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Chapter 2

It’s just Calculus and
convexity

Calculus::Calculus
Section 2.1 explains why you can safely just skim through this chapter on

a first pass.
Section 2.2 Describes a simple Taylor expansion trick for bounding func-

tions of the form 2(f(x) − f(0) − xf ′(0))/x2. I have found the trick a
very good way of avoiding masses of Calculus. Two important special
cases are described.

Section 2.3 explains why the logarithm of a moment generating function
(MGF) is always convex.

Section 2.4 describes briefly a procedure known as the Fenchel-Legendre
transformation, explaining how it relates to a minimization method
(Chapter 3) for deriving probability tail bounds. The magical ψBenn

makes its first appearance.
Section 2.5 waxes historical about the Stirling formula and binomial co-

efficients. It describes a few tricks that pop up often in the literature on
high-dimensional statistics.

Section 2.6 is an advertisement for the convex function ψBenn. It has
been a hobby of mine to find hidden appeals to the helpful properties of
that function buried inside complex arguments.

Section 2.7 explains why many important quantities are written as inte-
grals.
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2.1. Introduction 2

2.1 Introduction
Calculus::S:intro

You could safely skim quickly through this chapter, just to get an idea
of how much fancy modern theory depends on only a little bit of Calcu-
lus with magical inequalities coming via convexity arguments, sometimes
in disguise. I’ll tell you in later chapters when something from here is
needed, at which point you might want to read some sections from this
Chapter more carefully. I prefer having the elementary—but very useful—
arguments collected together in one place rather than having them buried
inside complicated proofs scattered all over the place.

2.2 Taylor’s theorem
Calculus::S:Taylor

Where would Mathematics be without approximation of functions by
polynomials?

For my purposes, the integral form of Taylor’s theorem is the most use-
ful. Suppose g is a real-valued function defined at least on an interval J of
the real line that contains both 0 and a point x. If g is twice continuously
differentiable then

g(x)− g(0) =

∫ 1

0

∂g(xt)

∂t
dt = x

∫ 1

0
g′(xt) dt for x ∈ J

and

R1(x, g) = g(x)− g(0)− xg′(0)

= x

∫ 1

0
g′(xt)− g′(0) dt

= x2
∫ 1

0

∫ 1

0
{0 ≤ s ≤ t ≤ 1}g′′(xs) ds dt

= 1
2x

2∆(x, g) where ∆(x, g) :=

∫ 1

0
2(1− s)g′′(xs) ds\E@ R1.rep\E@ R1.rep <1>

And so on, if higher-order derivatives exist. See Problem [1] for the analog
when g has an absolutely continuous kth derivative.

Remark. The assumptions on g could be relaxed slightly by using
some fancy facts about absolute continuity.

The behaviors of R1(x, g) and ∆(x, g) are controlled by g′′ . For exam-
ple, if g′′ is non-negative then so are ∆(·) and R1(·), and if g′′ is continu-
ous then so are ∆(·) and R1(·). More interestingly, if g′′ is a nondecreasing
function then so is ∆(·), and if g′′ is a convex function then so is ∆(·).
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§2.2 Taylor’s theorem 3

We can interpret the factor 2(1 − s) in the definition of ∆ as the den-
sity (with respect to Lebesgue measure) of a probability measure on the
interval (0, 1), with expected value∫ 1

0
s2(1− s) ds = 1/3.

If g′′ is convex then Jensen’s inequality gives

\E@ integral.Jensen\E@ integral.Jensen <2> ∆(x, g) ≥ g′′
(
x

∫ 1

0
2s(1− s)

)
= g′′(x/3).

This inequality accounts for a few factors of 1/3 that pop up in well known
inequalities.

My main interest in these Calculus tricks originally came from study-
ing two special examples, which will be important throughout this book.
(Hence the funny fonts.) The two functions are

f(x) = ex − 1− x for x ∈ R\E@ fbb\E@ fbb <3>

h(x) = (1 + x) log(1 + x)− x for x ≥ −1.\E@ hbb\E@ hbb <4>

For h the convention 0 log 0 = 0 gives h(−1) = 1. Sometimes the domain
of h is extended to the whole real line by defining h(x) = +∞ when x <
−1, for reasons that will be explained in the next Section.

The first and second derivatives,

f′(x) = ex − 1 and f′′(x) = ex

h′(x) = log(1 + x) and h′′(x) = (1 + x)−1,

show that both functions are non-negative and convex, with each achiev-
ing its minimum value of 0 at x = 0. From <1> we have representations

f(x) = 1
2x

2�(x) where �(x) :=

∫ 1

0
2(1− s)exsds\E@ Dele.def\E@ Dele.def <5>

h(x) = 1
2x

2ψBenn(x) where ψBenn(x) :=

∫ 1

0

2(1− s)
(1 + xs)

ds for x ≥ −1.\E@ Bennpsi.def\E@ Bennpsi.def <6>

The function � is continuous, convex, and strictly increasing. The func-
tion ψBenn is continuous, convex, and strictly decreasing on [−1,∞).
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2.3. Convexity of the log MGF 4

w 7→ ψBenn(w)

0 2 4 6 8 10
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0
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0

Moreover, by Jensen’s inequality,

\E@ Benn.Bern\E@ Benn.Bern <7> ψBenn(x) ≥ h′′(x/3) = (1 + x/3)−1.

Compare with the fact that ψBenn(x) actually decreases like 2x−1 log(x) as
x tends to infinity.

As you will see in Chapter 3, the function ψBenn lies hidden inside a
handful of very useful tail bounds. Inequality <7> will also have some
surprising consequences: in Section 2.6, in the context of the Pinsker in-
equality; and in Chapter 8, to explain the relationship between the Ben-
nett and Bernstein exponential inequalities.

Remarks. The subscript ‘Benn’ stands for George Bennett, who es-
tablished a now famous exponential tail bound (Bennett, 1962, equa-
tion 8b), although he did not write it using the ψBenn function. This
bound, and its martingale extension, will be described in Chapter 8.

The monotonicity and convexity of � are easy to check for x ≥ 0
from the series expansion

�(x) = 2
∑

k≥2
xk−2/k! .

However, even the monotonicity is less obvious when x is negative.
Brute force calculation of the derivative,

d�(x)/dx =
(x− 2)ex + x+ 2

x3/2
,

didn’t help me much when I first encountered � in the Chow and Te-
icher (1978, Section 11.1) book. The latest edition of that book did
use the shorter proof, almost as above. See also the proof of Freed-
man (1975, Lemma 3.1).

2.3 Convexity of the log MGF
Calculus::S:MGFconvexity

For a random variable X, the function MX(λ) = P exp(λX) for λ ∈ R
is called the moment generating function (MGF) for X. It is always fi-
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§2.3 Convexity of the log MGF 5

nite at the origin because MX(0) = P1 = 1. The expectation is well de-
fined and nonnegative for all real λ, although it might take the value +∞.
For example, if X has a Cauchy distribution then MX(λ) = +∞ for all
nonzero λ; and if X has a standard exponential distribution then

MX(λ) =

∫ ∞
0

eλx−x dx =

{
(1− λ)−1 for λ < 1
∞ otherwise

.

The function MX inherits convexity from the exponential function.
More precisely, the set

epi(MX) = {(λ, t) ∈ R2 : t ≥MX(λ)}

is convex and closed as a subset of R2. The function MX is a closed, proper
(MX(λ) > −∞), convex function, in the sense described by Rockafellar
(1970, Section 7). Moreover, the restriction of MX to the convex set DX :=
{λ ∈ R : MX(λ) < ∞} is continuous and convex in the usual sense.
If int(DX), the interior of DX , is non-empty then MX is infinitely differen-
tiable with

\E@ MGF.derivs\E@ MGF.derivs <8> M
(k)
X (λ) = P

(
XkeλX

)
for k = 1, 2, . . . if λ ∈ int(DX).

See Problem [3] for the (easy) proofs.

Remark. The differentiability can fail at the boundary of DX . For
example, if X has the distribution with density x−2{x ≥ 1} with
respect to Lebesgue measure then MX(λ) < ∞ iff λ ≤ 0. The left-
hand derivative at λ = 0 is infinite: the ratio (MX(0) −MX(−h))/h
tends to +∞ as h decreases to zero.

The function LX := logMX inherits from MX the lower semi-continuity
and infinite differentiability on the interior of DX . More surprisingly, LX
is also a proper, closed convex function. The convexity follows from the
Hölder inequality: for nonnegative random variables Y1 and Y2: for posi-
tive constants αi with α1 + α2 = 1,

P (Y α1Y α2
2 ) ≤ (PY )α1 (PY2)

α2 .

Taking Yi = exp(λiX) we get

MX(α1λ1 + α2λ2) ≤MX(λ1)
α1MX(λ2)

α2 .

By taking logs we get

LX(α1λ1 + α2λ2) ≤ α1LX(λ1) + α2LX(λ2).
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2.4. Fenchel-Legendre conjugates 6

Remark. If you worry about things like log(6∞) = log(6) + log(∞)
you could instead note that the restriction of LX to DX is convex in
the usual sense, with LX(λ) = ∞ outside DX , which is equivalent to
convexity of epi(LX) as a subset of R2.

Formula <8> leads to interesting expressions for the first two deriva-
tives of LX on int(DX):

L′(λ) =
M ′X(λ)

MX(λ)
= PX

eλX

MX(λ)

L′′(λ) =
M ′′X(λ)

MX(λ)
−
(
M ′X(λ)

MX(λ)

)2

= PX2 eλX

MX(λ)
−
(
PX

eλX

MX(λ)

)2

.

If we define a probability measure Pλ by its density, dPλ/dP = eλX/MX(λ),
then

\E@ LX.derivs\E@ LX.derivs <9> L′(λ) = PλX and L′′(λ) = Pλ (X − PλX)2 = varλ(X) ≥ 0.

In particular, if 0 ∈ int(DX) then L′(0) = PX, so that Taylor expansion
gives

\E@ L.Taylor\E@ L.Taylor <10> L(λ) = λPX + 1
2λ

2varλ∗(X) with λ∗ lying between 0 and λ.

I was quite surprised when I first learned how often <9> lurks behind
useful facts. Problem [5] presents an example, which I learned from one of
my colleagues only last year.

Remark. Bounds on the varλ∗(X), for some hard to calculate λ∗ that
depends on λ, lead to bounds on L and tail bounds for X − PX. The
proof of the Hoeffding inequality in Chapter 7 uses the representa-
tion <10> to control the MGF of a bounded random variable.

2.4 Fenchel-Legendre conjugates
Calculus::S:Fenchel

Many probability bounds involve a minimization problem of the form

for each w ∈ R minimize over λ ∈ J the function f(λ)− λw,

where J is a nonempty convex subset of the real line, and f : J → R.
Of course a convex J is some sort of interval, such as R itself or (−∞, 3]
or [−7, 3), and so on. The role of J can be ignored if we extend f to a
function taking values in R ∪ {∞} by defining f(λ) = +∞ for λ /∈ J .
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§2.4 Fenchel-Legendre conjugates 7

While we are at it, we should allow for the possibility that there might be
no minimizing value by defining

\E@ conjugate\E@ conjugate <11> g(w) = infλ∈R

(
f(λ)− λw

)
for w ∈ R.

Equivalently,

−g(w) = supλ∈R

(
λw − f(λ)

)
for w ∈ R.

The function f∗ = −g is often called the Fenchel-Legendre transform,
or convex conjugate, of f .

Remark. Note that for any function ` : R→ R ∪ {∞},

`(w) + f(λ) ≥ wλ for all w, λ ∈ R

if and only if `(w) ≥ f∗(w) for all w.

The calculation of the infimum in <11> is easier when f itself is con-
vex. It is then usually easy to crank out g by brute force Calculus by find-
ing where the derivative is positive or negative or zero. In Chapter 3 you
will encounter several such cases where f(λ) = logPeλX for a random
variable X.

It is also convenient that g, as an infimum of linear functions of w, al-
ways turns out to be concave and f∗ is always convex. The convexity can
also be seen from consideration of the epigraph:

epi(f∗) = {(t, w) ∈ R2 : t ≥ f∗(w)}
= ∩λ∈R{(t, w) ∈ R2 : t− λw ≥ −f(λ)},

an intersection of closed half-spaces. The epigraph is closed as a (nonempty)
subset of R2, not just convex. That makes f∗ a closed, proper convex
function in the sense used by Rockafellar (1970, Section 7).

Remark. For a proper, convex function with J = {λ : f(λ) < ∞} the
closedness property just involves the values of f at the endpoints of J ,
if any. This subtlety need not concern us.

The general theory is interesting because f∗∗ = (f∗)∗ happens to be
the largest closed, convex function for which f(w) ≥ f∗∗(w) for all w
(see Rockafellar (1970, pages 103-4). In particular, if f itself is closed and
convex then f∗∗ = f . Such a property plays a central role role in the study
of convex duality (Rockafellar, 1974).
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§2.4 Fenchel-Legendre conjugates 8

Remark. Unfortunately these wonderful duality facts about f∗∗ don’t
seem to help much for the material in this book. I should perhaps
look more carefully at the pages of Boucheron et al. (2000) pointed at
by index entries of the form “duality . . . ”.

Calculus::exp <12> Example. Consider the convex function f(λ) = eλ− 1−λ, for λ ∈ R, from
Section 2.2. It is convex on the real line with derivative 0 at the origin.
For each w ∈ R the concave function

Gw(λ) = λw − f(λ) = λ(w + 1)− eλ + 1

has λ-derivative G′w(λ) = (1 + w)− eλ.

λ 7→ Gw(λ)

If w > −1 the maximum of Gw is achieved when G′w(λ) = 0, that is,
at λ = log(1 +w). For w = −1 we have G−1(λ) = 1− eλ, which approaches
its supremum of 1 as λ → ∞. For w < −1, we have Gw(λ) ↑ +∞ as
λ ↓ −∞. In summary,

\E@ fbb.star\E@ fbb.star <13>

f∗(w) =

 (1 + w) log(1 + w)− w if w > −1; achieved at λ = log(1 + w)
1 if w = −1; approached as λ→∞
+∞ if w < −1; approached as λ→∞

That is, f∗ = h, as a map from R to (−∞,+∞].
The general duality theory asserts that

f(λ) = h∗(λ) = supw∈Rwλ− h(w) = supw≥−1wλ− h(w).

Chap 2. It’s just Calculus and convexity ./ Draft: 30 June 2020



2.5. Approximation of factorials 9

Let me check.
For λ ∈ R the supremum defining h∗(λ) need only run over w ≥ −1

because λw − h(w) = −∞ for w < −1.
The derivative of the concave function w 7→ λw− h(w) is λ− log(1 +w),

which tends to +∞ as w → −1 and −∞ as w → ∞. For the maximiz-
ing w we have λ = log(1 + w), which gives

h∗(λ) = λ(eλ − 1)− λeλ + (eλ − 1) = eλ − 1− λ.

That is, h∗ = f, as asserted by the general theory.

2.5 Approximation of factorials
Calculus::S:factorial

Abraham de Moivre (1756, page 244), before deriving his famous approxi-
mation to the Binomial distribution, made a comment about a constant B
(which we now know is equal to

√
2π), which he had approximated by

adding up some terms of a slowly converging infinite series. He went on:

. . . seeing at the same time that what I had done answered
my purpose tolerably well, I desisted from proceeding farther
till my worthy and learned Friend Mr. James Stirling, who
had applied himself after me to that inquiry, found that the
Quantity B did denote the Square-root of the Circumference of
a Circle whose Radius is Unity . . .

Yes, it was the Stirling of the approximation that is now often cited in
the exquisitely sharp form: for n ∈ N,

\E@ Stirling\E@ Stirling <14> n! =
√

2π nn+1/2e−n+rn where bn :=
1

12n+ 1
< rn <

1

12n
=: an.

Equivalently, n! = nn+1/2e−n+dn where

dn := log
(
n!en/nn+1/2

)
= log(n!)− (n+ 1

2) log n+ n

and

\E@ sandwich\E@ sandwich <15> dn − an < C < dn − bn where C = log
√

2π.

For probabilists, there is a charming connection with the probabili-
ties pi = P{Xn = i} for Xn ∼ Poisson(n). The maximum occurs at i = n,
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with pn = e−nnn/n! = n−1/2e−dn . Convergence of dn to log
√

2π is equiv-
alent to convergence of

√
npn to 1/

√
2π. The N(n, n) approximation to

the Poisson(n) suggests that

pn = P{n− 1
2 ≤ X ≤ n+ 1

2} = P{− 1

2
√
n
≤ X − n√

n
≤ 1

2
√
n
}

≈ P{− 1

2
√
n
≤ Z ≤ 1

2
√
n
} ≈ 1/

√
2πn.

The usual central limit theorem does not quite justify all this handwaving
but the basic idea works. See Problem [6] for a rigorous argument.

The proof of <15> is quite beautiful. It is worth your attention. The
assertion will follow from the inequalities

\E@ diffs\E@ diffs <16>
1

12n2 + 14n+ 13/12
= bn−bn+1 < dn−dn+1 < an−an+1 =

1

12n(n+ 1)
,

which together show that {dn − an : n ∈ N} is an increasing sequence and
{dn − bn : n ∈ N} is a decreasing sequence. It follows that there exists a
finite constant C for which dn−an ↑ C and dn− bn ↓ C. Problem [6] shows
that C = log(

√
2π), the logarithm of de Moivre’s B.

To prove inequality <16> first write everything in terms of Tn = t−1n =
2n+ 1. By direct calculation

dn − dn+1 = (n+ 1/2) log

(
n+ 1

n

)
− 1

= 1
2Tn log

(
Tn + 1

Tn − 1

)
− 1 =

1

2tn
log

(
1 + tn
1− tn

)
− 1

=
t2n
3

+
t4n
5

+
t6n
6

+ . . . by Taylor expansion

<
t2n
3

+
t4n
3

+
t6n
3

+ · · · = t2n
3

(
1− t2n

)−1
=

1

3(T 2
n − 1)

=
1

12n(n+ 1)
= an − an+1.

Similarly

dn − dn+1 >
t2n
3

=
1

3T 2
n

=
1

12n2 + 12n+ 3
> bn − bn+1.

The second inequality comes from

(12n2 + 14n+ 13/12)− (12n2 + 12n+ 3) = 2n− 23/12 ≥ 1/12.

Done.
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Calculus::binom.coeff <17> Example. A lot of asymptotic statistical theory involves the binomial
coefficients:(

n

i

)
=

n!

i!(n− i)!
for i = 0, 1, . . . , n.

To avoid an overabundance of parentheses, for 0 < i < n define η = i/n =
1− γ and εi,n = ri + rn−i − rn. Then(

n

i

)
=

n!

i!(n− i)!
=

nn+1/2 exp(εi,n)√
2π(nη)i+1/2(nγ)n−i+1/2

by <14>

=
1√

2πnηγ
exp

(
−n
[
η log

1

η
+ γ log

1

γ

]
+ εi,n

)
.

The εi,n is usually ignored if both i and n − i are large. The term within
square brackets in the exponent is called the entropy of the Ber(η) dis-
tribution, a quantity much loved by information theorists (Cover and
Thomas, 2012, Example 2.1.1). When multiplied by n it gives the entropy
of the Bin(n, η) distribution.�

<18> Example. If X ∼ Bin(n, p) and q = 1 − p then, again writing η = 1 − γ
for i/n, we have

P{X = i} =

(
n

i

)
piqn−i =

(
n

i

)
exp (nη log p+ nγ log q)

=
1√

2πnηγ
exp

(
−n
[
η log

p

η
+ γ log

q

γ

]
+ εi,n

)
.

The quantity

DKL(η || p) := η log (η/p)+γ log (γ/q) , for q = 1− p and γ = 1− η,

is called the Kullback-Leibler distance (or KL-divergence) between
the Ber(η) and Ber(p) distributions. Multiplication by n gives the KL-
divergence between the Bin(n, η) and the Bin(n, p) distributions.

The KL-divergence is also closely related to the function ψBenn, defined
as in <6> by 1

2 t
2ψBenn(t) = h(t) = (1 + t) log(1 + t)− t. If i = np+ x then

η = p(1 + x/(np)) and γ = q(1 − x/(nq)) then D(Bin(n, η) || Bin(n, p))
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equals

np

(
1 +

x

np

)
log

(
1 +

x

np

)
+ nq

(
1− x

nq

)
log

(
1− x

nq

)
= np× h

(
x

np

)
+ nq × h

(
−x
nq

)
+ np

(
x

np

)
+ nq

(
−x
nq

)
=
x2g(x, n, p)

2npq
where g(x, n, p) := qψBenn

(
x

np

)
+ pψBenn

(
−x
nq

)
.

In summary, for 0 < i = np+ x < n and X ∼ Bin(n, p) we have

\E@ Bin.rep\E@ Bin.rep <19> P{X = i} =
1√

2πnpq
exp (−Q(x))× Λ(x, n, p)

where

Q(x) = np× h

(
x

np

)
+ nq × h

(
−x
nq

)
=
x2g(x, n, p)

2npq

g(x, n, p) = qψBenn

(
x

np

)
+ pψBenn

(
−x
nq

)
log Λ(x, n, p) := rnp+x + rnq−x − rn − 1

2 log [(1 + x/(np)) (1− x/(nq))] .

The constraint 0 < i < n is only needed to ensure that there are no divi-
sions by 0 in the definition of Λ.

If min(np, nq) is large and x/min(np, nq) is small then Λ(x, n, p) ≈ 1
and g(x, n, p) ≈ 1, so that

P{X = i} ≈ 1√
2πnpq

exp

(
− x2

2npq

)
.

This result should remind you of the normal approximation to the Bin(n, p),
but not just as an approximation for tail probabilities. A more careful
handling of the errors of approximation would lead to a so-called local
limit theorem for the Binomial distribution (Petrov, 1975, Chapter 7).

If you don’t like great gobs of algebra you could safely skip the rest of
this Example. I am just about to make a small point about a refinement
of the normal approximation to the Binomial, with another advertisement
for the methods from Section 2.2.

The appearance of the convex function ψBenn in the definition of g(x, n, p)
tell us something surprising about departures from normality. By convex-
ity,

\E@ Bennpsi.convex\E@ Bennpsi.convex <20> g(x, n, p) ≥ ψBenn

(
q
x

np
+ p
−x
nq

)
= ψBenn

(
(q − p)x
npq

)
.
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If p > 1/2 then g(x, n, p) > 1 for x > 0. We get something smaller than
the normal exponent −x2/(2npq) in the right tail beyond the mean np.
This effect can be attributed to the skewness, P(X − np)3/var3/2(X) =
npq(q−p)/(npq)3/2, which is negative if p > 1/2. To a first approximation,
the Bin(n, p) is symmetric around its mean np. To a finer approximation,
if p > 1/2 then the probabilities are slightly smaller in the left tail than in
the right tail.

By the principle of no free lunches, if skewness gives us a nicer right tail
then it will probably give us an uglier left tail. That is in fact the case but
it cannot be deduced directly from inequality <20>. Instead we need to
identify some higher order terms in the series expansion of Q(x). From

h′(x) = log(1 + x) h′′(x) = 1/(1 + x)

h(3)(x) = −1/(1 + x)2 h(4)(x) = 2/(1 + x)3

and Problem [1] we get

h(x) =
x2

2
− x3

6
+
x4

3

∫ 1

0

(1− s)3

(1 + sx)3
ds for x > −1

and

Q(x) = nqh(x/np) + nph(−x/nq)

= np

(
x2

2(np)2
− x3

6(np)3
+

x4

3(np)4

∫ 1

0

(1− s)3

(1 + sx/np)3
ds

)
+ nq

(
x2

2(nq)2
+

x3

6(nq)3
+

x4

3(nq)4

∫ 1

0

(1− s)3

(1− sx/nq)3
ds

)
=

x2

2npq
+
x3(q − p)
6n2p2q2

+
x4

3

∫ 1

0
(1− s)3

[
(np+ sx)−3 + (nq − sx)−3

]
ds.

The pattern is clearer if we consider terms i = np + x with x = y
√
npq,

that is, if we scale by the standard error σ =
√
npq for X:

Q(yσ) =
y2

2
+
y3(q − p)
6
√
npq

+
y4p2q2

3n

∫ 1

0
(1− s)3

[
(p+ syσ/n)−3 + (q − syσ/n)−3

]
ds.
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2.6. Distances between probability measures 14

The y2 term contributes the normal approximation; the y3 term con-
tributes a skewness perturbation of order n−1/2; and the y4 term scoops
up the leftovers, which are of order n−1. If you like this kind of thing then
you will love Petrov (1975, Chapter 6).�

Calculus::VC <21> Example. For many purposes a somewhat crude upper bound for
(
n
i

)
suffices. For example, if 0 < i ≤ d < n/2,(

n

i

)
=
n(n− 1) . . . (n− i+ 1)

i!
<
(n
d

)i di
i!
<
(n
d

)d di
i!
<
(en
d

)d
.

You will see these bound used in a lot of statistical papers involving high-
dimensional (dimension d) data.

You will also see a related expression in the ultra-famous Vapnik &
Červonenkis theory:∑

0≤i≤d

(
n

i

)
≤
∑

0≤i≤d

(n
d

)d di
i!
<
(en
d

)d
.

See Section 13.2 for more of that exciting story.�

2.6 Distances between probability measures
Calculus::S:divergence

Here is another example of ψBenn popping up in unexpected places.
Modern statistical theory makes extensive use of various measures of

‘distance’ between probability measures P and Q defined on the same
sigma-field. To keep the following discussion simple I’ll assume that both
probabilities are defined on the same finite set X with Q{x} > 0 for
each x ∈ X. Define

ρ(x) =
P{x}
Q{x}

for x ∈ X.

For each real-valued function g on X think of its Q expectation as the lin-
ear functional

Qg = Qg(x) :=
∑

x∈X
Q{x}g(x).

Remark. The quantity ρ(x) is sometimes called the likelihood ra-
tio. If you desire greater generality, feel free to extend the arguments
to general sigma-fields with P absolutely continuous with respect
to Q with density (Radon-Nikodym derivative) ρ = dP/dQ. You
will also need to worry about integrability. I would even forgive you
for adopting the hideous notation EQg for Qg, but the even more
hideous Ex∼Qg(x) is beyond the pale, in my humble opinion.
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§2.6 Distances between probability measures 15

For each convex function f on R+ for which f(1) = 0, the f -divergence
is defined as Df (P || Q) := Qf(ρ(x)). Three particularly popular special
cases correspond to the functions f(x) = |x − 1| (the L1 distance), and
f(x) = x log x (the Kullback-Leibler divergence) and f(x) = (x − 1)2 (the
χ2-divergence):

‖P −Q‖1 := Q|ρ(x)− 1| =
∑

x
|P{x} −Q{x}|

DKL(P || Q) := Qρ(x) log(ρ(x)) =
∑

x
P{x} log (P{x}/Q{x})

Dχ2(P || Q) := Q (ρ(x)− 1))2 =
∑

x

(P{x} −Q{x})2

Q{x}

Of these, only the L1 distance is a metric.
The relationship between the three divergences becomes clearer when

they are written as integrals involving δ(x) = ρ(x)− 1:

‖P −Q‖1 := Q|δ|
DKL(P || Q) := Qh(δ) = 1

2Q
(
δ2ψBenn(δ)

)
Dχ2(P || Q) := Qδ2

As before, h(x) = (1 +x) log(1 +x)−x. The extra −x does not change the
integral because Qδ = Qρ− 1 = 1− 1.

The divergences are related by the inequalities

Dχ2(P || Q) ≥ DKL(P || Q) ≥ 1
2 ‖P −Q‖

2
1 .

I don’t know if anyone has claimed parentage for the first inequality, which
follows from the fact that ψBenn(δ) ≤ 2. The second inequality, which is
usually called Pinsker’s inequality, follows from Cauchy-Schwarz:

1
2 (Q|δ|)2 = 1

2Q

(
|δ|√

1 + δ/3

√
1 + δ/3

)2

≤ 1
2Q

(
δ2

1 + δ/3

)
Q(1 + δ/3) by Cauchy-Schwarz

≤ 1
2Q
(
δ2ψBenn(δ)

)
by <7> and Qδ = 0.

I learned of this neat argument from Kemperman (1969).

Chap 2. It’s just Calculus and convexity ./ Draft: 30 June 2020



2.7. Bounding sums by integrals 16

2.7 Bounding sums by integrals
Calculus::S:sum.to.integral

Many approximation schemes (particularly those that will be discussed in

G(y)

yδi

area = δiG(δi+1)/4

δi+1δi+2

Chapter 9) bound useful quantities by sums of the form
∑k

i=0 δiG(δi+1),
with G(·) a decreasing function on R+. If the δi’s decrease geometrically,
say δi = δ0/2

i, then the sum can be bounded above by an integral,∑k

i=0
δiG(δi+1) ≤ 4

∫ δ1

δk+2

G(r) dr ≤ 4

∫ δ1

0
G(r) dr.

If G is integrable the replacement of the lower terminal by 0 costs little.
In the early empirical process literature, some authors chose the δi’s to

make the G(δi)’s increase geometrically, for similar reasons. (Use horizon-
tal slices.)

In delicate situations, sometimes the {δi} sequence needs to chosen in a
more cunning way. See Section 9.6, for example.

2.8 Problems
Calculus::S:Problems

[1] Suppose g is a real-valued function, defined at least on an interval J of theCalculus::P:Taylor.Rk

real line that contains both 0 and a point x, that is (k + 1)-times continu-
ously differentiable. For x in the interior of J show that

Rk(x, g) := g(x)−
[
g(0) + xg′(0) + · · ·+ xkg(k)(0)/(k)!

]
= xk+1

∫
· · ·
∫
{0 ≤ tk+1 ≤ tk ≤ · · · ≤ t1 ≤ 1}g(k)(tk+1x) dtk+1 . . . dt1

= xk+1

∫ 1

0

(1− s)k

k!
g(k+1)(sx) ds.

[2] By splitting into real and imaginary parts, show thatCalculus::P:eix

eix−
(

1 + ix+ (ix)2/2! + · · ·+ (ix)k/k!
)

= xk+1

∫ 1

0

(1− s)k

k!
ik+1eisx ds.

for all real x. Deduce that∣∣∣eix − (1 + ix+ (ix)2/2! + · · ·+ (ix)k/k!
)∣∣∣ ≤ |x|k+1

(k + 1)!
,

an inequality is useful for arguments involving Fourier transforms.
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[3] Suppose MX(λ) = PeλX for λ ∈ R and DX = {λ ∈ R : MX(λ) <∞}.Calculus::P:smooth.MGF

(i) Show that MX(λ) is lower semi-continuous at each point of R. Equiv-
alently, epi(MX) is a closed subset of R2. Hint: If λn → λ ∈ R, Fa-
tou’s lemma tells you something about lim infn PeλnX . Argue similarly
if (tn, λn) ∈ epi(MX) and (tn, λn) → (t, λ) ∈ R2. (As Rockafellar (1970,
page 52) argued, lower semi-continuity of MX is equivalent to epi(MX)
being closed as a subset of R2.)

(ii) Show that the restriction of MX to DX is continuous as a function on DX .
Hint: Suppose [λ, γ] ⊂ DX and λn = αnλ + (1 − αn)γ. Convexity of MX

gives

MX(λn) ≤ αnMX(λ) + (1− αn)MX(γ). for 0 ≤ t ≤ 1.

Take the lim sup as αn tends to 0 to deduce that lim supMX(λn) ≤MX(λ),
which together with lower semi-continuity proves continuity from the right
at λ. Argue similarly if αn → 1 for continuity from the left at γ.

(iii) Suppose λ is an interior point of DX . Choose δ > 0 so that [λ − 2δ, λ +
2δ] ⊂ DX . For |h| < δ, establish the domination bound

|e(λ+h)X − eλX |/|h| ≤
∣∣∣∣∫ 1

0
XeλXeshXds

∣∣∣∣
≤ eλX

(
eδX + e−δX

)2
/δ,

which is integrable. Deduce via a Dominated Convergence argument that
M ′(λ) = P(XeλX).

(iv) Argue similarly to show that MX is infinitely differentiable on the interior

of DX , with M
(k)
X (λ) = P

(
XkeλX

)
.

[4] The gamma function is defined for α > 0 by Γ(α) =
∫∞
0 xα−1e−xdx.Calculus::P:log.gamma

Adapt either of the methods from Section 2.3 to prove that log Γ(·) is a
convex function.

[5] (See Wu and Zhou (2019) for an example of how the results from thisCalculus::P:condit.mean

Problem can be used.) Suppose X ∼ P and Z ∼ N := N(0, 1) are in-
dependent. Define U = αX + βZ for positive constants α and β. Define
h(u) = P(X | U = u). Follow these steps to shows that

(a) h is an increasing function

(b) If P is symmetric around 0 then h is an odd function.
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(i) Explain why the result is trivial if either of α or β is zero. Deduce that,
without loss of generality, we may suppose α = β = 1.

(ii) For suitably integrable f , show that

Pf(X,X + Z) = P x
∫

R
f(x, u)m(x, u)φ(u) du

where m(x, u) = φ(x − u)/φ(u) = exp(xu − x2/2). Deduce that: the
joint distribution M for (X,U) has density m with respect to P ⊗ N; the
marginal distribution (with respect to N) for U is q(u) = P xm(x, u); and
the conditional density (with respect to P ) for X given U = u is m(x |
u) = m(x, u)/q(u).

(iii) Assuming the usual conditions for differentiating inside P integrals, de-
duce that u 7→ log q(u) is convex, so that its derivative, q′(u)/q(u), is an
increasing function.

(iv) Use the fact that ∂m(x, u) = xm(x, u) to show that

h(u) = P xxm(x, u)/q(u) = P x
∂m(x, u)

∂u
/q(u) = q′(u)/q(u),

an increasing function.

(v) Note that m(−x,−u) = m(x, u) for all x and u. For symmetric P deduce
that

q(−u) = P xm(x,−u) = P xm(−x,−u) = q(u)

and

q(−u)h(−u) = q(u)P xxm(x,−u) = q(u)P x(−x)m(−x,−u) = −q(u)h(u),

which implies that h is an odd function.

[6] Section 2.5 noted the similarity between pn, the maximum of the probabil-Calculus::P:Stirling

ities pi = P{X = i} for X ∼ Poisson(n), and the Stirling formula, with the
comment that C = log(

√
2π) if and only if

√
2πnpn → 1 as n → ∞. Here

is one way to prove the convergence property for the Poisson.
In what follows let K = Kn be a positive integer of order o(n2/3) for

which Kn/
√
n → ∞. Let K denote the set of integers j with −K ≤ j ≤

K − 1.

(i) If f is Lipschitz function on the real line and δ is positive show that∣∣∣δf(iδ)−
∫ (i+1)δ

iδ
f(x) dx

∣∣∣ ≤ ‖f‖Lip δ2.
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Deduce that∣∣∣∑
i∈K

δf(iδ)−
∫ Kδ

−Kδ
f(x) dx

∣∣∣ ≤ 2K ‖f‖Lip δ
2.

In particular, for f(x) = e−x
2/2 and δ = n−1/2 deduce that

n−1/2
∑

i∈K
e−i

2/(2n) =

∫ K/
√
n

−K/
√
n
e−x

2/2dx+O(K/n) =
√

2π + o(1).

(ii) For i ∈ N with i/n ≤ 1/2 show that

log
pn+i
pn

= log
ni∏i

j=1(n+ j)
= −

∑i

j=1
log (1 + j/n) = − i

2

2n
+Ri

and log (pn−i/pn) = −i2/(2n)+R−i, where, for some universal constant C2,

max (|Ri|, |R−i|) ≤ C2

(
i/n+ i3/n2)

)
.

Hint: log(1 + x) = x+ r(x) with |r(x)| ≤ x2 for |x| ≤ 1/2.

(iii) For i ∈ K show that

pn+i = pn exp
(
−i2/(2n)

)
(1 + εi)

where maxi∈K |εi| = O(K/n+K3/n2) = o(1).

(iv) Show that

P{X − n ∈ K} =
∑

i∈K
pn+i

= n1/2pn

(
n−1/2

∑
i∈K

e−i
2/(2n)

)
(1 + o(1))

= n1/2pn

(√
2π + o(1)

)
.

(v) Conclude that
√

2πnpn → 1 as n→∞.

[7] For k ∈ N prove that ek ≥ kk/k! ≥ 1. Deduce that (k/e)k ≤ k! ≤ kkCalculus::P:crude.Stirling

and k/e ≤ (k!)1/k ≤ k. Compare with the sharper bounds given by Stir-

ling’s formula: (k!)1/k = ρkk/e, where ρk =
(√

2πkerk
)1/k

is a decreasing

function of k that converges to 1 as k →∞.

k 1 2 3 4 5 6 7 8 9 10
ρk 2.718 1.922 1.646 1.504 1.416 1.356 1.313 1.279 1.253 1.231
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2.9 Notes
Calculus::S:notes

See Stigler (1986, pages 70-76) for an illuminating discussion of the in-
teraction between de Moivre and Stirling. I learned Stirling’s formula,
as in <14>, from Feller (1968, page 52). He cited Robbins (1955), who
commented that the only novelty in his proof was in the derivation of the
inequality bn < rn. He acknowledged that the standard parts of his argu-
ment were taken from Darmois (1928, pages 315-317). Robbins also com-
mented that the “editor has pointed out that the inequalities . . . permit
the following brief proof”, which was a “modification of that attributed
to Cesàro by A. Fisher, Mathematical theory of probabilities, New York,
1936, pp. 93-95.” (The Cesàro book was published in 1884. Even though
I cannot read Italian, I feel the proof on page 270 is very similar to the
one presented by Feller.) The 1955 Mathematical Monthly listed Carl B.
Allendoerfer as the editor. As they say, there is nothing new under the
sun.

Feller (1968, footnote to page 53) cited Feller (1967) for the identifi-
cation of the limit of {edn} as

√
2π. In another footnote Feller (1968, Sec-

tion VII.2) recovered the
√

2π from a local limit theorem for the Bin(n, 1/2).
The argument in Problem [6] is essentially that of de Moivre (1756), ap-
plied to the Poisson instead of the Binomial. See also Pitman (1993, Sec-
tion 2.3) for a beautiful exposition of de Moivre’s method. At the end of
Section 3.6 of the same textbook, Pitman noted that de Moivre’s method
also works with the hypergeometric distribution. It can be also be applied
to other distributions P on the integers for which the ratios P{i+ 1}/P{i}
have a tractable form. Similar ideas also play a role in the the study of
log-concave discrete distributions and even in the Chen-Stein theory of
approximation (Barbour, Holst, and Janson, 1992, Section 9.2).

Initially I included Section 2.4 mostly because I feared I had missed
some subtle point made by Boucheron, Lugosi, and Massart (2013, Sec-
tions 2.2), who seemed to be suggesting that the Fenchel-Legendre trans-
form plays a role far more important than just as a name for a minimiza-
tion procedure. To me it didn’t seem very helpful just to know that a par-
ticular minimization of a convex function was an example of a technique
named after famous mathematicians. Eventually my opinion changed
when it became clearer to me that Fenchel-Legendre conjugates were lurk-
ing in the background for many useful ideas. See, for example, the discus-
sion of Young’s inequality in Section 5.4. The general theory also extends
easily to functions on Rd, where it plays an important role in the study of
large deviations for sums of independent random vectors—see Dembo and
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Zeitouni (1998, Chapter 2).
There is currently an archive of Fenchel’s papers at

http://web.math.ku.dk/arkivet/fenchel/wfenpapr.htm

There is also a most informative note (“Werner Fenchel, a pioneer in con-
vexity theory and a migrant scientist” by Christer Oscar Kiselman) about
Fenchel and duality at

http://www.cb.uu.se/~kiselman/bibliography.html

The note is listed on the web site as having appeared in Normat. Nordisk
matematisk tidskrift 61, No. 2-4, 133-152, but I have only seen the online
version.
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