
SECTION 11

Least Absolute Deviations
Estimators for
Censored Regression

Suppose random variables y1, y2, . . . are generated by a regression yi = x′
iθ0+ui,

with θ0 an unknown d-dimensional vector of parameters, {xi} a sequence of observed
vectors, and {ui} unobserved errors. The method of least absolute deviations would
estimate θ0 by the θ that minimized the convex function∑

i≤n

|yi − x′
iθ|.

Convexity in θ makes the asymptotic analysis not too difficult (Pollard 1990). Much
more challenging is a related problem, analyzed by Powell (1984), in which the value
of yi is observed only if yi ≥ 0 and otherwise only the information that yi < 0 is
available. That is, only y+

i is observed. In the econometrics literature this is called
a Tobit model (at least when the {ui} are independent normals).

Powell proposed an interesting variation on the least absolute deviations estima-
tion; he studied the θ̂n that minimizes∑

i≤n

|y+
i − (x′

iθ)
+|

over a subset Θ of R
d. This function is not convex in θ; analysis of θ̂n is quite

difficult. However, by extending a technique due to Huber (1967), Powell was able
to give conditions under which

√
n(θ̂n − θ0) has an asymptotic normal distribution.

With the help of the maximal inequalities developed in these notes, we can relax
Powell’s assumptions and simplify the analysis a little. The strategy will be to
develop a uniformly good quadratic approximation to the criterion function, then
show that θ̂n comes close to maximizing the approximation. Powell’s consistency
argument was based on the same idea, but for asymptotic normality he sought
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58 EMPIRICAL PROCESSES

an approximate zero for a vector of partial derivatives, a method that is slightly
complicated by the lack of smoothness of the criterion function.

Assumptions. Let us assume that the {xi} vectors are deterministic. Results
for random {xi} could also be obtained by a conditioning argument. The following
assumptions would be satisfied by a typical realization of independent, identically
distributed random vectors {Xi} with finite second moments and P{X ′

iθ0 = 0} = 0
and PXiX

′
i{X ′

iθ0 > 0} nonsingular. The assumptions on the errors {ui} are the
usual ones for least absolute deviations estimation. They could be relaxed slightly
at the cost of increased notational complexity.

(i) The {ui} are independent, identically distributed random variables each hav-
ing zero median and a continuous, strictly positive density p(·) near zero.

(ii) For each ε > 0 there is a finite K such that

1
n

∑
i≤n

|xi|2{|xi| > K} < ε for all n large enough.

(iii) For each ε > 0 there is a δ > 0 such that

1
n

∑
i≤n

|xi|2{|x′
iθ0| ≤ δ} < ε for all n large enough.

(iv) The sequence of smallest eigenvalues of the matrices

1
n

∑
i≤n

xix
′
i{x′

iθ0 > 0}

is bounded away from zero, for n large enough.
Powell required slightly more smooothness for p(·), and a more awkward moment
condition analogous to (iii), in order to fit his analysis into the framework of Huber’s
method.

(11.1) Theorem. Suppose θ0 is an interior point of a Θ, a bounded subset
of R

d. Then, under assumptions (i) to (iv),

2p(0)
√
nVn(θ̂n − θ0)� N(0, Id),

where Vn is the positive definite square root of the matrix from assumption (iv).

The proof of this result is quite a challenge. Let us begin with some heuristic
arguments, which will develop notation and focus attention on the main technical
difficulties.

Heuristics. The assumptions (ii), (iii), and (iv) control how much influence
any single xi can have over Vn. If x′

iθ0 < 0 then, for θ near θ0, the term |y+
i −(x′

iθ)
+|

reduces to y+
i ; it should not greatly affect the local minimization; it should not

have an effect on the limiting distribution of θ̂n; it should not contribute to Vn.
Assumption (iv) captures this idea. Assumption (ii) prevents a single very large
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|xi| from dominating Vn; the least absolute deviations criterion prevents it from
having a dominating influence on the minimization. The xi with x′

iθ0 ≈ 0 are the
most troublesome, because their contribution to the criterion function is nonlinear
in θ, even when θ is close to θ0; assumption (iii) will allow us to ignore the combined
effect of all such troublesome xi.

The assumption of boundedness for the parameter set Θ is aesthetically irksome,
even if it does have little practical significance. I would be pleased to learn how to
dispose of it.

As a notational convenience, reparametrize by putting t = Vn(θ − θ0). Then
define zni = V −1

n xi and x′
iθ0 = µi. Define

fni(ω, t) = |y+
i − (µi + z′nit)

+| − |y+
i − µ+

i |.
The centering ensures that

|fni(ω, t)| ≤ |z′nit|,
and hence fni(·, t) has a finite expectation for each t. The centering does not
affect the minimization; the standardized estimator t̂n = Vn(θ̂n −θ0) minimizes the
process

Gn(ω, t) =
1
n

∑
i≤n

fni(ω, t).

Assumptions (ii) and (iv) imply existence of positive constants C ′ and C ′′ for which,
when n is large enough,

C ′|xi| ≥ |zni| ≥ C ′′|xi| for i ≤ n,

which lets us translate the assumptions on the {xi} into:
(ii)∗ For each ε > 0 there is a finite K such that

1
n

∑
i≤n

|zni|2{|zni| > K} < ε for all n large enough.

(iii)∗ For each ε > 0 there is a δ > 0 such that

1
n

∑
i≤n

|zni|2{|µi| ≤ δ} < ε for all n large enough.

(iv)∗

1
n

∑
i≤n

zniz
′
ni{µi > 0} = Id for all n large enough.

For convenience, let us ignore from now on the finitely many n excluded by these
three conditions.

As a first approximation, Gn(·, t) should be close to its expected value, Γn(t). If
we define

Hi(s) = P
(
|y+

i − (µi + s)+| − |y+
i − µ+

i |
)

for s ∈ R,

then

Γn(t) = PGn(·, t) =
1
n

∑
i≤n

Hi(z′nit).
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Each Hi is expressible in terms of the function

M(s) = P (|u1 − s| − |u1|) .

Indeed, by separate consideration of the contributions from the sets {ui < −µi}
and {ui ≥ −µi} one can show

(11.2) Hi(s) =




M(s) if µi ≥ 0 and s > −µi,

M(−µi) if µi ≥ 0 and s ≤ −µi,

M(s) −M(−µi) if µi < 0 and s > −µi,

0 if µi < 0 and s ≤ −µi.

From assumption (i), the expected value M(s) is increasing in |s|. The function M
has a unique minimum at the origin, and

M(s) = p(0)s2 + o(s2) near the origin.

Moreover, there is a constant C such that

(11.3) Hi(s) ≤ M(s) ≤ C s2 for all s.

At least when t is small, we should be able to ignore those Hi with µi < 0 or µi ≈ 0,
to get, via (iv)∗,

Γn(t) ≈ 1
n

∑
i≤n

p(0)|z′nit|2{µi > 0} = p(0)|t|2.

If Gn(·, t) lies uniformly close to its expectation, the t̂n that minimizes Gn should
be drawn close to zero, where the approximation to Γn is minimized.

With the help of a maximal inequality for Gn −Γn, we will even be able to force
t̂n into a Op(1/

√
n) neighborhood of the origin. To learn more about

√
n t̂n we will

then need a better approximation to Gn, obtained by a sort of Taylor expansion
for fni.

The random function fni(ω, ·) has a derivative at t = 0 except perhaps when
µi = 0 or ui(ω) = 0. If we ignore these cases, straightforward differentation suggests
we treat

∆ni(ω) =
(
{ui(ω) < 0} − {ui(ω) ≥ 0}

)
{µi > 0}zni

as the derivative of fni at t = 0. The difference

Rni(ω, t) = fni(ω, t) − ∆ni(ω)′t

should behave like the remainder in a Taylor expansion. By direct calculation for
the various pairings of inequalities, one can verify that

|Rni(ω, t)| ≤ 2|z′nit|
(
{|µi| ≤ |z′nit|} + {|ui(ω)| ≤ |z′nit|}

)
.

The two indicator functions vanish when |z′nit| is smaller than both |µi| and |ui(ω)|,
which should happen with large probability when |t| is small.

Write Wn for 1/
√
n times the sum of the ∆ni. By the Lindeberg central limit
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theorem it has an asymptotic N(0, Id) distribution:

P∆ni =
(
P{ui < 0} − P{ui ≥ 0}

)
{µi > 0}zni = 0;

1
n

∑
i≤n

P∆ni∆′
ni = {µi > 0}zniz

′
ni = Id;

1
n

∑
i≤n

P|∆ni|2{|∆ni| > ε
√
n} =

1
n

∑
i≤n

{µi > 0}|zni|2{|zni| > ε
√
n} → 0.

Ignoring the contributions from the {Rni}, we get an improved approximation
to Gn:

Gn(ω, t) =
1√
n
W ′

nt + Γn(t) +
1
n

∑
i≤n

(
Rni(ω, t) − PRni(·, t)

)

� 1√
n
W ′

nt + p(0)|t|2 for small |t|.

The random vector t̂n should be close to the vector −Wn/2
√
np(0) that minimizes

the approximating quadratic, which leads us to the limit distribution asserted by
Theorem 11.1.

Now let us make these arguments precise. The technical challenge in the proof
will come from the two approximations to Gn. To obtain the necessary uniform
bounds on the errors we will make use of maximal inequalities for processes with
finite pseudodimension.

Behavior of Γn. From (11.2), it follows that Γn(t) = PGn(·, t) is an increasing
function of |t|, taking its minimum value uniquely at t = 0. Given ε > 0, choose K
and δ according to (ii)* and (iii)*; then put r = δ/K. From (11.3), the terms where
|µi| ≤ δ or |zni| > K contribute at most 2Cε|t|2 to Γn(t). For the other terms we
have |z′nit| ≤ δ if |t| ≤ r. If µi ≤ −δ this makes Hi(z′nit) zero. Within an error of
2Cε|t|2, the expectation equals∑

i

{µi > δ, |zni| ≤ K}
(
p(0)|z′nit|2 + o(|z′nit|2)

)
,

the o(·) being uniform in n and i. Adding back contributions from the terms where
|µi| ≤ δ or |zni| > K, we then get via (iv)* that

(11.4) Γn(t) = p(0)|t|2 + o(|t|2) uniformly in n.

In particular, if r is small enough,

Γn(t) ≥ 1
2
p(0)|t|2 for all n, all |t| ≤ r.

This local lower bound implies a global lower bound,

(11.5) lim inf
n→∞

inf
|t|≥r

Γn(t) > 0 for each r > 0,

because Γn(t) is an increasing function of |t|. The last inequality together with a
uniform law of large numbers will imply consistency of t̂n.
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Manageability. We will need maximal inequalities for both {fni} and {Rni}.
Let us verify that both processes generate random subsets of R

n with a pseudo-
dimension determined by d. From the results in Section 4, this will imply that both
processes are manageable.

Consider first the set Fnω of all points in R
n with coordinates fni(ω, t), as t

ranges over the set
Tn = {t ∈ R

d : θ0 + V −1
n t ∈ Θ}.

We need to find a dimension V such that, for every β in R
V +1, no (V + 1)-

dimensional coordinate projection of Fnω can surround β. This property is not
affected if we translate Fnω by a fixed amount; it is good enough to establish the
property for the set of points with coordinates

|y+
i − (µi + z′nit)

+| = max
[
y+

i − (µi + z′nit)
+, (µi + z′nit)

+ − y+
i

]
.

From the stability results in Section 5 for pseudodimension, it is good enough to
treat the two terms in the maximum separately. Consider, for example, the set of
points with coordinate y+

i − (µi + z′nit)
+. Again we translate to eliminate the y+

i .
We now must determine, for I = {i1, . . . , ik}, with k suitably large, and β a point
in R

k, whether it is possible to find for each J ⊆ I a t in Tn for which

(µi + z′nit)
+

{
> βi for i ∈ J,

< βi for i ∈ I\J.
The inequalities when J is the empty set show that every βi would have to be
strictly positive, so the problem is unchanged if we replace (µi +z′nit)

+ by µi +z′nit,
which is linear in t. Even if t ranges over the whole of R

d, the points with these
linear coordinate functions can at best trace out an affine subspace of dimension
d. If k = d + 1, it is impossible to find for each J a t that satisfies the stated
inequalities. By Lemma 5.1, the set Fnω has pseudodimension less than 10d. (The
bound could be improved, but there is no point in doing so; it matters only that
the pseudodimension is the same for all n.)

Similar arguments serve to bound the pseudodimension for the set of points Rnω

with coordinates Rni(ω, t)/|t|, as t ranges over the nonzero points in Tn. Indeed,
inequalities

Rni(ω, t)/|t|
{

> βi for i ∈ J,

< βi for i ∈ I\J,
are equivalent to

|y+
i − (µi + z′nit)

+| − |y+
i − µ+

i | − ∆ni(ω)′t− βi|t|
{

> 0 for i ∈ J,

< 0 for i ∈ I\J.
Again several translations and appeals to the stability property for maxima reduces
the problem to the result for affine subspaces of dimension d. The sets Rnω have
pseudodimension less than 1000d (or something like that).

Maximal Inequalities. The sets Tn all lie within some bounded region of R
d;

there is a constant κ such that |t| ≤ κ for every t in every Tn. It follows that

|fni(ω, t)| ≤ κ|zni| for all t.
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The maximal inequality (7.10) for manageable processes provides a constant C for
which

P sup
t

|Gn(·, t) − Γn(t)|2 ≤ C

n2

∑
i

|zni|2.

Condition (ii)* bounds the sum on the right-hand side by a multiple of 1/n. We
deduce that

(11.6) sup
t

|Gn(·, t) − Γn(t)| = op(1).

[Actually we get Op(1/
√
n), but op(1) will suffice for our later purposes.] For the

remainder terms we have a slightly more complicated envelope for t in a small
neighborhood of the origin,

sup
|t|≤r

|Rni(ω, t)|
|t| ≤ 2|zni|

(
{|µi| ≤ r|zni|} + {|ui(ω)| ≤ r|zni|}

)
.

Maximal inequality (7.10) provides another constant C for which

1
n

P sup
0<|t|≤r

∣∣∣∣|t|−1
∑
i≤n

Rni
(ω, t) − PRni

(·, t)
∣∣∣∣
2

≤ C

n

∑
i≤n

|zni|2
(
{|µi| ≤ r|zni| + P{|ui| ≤ r|zni|}

)
.

By condition (ii)* the summands where |zni| > K contribute at most Cε to the
right-hand side. The remaining summands contribute at most

C

n

∑
i≤n

|zni|2{|µi| ≤ Kr} +
C

n
P{|u1| ≤ Kr}

∑
i≤n

|zni|2.

Conditions (iii)* and (i) ensure that this contribution converges to zero, uniformly
in n, as r → 0. It follows that∣∣∣∣ 1

n

∑
i≤n

Rni(ω, t) − PRn(·, t)
∣∣∣∣ = op(|t|/

√
n)

uniformly in n and uniformly over t in shrinking neighborhoods of the origin. That
is,

Gn(ω, t) = Γn(t) +
1√
n
W ′

nt + op(|t|/
√
n)

= p(0)|t|2 + o(|t|2) +
1√
n
W ′

nt + op(|t|/
√
n) uniformly,(11.7)

where the uniformity is over all n and all t in a neighborhood {|t| ≤ rn}, for every
sequence {rn} of positive real numbers converging to zero.

Proof of the Theorem. Drop the ω from the notation. It will be enough if
we show that t̂n = op(1/

√
n)−Wn/2

√
np(0). First establish consistency, by means

of the inequality
Gn(t̂n) = inf

t
Gn(t) ≤ Gn(0) = 0.
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The random point t̂n lies in the range over which the op(1) bound from (11.6) holds.
Approximating Gn by Γn we get

Γn(t̂n) ≤ op(1).

Using (11.5) deduce that t̂n = op(1). If rn tends to zero slowly enough,

P{|t̂n| > rn} → 0.

This brings t̂n into the range where we can appeal to (11.7) to deduce

Gn(t̂n) =
(
p(0) + op(1)

) ∣∣∣∣t̂n +
Wn + op(1)
2
√
n p(0)

∣∣∣∣
2

− |Wn|2
4np(0)

+ op(1/n).

When −Wn/2
√
np(0) lies in Tn, which happens with probability tending to one

because θ0 is an interior point of Θ and Wn = Op(1/
√
n), we can again invoke

approximation (11.7) to get

Gn

(
−Wn/2

√
np(0)

)
= − |Wn|2

4np(0)
+ op(1/n).

From the comparison
Gn(t̂n) ≤ Gn

(
−Wn/2

√
np(0)

)
,

deduce that ∣∣∣∣t̂n +
Wn + op(1)
2
√
np(0)

∣∣∣∣
2

= op(1/n),

from which the desired approximation to t̂n follows.

Remarks. For the theory of (uncensored) least absolute deviations estimators
see Bloomfield and Steiger (1983). A central limit theorem for such estimators was
derived using elementary convexity arguments (which will reappear in Section 14)
by Pollard (1990).

Chapter 10 of Amemiya (1985) describes many different approaches to estimation
for Tobit models.


