1/k then

|h(X̃n(ω̃)) − h(X̃(ω̃))| ≤ ε.

Consequently,

h(X̃n) ≤ (ε+ h(X̃)){X̃ /∈ Gk, δn < 1/k} + {X̃ ∈ Gk} + {δn ≥ 1/k}.
The expression on the right-hand side is measurable; it is one of the measurable
functions that enters into the definition of the outer expectation of h(X̃n). It follows
that

P̃
∗h(X̃n) ≤ ε+ P̃h(X̃) + P̃{X̃ ∈ Gk} + P̃{δn ≥ 1/k}.

Measurability of δn and dominated convergence ensure that the last probability
tends to zero. And the perfectness property lets us equate the left-hand side with
P
∗h(Xn). Passing to the limit we deduce

lim sup P
∗h(Xn) ≤ Ph.

An analogous argument with h replaced by 1−h gives the companion lower bound
needed to establish the desired convergence. �

Outline of a proof of the Representation Theorem

Step 1. The indicator function of a closed ball with zero P measure on its
boundary can be sandwiched between two functions from U(X) whose expectations
are arbitrarily close. If B is an intersection of finitely many such balls, the ap-
proximating functions can be combined to construct f1 and f2 in U(X) such that
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P (f1 − f2) < ε and
f1(Xn) ≥ {Xn ∈ B} ≥ f2(Xn).

Taking outer and inner expectations, then passing to the limit, we deduce that

P
∗{Xn ∈ B} → PB,

P∗{Xn ∈ B} → PB,

for every such B. (We will need this result only for sets B constructed from balls
with centers in X0.)

Step 2. If π is a partition of X generated by a finite collection of closed balls,
each with zero P measure on its boundary, then

P∗{Xn ∈ B} → PB for each B in π.

This follows from Step 1, because the sets in π are proper differences of intersections
of finitely many closed balls.

Step 3. For each positive integer k, cover X0 by closed balls of diameter less
than 1/k, with zero P measure on their boundaries. Use separability of X0 to extract
a countable subcover, then use countable additivity of P to find a subcollection
that covers all of X0 except for a piece with P measure less than 2−k. Generate a
finite partition π(k) of X from this collection. All except one of the sets in π(k) has
diameter less than 1/k, and that one has P measure less than 2−k. The convergence
property from Step 2 gives an n(k) such that

P∗{Xn ∈ B} ≥ (1 − 2−k)PB for all B in π(k), all n ≥ n(k).

Step 4. Assuming that 1 = n(0) < n(1) < · · · , define γ(n) to equal the k for
which n(k) ≤ n < n(k+1). For γ(n) = k and each Bi in π(k), find measurable Ani

with Ani ⊆ X−1
n Bi and

PAni = P∗{Xn ∈ Bi}.
Define a probability measure µn on A by

2−γ(n)µn(·) +
(
1 − 2−γ(n)

) ∑
i

PBi P(· | Ani) = P(·).

The inequality from Step 3, and the inequality

PA ≥
∑

i

P(A | Ani)PAni for measurable A,

ensure that µn is nonnegative. For each t in [0, 1] and each x in X define a probability
measure Kn(t, x, ·) on A by

(9.6) Kn(t, x, ·) =
{

P(· |Ani) if t ≤ 1 − 2−γ(n) and x ∈ Bi ∈ π(γ(n)),
µn(·) if t > 1 − 2−γ(n).

The kernel Kn will provide a randomization mechanism for generating P, starting
from a t distributed uniformly on [0, 1] independently of an x distributed according
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to P . Specifically, if λ denotes Lebesgue measure on [0, 1], then

PA =
∫∫

Kn(t, x,A)λ(dt)P (dx)

for each A in A.

Step 5. Define Ω̃ as the product space [0, 1] ⊗ X ⊗ ΩN, where N = {1, 2, . . . }.
Equip it with its product σ-field. For t in [0, 1] and x in X define the probability
measure K(t, x, ·) on the product σ-field of ΩN as a product

K(t, x, ·) =
∏
n

Kn(t, x, ·).

With λ denoting Lebesgue measure on [0, 1], define P̃ on the product σ-field of Ω̃
by

P̃(·) = λ⊗ P ⊗K.

That is, for I ∈ B[0, 1] and B ∈ B(X) and C in the product σ-field of ΩN,

P̃(I ⊗B ⊗ C) =
∫∫

{t ∈ I, x ∈ B}K(t, x, C)λ(dt)P (dx).

Some measurability details must be checked to ensure that P̃ is well defined.

Step 6. Define maps φn (from Ω̃ into Ω), and X̃ (from Ω̃ into X), and X̃n

(from Ω̃ into X) by

φn(t, x, ω1, ω2, . . . ) = ωn,

X̃(t, x, ω1, ω2, . . . ) = x,

X̃n(t, x, ω1, ω2, . . . ) = Xn(ωn).

Use the representations from Steps 4 and 5 to verify that P̃φ−1
n = P and P̃X̃−1 = P .

Step 7. Temporarily fix a value of k. Let B0 be the member of π(k) that might
have diameter greater than 1/k. Define the subset Ω̃k of Ω̃ to consist of all those ω̃
for which t ≤ 1 − 2−k and x ∈ Bi for some i ≥ 1 and ωn ∈ Ani for that same i, for
all n in the range n(k) ≤ n < n(k + 1). By the construction of π(k),

d(X̃n(ω̃), X̃(ω̃)) ≤ 1/k for n(k) ≤ n < n(k + 1) and ω̃ in Ω̃k.

If n(k) ≤ n < n(k + 1), define δn(ω̃) to equal 1/k on Ω̃k and ∞ elsewhere. By the
Borel-Cantelli lemma, the δn sequence converges to zero almost surely, because the
construction of P̃ ensures P̃Ω̃c

k ≤ 2(1/2)k.

Step 8. Prove that each φn is perfect. Let H be a bounded function on Ω,
and let g be a bounded, measurable function on Ω̃ for which

g(ω̃) ≥ H(ωn) for all ω̃ = (t, x, ω1, ω2, . . . ).

Establish (9.3) by finding a measurable function g∗ on Ω for which P̃g ≥ Pg∗ and

g∗(ωn) ≥ H(ωn) for all ωn.
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For fixed t, x, and ωn, let gn(t, x, ωn) be the measurable function obtained by
integrating g with respect to the product of all those Ki(t, x, ·) with i �= n. Then
P̃gn = P̃g and

gn(t, x, ωn) ≥ H(ωn) for all t, x, ωn.
Now comes the crucial argument. The kernel Kn depends on (t, x) in a very simple
way. There is a finite partition of [0, 1]⊗X into measurable sets Dα, and there are
probability measures mα on Ω, such that

Kn(t, x, ·) =
∑
α

{(t, x) ∈ Dα}mα(·).

Define g∗ by
g∗(ωn) = min

α
P ⊗ λ (gn(t, x, ωn) | (t, x) ∈ Dα) ,

with the minimum running over those α for which P ⊗ λ(Dα) > 0. Finiteness of
the {Dα} partition ensures that g∗ is measurable. It is easy to check that it also
satisfies the desired inequalities.

Remarks. Typically measurability is not a major concern in specific problems.
Nevertheless, it is highly desirable that a general theory for convergence in distri-
bution, free from unnatural measurability constraints, should exist. Unfortunately,
Hoffmann-Jørgensen’s (1984) theory was presented in a manuscript for a book that
has not yet been published. However, detailed explanations of some parts of the
theory have appeared in the papers of Andersen (1985a, 1985b) and Andersen and
Dobrić (1987, 1988).

Many measure theoretic details have been omitted from the outline of the proof
of the Representation Theorem, but otherwise it is quite similar to the version in
Chapter IV of Pollard (1984), which was based on Dudley’s (1968) original paper.
Dudley (1985) discussed the notion of a perfect map in some detail, and also showed
how slippery a concept almost sure convergence can be for nonmeasurable random
processes.



SECTION 10

Functional
Central Limit Theorems

When does the standardized partial-sum processes converge in distribution, in
the sense of the previous section, to a Gaussian process with nice sample paths?
This section will establish a workable sufficient condition.

Part of the condition will imply finiteness (almost everywhere) of the envelope
functions, which will mean that Sn(ω, ·) is a bounded function on T , for almost
all ω. Ignoring negligible sets of ω, we may therefore treat Sn as a random element
of the space B(T ) of all bounded, real-valued functions on T . The natural metric
for this space is given by the uniform distance,

d(x, y) = sup
t

|x(t) − y(t)|.

One should take care not to confuse d with any metric, or pseudometric, ρ defined
on T . Usually such a ρ will have something to do with the covariance structure
of the partial-sum processes. The interesting limit distributions will be Gaussian
processes that concentrate on the set

Uρ(T ) = {x ∈ B(T ) : x is uniformly ρ continuous}.

Under the uniform metric d, the space Uρ(T ) is separable if and only if T is totally
bounded under ρ. [Notice that total boundedness excludes examples such as the
real line under its usual metric.] In the separable case, a Borel probability measure
P on Uρ(T ) is uniquely determined by its finite dimensional projections,

P (B | t1, . . . , tk) = P{x ∈ Uρ(T ) : (x(t1), . . . , x(tk)) ∈ B},

with {t1, . . . , tk} ranging over all finite subsets of T and B ranging over all Borel
sets in R

k, for k = 1, 2, . . . .
Let us first consider a general sequence of stochastic processes indexed by T ,

{Xn(ω, t) : t ∈ T} for n = 1, 2, . . . ,

50
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and then specialize to the case where Xn is a properly standardized partial-sum
process. Let us assume that the finite dimensional projections of Xn converge
in distribution. That is, for each finite subset {t1, . . . , tk} of T there is a Borel
probability measure P (· | t1, . . . , tk) on R

k such that

(10.1) (Xn(·, t1), . . . , Xn(·, tk))� P (· | t1, . . . , tk).

Usually classical central limit theorems will suggest the standardizations needed to
ensure such finite dimensional convergence.

(10.2) Theorem. Let {Xn(·, t) : t ∈ T} be stochastic processes indexed by a
totally bounded pseudometric space (T, ρ). Suppose:

(i) the finite dimensional distributions converge, as in (10.1);
(ii) for each ε > 0 and η > 0 there is a δ > 0 such that

lim sup P
∗
{

sup
ρ(s,t)<δ

|Xn(ω, s) −Xn(ω, t)| > η

}
< ε.

Then there exists a Borel measure P concentrated on Uρ(T ), with finite dimensional
projections given by the distributions P (· | t1, . . . , tk) from (10.1), such that Xn

converges in distribution to P .
Conversely, if Sn converges in distribution to a Borel measure P on Uρ(T ) then

conditions (i) and (ii) are satisfied.

Sketch of a Proof. The converse part of the theorem is a simple exercise
involving almost sure representations.

For the direct part, first establish existence of the measure P concentrating
on Uρ(T ). Let T (∞) = {t1, t2, . . . } be a countable dense subset of T . Define
T (k) = {t1, . . . , tk}. The Kolmogorov extension theorem lets us build a measure P
on the product σ-field of R

T (∞) with the finite dimensional distributions from the
right-hand side of (10.1). By passing to the limit in (ii) we get

P

{
x ∈ R

T (∞) : max
ρ(s,t)<δ
s,t∈T (k)

|x(s) − x(t)| ≥ η

}
≤ ε for every k.

Letting k → ∞, then casting out various sequences of negligible sets, we find that P
concentrates on the set Uρ(T (∞)) of all uniformly continuous functions on T (∞).
Each function in Uρ(T (∞)) has a unique extension to a function in Uρ(T ); the
extension carries P up to the sought-after Borel measure on Uρ(T ).

To complete the proof let us construct a new probability space (Ω̃, Ã, P̃) that
supports perfect maps φn into Ω, such that Xn ◦ φn converges to an X̃ with dis-
tribution P , in the strengthened almost sure sense of the Representation Theorem
from the previous section. This is not the circular argument that it might appear;
we do not need to assume the convergence Xn � P in order to adapt some of the
ideas from the proof of that theorem. Indeed, we can break into the proof between
its second and third steps by establishing directly that lim inf P∗{Xn ∈ B} ≥ PB
for every B that is a finite intersection of closed balls in B(T ) with centers in Uρ(T )
and zero P measure on their boundaries.
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Such a set B has a simple form; it is defined by a pair of functions g, h in Uρ(T ):

B = {x ∈ B(T ) : g(t) ≤ x(t) ≤ h(t) for all T}.
It has zero P measure on its boundary. For η > 0 define

Bη = {x ∈ B(T ) : g(t) + η < x(t) < h(t) − η for all t}.
As η → 0, the sets Bη expand up to the interior of B. The fact that P puts
zero measure on the boundary of B lets us choose η so that PBη ≥ PB − ε. This
inequality gives us room to approximate the paths of the Xn processes from their
values on a finite subset of T .

Fix an ε > 0. The fact that P concentrates on Uρ(T ) lets us choose a δ > 0 so
that the set

F =
{
x ∈ B(T ) : sup

ρ(s,t)<δ

|x(s) − x(t)| ≤ η/2
}

has P measure at least 1− ε. Condition (ii) of the theorem lets us assume that δ is
small enough to ensure lim sup P

∗{Xn ∈ F c} < ε. We may also assume that both g
and h belong to F , because both are uniformly continuous.

Now let T (k) = {t1, . . . , tk} be a finite set that approximates within a distance δ
to every point of T . For a function x in F and a t with ρ(t, ti) < δ, if x(ti) < h(ti)−η
then x(t) ≤ x(ti) + η/2 < h(ti) − η/2. The upper bound is less than h(t), because
h ∈ F . A similar argument with g would give a lower bound. It follows that the
set

{Xn ∈ F : g(ti) + η < Xn(·, ti) < h(ti) − η for ti ∈ T (k)}
is contained within {Xn ∈ B}, and hence

P∗{Xn ∈ B} ≥ P{g + η < Xn < h− η on T (k)} − P
∗{Xn ∈ F c}.

The first term on the right-hand side may be reexpressed as

P{
(
Xn(·, t1), . . . , Xn(·, tk)

)
∈ G},

where G is the open subset of R
k defined by the inequalities

g(ti) + η < xi < h(ti) − η for i = 1, . . . , k.

From assumption (i), the lim inf of the last probability is greater than

P{x ∈ Uρ(T ) : (x(t1), . . . , x(tk)) ∈ G} ≥ PBη.

It follows that

lim inf P∗{Xn ∈ B} ≥ PB − 2ε for each ε > 0.

By copying Steps 3 through 8 in the proof of the Representation Theorem we
could now complete the construction of versions of the Xn that converge in the
strong sense to an X̃ with distribution P . The assertion of the theorem would then
follow easily. �

Condition (ii) of Theorem 10.2 is sometimes called stochastic equicontinuity or,
less precisely, uniform tightness. It is equivalent to the requirement: for every
sequence {rn} of real numbers converging to zero,

(10.3) sup{|Xn(s) −Xn(t)| : ρ(s, t) < rn} → 0 in probability.
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It also implies (and actually is implied by) that for every sequence of random
elements {σn}, {τn} of T with ρ(σn, τn) → 0 in probability,

(10.4) Xn(σn) −Xn(τn) → 0 in probability.

One has only to choose rn converging to zero so slowly that P
∗{ρ(σn, τn) ≥ rn} → 0

to establish the implication. Notice that (10.4) is much stronger than the cor-
responding assertion for deterministic sequences {σn}, {τn} with ρ(sn, tn) → 0.
Verification of the weaker assertion would typically involve little more than an ap-
plication of Tchebychev’s inequality, whereas (10.4) corresponds to a much more
powerful maximal inequality.

Let us now specialize Theorem 10.2 to random processes constructed from a
triangular array {fni(ω, t) : t ∈ T, 1 ≤ i ≤ kn, n = 1, 2, . . . }, with the {fni}
independent within each row. Define

Xn(ω, t) =
∑
i≤kn

(
fni(ω, t) − Pfni(·, t)

)
,

ρn(s, t) =
( ∑

i≤kn

P|fni(·, s) − fni(·, t)|2
)1/2

.

The double subscripting allows us to absorb into the notation the various standard-
izing constants needed to ensure convergence of finite dimensional distributions. If
we also arrange to have

(10.5) ρ(s, t) = lim
n→∞

ρn(s, t)

well defined for each pair s, t in T , then such a ρ will be an appropriate choice for the
pseudometric on T . In the frequently occurring case where fni(ω, t) = fi(ω, t)/

√
n,

with the {fi} independent and identically distributed, we have ρ(s, t) = ρn(s, t),
and condition (v) of the next theorem is trivially satisfied.

(10.6) Functional Central Limit Theorem. Suppose the processes from
the triangular array {fni(ω, t)} are independent within rows and satisfy:

(i) the {fni} are manageable, in the sense of Definition 7.9;
(ii) H(s, t) = limn→∞ PXn(s)Xn(t) exists for every s, t in T ;
(iii) lim sup

∑
i PF 2

ni < ∞;
(iv)

∑
i PF 2

ni{Fni > ε} → 0 for each ε > 0;
(v) the limit ρ(·, ·) is well defined by (10.5) and, for all deterministic sequences

{sn} and {tn}, if ρ(sn, tn) → 0 then ρn(sn, tn) → 0.
Then

(a) T is totally bounded under the ρ pseudometric;
(b) the finite dimensional distributions of Xn have Gaussian limits, with zero

means and covariances given by H, which uniquely determine a Gaussian
distribution P concentrated on Uρ(T );

(c) Xn converges in distribution to P .

Proof. Conditions (ii) and (iv) imply (Lindeberg central limit theorem) that
the finite dimensional distributions have the stated Gaussian limits.
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The stochastic equicontinuity requirement of Theorem 10.2 will be established
largely by means of maximal inequalities implied by manageability. Recall from
Section 7 that manageability of the {fni} means that there exists a deterministic
function λ with

√
log λ integrable and

(10.7) D2(x|α  Fn|2,α  Fnω) ≤ λ(x) for 0 < x ≤ 1, all ω, all α, all n.

For manageable arrays of processes we have the moment bounds, for 1 ≤ p < ∞,

(10.8) P sup
t

|
∑

i

fni(ω, t) − Pfni(·, t)|p ≤ P|Fn|p2Λp(δn/|Fn|2),

where δ2
n = supt

∑
i fni(ω, t)2 and Λp is a continuous, increasing function that

depends only on λ and p, with Λp(0) = 0 and Λp(1) < ∞.

The presence of the rescaling vector α in (10.7) will allow us to take advantage
of the Lindeberg condition (iv) without destroying the bound. Because (iv) holds
for each fixed ε > 0, it also holds when ε is replaced by a sequence {εn} converging
to zero slowly enough: ∑

i

PF 2
ni{Fni > εn} → 0.

We can replace fni by fni{Fni ≤ εn} and Fni by Fni{Fni ≤ εn} without disturbing
inequality (10.7); the indicator function {Fni ≤ εn} is absorbed into the weight αi.
The same truncation has no bad effect on the other four assumptions of the theorem.
We therefore lose no generality by strengthening (iv) to:

(iv)′ Fni(ω) ≤ εn for all n, all i, all ω.

Henceforth assume this inequality holds.

The idea will be to apply a maximal inequality analogous to (10.8) to the pro-
cesses

hni(ω, s, t) = fni(ω, s) − fni(ω, t),

at least for those pairs s, t with ρ(s, t) < rn, with the aim of establishing stochastic
equicontinuity in the form (10.3). The maximal inequality will involve the random
variable

θn(ω) = sup{|hn(ω, s, t)|2 : ρ(s, t) < rn}.
We will use manageability to translate the convergence rn → 0 into the conclusion
that θn → 0 in probability.

From the stability results for packing numbers in Section 5, the doubly indexed
processes {hni(ω, s, t)} are also manageable, for the envelopes Hni = 2Fni, with
capacity bound λ(x/2)2. And the processes {hni(ω, s, t)2} are manageable for the
envelopes {H2

ni}, by virtue of inequality (5.2) for packing numbers of pointwise
products. The analogue of (10.8) therefore holds for the {h2

ni} processes, with
envelopes {H2

ni} and the Λp function increased by a constant multiple. In particular,
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there is a constant C such that

P sup
s,t

∣∣∣∣∑
i

hni(ω, s, t)2 − Phni(·, s, t)2
∣∣∣∣
2

≤ C P

∑
i

F 4
ni

≤ C
∑

i

ε2nPF 2
ni

→ 0.

Consequently,

(10.9) sup
s,t

∣∣ |hn(ω, s, t)|22 − ρn(s, t)2
∣∣ → 0 in probability.

The second part of assumption (v) implies that

sup
s,t

{ρn(s, t) : ρ(s, t) < rn} → 0.

Together these two uniformity results give θn → 0 in probability.
The convergence (10.9) also establishes total boundedness of T under the ρ

pseudometric, with plenty to spare. First note that assumption (iii) and the fact
that

∑
i PF 4

ni → 0 together imply that |Fn|2 is stochastically bounded: for some
constant K there is probability close to one for all n that |Fn|2 ≤ K. Now suppose
{t1, . . . , tm} is a set of points with ρ(ti, tj) > εK for i �= j. By definition of ρ and
by virtue of (10.9), with probability tending to one,

|fn(ω, ti) − fn(ω, tj)|2 > εK for i �= j.

Eventually there will be an ω (in fact, a whole set of them, with probability close
to one) for which m ≤ D2(ε|Fn|2,Fnω). It follows from (10.7) that m ≤ λ(ε). That
is, λ is also a bound on the packing numbers of T under the ρ pseudometric.

To complete the proof of stochastic equicontinuity, invoke the analogue of (10.8)
with p = 1 for the processes of differences hni(ω, s, t) with ρ(s, t) < rn. By man-
ageability, there is a continuous, increasing function Γ(·) with Γ(0) = 0 such that

P sup{|Xn(s) −Xn(t)| : ρ(s, t) < rn} ≤ P|Fn|2Γ(θn/|2Fn|2).
For a fixed ε > 0, split the right-hand side according to whether |Fn|2 > ε or not,
to get the upper bound

εΓ(1) + P|Fn|2Γ
(

1 ∧ θn

2ε

)
.

The Cauchy-Schwarz inequality bounds the second contribution by[
P|Fn|22 PΓ2

(
1 ∧ θn

2ε

)]1/2

.

Assumption (iii) keeps P|Fn|22 bounded; the convergence in probability of θn to zero
sends the second factor to zero. Stochastic equicontinuity of {Xn} follows. �

Remarks. The original functional central limit theorem for empirical distri-
bution functions is due to Donsker (1952). Dudley (1978) extended the result to
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empirical processes indexed by general classes of sets. He used the term Donsker
class to describe those classes of sets (and later, also those classes of functions—see
Dudley (1987), for example) for which a functional central limit theorem holds.

The literature contains many examples of such limit theorems for empirical
processes and partial-sum processes, mostly for identically distributed summands.
Some of the best recent examples may be found in the papers of Dudley (1984),
Giné and Zinn (1984), Alexander and Pyke (1986), Ossiander (1987), Alexan-
der (1987a, 1987b), Talagrand (1987), and Andersen and Dobrić (1987, 1988). My
Theorem 10.6 extends a central limit theorem of Kim and Pollard (1990), refining
the earlier result from Pollard (1982). It could also be deduced from the theorems
of Alexander (1987b). The assumption of manageability could be relaxed.

Theorem 10.2 is based on Theorem 5.2 of Dudley (1985), which extends a line of
results going back at least to Dudley (1966). See also Dudley (1984). My method
of proof is different, although similar in spirit to the methods of Skorohod (1956).



SECTION 11

Least Absolute Deviations
Estimators for
Censored Regression

Suppose random variables y1, y2, . . . are generated by a regression yi = x′
iθ0+ui,

with θ0 an unknown d-dimensional vector of parameters, {xi} a sequence of observed
vectors, and {ui} unobserved errors. The method of least absolute deviations would
estimate θ0 by the θ that minimized the convex function∑

i≤n

|yi − x′
iθ|.

Convexity in θ makes the asymptotic analysis not too difficult (Pollard 1990). Much
more challenging is a related problem, analyzed by Powell (1984), in which the value
of yi is observed only if yi ≥ 0 and otherwise only the information that yi < 0 is
available. That is, only y+

i is observed. In the econometrics literature this is called
a Tobit model (at least when the {ui} are independent normals).

Powell proposed an interesting variation on the least absolute deviations estima-
tion; he studied the θ̂n that minimizes∑

i≤n

|y+
i − (x′

iθ)
+|

over a subset Θ of R
d. This function is not convex in θ; analysis of θ̂n is quite

difficult. However, by extending a technique due to Huber (1967), Powell was able
to give conditions under which

√
n(θ̂n − θ0) has an asymptotic normal distribution.

With the help of the maximal inequalities developed in these notes, we can relax
Powell’s assumptions and simplify the analysis a little. The strategy will be to
develop a uniformly good quadratic approximation to the criterion function, then
show that θ̂n comes close to maximizing the approximation. Powell’s consistency
argument was based on the same idea, but for asymptotic normality he sought
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an approximate zero for a vector of partial derivatives, a method that is slightly
complicated by the lack of smoothness of the criterion function.

Assumptions. Let us assume that the {xi} vectors are deterministic. Results
for random {xi} could also be obtained by a conditioning argument. The following
assumptions would be satisfied by a typical realization of independent, identically
distributed random vectors {Xi} with finite second moments and P{X ′

iθ0 = 0} = 0
and PXiX

′
i{X ′

iθ0 > 0} nonsingular. The assumptions on the errors {ui} are the
usual ones for least absolute deviations estimation. They could be relaxed slightly
at the cost of increased notational complexity.

(i) The {ui} are independent, identically distributed random variables each hav-
ing zero median and a continuous, strictly positive density p(·) near zero.

(ii) For each ε > 0 there is a finite K such that

1
n

∑
i≤n

|xi|2{|xi| > K} < ε for all n large enough.

(iii) For each ε > 0 there is a δ > 0 such that

1
n

∑
i≤n

|xi|2{|x′
iθ0| ≤ δ} < ε for all n large enough.

(iv) The sequence of smallest eigenvalues of the matrices

1
n

∑
i≤n

xix
′
i{x′

iθ0 > 0}

is bounded away from zero, for n large enough.
Powell required slightly more smooothness for p(·), and a more awkward moment
condition analogous to (iii), in order to fit his analysis into the framework of Huber’s
method.

(11.1) Theorem. Suppose θ0 is an interior point of a Θ, a bounded subset
of R

d. Then, under assumptions (i) to (iv),

2p(0)
√
nVn(θ̂n − θ0)� N(0, Id),

where Vn is the positive definite square root of the matrix from assumption (iv).

The proof of this result is quite a challenge. Let us begin with some heuristic
arguments, which will develop notation and focus attention on the main technical
difficulties.

Heuristics. The assumptions (ii), (iii), and (iv) control how much influence
any single xi can have over Vn. If x′

iθ0 < 0 then, for θ near θ0, the term |y+
i −(x′

iθ)
+|

reduces to y+
i ; it should not greatly affect the local minimization; it should not

have an effect on the limiting distribution of θ̂n; it should not contribute to Vn.
Assumption (iv) captures this idea. Assumption (ii) prevents a single very large
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|xi| from dominating Vn; the least absolute deviations criterion prevents it from
having a dominating influence on the minimization. The xi with x′

iθ0 ≈ 0 are the
most troublesome, because their contribution to the criterion function is nonlinear
in θ, even when θ is close to θ0; assumption (iii) will allow us to ignore the combined
effect of all such troublesome xi.

The assumption of boundedness for the parameter set Θ is aesthetically irksome,
even if it does have little practical significance. I would be pleased to learn how to
dispose of it.

As a notational convenience, reparametrize by putting t = Vn(θ − θ0). Then
define zni = V −1

n xi and x′
iθ0 = µi. Define

fni(ω, t) = |y+
i − (µi + z′nit)

+| − |y+
i − µ+

i |.
The centering ensures that

|fni(ω, t)| ≤ |z′nit|,
and hence fni(·, t) has a finite expectation for each t. The centering does not
affect the minimization; the standardized estimator t̂n = Vn(θ̂n −θ0) minimizes the
process

Gn(ω, t) =
1
n

∑
i≤n

fni(ω, t).

Assumptions (ii) and (iv) imply existence of positive constants C ′ and C ′′ for which,
when n is large enough,

C ′|xi| ≥ |zni| ≥ C ′′|xi| for i ≤ n,

which lets us translate the assumptions on the {xi} into:
(ii)∗ For each ε > 0 there is a finite K such that

1
n

∑
i≤n

|zni|2{|zni| > K} < ε for all n large enough.

(iii)∗ For each ε > 0 there is a δ > 0 such that

1
n

∑
i≤n

|zni|2{|µi| ≤ δ} < ε for all n large enough.

(iv)∗

1
n

∑
i≤n

zniz
′
ni{µi > 0} = Id for all n large enough.

For convenience, let us ignore from now on the finitely many n excluded by these
three conditions.

As a first approximation, Gn(·, t) should be close to its expected value, Γn(t). If
we define

Hi(s) = P
(
|y+

i − (µi + s)+| − |y+
i − µ+

i |
)

for s ∈ R,

then

Γn(t) = PGn(·, t) =
1
n

∑
i≤n

Hi(z′nit).
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Each Hi is expressible in terms of the function

M(s) = P (|u1 − s| − |u1|) .

Indeed, by separate consideration of the contributions from the sets {ui < −µi}
and {ui ≥ −µi} one can show

(11.2) Hi(s) =




M(s) if µi ≥ 0 and s > −µi,

M(−µi) if µi ≥ 0 and s ≤ −µi,

M(s) −M(−µi) if µi < 0 and s > −µi,

0 if µi < 0 and s ≤ −µi.

From assumption (i), the expected value M(s) is increasing in |s|. The function M
has a unique minimum at the origin, and

M(s) = p(0)s2 + o(s2) near the origin.

Moreover, there is a constant C such that

(11.3) Hi(s) ≤ M(s) ≤ C s2 for all s.

At least when t is small, we should be able to ignore those Hi with µi < 0 or µi ≈ 0,
to get, via (iv)∗,

Γn(t) ≈ 1
n

∑
i≤n

p(0)|z′nit|2{µi > 0} = p(0)|t|2.

If Gn(·, t) lies uniformly close to its expectation, the t̂n that minimizes Gn should
be drawn close to zero, where the approximation to Γn is minimized.

With the help of a maximal inequality for Gn −Γn, we will even be able to force
t̂n into a Op(1/

√
n) neighborhood of the origin. To learn more about

√
n t̂n we will

then need a better approximation to Gn, obtained by a sort of Taylor expansion
for fni.

The random function fni(ω, ·) has a derivative at t = 0 except perhaps when
µi = 0 or ui(ω) = 0. If we ignore these cases, straightforward differentation suggests
we treat

∆ni(ω) =
(
{ui(ω) < 0} − {ui(ω) ≥ 0}

)
{µi > 0}zni

as the derivative of fni at t = 0. The difference

Rni(ω, t) = fni(ω, t) − ∆ni(ω)′t

should behave like the remainder in a Taylor expansion. By direct calculation for
the various pairings of inequalities, one can verify that

|Rni(ω, t)| ≤ 2|z′nit|
(
{|µi| ≤ |z′nit|} + {|ui(ω)| ≤ |z′nit|}

)
.

The two indicator functions vanish when |z′nit| is smaller than both |µi| and |ui(ω)|,
which should happen with large probability when |t| is small.

Write Wn for 1/
√
n times the sum of the ∆ni. By the Lindeberg central limit
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theorem it has an asymptotic N(0, Id) distribution:

P∆ni =
(
P{ui < 0} − P{ui ≥ 0}

)
{µi > 0}zni = 0;

1
n

∑
i≤n

P∆ni∆′
ni = {µi > 0}zniz

′
ni = Id;

1
n

∑
i≤n

P|∆ni|2{|∆ni| > ε
√
n} =

1
n

∑
i≤n

{µi > 0}|zni|2{|zni| > ε
√
n} → 0.

Ignoring the contributions from the {Rni}, we get an improved approximation
to Gn:

Gn(ω, t) =
1√
n
W ′

nt + Γn(t) +
1
n

∑
i≤n

(
Rni(ω, t) − PRni(·, t)

)

� 1√
n
W ′

nt + p(0)|t|2 for small |t|.

The random vector t̂n should be close to the vector −Wn/2
√
np(0) that minimizes

the approximating quadratic, which leads us to the limit distribution asserted by
Theorem 11.1.

Now let us make these arguments precise. The technical challenge in the proof
will come from the two approximations to Gn. To obtain the necessary uniform
bounds on the errors we will make use of maximal inequalities for processes with
finite pseudodimension.

Behavior of Γn. From (11.2), it follows that Γn(t) = PGn(·, t) is an increasing
function of |t|, taking its minimum value uniquely at t = 0. Given ε > 0, choose K
and δ according to (ii)* and (iii)*; then put r = δ/K. From (11.3), the terms where
|µi| ≤ δ or |zni| > K contribute at most 2Cε|t|2 to Γn(t). For the other terms we
have |z′nit| ≤ δ if |t| ≤ r. If µi ≤ −δ this makes Hi(z′nit) zero. Within an error of
2Cε|t|2, the expectation equals∑

i

{µi > δ, |zni| ≤ K}
(
p(0)|z′nit|2 + o(|z′nit|2)

)
,

the o(·) being uniform in n and i. Adding back contributions from the terms where
|µi| ≤ δ or |zni| > K, we then get via (iv)* that

(11.4) Γn(t) = p(0)|t|2 + o(|t|2) uniformly in n.

In particular, if r is small enough,

Γn(t) ≥ 1
2
p(0)|t|2 for all n, all |t| ≤ r.

This local lower bound implies a global lower bound,

(11.5) lim inf
n→∞

inf
|t|≥r

Γn(t) > 0 for each r > 0,

because Γn(t) is an increasing function of |t|. The last inequality together with a
uniform law of large numbers will imply consistency of t̂n.
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Manageability. We will need maximal inequalities for both {fni} and {Rni}.
Let us verify that both processes generate random subsets of R

n with a pseudo-
dimension determined by d. From the results in Section 4, this will imply that both
processes are manageable.

Consider first the set Fnω of all points in R
n with coordinates fni(ω, t), as t

ranges over the set
Tn = {t ∈ R

d : θ0 + V −1
n t ∈ Θ}.

We need to find a dimension V such that, for every β in R
V +1, no (V + 1)-

dimensional coordinate projection of Fnω can surround β. This property is not
affected if we translate Fnω by a fixed amount; it is good enough to establish the
property for the set of points with coordinates

|y+
i − (µi + z′nit)

+| = max
[
y+

i − (µi + z′nit)
+, (µi + z′nit)

+ − y+
i

]
.

From the stability results in Section 5 for pseudodimension, it is good enough to
treat the two terms in the maximum separately. Consider, for example, the set of
points with coordinate y+

i − (µi + z′nit)
+. Again we translate to eliminate the y+

i .
We now must determine, for I = {i1, . . . , ik}, with k suitably large, and β a point
in R

k, whether it is possible to find for each J ⊆ I a t in Tn for which

(µi + z′nit)
+

{
> βi for i ∈ J,

< βi for i ∈ I\J.
The inequalities when J is the empty set show that every βi would have to be
strictly positive, so the problem is unchanged if we replace (µi +z′nit)

+ by µi +z′nit,
which is linear in t. Even if t ranges over the whole of R

d, the points with these
linear coordinate functions can at best trace out an affine subspace of dimension
d. If k = d + 1, it is impossible to find for each J a t that satisfies the stated
inequalities. By Lemma 5.1, the set Fnω has pseudodimension less than 10d. (The
bound could be improved, but there is no point in doing so; it matters only that
the pseudodimension is the same for all n.)

Similar arguments serve to bound the pseudodimension for the set of points Rnω

with coordinates Rni(ω, t)/|t|, as t ranges over the nonzero points in Tn. Indeed,
inequalities

Rni(ω, t)/|t|
{

> βi for i ∈ J,

< βi for i ∈ I\J,
are equivalent to

|y+
i − (µi + z′nit)

+| − |y+
i − µ+

i | − ∆ni(ω)′t− βi|t|
{

> 0 for i ∈ J,

< 0 for i ∈ I\J.
Again several translations and appeals to the stability property for maxima reduces
the problem to the result for affine subspaces of dimension d. The sets Rnω have
pseudodimension less than 1000d (or something like that).

Maximal Inequalities. The sets Tn all lie within some bounded region of R
d;

there is a constant κ such that |t| ≤ κ for every t in every Tn. It follows that

|fni(ω, t)| ≤ κ|zni| for all t.
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The maximal inequality (7.10) for manageable processes provides a constant C for
which

P sup
t

|Gn(·, t) − Γn(t)|2 ≤ C

n2

∑
i

|zni|2.

Condition (ii)* bounds the sum on the right-hand side by a multiple of 1/n. We
deduce that

(11.6) sup
t

|Gn(·, t) − Γn(t)| = op(1).

[Actually we get Op(1/
√
n), but op(1) will suffice for our later purposes.] For the

remainder terms we have a slightly more complicated envelope for t in a small
neighborhood of the origin,

sup
|t|≤r

|Rni(ω, t)|
|t| ≤ 2|zni|

(
{|µi| ≤ r|zni|} + {|ui(ω)| ≤ r|zni|}

)
.

Maximal inequality (7.10) provides another constant C for which

1
n

P sup
0<|t|≤r

∣∣∣∣|t|−1
∑
i≤n

Rni
(ω, t) − PRni

(·, t)
∣∣∣∣
2

≤ C

n

∑
i≤n

|zni|2
(
{|µi| ≤ r|zni| + P{|ui| ≤ r|zni|}

)
.

By condition (ii)* the summands where |zni| > K contribute at most Cε to the
right-hand side. The remaining summands contribute at most

C

n

∑
i≤n

|zni|2{|µi| ≤ Kr} +
C

n
P{|u1| ≤ Kr}

∑
i≤n

|zni|2.

Conditions (iii)* and (i) ensure that this contribution converges to zero, uniformly
in n, as r → 0. It follows that∣∣∣∣ 1

n

∑
i≤n

Rni(ω, t) − PRn(·, t)
∣∣∣∣ = op(|t|/

√
n)

uniformly in n and uniformly over t in shrinking neighborhoods of the origin. That
is,

Gn(ω, t) = Γn(t) +
1√
n
W ′

nt + op(|t|/
√
n)

= p(0)|t|2 + o(|t|2) +
1√
n
W ′

nt + op(|t|/
√
n) uniformly,(11.7)

where the uniformity is over all n and all t in a neighborhood {|t| ≤ rn}, for every
sequence {rn} of positive real numbers converging to zero.

Proof of the Theorem. Drop the ω from the notation. It will be enough if
we show that t̂n = op(1/

√
n)−Wn/2

√
np(0). First establish consistency, by means

of the inequality
Gn(t̂n) = inf

t
Gn(t) ≤ Gn(0) = 0.
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The random point t̂n lies in the range over which the op(1) bound from (11.6) holds.
Approximating Gn by Γn we get

Γn(t̂n) ≤ op(1).

Using (11.5) deduce that t̂n = op(1). If rn tends to zero slowly enough,

P{|t̂n| > rn} → 0.

This brings t̂n into the range where we can appeal to (11.7) to deduce

Gn(t̂n) =
(
p(0) + op(1)

) ∣∣∣∣t̂n +
Wn + op(1)
2
√
n p(0)

∣∣∣∣
2

− |Wn|2
4np(0)

+ op(1/n).

When −Wn/2
√
np(0) lies in Tn, which happens with probability tending to one

because θ0 is an interior point of Θ and Wn = Op(1/
√
n), we can again invoke

approximation (11.7) to get

Gn

(
−Wn/2

√
np(0)

)
= − |Wn|2

4np(0)
+ op(1/n).

From the comparison
Gn(t̂n) ≤ Gn

(
−Wn/2

√
np(0)

)
,

deduce that ∣∣∣∣t̂n +
Wn + op(1)
2
√
np(0)

∣∣∣∣
2

= op(1/n),

from which the desired approximation to t̂n follows.

Remarks. For the theory of (uncensored) least absolute deviations estimators
see Bloomfield and Steiger (1983). A central limit theorem for such estimators was
derived using elementary convexity arguments (which will reappear in Section 14)
by Pollard (1990).

Chapter 10 of Amemiya (1985) describes many different approaches to estimation
for Tobit models.



SECTION 12

Random Convex Sets

Donoho (1982) and Donoho and Gasko (1987) studied an operation proposed by
Tukey for extending the idea of trimming to multidimensional data. Nolan (1989a)
gave a rigorous treatment of the asymptotic theory. Essentially the arguments
express the various statistics of interest as differentiable functionals of an empirical
measure. The treatment in this section will show how to do this without the formal
machinery of compact differentiability for functionals, by working directly with
almost sure representations. [Same amount of work, different packaging.]

To keep the discussion simple, let us consider the case of an independent sample
ξ1, ξ2, . . . of random vectors from the symmetric bivariate normal distribution P
on R

2, and consider only the analogue of 25% trimming.
The notation will be cleanest when expressed (using traditional empirical process

terminology) in terms of the empirical measure Pn, which puts mass 1/n at each of
the points ξ1(ω), . . . , ξn(ω).

Let H denote the class of all closed halfspaces in R
2. Define a random compact,

convex set Kn = Kn(ω) by intersecting all those halfspaces that contain at least
3/4 of the observations:

Kn(ω) =
⋂

{H ∈ H : PnH ≥ 3
4}.

It is reasonable to hope that Kn should settle down to the set

B(r0) =
⋂

{H ∈ H : PH ≥ 3
4},

which is a closed ball centered at the origin with radius r0 equal to the 75% point of
the one-dimensional standard normal distribution. That is, if Φ denotes the N(0, 1)
distribution function, then r0 = Φ−1(3/4) ≈ .675. Indeed, a simple continuity
argument based on a uniform strong law of large numbers,

(12.1) sup
H

|PnH − PH| → 0 almost surely,

would show that, for each ε > 0, there is probability one that

B(r0 − ε) ⊆ Kn(ω) ⊆ B(r0 + ε) eventually.

65
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In a natural sense, Kn is a strongly consistent estimator. Let us not dwell on the
details here, because the next argument, which gives the finer asymptotics for Kn,
is much more interesting. [The almost sure representation that will appear soon
would imply the “in probability” version of (12.1). This would give consistency in
probability, which is all that we really need before embarking upon the asymptotic
distribution theory for Kn.]

Once Kn contains the origin as an interior point it makes sense to describe its
boundary in polar coordinates. Let Rn(θ) = Rn(ω, θ) denote the distance from
the origin to the boundary in the direction θ. The consistency result then has the
reformulation:

sup
θ

|Rn(ω, θ) − r0| → 0 almost surely.

With the help of the functional central limit theorems from Section 10, we can
improve this to get convergence in distribution of a random process,

√
n(Rn(ω, θ) − r0) for −π ≤ θ ≤ π,

to a Gaussian process indexed by θ. [It would be more elegant to take the unit
circle as the index set, identifying the points θ = π and θ = −π.] Such a result
would imply central limit theorems for a variety of statistics that could be defined
in terms of Kn.

Heuristics. We need to establish a functional central limit theorem for the
standardized empirical process,

νn(ω,H) =
√
n(PnH − PH),

as a stochastic process indexed by H. We must show that {νn} converges in distri-
bution to a Gaussian process ν indexed by H.

Let H(r, θ) denote the closed halfspace containing the origin with boundary line
perpendicular to the θ direction at a distance r from the origin. That is, H(r, θ)
consists of all points whose projections onto a unit vector in the θ direction are ≤ r.
For a given point with polar coordinates (r, θ), the halfspace H(r, θ) maximizes PH
over all H that have (r, θ) as a boundary point. The boundary point of B(r0) in
the direction θ is determined by solving the equation PH(r, θ) = 3/4 for r, giving
r = r0. Similarly, the boundary point of Kn in the direction θ is almost determined
by solving the equation PnH(r, θ) = 3/4, as we will soon see. (Discreteness of Pn

might prevent us from getting exact equality; and the halfspace that determines the
boundary point will be rotated slightly from the H(r, θ) position.) That is, Rn(θ)
is approximately determined by solving the following equation for r:

3
4 ≈ PnH(r, θ) = PH(r, θ) +

1√
n
νnH(r, θ).

Asymptotically the right-hand side is distributed as

Φ(r) +
1√
n
νH(r, θ) ≈ Φ(r0) + (r − r0)Φ′(r0) +

1√
n
νH(r0, θ).

Thus
√
n(Rn(θ) − r0) should behave asymptotically like −νH(r0, θ)/Φ′(r0), which

is a Gaussian process indexed by θ.



12. RANDOM CONVEX SETS 67

The functional limit theorem for νn. Define a triangular array of processes,

fni(ω,H) =
1√
n
{ξi(ω) ∈ H} for H ∈ H and i ≤ n.

They have constant envelopes Fni = 1/
√
n. We will apply the Functional Central

Limit Theorem of Section 10 to the processes

νnH =
∑
i≤n

(
fni(ω,H) − Pfni(·, H)

)
.

It is easy to show, by an appeal to Lemma 4.4, that the processes define random
subsets of R

n with pseudodimension 3. Every closed halfspace has the form

H = {x ∈ R
2 : α · x+ β ≥ 0}

for some unit vector α in R
2 and some real number β. Notice that fni(ω,H) = 1/

√
n

if and only if α · ξi + β ≥ 0. The points in R
n with coordinates α · ξi + β trace out

a subset of a 3-dimensional subspace as α and β vary.
The other conditions of the Theorem are just as easy to check. For every pair of

halfspaces H1 and H2, and every n,

P(νnH1νnH2) = PH1H2 − PH1PH2,

and

ρ(H1, H2)2 = ρn(H1, H2)2 = P |H1 −H2|.
[Typically, manageability is the only condition that requires any work when the
Functional Central Limit Theorem is applied to the standardized sums of indepen-
dent, identically distributed processes.]

The Theorem asserts that νn converges in distribution, as a random element of
the function space B(H), to a Gaussian process concentrated on U(H), the set of
all bounded, ρ-uniformly continuous functions. The Representation Theorem from
Section 9 provides perfect maps φn and a Gaussian process ν̃ with sample paths
in U(H) such that the random processes ν̃n = νn ◦ φn satisfy

sup
H

|ν̃n(H) − ν̃(H)| → 0 almost surely.

We need not worry about measurability difficulties here, because the supremum
over H is equal to the supremum over an appropriate countable subclass of H. The
representation also gives a new version of the empirical measure,

(12.2) P̃nH = PH +
1√
n
ν̃nH = PH +

1√
n

(
ν̃H + o(1)

)
,

where the o(1) represents a function of H that converges to zero uniformly over H.

Asymptotics. With (12.2) we have enough to establish an almost sure limit
result for R̃n(ω̃, θ) = Rn(φn(ω̃), θ), which will imply the corresponding distribu-
tional result for Rn(ω, θ). Let {δn} be a sequence of random variables on Ω̃ that
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converges almost surely to zero at a rate to be specified soon. Define

Z(θ) = ν̃
(
H(r0, θ)

)
/Φ′(r0),

�n(θ) = r0 −
1√
n

(
Z(θ) + δn

)
,

un(θ) = r0 −
1√
n

(
Z(θ) − δn

)
.

If we can find δn uniformly of order o(1) such that, eventually,

�n(θ) ≤ R̃n(θ) ≤ un(θ) for all θ,

then it will follow that
√
n(R̃n(θ) − r0) → −Z(θ) uniformly in θ,

as desired.
Consider first the upper bound on R̃n(θ). Temporarily write Hn(θ) for the half-

space H(un(θ), θ). Then

P̃nHn(θ) = PHn(θ) +
1√
n

(
ν̃Hn(θ) + o(1)

)
uniformly in θ.

Apply the Mean Value Theorem to approximate the contribution from P :

PHn(θ) = Φ(un(θ))
= Φ(r0) + (un(θ) − r0)

(
Φ′(r0) + o(1)

)
= 3

4 − 1√
n

(
ν̃H(r0, θ) − o(1) −

(
Φ′(r0) + o(1)

)
δn

)
,

where the o(1) represent functions of θ that converge to zero uniformly in θ. For
the contribution from ν̃ consider first the difference |Hn(θ) − H(r0, θ)|. It is the
indicator function of a strip of width |Z(θ) − δn|/

√
n; its P measure converges to

zero uniformly in θ. Thus

ρ
(
Hn(θ), H(r0, θ)

)
→ 0 uniformly in θ.

By the uniform continuity of the ν̃ sample paths it follows that

ν̃(Hn(θ)) = ν̃H(r0, θ) + o(1) uniformly in θ.

Adding the two contributions to P̃nHn(θ) we get

P̃nHn(θ) = 3
4 +

1√
n

((
Φ′(r0) + o(1)

)
δn − o(1)

)
.

We can choose δn converging to zero while ensuring that the coefficient of 1/
√
n is

always positive. With that choice, the set Hn(θ) becomes one of the half spaces
whose intersection defines K̃n; the boundary point in the θ direction must lie on
the ray from the origin to the boundary of Hn(θ); the distance R̃n(θ) must be less
than un(θ).

Now consider the lower bound on R̃n(θ). Let tn(θ) denote the point a distance
�n(θ) from the origin in the θ direction. It is enough if we show that K̃n contains
every tn(θ).
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If, for a particular θ, the point tn(θ) were outside K̃n, there would exist a
halfspace H with P̃nH ≥ 3/4 and tn(θ) /∈ H. By sliding H towards tn(θ) we would
get an H ′ with P̃nH

′ ≥ 3/4 and tn(θ) on the boundary of H ′. The right choice for
δn will ensure that such an H ′ cannot exist.

For each θ let Hn(θ) denote the halfspace with tn(θ) on its boundary and the
largest P̃n measure. (Of course this is not the same Hn(θ) as before.) The maximum
of PH over all halfspaces with tn(θ) on the boundary is achieved at H(�n(θ), θ).
So, uniformly in θ,

3
4 ≤ P̃nHn(θ) = PHn(θ) +O(1/

√
n) ≤ PH(�n(θ), θ) +O(1/

√
n) → 3

4 .

It follows that PHn(θ) also converges uniformly to 3/4. This forces the boundary
of Hn(θ) to orient itself more and more nearly perpendicular to the θ direction.
Consequently,

ρ
(
Hn(θ), H(r0, θ)

)
→ 0 uniformly in θ.

Uniform continuity of the ν̃ sample paths now lets us assert

P̃nHn(θ) = PHn(θ) +
1√
n

(
ν̃H(r0, θ) + o(1)

)
uniformly in θ.

Again using the fact that the maximum of PH over all halfspaces with tn(θ) on
the boundary is achieved at H(�n(θ), θ), we deduce that, uniformly in θ,

PHn(θ) ≤ PH(�n(θ), θ)
= Φ(�n(θ))

= Φ(r0) + (�n(θ) − r0)
(
Φ′(r0) + o(1)

)

= 3
4 − 1√

n

(
ν̃H(r0, θ) − o(1) + (Φ′(r0) + o(1))δn

)
.

With δn converging to zero slowly enough to cancel out all the o(1) terms, plus a
little bit more, we get a contradiction, P̃nHn(θ) < 3/4 for all θ. There can therefore
be no halfspace with P̃nH

′ ≥ 3/4 and tn(θ) on its boundary. The point tn(θ) must
lie inside Kn. The argument for the lower bound on R̃n(θ) is complete.

Remarks. Nolan (1989b) has studied an estimator related to Kn, following
Donoho (1982). Its analysis is similar to the arguments given in this section, but
more delicate.



SECTION 13

Estimation from

Censored Data

Let P be a a nonatomic probability distribution on [0,∞). The cumulative
hazard function β is defined by

β(t) =
∫ {0 ≤ x ≤ t}

P [x,∞)
P (dx).

It uniquely determines P . Let T2, T2, . . . be independent observations from P
and {ci} be a deterministic sequence of nonnegative numbers representing censoring
times. Suppose the data consist of the variables

Ti ∧ ci and {Ti ≤ ci} for i = 1, . . . , n.

That is, we observe Ti if it is less than or equal to ci; otherwise we learn only that
Ti was censored at time ci. We always know whether Ti was censored or not.

If the {ci} behave reasonably, we can still estimate the true β despite the cen-
soring. One possibility is to use the Nelson estimator:

β̂n(t) =
1
n

∑
i≤n

{Ti ≤ ci ∧ t}
Ln(Ti)

,

where

Ln(t) =
1
n

∑
i≤n

{Ti ∧ ci ≥ t}.

It has become common practice to analyze β̂n by means of the theory of stochastic
integration with respect to continuous-time martingales. This section will present
an alternative analysis using the Functional Central Limit Theorem from Section 10.
Stochastic integration will be reduced to a convenient, but avoidable, means for
calculating limiting variances and covariances.

70
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Heuristics. Write G(t) for P{Ti ≥ t} and define

Γn(t) =
1
n

∑
i≤n

{ci ≥ t}.

Essentially we need to justify replacement of Ln by its expected value,

PLn(t) =
1
n

∑
i≤n

P{Ti ≥ t}{ci ≥ t} = G(t)Γn(t).

That would approximate β̂n by an average of independent processes, which should
be close to its expected value:

β̂n(t) ≈ 1
n

∑
i≤n

{Ti ≤ ci ∧ t}
G(Ti)Γn(Ti)

≈ 1
n

∑
i≤n

P
{Ti ≤ t}{Ti ≤ ci}

G(Ti)Γn(Ti)

= P

(
{T1 ≤ t}

G(T1)Γn(T1)
1
n

∑
i≤n

{T1 ≤ ci}
)

= β(t).

A more precise analysis will lead to a functional central limit theorem for the
standardized processes

√
n(β̂n − β) over an interval [0, τ ], if we assume that:

(i) the limit Γ(t) = limn→∞ Γn(t) exists for each t;
(ii) the value τ is such that G(τ) > 0 and Γ(τ) > 0.

The argument will depend upon a limit theorem for a process indexed by pairs
(t, m), where 0 ≤ t ≤ τ and m belongs to the class M of all nonnegative increasing
functions on [0, τ ]. Treating β as a measure on [0, τ ], define

β(t, m) =
∫
{0 ≤ x ≤ t}m(x)β(dx),

fi(ω, t, m) = {Ti ≤ t ∧ ci}m(Ti) − β(t ∧ Ti ∧ ci, m).

Such a centering for fi is suggested by martingale theory, as will be explained soon.
We will be able to establish a functional central limit theorem for

Xn(t, m) =
1√
n

∑
i≤n

fi(ω, t, m)

=
√

n

((
1
n

∑
i≤n

{Ti ≤ t ∧ ci}m(Ti)
)
− β(t, mLn)

)
.

Putting m equal to 1/Ln we get the standardized Nelson estimator:

Xn(t, 1/Ln) =
√

n
(
β̂n(t) − β(t)

)
.

The limit theorem for Xn will justify the approximation

Xn(t, 1/Ln) ≈ Xn(t, 1/GΓn).

It will also give the limiting distribution for the approximating process.
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Some martingale theory. The machinery of stochastic integration with re-
spect to martingales provides a very neat way of calculating variances and covari-
ances for the fi processes. We could avoid stochastic integration altogether by
direct, brute force calculation; but then the happy cancellations arranged by the
martingales would appear most mysterious and fortuitous.

The basic fact, not altogether trivial (Dellacherie 1972, Section V.5), is that both

Zi(t) = {Ti ≤ t} − β(t ∧ Ti) and Zi(t)2 − β(t ∧ Ti)

are continuous parameter martingales in t. That is, both the simple jump process
{Ti ≤ t} and the submartingale Z2

i have compensator β(t ∧ Ti). The fi process is
expressible as a stochastic integral with respect to Zi:

fi(ω, t, m) =
∫
{0 ≤ x ≤ t ∧ ci}m(x)Zi(dx).

It follows that, for fixed m, the process fi is also a martingale in t. In particular,
Pfi(ω, t, m) = Pfi(ω, 0, m) = 0 for every t.

From now on let us omit the ω from the notation.
Stochastic integration theory tells us how to calculate compensators for new

processes derived from the martingales {Zi}. In particular, for fixed t1, t2, m1,
and m2, the product fi(t ∧ t1, m1)fi(t ∧ t2, m2) has compensator

Ai(t) =
∫
{0 ≤ x ≤ t ∧ t1 ∧ t2 ∧ Ti ∧ ci}m1(x)m2(x)β(dx);

the difference fi(t ∧ t1, m1)fi(t ∧ t2, m2) − Ai(t) is a martingale in t. This implies
that

Pfi(t ∧ t1, m1)fi(t ∧ t2, m2) = PAi(t) for each t.

Put t = max(t1, t2), then average over i. Because each Ti has the same distribution,
we get

PXn(t1, m1)Xn(t2, m2) =
1
n

∑
i≤n

Pfi(t1, m1)fi(t2, m2)

= P

∫
{0 ≤ x ≤ t1 ∧ t2}Ln(x)m1(x)m2(x)β(dx)

= β(t1 ∧ t2, GΓnm1m2).(13.1)

The calculations needed to derive this result directly would be comparable to the
calculations needed to establish the martingale property for Zi.

Manageability. For each positive constant K let M(K) denote the class of all
those m in M for which m(τ) ≤ K. To establish manageability of the {fi(t, m)}
processes, as t ranges over [0, τ ] (or even over the whole of R

+) and m ranges over
M(K), it suffices to consider separately the three contributions to fi.

Let us show that the indicator functions {Ti ≤ t ∧ ci} define a set with pseudo-
dimension one. Suppose the (i, j)-projection could surround some point in R

2.
Suppose Ti ≤ Tj . We would need to be able to find t1 and t2 such that both pairs
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of inequalities,

Ti ≤ t1 ∧ ci and Tj ≤ t1 ∧ cj ,

Ti > t2 ∧ ci and Tj ≤ t2 ∧ cj ,

were satisfied. The first pair would imply Ti ≤ ci and Tj ≤ cj , and then the second
pair would lead to a contradiction, t2 ≥ Tj ≥ Ti > t2, which would establish the
assertion about pseudodimension.

For the factors {m(Ti)} with m ranging over M(K), we can appeal to the result
from Example 6.3 if we show that no 2-dimensional projection of the convex cone
generated by M(K) can surround the point (K, K). This is trivial. For if Ti ≤ Tj

then no r ∈ R
+ and m ∈ M(K) can achieve the pair of inequalities rm(Ti) > K

and rm(Tj) < K.
The argument for the third contribution to fi is similar. For each t ≤ τ and

m ∈ M(K), the process β(t ∧ Ti ∧ ci, m) is less than K ′ = Kβ(τ). If, for example,
Ti ∧ ci ≤ Tj ∧ cj then it is impossible to find an r ∈ R

+, an m ∈ M(K), and
a t ∈ [0, τ ] such that rβ(t ∧ Ti ∧ ci, m) > K ′ and rβ(t ∧ Tj ∧ cj , m) < K ′.

Functional Central Limit Theorem. It is a simple matter to check the
five conditions of the Functional Central Limit Theorem from Section 10 for the
triangular array of processes

fni(t, m) =
1√
n

fi(t, m) for i = 1, . . . , n, t ∈ [0, τ ], m ∈ M(K),

for some constant K to be specified. These processes have constant envelopes,

Fni = K(1 + β(τ))/
√

n,

which clearly satisfy conditions (iii) and (iv) of the theorem. The extra 1/
√

n factor
does not affect the manageability. Taking the limit in (13.1) we get

H
(
(t1, m1), t2, m2)

)
= β(t1 ∧ t2, GΓm1m2).

For simplicity suppose t1 ≤ t2. Then, because fni has zero expected value, (13.1)
also gives

ρn

(
(t1, m1), (t2, m2)

)2

= P|Xn(t1, m1) − Xn(t2, m2)|2

= β(t1, GΓnm2
1) + β(t2, GΓnm2

2) − 2β(t1, GΓnm1m2)

=
∫
{0 ≤ x ≤ t1}GΓn(m1 − m2)2β(dx) +

∫
{t1 ≤ x ≤ t2}GΓnm2

2β(dx)

≤
∫
{0 ≤ x ≤ t1}(m1 − m2)2β(dx) +

∫
{t1 ≤ x ≤ t2}m2

2β(dx).

A similar calculation with Γn replaced by Γ gives

ρ
(
(t1, m1), (t2, m2)

)2

=
∫
{0 ≤ x ≤ t1}GΓ(m1 − m2)2β(dx) +

∫
{t1 ≤ x ≤ t2}GΓm2

2β(dx),
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which is greater than the positive constant factor G(τ)Γ(τ) times the upper bound
just obtained for ρn

(
(t1, m1), (t2, m2)

)2. The second part of condition (v) of the
Functional Central Limit Theorem follows.

The processes {Xn(t, m)}, for 0 ≤ t ≤ τ and m ∈ M(K), converge in distribution
to a Gaussian process X(t, m) with ρ-continuous paths, zero means, and covariance
kernel H.

Asymptotics for β̂n. We now have all the results needed to make the heuristic
argument precise. A straightforward application of Theorem 8.2 shows that

sup
t

|Ln(t) − G(t)Γn(t)| → 0 almost surely.

If we choose the constant K so that G(τ)Γ(τ) > 1/K, then, with probability tending
to one, both 1/Ln and 1/GΓn belong to M(K) and

sup
0≤t≤τ

ρ
(
(t, 1/Ln), (t, 1/GΓn)

)
→ 0 in probability.

From stochastic equicontinuity of {Xn} we then deduce that
√

n(β̂n(t) − β(t)) = Xn(t, 1/Ln)
= Xn(t, 1/GΓn) + op(1) uniformly in 0 ≤ t ≤ τ

� X(t, 1/GΓ).

The limit is a Gaussian process on [0, τ ] with zero means and covariance kernel
β(t1 ∧ t2, 1/GΓ). It is a Brownian motion with a stretched out time scale.

Remarks. As suggested by Meier (1975), deterministic censoring times {ci}
allow more flexibility than the frequently made assumption that the {ci} are in-
dependent and identically distributed random variables. A conditioning argument
would reduce the case of random {ci} to the deterministic case, anyway.

The method introduced in this section may seem like a throwback to the original
proof by Breslow and Crowley (1974). However, the use of processes indexed by
M(K) does eliminate much irksome calculation. More complicated forms of multi-
variate censoring might be handled by similar methods. For a comparison with the
stochastic integral approach see Chapter 7 of Shorack and Wellner (1986).

I am grateful to Hani Doss for explanations that helped me understand the role
of martingale methods.



SECTION 14

Biased Sampling

Vardi (1985) introduced a far-reaching extension of the classical model for length-
biased sampling. He solved the problem of estimating a distribution function based
on several independent samples, each subject to a different form of selection bias.
Using empirical process theory, Gill, Vardi and Wellner (1988) developed the asymp-
totic theory for generalizations of Vardi’s method to abstract settings. They showed
that the general model includes many interesting examples as special cases. This
section presents a reworking of the ideas in those two papers. It is part of a study
carried out by me in collaboration with Robert Sherman of Yale University.

The general problem is to estimate a distribution P on some set S using inde-
pendent samples of sizes ni+ from distributions Qi, for i = 1, . . . , s, where the Qi

are related to P by means of known nonnegative weight functions Wi(·) on S:

dQi

dP
= πiWi(·) where πi = 1/PWi.

Of course the normalizing constants πi, which we must assume to be finite and
strictly positive, are unknown. For example, the Wi might be indicator functions
of various subdomains of S. The problem is then one of combining the different
samples in order to form an estimate of P over the whole of S. The difficulty lies in
deciding how to combine the information from samples whose subdomains overlap.

For the general problem, to ensure that we get information about P over the
whole domain, we must assume that the union of the sets {Wi > 0} covers S.

Vardi suggested that a so-called nonparametric maximum likelihood estimator
P̂n be used. This is a discrete probability measure that concentrates on the com-
bined observations x1, x2, . . . from all s samples. If xj appears a total of nij times
in the ith sample, the combined empirical measure Q̂n puts mass n+j/n at xj ,
where

n+j =
∑

i

nij and n =
∑
i,j

nij .

The estimator P̂n modifies Q̂n, putting at xj the mass p̂j defined by maximization

75
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of a pseudo log-likelihood function: maximize∑
i,j

nij

[
log pj − log

(∑
k

Wi(xk)pk

)]
,

subject to the constraints

pj > 0 for each j, and
∑

j

pj = 1.

In this form the estimation problem involves parameters whose number increases
with the sample sizes. The first part of the analysis will show how to transform the
problem into an equivalent maximization involving only a fixed number of unknown
parameters.

Simplify the notation by writingWik for Wi(xk). Reparametrize by substituting
exp(βj) for pj . Then we need to maximize the function

Ln(β) =
∑

j

n+jβj −
∑

i

ni+ log
(∑

k

Wik exp(βk)
)

over all real {βj}, subject to the constraint∑
j

exp(βj) = 1.

Let 1 denote a vector of ones. The criterion function Ln is constant along the lines
{β + t1 : t ∈ R}; the constraint serves to locate a unique point on each such line.

Simple calculus shows that Ln is a concave function. Indeed, for each fixed β
and δ the function Ln(β + tδ) has derivative

(14.1)
∑

j

n+jδj −
∑

i

ni+

(∑
k Wikδk exp(βk)∑

k Wik exp(βk)

)
at t = 0,

and second derivative

−
∑
i,k

ni+Bik(δk − δ̄i)2 at t = 0,

where
Bik =Wik exp(βk)/

∑
j

Wij exp(βj)

and δ̄i is the weighted average

δ̄i =
∑

k

Bikδk.

Clearly the second derivative is always nonpositive; the function Ln is concave along
every line. The second derivative can equal zero only if δk is constant over each of
the subsets

K(i) = {k :Wik > 0} for i = 1, . . . , s.
Under mild connectedness assumptions about the regions {Wi > 0}, it can be shown
(almost surely as the ni+ tend to infinity) that constancy over each K(i) forces δ to
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be a multiple of 1. That is, Ln is strictly concave along all directions except the 1
direction. Moreover, the connectedness assumption also forces the derivative to be
strictly negative for t large enough. It follows that the constrained maximization
problem eventually has a unique solution β̂. (Clearly β̂ depends on n, but I will
omit the subscript n to avoid notational clutter.)

For a precise statement of the necessary connectedness property, see pages 1071-
1072 of Gill et al. (1988). Let us assume such a property to hold from now on.

Transformation to an equivalent problem. The function Ln must have all
its directional derivatives equal to zero at its maximizing point. Putting δ equal to
a vector with δj as its only nonzero component, we get from (14.1) that

(14.2) exp(β̂j) =
n+j∑

i(ni+Wij/
∑

k Wik exp(β̂k))
for each j.

Notice that the s linear combinations of the exp(β̂k) values on the right-hand side
determine all the β̂j values. That is why we will be able to reduce the problem to
one involving only s unknown parameters.

Introduce new parameters α1, . . . , αs. Trivially, the constrained maximization
of Ln is equivalent to the problem: maximize∑

j

n+jβj +
∑

i

ni+αi

subject to the constraints∑
j

exp(βj) = 1,

exp(−αi) =
∑

j

Wij exp(βj) for each i.

Equality (14.2) translates into a set of relations that the maximizing α̂ and β̂ must
satisfy; the maximization problem is unaffected if we add another constraint,

exp(βj) =
n+j∑

i ni+Wij exp(αi)
for each j,

to the list. This allows us to eliminate the {βj} from the problem altogether, leaving
a constrained maximization over the {αi}: maximize∑

i

ni+αi −
∑

j

n+j log
(∑

k

nk+Wkj exp(αk)
)
,

subject to the constraints∑
j

n+j∑
i ni+Wij exp(αi)

= 1,

exp(−αi) =
∑

j

Wijn+j∑
k nk+Wkj exp(αk)

for each i.
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Just as the addition of an extra constraint did not affect the previous maximization,
so will the elimination of a constraint not affect this maximization. By marvellous
good luck (What is going on here?) the last set of equations corresponds exactly to
the requirement that the directional derivatives of the criterion function all equal
zero at its global maximizing value α̂; it can be discarded without changing the
problem. The remaining constraint then serves only to locate a unique point along
the lines of constancy of the criterion function.

The Vardi procedure takes a much neater form when expressed in empirical
process notation. Write λni for the proportion ni+/n of observations that belong
to the ith sample, and hn(·,α) for the function

(∑
i λni exp(αi)Wi(·)

)−1. Then the
Vardi estimator is determined by: maximize

Mn(α) = λ′
nα + Q̂n log hn(·,α)

subject to the constraint
Q̂nhn(·,α) = 1.

Under the connectedness assumptions mentioned earlier, the functionMn is (almost
surely, with increasing sample sizes) strictly concave along all directions except
those parallel to 1, along which it is constant. [Recycled notation.] The constraint
locates the unique maximizing α̂ along a line of constancy. The measure P̂n is
determined by putting mass

p̂j = exp(β̂j) =
n+j

n
hn(xj , α̂) at xj .

That is, P̂n has density hn(·, α̂) with respect to the empirical measure Q̂n.

Heuristics. The estimator P̂n is partly parametric and partly nonparametric.
The α̂ is determined by a finite-dimensional, parametric maximization problem.
It determines the density of P̂n with respect to the nonparametric estimator Q̂n.
Limit theorems for P̂n will follow from the parametric limit theory for α̂ and the
nonparametric limit theory for Q̂n.

To simplify the analysis let us assume that the proportions are well behaved,
in the sense that λni → λi > 0 as n → ∞, for each i. This assumption could be
relaxed. Let Q̂ni denote the empirical measure for the ith sample (mass nij/ni+ on
each observation from Qi). We should then have

Q̂n =
∑

i

λniQ̂ni →
∑

i

λiQi

for some mode of convergence. Call the limit measure Q. For each integrable
function f ,

Qf =
∑

i

πiλiP (fWi);

the measure Q has density G(·) =
∑

i πiλiWi(·) with respect to P . The function
hn(·,α) converges pointwise to

h(·,α) =
(∑

i

λi exp(αi)Wi(·)
)−1

.
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Notice that G(·) = 1/h(·,α∗), where α∗ is determined by

exp(α∗i ) = πi for i = 1, . . . , s.

It would seem reasonable that the limiting behavior of α̂ should be obtained
by solving the limiting form of the constrained maximization problem. That is, α̂
should converge to the α that maximizes

M(α) = λ′α +Q log
[
G(·)h(·,α)

]
,

subject to the constraint
Qh(·,α) = 1.

The extra factor G contributes a centering of the log term; each product G(·)h(·,α)
is bounded away from zero and infinity. This ensures that M(α) is well defined for
every α, without affecting the location of the maximizing value.

Calculation of first and second directional derivatives, in much the same way
as before, shows that M is concave. The connectedness assumption implies strict
concavity, except along the 1 direction, along which it is constant. Modulo 1, it
has a unique maximizing value, determined by setting all the partial derivatives

∂M

∂αi
= λi −Q

(
λi exp(αi)Wi∑
k λk exp(αk)Wk

)
= λi − λi exp(αi)P (WiGh(·,α))

to zero. Since 1/G(·) = h(·,α∗), these derivatives are zero at α = α∗, and the
constraint is satisfied:

Qh(·,α∗) = P (G/G) = 1.
It follows that α∗ uniquely solves the limiting constrained maximization problem.

If α̂ does converge to α∗ then the density hn(·, α̂) of P̂n with respect to Q̂n will
converge pointwise to h(·,α∗) = 1/G(·). For a fixed integrable f we should then
have

P̂nf = Q̂n

(
f(·)h(·, α̂)

)
≈ Q(f/G) = Pf.

A precise formulation of these heuristic approximations will establish a central limit
theorem for P̂n as an estimator for P .

Asymptotic behavior of α̂. Decompose α̂ into a sum α∗+δ̂/
√
n+ ε̂1, where

the random vector δ̂ lies in the subspace D of vectors in R
s that are orthogonal to 1.

Constancy of Mn along the 1 directions lets us ignore the ε̂ in the maximization;
the vector δ̂ maximizes the concave function

Hn(δ) = n
(
Mn(α∗ + δ/

√
n) −Mn(α∗)

)
over δ in D. The constraint may be written as

(14.3) exp(ε̂ ) = Q̂nhn(·,α∗ + δ̂/
√
n).

Equivalently, for each integrable f ,

(14.4) P̂nf =
Q̂nfhn(·,α∗ + δ̂/

√
n)

Q̂nhn(·,α∗ + δ̂/
√
n)
.
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The denominator has the interpretation of a normalization factor needed to make
P̂n a probability measure.

The asymptotic behavior of δ̂ will be controlled by a quadratic approximation
to Hn. To develop the approximation we decompose the empirical measures into
deterministic parts (for which Taylor expansion to quadratic terms is appropriate)
plus smaller perturbations due to the empirical processes. Define

νni =
√
ni+(Q̂ni −Qi) for i = 1, . . . , s,

νn =
√
n(Q̂n − PQ̂n) =

∑
i

√
λni νni.

Here PQ̂n represents the measure
∑

i λniQi, which has density

Gn(·) =
∑

i

πiλniWi(·) = 1/hn(·,α∗)

with respect to P . For each f we have a decomposition

(14.5) Q̂nf = P (Gnf) +
1√
n
νnf.

If P (Gf2) <∞, the random component has an asymptotic normal distribution,

(14.6) νnf =
∑

i

√
λni νnif � N(0, σ2(f)),

where

σ2(f) =
∑

i

λi

(
Qif

2 − (Qif)2
)

= P (Gf2) −
∑

i

λiπ
2
i (PWif)2.

A similar multivariate central limit theorem would hold for each vector-valued func-
tion f with P (G|f |2) finite.

Substituting for Q̂n in the definition of Mn, using (14.5), we get

Hn(δ) =
[√
nλ′

nδ + nPGn log
(
Gnhn(·,α∗ + δ/

√
n)

)]
(14.7)

+
√
nνn log

(
Gnhn(·,α∗ + δ/

√
n)

)
Fix δ. Calculation of first and second derivatives, in much the same way as for Ln,
shows that the deterministic contribution (the first term on the right-hand side)
is of the form −1/2δ′V δ + o(1) as n → ∞, where V equals diag(λi) minus the
s × s matrix whose (i, j)th element is πiπjλiλj P (WiWj/G). Of course V 1 = 0,
but the connectedness assumption ensures that V acts as a positive definite linear
transformation on the subspace D.

The term linear in δ is contributed by the random perturbation (the second term
on the right-hand side of (14.7)). Again a Taylor expansion gives

log
(
Gnhn(·,α∗ + δ/

√
n)

)
=

1√
n

δ′Dn(·) + ρn(·),

where Dn is an s× 1 vector of uniformly bounded functions,

Dni(·) =
πiλniWi(·)
Gn(·) ,
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and ρn is a remainder function less than |δ|2/n in absolute value. For fixed δ, the
contribution to Hn(δ) from ρn converges in probability to zero, because

var(νnρn) = var
(∑

i

√
λniνniρn

)
≤

∑
i

λniQi(ρ2n)

≤ |δ|4/n2.

The remainder term
√
nνnρn is actually of order Op(1/

√
n ).

Collecting together these contributions to Hn we get, for each fixed δ,

Hn(δ) − δ′νnDn → − 1
2δ′V δ in probability.

The stochastic process on the left-hand side is concave in δ. A simple modification
(see Section 6 of Pollard 1990, for example) of a standard result from convex analysis
(Theorem 10.8 of Rockafellar 1970) shows that such convergence automatically
holds in a stronger sense:

(14.8) Hn(δ) = δ′νnDn − 1
2δ′V δ + op(1) uniformly on compacta.

The op(1) term is a random function of δ and n whose supremum over bounded
sets of δ converges in probability to zero.

Singularity of V slightly complicates the argument leading from (14.8) to an
asymptotic expression for δ̂. A reparametrization will solve the problem. Let J be
an s× (s− 1) matrix whose columns span D. Then for θ ranging over R

s−1,

Hn(Jθ) = θ′J ′νnDn − 1
2θ′J ′V Jθ + op(1) uniformly on compacta.

The (s− 1)× (s− 1) matrix J ′V J is nonsingular. A small concavity argument (as
in Pollard 1990) shows that the θ̂ that maximizes Hn(Jθ) over R

s−1 must lie close
to the value that maximizes the quadratic approximation, that is,

θ̂ = (J ′V J)−1J ′νnDn + op(1).

Hence

(14.9) δ̂ = J(J ′V J)−1J ′νnDn + op(1).

Let us denote by V − the matrix multiplying νnDn; it is a generalized inverse of V .
For each i, the functions Dni converge uniformly to

Di(·) =
πiλiWi(·)
G(·) .

This allows us to invoke a multivariate analogue of (14.6) to show that

(14.10) νnDn = νnD + op(1)� N
(
0, P (GDD′) −

∑
i

λi(QiD)(QiD)′
)
.

It follows that δ̂ also has an asymptotic normal distribution.
It is possible to solve (14.3) to get a similar asymptotic expression for ε̂, and hence

for α̂. That would lead to an asymptotic normal distribution for
√
n(α̂−α∗). Such
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a calculation will be implicit in the next stage of the argument, which will apply
the so-called delta method to (14.4) to derive a central limit theorem for P̂n.

Asymptotic behavior of P̂n. Yet another Taylor expansion gives an approx-
imation that lets us capture the effect of δ̂ on P̂nf .

hn(x,α∗ + δ/
√
n) =

1
Gn(x)

− δ′Dn(x)√
nGn(x)

+
|δ|2
nGn

Rn(x, δ).

The remainder function Rn is uniformly bounded on compact sets of δ, in the sense
that for each compact K there is a constant CK such that

|Rn(x, δ)| ≤ CK for all x, all n, all δ in K.

If f is P -integrable, the contribution from the remainder term can be ignored
because

(14.11)
|δ|2
n

PQ̂n

∣∣∣∣fRn

Gn

∣∣∣∣ ≤ |δ|2
n
P |fRn| ≤ CK

|δ|2
n
P |f |.

Since |δ̂| = Op(1), the remainder terms will contribute only a Op(1/n) to P̂nf .
From (14.5), the leading term in the Taylor expansion contributes

(14.12) Q̂n(f/Gn) = Pf +
1√
n
νn(f/Gn),

which, by (14.6), is asymptotically normal if P (f2/G) <∞.
The linear term contributes

− 1√
n

δ̂ ′
(
P (fDn) +

1√
n
νn(fDn/Gn)

)
.

The νn part can be absorbed into the Op(1/n) term if P (f2/G) <∞, because

(14.13) var νn(fDnj/Gn) ≤ const
∑

i

λniQi(f2/G2
n) < constP (f2/G).

If P (1/G) <∞, similar approximations are valid for the denominator in (14.4).
Consequently, if both P (1/G) < ∞ and P (f2/G) < ∞ (which also takes care of
P -integrability of f),

P̂nf =
Pf +

(
νn(f/Gn) − δ̂ ′P (fDn)

)
/
√
n+ op(1/

√
n)

1 +
(
νn(1/Gn) − δ̂ ′PDn

)
/
√
n+ op(1/

√
n)

.

The right-hand side simplifies to

Pf +
1√
n

((
νn(f/Gn) − Pf νn(1/Gn)

)
− δ̂ ′(P (fDn) − Pf PDn

))
plus terms of order op (1/

√
n). The coefficient of the linear term in δ̂ might be

thought of as a covariance. Substituting from (14.9) for δ̂, then consolidating the
lower-order terms, we get

(14.14)
√
n(P̂nf − Pf) = νn

(
covP (D, f)′V −D + f/Gn − (Pf)/Gn

)
+ op(1).
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The right-hand side has an asymptotic normal distribution, by virtue of the multi-
variate central limit theorem.

Uniformity in f. The preceding calculations are easily extended to provide
a functional central limit theorem for ν̂n =

√
n(P̂n − P ) treated as a stochastic

process indexed by a class of functions F.
Let us assume that F has an envelope F (·), that is, |f | ≤ F for each f in F.

If F is P -integrable, the analogue of (14.11), with f replaced by F , shows that the
remainder terms are of order Op(1/n) uniformly over F.

If both P (1/G) < ∞ and P (F 2/G) < ∞, and if the processes indexed by
the classes of functions that appear in (14.13) and (14.14) are manageable in the
sense of Section 7, then the maximal inequalities from that section can take over
the role played by (14.13). (Here the stability results from Section 5 could be
applied.) The random contribution to the linear term can again be absorbed into
the op(1/

√
n ), this time uniformly over F. The op(1) remainder in (14.14) then

also applies uniformly over F, which gives the desired uniform functional central
limit theorem.

Remarks. The concavity argument leading to the central limit theorem for δ̂ is
adapted from similar arguments for least absolute deviations regression estimators
in Pollard (1990). Almost sure convergence of P̂n could be established by an even
simpler concavity argument, based on pointwise application of a strong law of large
numbers, somewhat in the style of Lemma 5.3 of Gill et al (1988). Concavity also
explains the success of Vardi’s (1985) algorithm—his procedure climbs a concave
hill by successive maximizations along coordinate directions.
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