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Chapter 3

The moment generating
function method

MGF::MGF
Section 3.1 introduces the MGF (moment generating function) method for

bounding tail probabilities.
Section 3.3 illustrates the MGF method for the simplest case, the normal

distribution. The normal is the prototype for the subgaussian distribu-
tions, which will be discussed in Chapter 7.

*Section 3.4 ponders the question, What do we lose if we use the subgaussian
tail bound for the normal in place of better bounds that are found in the
literature?

Section 3.5 derives tail bounds for the Poisson distribution. The om-
nipresent convex function ψBenn() puts in an appearance. The Poisson
is the prototype for the Bennett inequalities, which will be derived in
Chapter 8.

Section 3.6 establishes tail bounds for the gamma distribution, the proto-
type for the Bernstein inequalities, which will be derived in Chapter 8.

Section 3.7 establishes very good bounds for the tails of the Binomial dis-
tribution, which look a lot like a fancier version of the bounds for the
Poisson. These bounds also work for Poisson-Binomial distributions and
other sums of independent random variables taking values in [0, 1]. Both
results follow via Jensen’s inequality from the convexity of the exponential
function.

Section 3.8 shows that the tail bounds derived by the MGF method for the
hypergeometric distribution (sampling without replacement) are smaller
than the bounds for the corresponding Binomial (sampling with replace-
ment).
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3.1. Tail bounds from the moment generating function 2

3.1 Tail bounds from the moment generating function
MGF::S:method

Much modern statistical theory relies on a handful of probabilistic inequal-
ities, often in the form of bounds on tail probabilites or concentration in-
equalities. This Chapter introduces one of the main methods for establishing
such bounds. By way of illustration, the method is applied to derive bounds
for several well studied cases, which provide the prototypes for a handful of
very useful tail bounds.

The method uses the MGF, MX(λ) := PeλX = eLX(λ), to get upper
bounds for P{X ≥ x}. Remember from Section 2.3 that LX is infinitely
differentiable and convex on the set {λ ∈ R : MX(λ) <∞}.

From the fact that the exp() function is everywhere nonnegative and
exp(λ(X − x)) ≥ 1 when X ≥ x and λ ≥ 0 we have

\E@ mgf.upper.tail\E@ mgf.upper.tail <1> P{X ≥ x} ≤ inf
λ≥0

Peλ(X−x) = inf
λ≥0

e−λxMX(λ) = exp

(
inf
λ≥0

LX(λ)− λx
)
.

Similarly, exp(λ(X + x)) ≥ 1 if X ≤ −x and λ ≤ 0, so that

\E@ mgf.lower.tail\E@ mgf.lower.tail <2> P{X ≤ −x} ≤ inf
λ≤0

Peλ(X+x) = exp

(
inf
λ≤0

LX(λ) + λx

)
.

Remark. This inequality can also be derived from <1> applied to
bound P{−X ≥ −x} by infλ≥0 e

λ(−x)M−X(λ) = infλ≤0 e
−λxMX(λ).

The analysis is simplified if we assume that X has been centered to
have PX = 0 and LX is finite in a neighborhood of the origin, for then
L′X(0) = PX = 0 and the convex function LX is minimized at the origin.
Equivalently, we can just replace X by X − PX.

λ 7→ LX−PX(λ)− λy

y=0

y= −1

y= 1

Remark. The picture actually shows the case where X ∼ Poisson(1).
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3.2. Behavior of the tail bound near the origin 3

The multiplication of MX−PX by e−λy tilts the convex function LX−PX

by −λy, which ensures that LX−PX(λ) − λy achieves its global minimium
on the half line {λ ∈ R : λ ≥ 0} if y > 0 and on the half line {λ ∈ R : λ ≤ 0}
if y < 0. For the purposes of <1> and <2> we no longer have to consciously
think about the sign of y; the infimum in both cases reduces to minimization
over the whole real line and everything can be done by brute force Calculus.

In short, for x > 0 we have

P{X − PX ≥ x} ≤ exp (−Λ(x)) ,\E@ LX.upper\E@ LX.upper <3>

P{X − PX ≤ −x} ≤ exp (−Λ(−x)) ,\E@ LX.lower\E@ LX.lower <4>

where

Λ(y) := − infλ∈R (LX−PX(λ)− λy) = − infλ∈R (LX(λ)− λ(y + PX))\E@ Lam.def\E@ Lam.def <5>

= supλ∈R (λy − LX−PX(λ)) = supλ∈R (λ(y + PX)− LX(λ)) ,

for all y ∈ R. Effectively, this means we need only search for the global solu-
tion to L′X(λ) = y + PX to determine Λ, except in those pesky cases where
the infimum of the convex function λ 7→ LX(λ)− λ(y + PX) is approached
as λ tends to ±∞.

Remark. The nonnegativity of Λ comes from the zero contribution
at λ = 0. The second expression for Λ(y) identifies it as as L∗

X−PX(y),
the Fenchel-Legendre conjugate of the convex function LX−PX .
Exciting as the recognition of this conjugate in a probability bound
might be, it does not seem to help much in the actual calculation for
a given X. Everything comes down to an exercise in Calculus and
convexity, which can be worked through without any knowledge of the
material in Section 2.4.

*3.2 Behavior of the tail bound near the origin
MGF::S:local

Even though the tail bounds are not particularly useful for small t it is
illuminating to see how the moments of X − PX affect Λ when its MGF is
finite in a neighborhood of the origin.

The MGF gets its name from the coefficients in its power series expansion

MX−PX(λ) = Peλ(X−PX) = 1+
∑

k∈N
µkλ

k/k! where µk = P (X − PX)k .
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§3.2 Behavior of the tail bound near the origin 4

The quantities µk is often called the kth central moment to distinguish

it from PXk. Note that µ1 = 0 and µ2 = var(X). The quantity µ3/µ
3/2
2 =

P(X − PX)3/var(X)3/2 is called the skewness of the distribution.
The function LX−PX = logMX−PX also has a power series expansion,

LX−PX(λ) =
∑

k∈N
κkλ

k/k! .

The coefficients κk are called the (central?) cumulants and LX−PX , not
surprisingly, is the cumulant generating function. Note that there is
no κ0, because LX−PX(0) = logMX−PX(0) = 0.

The cumulants can be related to the moments by equating coefficients in
power series expansions. Here is how it works for the first three cumulants.

1 + µ2λ
2/2! + µ3λ

3/3! +O(λ4) = exp
(∑

k∈N
κkλ

k/k!
)

= 1 +
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)
+
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)2
+
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)3
+O(λ4)

= 1 + κ1λ+ κ2λ
2/2! + κ3λ

3/3! +
(
κ2

1λ
2 + κ1κ2λ

3
)

+
(
κ3

1λ
3
)

+O(λ4)

= 1 + λ (κ1) +
λ2

2!

(
κ2 + 2κ2

1

)
+
λ3

3!
(κ3 + 6κ1κ2) +O(λ4).

It follows that κ1 = 0 and κ2 = µ2 and κ3 = µ3.

Remark. Don’t get too excited and leap to the conclusion that cumu-
lants are the same as moments. If I hadn’t centered the distribution
to zero expected value then κ1 would not be zero and µk would be a
nasty-looking polynomial in κ1, . . . , κk. By repeated substitutions we
could then write κk as another nasty-looking polynomial in the non-
central moments PX, . . . ,PXk. Even with the centering the remaining
cumulants get messier: κ4 = X2 − (PX2)2 and the expression for κ10
is a sum of 12 terms.

Back to tail probabilities. Remember that Λ(x) is usually obtained by
maximizing λx − LX−PX(λ) with respect to λ, with the task coming down
to solving

t = L′X−PX(λ) = κ2λ+ κ3λ
2/2! + κ4λ

3/3! + . . . .

This regularity suggests that the maximizing value λt be expressible as a
power series

∑
k∈N akt

k/k!. The ak coefficients can be determined by another
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§3.2 Behavior of the tail bound near the origin 5

exercise in coefficient matching. First note that

λt = a1t+a2
t2

2!
+a3

t3

3!
+O(t4), λ2

t = a2
1t

2+a1a2t
3+O(t4), λ3

t = a3
1t

3+O(t4).

Thus

t = κ2

(
a1t+ a2

t2

2!
+ a3

t3

3!

)
+
κ3

2!

(
a2

1t
2 + a1a2t

3
)

+
κ4

3!
(a3

1t
3) +O(t4)

= t (κ2a1) +
t2

2!

(
κ2a2 + κ3a

2
1

)
+
t3

3!

(
κ2a3 + 3κ3a1a2 + κ4a

3
1

)
+O(t4),

implying

a1 = 1/κ2, a2 = −κ3/κ
3
2, a3 = something.

It now follows that

Λ(t) = t
(
a1t+ a2t

2/2
)
− κ2

2!

(
a2

1t
2 + a1a2t

3
)
− κ3

3!

(
a3

1t
3
)

+O(t4)

=
t2

2κ2
− κ3t

3

6κ3
2

+O(t4) near the origin.

The contributions from a3 and κ4 get absorbed into the O(t4).

Remark. You might be wondering why I bothered expanding λt as a
cubic once I had realized the a3 term would be absorbed into the O(t4).
As a wise friend once advised me, it is always a good idea to expand
an approximating series out to at least one term more than one thinks
is necessary. A classic example of a failure to expand far enough can
be found in the famous paper of Pearson (1900, page 165), which led
to many years of argument between him and R. A. Fisher over the
number of degrees of freedom for a χ2 goodness of fit test. See Cochran
(1952) for a very clear discussion of Pearson’s error.

MGF::Binomial.local <6> Example. Suppose X ∼ Bin(n, p). Then

PX = np, κ2 = P(X − np)2 = npq, κ3 = P(X − np)3 = npq(q − p)

so that

Λ(t) =
t2

2npq
− t3(q − p)

6(npq)2
+O(t4) near the origin.

This approximation shows that Λ(t) ≥ t2/(2npq) if p ≥ 1/2 and 0 ≤ t ≈ 0,
in which case

P{X ≥ np+ t} ≤ e−Λ(t) ≤ exp

(
− t2

2npq

)
0 ≤ t ≈ 0.
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3.3. Normal 6

In fact, as will be shown in Section 3.7, the inequality holds for all t ≥ 0
if p ≥ 1/2. The local property implied by negative skewness suggests a
subgaussian upper tail; the convexity of the ψBenn function will transform
the local suggestion into a global inequality.�

3.3 Normal
MGF::S:normal

The MGF method is cleanest for the normal distribution. As this Section
shows, the method leads to bounds comparable to very sharp inequalities
that can be derived using special properties of the normal.

MGF::normal <7> Example. If X has a N(µ, σ2) distribution then M(λ) = exp(λµ+σ2λ2/2)
is finite for all real λ. For x ≥ 0 inequality <1> gives

P{X ≥ µ+ σx} ≤ infλ≥0 exp(−λ(µ+ σx) + λµ+ λ2σ2/2)

= exp(−x2/2) for all x ≥ 0,

the minimum being achieved by λ = x/σ. Analogous arguments, with X−µ
replaced by µ−X, give an analogous bound for the lower tail,

P{X ≤ µ− σx} ≤ exp(−x2/2) for all x ≥ 0,

leading to the inequality P{|X − µ| ≥ σx} ≤ 2e−x
2/2, which shows that the

distribution of X is concentrated near µ.

Remark. Of course the algebra would have been a tad simpler if I had
worked with the standardized variable (X − µ)/σ. I did things the
messier way in order make the point that if Y is any random variable,
not necessarily normally distributed, for which

MY (λ) = PeλY ≤ eνλ+λ
2τ2/2 for all λ ≥ 0

then

\E@ subg.upper.tail\E@ subg.upper.tail <8> P{Y ≥ ν + τx} ≤ e−x
2/2 for x ≥ 0.

Here ν and τ need not equal PY and
√

var(Y ) ; instead I will refer
to them as the location and scale parameters. As you will see in
Chapter 7, under mild assumptions the one-sided bound on MY implies
only that the PY ≤ ν and P(Y − ν)2 ≤ τ2, with PY = ν if the bound
on the MGF holds for all λ ∈ R.

Inequality <8> is sometimes called a subgaussian bound for
the upper tail. However, the term ‘subgaussian’ is also often used
in a looser sense as an indication that a tail probability decreases at

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



3.4. How sharp is the MGF bound for the N(0, 1)? 7

an exp(−Ct2) rate for some positive constant C. See, for example,
Section 3.6 for the upper tail of

√
X when X has a Gamma(α)

distribution, although the centering constant
√
α is larger than P

√
X.

Even sloppier is the habit (which I have) of referring to a tail bound
as ‘approximately subgaussian’ in particular regions. See, for example,
the discussion of the upper tail for the Gamma(α) distribution. The
sloppy justification for such a habit is that some applications for tail
bounds involve only deviations in the ‘approximately subgaussian’
region.

For an X distributed N(0, 1), Example <7> gives

\E@ normal.tail1\E@ normal.tail1 <9> Φ̄(x) := P{X ≥ x} ≤ B(x) := e−x
2/2 for x ≥ 0.

*3.4 How sharp is the MGF bound for the N(0, 1)?
MGF::S:sharp.normal

How good is the upper bound B(x), derived in the previous Section, and
what do we lose if we replace Φ̄ by its upper bound B? The message from
the next two examples is: not bad and not much, especially if we are mostly
interested in large values of x. If you are the trusting type, you can safely
skip this Section.

MGF::conf.int <10> Example. Anyone who has taken an introductory Statistics course knows
that if T ∼ N(θ, 1) under a Pθ model then, to two decimal places accuracy,

Pθ{T − 1.96 ≤ θ ≤ T + 1.96} = 0.95.

That is, the range T±1.96 is a 95% confidence interval for θ; the interval T±
1.96 will contain θ with 95% probability.

Remark. Those of you familiar with the tricky interpretation of a
confidence interval, will know why, if the model is correct, it is ok
to say that the interval contains θ with probability 0.95 as a general
statement about the behavior of the random variable T but it is not
ok to say the same thing after a particular value of T is observed.

Consider the effect of using the upper bound B(x) instead of Φ̄(x) when
constructing a confidence interval. It is certainly true under the N(θ, 1)
model that

Pθ{T ± c fails to contain θ} ≤ 2B(c) = 2 exp(−c2/2).

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



§3.4 How sharp is the MGF bound for the N(0, 1)? 8

You could think of this bound as a conservative confidence assertion: with
probability at worst 2B(c) the interval T ± c fails to contain θ. As the fol-
lowing table (with values rounded to two decimal places) shows, 2B(1.96) =
2×14.65%. As judged by B, the range T ±1.96 will contain θ with probabil-
ity at least 70.7%, which is not very comforting given that the nominal value
is 95%. For the 90% interval, the conservative value, 1−2×25.85% = 48.3%,
is even worse. It takes a great stretching of the imagination to describe either
conclusion as ‘not bad’.

x 1.64 1.96 2.45 2.58 2.72 3.26

Φ̄(x) 5% 2.5% 0.72% 0.5% 0.33% 0.06 %
exp(−x2/2) 25.85% 14.65% 5% 3.62% 2.5% 0.5 %

There is another way to use the upper bound. Instead of stretching imag-
ination we could stretch the interval, from T ± 1.96 to T ± c with c = 2.72.
For this interval, the B bound assures coverage of at least 95%. Looking
on the bright side, I think the increase from 1.96 to 2.72 is not too high a
price to pay for an appreciable relaxation of the modeling assumptions from
normal to subgaussian.

The compromise would look even better when the failure probability is
smaller. For example, under the strict N(θ, 1) assumption T ±2.58 is a 99%
confidence interval for θ and T ± 3.26 has, according to B, probability at
least 99% of containing θ.�

Sharper tail bounds than Φ̄(x) ≤ exp(−x2/2) are possible if we exploit
further properties of the normal distribution, properties that are not shared
by all subgaussian distributions. In fact there is a literature going back over
two centuries that contains numerous facts about Φ̄, including several upper
and lower bounds. These bounds often depend on the identity dφ(x)/dx =
−xφ(x), where φ(x) = exp(−x2/2)/

√
2π is the N(0, 1). Here are the basic

facts. See Problems [2] for proofs.

(i) Φ̄(x) = φ(x)/ρ(x) with ρ a convex, strictly increasing function on R
with ρ(x) → 0 as x → −∞ and ρ(x)/x → 1 as x → ∞. The function
log(ρ(·)) is concave.

(ii) The function r(x) = ρ(x) − x is positive, convex, strictly decreasing
on R+ with r(0) =

√
2/π ≈ 0.798 and r(x)→ 0 as x→∞.

(iii) The function R(x) = Φ̄(x)/φ(x) = 1/ρ(x) is often called the Mills
ratio, for not particularly compelling reasons. See the Notes.
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The functions ρ (solid line), r (dashed line), and ±x (dotted line)
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For large x the function Φ̄(x) behaves like φ(x)/x. More precisely,

\E@ Laplace.normal.approx\E@ Laplace.normal.approx <11>
(
1− x−2

) φ(x)

x
< Φ̄(x) <

φ(x)

x
for all x > 0,

a result essentially due to Laplace. Equivalently, x < ρ(x) for all x > 0
(actually, for all x because ρ is positive) and ρ(x) < x/(1− x−2) for x > 1.
The inequalities can be derived by integrating

∫∞
x through the pointwise

bounds (for t > 0)

− d

dt

[
(t−1 − t−3)φ(t)

]
= (1− 3t−4)φ(t)

<φ(t)

< (1 + t−2)φ(t) = − d

dt

[
t−1φ(t)

]
.

The inequalities in <11> are quite useless for x near 0: in the limit as
x→ 0 they deliver the unsurprising fact that −∞ < 1/2 < +∞. Problem [1]
gives the more general version of Laplace’s approximation, obtaining upper
and lower bounds for Φ̄(x) that are of the form p(1/x)φ(x), with p(·) a
polynomial. Again these bounds are informative only for large x.

For x > 1 inequality <11> can be rewritten as

log Φ̄(x) = −x2/2− log
(
x
√

2π
)
− η(x)\E@ normal.tail2\E@ normal.tail2 <12>

where 0 ≤ η(x) ≤ − log(1− x−2) ≤ 2x−2 for x ≥
√

2.

The bound B(x) has captured the −x2/2, which is much more important
than the log

(
x
√

2π
)

+ η(x) when x becomes large.
The literature also contains many sharper bounds. For example,

(3x+
√
x2 + 8)/4 < ρ(x) ≤

(
x+

√
x2 + 4

)
/2 for all x ∈ R,
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§3.4 How sharp is the MGF bound for the N(0, 1)? 10

the lower bound coming from Birnbaum (1942) and the upper bound from
Sampford (1953). See Problems [6] and [5] for proofs.

Remark. None of the bounds is accurate enough for moderate x to
serve as a basis for numerical calculation of normal tail probabilities.
These days, the bounds are just of theoretical interest.

The next Example illustrates what we can gain by working with <12>
instead of <9> when considering a maximum of normals.

MGF::max.normal <13> Example. Suppose Z1, . . . , Zn are random variables, each distributedN(0, 1)
but, for the moment, not necessarily independent. Define Mn = maxi≤n Zi.

A union bound gives some control for the tail:

P{Mn > x} ≤
∑

i
P{Zi > x} = nΦ̄(x) ≤ n exp(−x2/2) for x > 0.

In particular, P{Mn >
√

2 log(n) + 2c } ≤ e−c for each c ≥ 0. Roughly
speaking, with high probability Mn should be not much bigger than an :=√

2 log n . Of course we get no companion lower bound for Mn from a one
sided inequality <9>.

The crude union bound has the advantage of being unaffected by possible
dependence between the Zi’s. It also has the disadvantage that the upper
bound can be excessively large. For example, in the extreme case where
Zi = Z1 for all i any bound that involves n would be superfluous.

Remark. The union bound P (∪iAi) ≤
∑
i PAi is quite good if the

events Ai are independent and
∑
i PAi is small. See Problem [10]. It

is part of the folklore that if the Ai’s are ‘almost’ independent then
the union bound is ‘almost’ quite good, with the meaning of ‘almost’
being problem specific.

If the Zi’s are actually independent the union bound can be replaced by
an equality:

P{Mn ≤ x} =
∏

i
P{Zi ≤ x} =

(
1− Φ̄(x)

)n
= exp

(
n log(1− Φ̄(x)

)
= exp

(
−nΦ̄(x)− n

∑
j≥2

(
Φ̄(x)

)j
/j
)

= exp
(
−nΦ̄(x)−Rn(x)

)
where 0 ≤ Rn(x) ≤ nΦ̄(x)2

2(1− Φ̄(x))
.\E@ indepN(0,1)\E@ indepN(0,1) <14>
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3.5. Poisson 11

If we choose xn so that nΦ̄(xn) → ∞ then we get P{Mn > xn} → 1
as n→∞. To guide the choice of xn, use approximation <12>:

log
(
nΦ̄(xn)

)
= log n− 1

2x
2
n − log(xn

√
2π)− η(xn).

For xn of the form an − w/an we have

nΦ̄(xn) = exp
(
w − log

(
an
√

2π
)
− εn

)
\E@ approx.nPhibar\E@ approx.nPhibar <15>

where εn = − log
(
1− w/a2

n

)
− η (an − w/an) is close to 0 if |w|/an is small.

For example, if w = 2 log(an) ≈ log logn then nΦ̄(xn) ≈ log n so that
P{Mn ≤ xn} is of order n−1 or smaller. With probability close to 1, the
maximum Mn is greater than an − (log log n)/an. Similarly, the median
of Mn is very slightly larger and Mn ≤ an with probability close to 1.�

Remark. Inequalities <14> and <15> are the basis for the classical
fact that an(Mn − bn), with bn = an − (log log n+ log(4π)) /(2an),
converges in distribution. See Leadbetter, Lindgren, and Rootzén
(1983, Theorem 1.5.3).

3.5 Poisson
MGF::S:Poisson

The normal distribution represents the prototype for the class of subgaussian
distributions. In a similar way the Poisson provides the prototype for a
class of distributions that might be (but are not) called subPoisson. These
distributions behave like subgaussians for moderately large deviations from
the mean but decrease only a little faster than the exponential further out
in the tails. The Bennett inequalities in Chapter 8 will provide further
examples.

Recall that a random variable Y has a Poisson(θ) distribution if

P{Y = k} = e−θθk/k! for k = 0, 1, . . . .

The parameter θ must be strictly positive. The random variable X = Y − θ
has a zero expected value with var(X) = θ and

LX(λ) = θ(eλ − 1− λ) = θf(λ) for all λ ∈ R.

As explained in Section 3.1, we can derive both upper and lower tail
bounds from the function

−Λ(y) = infλ∈R (LX(λ)− yλ) = θ infλ∈R (f(λ)− λy/θ) .
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Notice the appearance of our friend f from Section 2.2. Its comrade h is
coming soon.

Temporarily write w for y/θ. Note that f(λ)−λw = eλ−1−λ(1+w) has
derivative eλ− (1+w), which is zero at λ = log(1+w) if w > −1. If w = −1
the derivative is everywhere strictly positive, so that the infimum of −1 is
approached as λ → −∞. If w < −1 then f(λ) − λw = eλ − 1 − λ(1 + w),
which approaches −∞ as λ→ −∞. In summary, infλ∈R (f(λ)− λw) equals

\E@ Poisson.min\E@ Poisson.min <16>

−(1 + w) log(1 + w) + w if w > −1; achieved at λ = log(1 + w)
−1 if w = −1; approached as λ→∞
−∞ if w < −1; approached as λ→∞

Remark. If you have read Section 2.4 you will realize that I am
here repeating the calculation that showed h is the Fenchel-Legendre
conjugate of f.

If you have read Section 2.2 you will also know that h(w) = 1
2w

2ψBenn(w)
for w ≥ −1, where ψBenn(·) is a convex, decreasing function on [−1,∞)
with ψBenn(0) = 1. For large w the value of ψBenn(w) decreases like 2w−1 log(w).

w 7→ ψBenn(w)

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Thus

Λ(y) = θh(y/θ) =

{
y2

2θ
ψBenn(y/θ) if y ≥ −θ

∞ if y < −θ
,

which translates into

P{X ≥ x} ≤ exp

(
−x

2

2θ
ψBenn(x/θ)

)
for x ≥ 0

P{X ≤ −x} ≤ exp

(
−x

2

2θ
ψBenn(−x/θ)

)
for 0 ≤ x ≤ θ

P{X ≤ −x} ≤ 0 for x > θ.
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3.6. Gamma and chi-squared 13

The third inequality is reassuring because P{X < −θ} = 0. The first
inequality shows that the upper tail decreases like a subgaussian in the range
0 ≤ x � θ, because ψBenn(x/θ) ≈ 1 for x/θ near 0, but that the tail decay
becomes more like exp (−x log(x/θ)) further out into the tail. The inequality
for the lower tail is more interesting, because ψBenn(w) > 1 for −1 ≤ w < 0.
The lower tails drop off even faster than one might expect from the N(θ, θ)
approximation to the Poisson(θ). This can be interpreted as a skewness
effect: PX3 is the coefficient of λ3/3! in the power series expansion of

PeλX = exp
(
θ(eλ − 1− λ)

)
= 1 + θ

(
λ2

2!
+
λ3

3!
+ . . .

)
+
θ2

2!

(
λ2

2!
+
λ3

3!
+ . . .

)2

+ . . . ,

which is positive. The distribution of X − θ puts more mass to the right of
the origin than the N(0, θ). That fact slows down the decay in the upper
tails but improves the rate of decay in the lower tail.

The MGF tail bound for the Poisson does not quite capture the actual
behavior of the probabilities. The deficiency parallels what happens with the
normal, where Φ̄(x) decreases like e−x

2
/
(√

2πx
)

for large x but the MGF
method captures only the exp(−x2/2). I hope you drew the conclusion from
Section 3.3 that the failure was not fatal.

For X = Y − θ with Y ∼ Poisson(θ), the exp(−θh(y/θ)) tail bound
compares favorably with the probability calculated by means of Stirling’s
formula (see Section 2.5) for k ∈ N:

k! =
√

2πkk+1/2e−k+rk where
1

12k + 1
< rk <

1

12k
.

If k = θ + y then

log
(√

2πk P{Y = k}
)

= −θ + k log(θ)− k log(k) + k − rk

= y − (θ + y) log(1 + y/θ)− rk
= −θh(y/θ)− rk.

Once again the MGF method has successfully captured the most important
term, −θh(y/θ), in the exponent.

3.6 Gamma and chi-squared
MGF::S:Gamma

Suppose X = Y − α where Y has a Gamma(α) distribution, that is, the
distribution on R+ that has density fα(x) = xα−1e−x/Γ(α) with respect
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§3.6 Gamma and chi-squared 14

to Lebesgue measure. The positive parameter α is often called the shape
parameter. The expected value and variance of Y both equal α and

PeλY =

∫ ∞
0

xα−1e−x(1−λ)

Γ(α)
dx = (1− λ)−α for λ < 1.

Thus LX(λ) = −αλ− α log(1− λ) for λ < 1, so that

P{X ≤ t} ≤ exp
(
−Λ(t))

)
for t ≥ 0\E@ upper.gamma.tail\E@ upper.gamma.tail <17>

P{X ≤ −t} ≤ exp
(
−Λ(−t)

)
for α > t ≥ 0\E@ lower.gamma.tail\E@ lower.gamma.tail <18>

where

Λ(y) = sup
0≤λ<1

λ(α+ y) + α log(1− λ)

=

{
y − α log(1 + y/α) if α+ y > 0; achieved at λ = y/(α+ y)

∞ if α+ y ≤ 0; approached as λ→ −∞

For t ≥ 0 this gives

log P{Y ≥ α+ t} = log P{X ≥ t} ≤ −Λ(t) ≈

{
−t2/(2α) if t is near 0

−t if t is large
.

and for 0 ≤ t < α it gives

log P{Y ≤ α− t} = log P{X ≤ −t} ≤ −Λ(−t) ≤ −t2/(2α).

The lower tail is actually subgaussian.
Boucheron, Lugosi, and Massart (2013, page 28) pointed out that the

tails can also be bounded by first using an upper bound for the logMGF
of X when |λ| < 1:

α−1 log PeλX = − log(1− λ)− λ =
∑

i≥2

λi

i
≤
∑

i≥2

|λ|i

2
=

λ2

2(1− |λ|)
.\E@ gamma.BML\E@ gamma.BML <19>

They referred to the one-sided analog of this inequality for 0 < λ < 1 as
a Γ+(α, 1) bound, which controls the upper tail, and for −1 < λ < 0 as
a Γ−(α, 1) bound, which controls the lower tail. They also introduced a
second parameter, for scaling. I’ll focus mostly on the upper tail. When
I need to contemplate negative λ, as in Example <24>, I’ll work directly
from <19>.
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MGF::subGamma.def <20> Definition. For constants α > 0 and β > 0, interpret W ∈ subGamma(α, β)
to mean

PeλW ≤ exp

(
αλ2/2

1− βλ

)
for 0 ≤ βλ < 1.

Abbreviate subGamma(α, 1) to subGamma(α).�

Remarks.

(i) The presence of the |λ| on the right-hand side of<19> for Y ∼ Gamma(α)
implies ±(Y − α) ∈ subGamma(α). As the lower tail is actually sub-
gaussian, the ± is a bit misleading.

(ii) For Y with a Gamma(α) distribution we have Y −PY ∈ subGamma(α),
which suggests that subGamma might require a zero expected value.
However, just as you saw with an attempt to define a one-sided sub-
gaussian property, the best we can infer is a nonnegative expected value:
if W ∈ subGamma(α) then

MW (λ) = 1 + λPW + o(λ) ≤ exp
(
αλ2 + o(λ3)

)
= 1 +O(λ2)

for λ near 0, which implies PW ≤ 0.

Notice that if W ∈ subGamma(α, β) then W/β ∈ subGamma(α/β2).
Equivalently, if Y ∈ subGamma(α) then βY ∈ subGamma(αβ2, β). I
find it cleaner to derive general theory with β = 1 and then deduce the
corresponding subGamma(α, β) facts by rescaling. For example, if Y ∼ χ2

k

then Y/2 ∼ Gamma(k/2), so that Y/2 − k/2 ∈ subGamma(k/2), which
implies Y − k ∈ subGamma(2k, 2).

MGF::subGamma.tail <21> Theorem. If W ∈ subGamma(α) and t ≥ 0 then

P{W ≥ t} ≤ e−H1(t,α) ≤ e−H2(t,α)

where

H1(t, α) =
(
t+ α−

√
2tα+ α2

)
=

−t2

(t+ α) +
√

2tα+ α2
,

H2(t, α) =
−t2

2(t+ α)
.
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Proof.

log P{W ≥ t} = inf
0≤λ<1

(
−tλ+

αλ2

2(1− λ)

)
= inf

0<s≤1

(
−t(1− s) + α

1− 2s+ s2

2s

)
= inf

0<s≤1
((t+ α/2)s− (t+ α) + α/(2s))

The replacement of λ by 1 − s makes it easier to calculate the derivative,
t+α/2−α/(2s2), which is zero when s =

√
α/(2t+ α). That value gives the

first expression for H1. The final inequality comes from α2 + 2αt ≤ (α+ t)2.�

For future reference, if W ∈ subGamma(α, β) and t ≥ 0 then

P{W ≥ t} ≤ e−H1(t/β,α/β2) = exp

(
− t2

α+ βt+
√
α2 + 2tαβ

)
\E@ H1.subGamma\E@ H1.subGamma <22>

≤ e−H2(t/β,α/β2) = exp

(
− t2

2(α+ βt)

)
.\E@ H2.subGamma\E@ H2.subGamma <23>

MGF::weighted.chi2 <24> Example. (Laurent and Massart, 2000, Lemma 1) Consider the weighted
sum W =

∑k
j=1 aj(Z

2
j−1) where a = (a1, . . . , ak) ∈ Rk and Z = (Z1, . . . , Zk)

has a N(0, Ik) distribution. As usual, define

|a|∞ := maxj |aj | and |a|2 :=

√∑
j
a2
j .

Each Z2
j has a χ2

1 distribution and 1
2Z

2
j ∼ Gamma(1/2). From inequal-

ity <19> we have

PeλW ≤
k∏
j=1

exp

(
λ2a2

j

1− |2λaj |

)
≤ exp

(
λ22|a|22/2

1− 2|λ| |a|∞

)
for |λ| < 1

2|a|∞
.

Consequently W ∈ subGamma(2|a|22, 2|a|∞) and, for example,

P{W ≥ t} ≤ exp

(
−t2

4|a|22 + 4|a|∞t

)
for t ≥ 0.

The quantity on the right-hand side of the last inequality is unchanged
if we replace each aj by −aj . Thus P{−W ≥ t} is bounded above by the
same quantity and P{|W | ≥ t} is bounded above by twice that quantity.�
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To compare the three tail bounds from <17> and <21> it helps to
isolate the effect of α by writing Λ(t) = αR0(t/α) and Hj(t, α) = αRj(t/α)
for j = 1, 2, for x ≥ 0. Then

0 ≤ R0(t) := t− log(1 + t)

≤ R1(t) := 1 + t−
√

1 + 2t =
t2

1 + t+
√

1 + 2t

≤ R2(t) := t2/(2t+ 2).

The inequalities are all strict for t > 0. All three functions R0, R1, and R2

have first derivatives that are positive and increasing; all are convex and
strictly increasing. Near the origin R0(t) = t2/− t3/3+0(t3) and both R1(t)
and R2(t) behave like t2/2−t3/2+o(t3). As t→∞ both R0(t)/t and R1(t)/t
converge to 1 but R2(t)→ 1/2. If one is not too worried about the constants
in the exponent there is not much difference between the three tail bounds.

It might appear that there is little point in recording the H1 tail bound
when it differs so little from the H2 tail bound. However H1 does give a
more pleasing result if we rearrange the bound by solving R1(t) = w for a
fixed w > 0. There is a unique positive t = w +

√
2w , the larger of the two

roots of the quadratic t 7→ (1+t−w)2 = 1+2t. In particular, αR1(t/α) = w
if t = w+

√
2αw. With such a change of variable, the H1 form of inequality

from Theorem <21> takes the neat form (Boucheron et al., 2013, page 29)

\E@ BLM29\E@ BLM29 <25> P{W ≥ w +
√

2αw } ≤ e−w for w ≥ 0 if W ∈ subGamma(α).

Remark. You should carry out the analogous calculation for R2. The
result is not as elegant or useful.

In particular, if Y ∼ Gamma(α) then

P{
√
Y ≥

√
α+
√
w} = P{Y ≥ α+ 2

√
αw + w}

≤ P{Y − α ≥ w +
√

2αw } ≤ e−w for w ≥ 0.\E@ root.gamma\E@ root.gamma <26>

Substituting t for
√
w we get P{

√
Y ≥

√
α + t} ≤ e−t

2
, an example of a

“subgaussian bound” for an upper tail beyond a point strictly larger than
the mean: Jensen’s inequality gives P

√
Y <

√
α.

MGF::chi2 <27> Example. If W ∼ χ2
k then W/2 ∼ Gamma(k/2) and inequality <26>

implies

P{
√
W ≥

√
k + t} ≤ e−t2/2 for t ≥ 0.
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3.7. Binomial 18

In particular, P{
√
W ≥ 2

√
k } ≤ e−k/2 is a convenient bound when precise

constant don’t matter and k is large.
As an application, suppose Z1, . . . , Zn are independent N(0, Id) random

vectors. Then we have P ‖Zi‖ ≤
√

P ‖Zi‖2 =
√
d and

∑
i≤n ‖Zi‖

2 ∼ χ2
nd.

From the inequality n−1
∑

i≤n ‖Zi‖ ≤
√∑

i≤n ‖Zi‖
2 /n it follows that

P{n−1
∑

i≤n
‖Zi‖ ≥ 2

√
d } ≤ e−nd/2,

a neat little bound that is useful in high-dimensional statistical theory. See
Wu and Zhou (2019, Section 9), for example.�

3.7 Binomial
MGF::S:Binomial

The Binomial distribution behaves a little like the Poisson. It is also a
prototype for other inequalities involving sums of bounded random variables.

Remember that X has a Bin(n, p) distribution if

P{X = k} =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n.

Here and subsequently I write q for 1 − p. The distribution has expected
value np, variance npq, and MX(λ) = (q+peλ)n. The random variable n−X
has a Bin(n, q) distribution. Thus

\E@ upper.lower\E@ upper.lower <28> P{X ≤ np− t} = P{n−X ≥ nq + t}.

That is, the lower tail for the Bin(n, p) corresponds exactly to the upper
tail for the Bin(n, q).

Here is the main result: If X ∼ Bin(n, p) then

P{X ≥ np+ t} ≤ exp (−nph(t/np)− nqh(−t/nq))

= exp

(
− t2

2npq
gp(x)

)
for 0 ≤ t ≤ nq\E@ Bin.upper\E@ Bin.upper <29>

where gp(t) := qψBenn

(
t

np

)
+ pψBenn

(
−t
nq

)
.

From equality <28> the companion inequality for the lower tail is

P{X ≤ np− t} ≤ exp

(
− t2

2npq
gq(t)

)
for 0 ≤ t ≤ np.

It is merely a matter of swapping the roles of p and q.
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Remarks.

(i) Note that

gp(t)/(2npq)→ ψBenn(t/θ)/(2θ) if n→∞ and np→ θ ∈ R+.

Not surprisingly we then recover the MGF tail bounds for the Poisson(θ)
distribution.

(ii) This gp(t) is the same function as the g(t, n, p) in Section 2.5, which
derived sharp approximations for P{X = k} by means of the Stirling
approximation: for k = np+ t,

P{X = k} =
exp

[
−t2gp(t)/(2npq) +O

(
k−1 + (n− k)−1

)]√
2πn(p+ t/n)(q − t/n)

.

As happened with the N(0, 1), the MGF method captures the main term
in the exponent but misses the square root term in the denominator.

(iii) The bound t ≤ nq is not really necessary, because P{0 ≤ X ≤ n} = 1.
It merely serves to ensure that t/(np) and −t/(nq) are both ≥ −1, so
that we don’t have to worry about ψBenn() taking the value +∞. We
could also let the the definition of LX−np(t) take care of the difficulty
by having it take the value +∞ when t < −np or t > nq. Compare with
the calculation for the Poisson in Section 3.5.

(iv) The Taylor expansion h(x) = x2/2!− x3/3! +O(x4) gives

nph(t/np)+nqh(−t/nq) =
t2

2npq
− t

3(q − p)
6(npq)2

+O(t4) for t near 0,

which agrees with the calculations in Section 3.2.

(v) As explained in Section 2.5, the convexity of ψBenn gives the inequality

gp(t) ≥ ψBenn

(
qt

np
− pt

nq

)
= ψBenn

(
t(q − p)
npq

)
≥ 1 if p ≥ 1/2.

Thus, if p ≥ 1/2, the upper tail is less than exp
(
−t2/(2npq)

)
, a clean

subgaussian bound with scale parameter
√
npq . (As commented in

Section 2.5, this subgaussian fact can also be interpreted as a skew-
ness effect.) If p < 1/2 the upper tail is still subgaussian (because
ψBenn (−t/(nq)) ≥ 1) but with a larger scale parameter

√
nq .

Proof (of inequality <29>). From <5>, for t ≥ 0 we need to find the
supremum over R+ of

L(λ) := (t+ np)λ− n log(q + peλ),
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which has derivative

L′(λ) = (t+ np)− npeλ/(q + peλ).

If t = nq then L′(λ) > 0 on R+ and L(λ) = n log
(
eλ/(q + peλ)

)
, so that

the supremum n log(1/p) is approached as λ → ∞. The final bound then
reduces to P{X ≥ n} ≤ pn, which is actually true with equality.

If 0 ≤ t < nq then the maximum is achieved at the λ for which L′(λ) = 0,
that is, when (t + np)(q + peλ) = npeλ. The algebra is then simplified a
trifle if we write z1 for t/(np) and z2 for t/(nq). The equation becomes

(1 + z1)q = eλ [1− p(1 + z1)] = eλq(1− z2)

because p(1 + z1) + q(1 − z2) = 1. That is, the maximizing λ is given
by eλ = (1 + z1)/(1− z2) and

Λ(t) = np(1 + z1) log

(
1 + z1

1− z2

)
− n log (q + p(1− z1)/(1− z2))

= np(1 + z1) log(1 + z1)− np(1 + z1) log(1− z2)

− n log (q(1− z2) + p(1 + z1)) + n log(1− z2)

= np (h(z1) + z1)− log(1) + n (1− p(1 + z1)) log(1− z2)

= np (h(z1) + t/(np)) + nq (h(−z2)− t/(nq)) ,

which simplifies to the nph(z1) + nqh(−z2) for the first line of <29>.�

Now let me move a little beyond the Binomial to show that there are
several other distributions, with the same expected value as the Bin(n, p),
that share the tail bounds for the Binomial. In this Chapter these bounds
are derived by means of pointwise inequalities for MGFs. As such they
leave open the question of whether analogous inequalities would also hold
for the exact tail probabilities, not just their MGF-derived upper bounds.
Chapter 4 will return to this question

MGF::PoisBin <30> Example. Suppose S ∼ PBin(p1, . . . , pn), that is, S is a sum of inde-
pendent random variables Y1 + · · · + Yn, with Yi ∼ Ber(pi) for possibly
different pi’s. Define p = n−1

∑
i pi. Then

MS(λ) =
∏

i≤n

(
qi + pie

λ
)

= exp
(∑

i≤n
log(qi + pie

λ)
)
.

Concavity of the log() function shows that

\E@ PB.MGF\E@ PB.MGF <31> n−1
∑

i≤n
log(qi+pie

λ) ≤ log
(
n−1

∑
i≤n

(qi + pie
θ)
)

= log
(
q + peθ

)
.
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Thus MS(θ) ≤MW (θ) where W ∼ Bin(n, p) and q = 1− p. It follows that

P{S ≥ np+ x} ≤ exp

(
− x2

2npq
gp(x)

)
for 0 ≤ x ≤ nq,

with a similar bound for the lower tail.�

The convexity idea from the previous Example can be pushed even fur-
ther.

MGF::Hoeffding <32> Example. Suppose T = Y1 + · · ·+ Yn, a sum of independent random vari-
ables Yi with 0 ≤ Yi ≤ 1 and PYi = pi for each i, and np =

∑n
i=1 pi. By

convexity of the exp() function,

eλYi ≤ (1− Yi) + Yie
λ for each real λ.

The inequality holds for all possible realizations of Yi. Equality is achieved
at Yi ∈ {0, 1}. In particular, equality holds when Yi ∼ Ber(pi), as in the
previous Example. Take expectations.

PeλYi ≤ (1− pi) + pie
λ = qi + pie

λ for each real λ.

By independence,

MT (λ) =
∏

i≤n
PeλYi ≤

∏
i≤n

(
qi + pie

λ
)

= MS(λ) ≤MW (λ),

with S ∼ PBin(p1, . . . , pn) and W ∼ Bin(n, p), as in the previous Example.
Thus

P{T ≥ np+ x} ≤ exp

(
− x2

2npq
gp(x)

)
for 0 ≤ x ≤ nq,

a result due to Hoeffding (1963, Theorem 1).�

3.8 Sampling and the hypergeometric
MGF::S:hypergeometric

Both Example <30> and Example <32> involved sums of independent ran-
dom variables. The MGF approach can also work when there is dependence
between the summands, although the argument becomes a little more deli-
cate.
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MGF::hyper <33> Example. Suppose U = {u1, . . . , uN} is a finite set, an urn if you like
to think that way. In that interpretation the ui’s are the balls. Suppose
exactly R of the balls are colored red and the other B = N −R are colored
black. If n balls are sampled without replacement then each subset of U
with size n has probability 1/

(
N
n

)
of being selected and the number of red

balls Tn in the sample has a hypergeometric distribution, hyper(n,R,B),
meaning that

P{Tn = k} =

(
R

k

)(
B

n− k

)
/

(
N

n

)
for each nonnegative integer k such that k ≤ R and n− k ≤ B.

If the sampling is carried out with replacement then the number of red
balls in the sample, Sn, has a Bin(n, p) distribution, where p = R/N .

Elementary calculations (Pitman, 1993, Section 3.6) show that

PTn = PSn = np

var(Tn) = np(1− p)(N − n)/(N − 1) < var(Sn) = np(1− p).

If n is much smaller than N then there is actually not much difference be-
tween hyper(n,R,B) and Bin(n, p): if a ball is selected then returned to
the urn, it is unlikely to be selected again if n/N is very small. If n/N is
not so small then, judging by the variances, hyper(n,R,B) is more con-
centrated around np than Bin(n, p). A beautiful result by Hoeffding (1963,
Section 6) adds some precision to this intuition. He showed that for each
convex function f on the real line,

\E@ Urn.Jensen\E@ Urn.Jensen <34> Pf(Tn) ≤ Pf(Sn).

In particular, the choice f(x) = eλx shows that MTn(λ) ≤ MSn(λ) for all
real λ. Any tail bound for the hypergeometric obtained via the MGF argu-
ment must therefore be smaller than the corresponding MGF tail bound for
the Binomial.

To be more precise, Hoeffding’s result didn’t involve red balls and black
balls. It worked for every function g : U → R. (The special case where
g(ui) = 1 for a red ball an g(ui) = 0 for a black ball get us back to the
hypergeometric.) That is, we can take X1, . . . , Xn to be a sample from U
without replacement and Y1, . . . , Yn to be a sample with replacement. If we
define Tn :=

∑
i≤n g(Xi) and Sn :=

∑
i≤n g(Yi) then inequality <34> will

still hold for every convex f .
I had some trouble digesting Hoeffding’s proof. Even after working

through the details I could not have explained to anyone why the method

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



§3.8 Sampling and the hypergeometric 23

worked. Subsequently I stumbled on a proof by Le Cam (1986, page 534),
which involved a much more intuitive explanation, reducing everything to
Jensen’s inequality. Unfortunately I again had some trouble convincing my-
self that all the intuitions were completely watertight, so I wrote out the
following rather more pedantic account based Le Cam’s idea. For technical
details see Problem [11].

Here is the key idea. Suppose Y = (Y1, Y2, . . . ) is obtained by sampling
repeatedly with replacement from U . With probability one each member
of U appears infinitely often in the Y sequence. If we discard all except the
first appearance of each u in U from the Y sequence then we are left with
a random permutation, (X1, . . . , XN ) of U ; and X1, . . . , Xn forms a sample
of size n taken without replacement from U .

The sequence (Y1, Y2, . . . ) will contain repeats, which can be represented
as a sequence C(Y ) = (C1(Y ),C2(Y ), . . . ) of symbols from a set of ‘code-
words’ B = { j : 1 ≤ j ≤ N}, by the following procedure. Think of B
as ordered: 1 < 2 < · · · < N . The code C(Y ) always starts with 1 .
If Y2 = Y1 then C2(Y ) = 1 , otherwise C2(Y ) = 2 . And so on. In general,
if a Yi repeats an earlier Yj then Ci(Y ) = Cj(Y ); if Yi is different from all
previous Yj ’s then it receives the smallest unused code symbol. For example,
here is how it works for a typical Y :

Y : u7 u3 u9 u7 u2 u3 u3 u185 . . .
X: u7 u3 u9 u2 u185 . . .

C(Y ): 1 2 3 1 4 2 2 5 . . .

You should ignore the gaps in the X-vector; I inserted them just to align
each Xj with its first appearance in the Y sequence. The corresponding
positions in C(Y ) contain a repetition of an earlier code symbol. For ex-
ample, the second u7 in the Y sequence has a gap in X and is coded as 1

because Y1 = u7.
Together, X and C(Y ) allow us to reconstruct Y : for i = 1, . . . , N replace

each i in C(Y ) by Xi, the ith element of X (ignoring the characters).
More concisely, Yj = XC(Yj), provided we ignore the little box around the
code symbol.

I claim that X and C(Y ) are independent.

Remark. Initially I thought the independence was obvious: knowledge
of the pattern tells us nothing about the order in which the elements
of U are first observed. For example, if C(Y ) = ( 1 , 2 , 3 , 1 , . . . ) then
we know that Y1, Y2, Y3 are different elements of U and Y4 = Y1 but we
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have no information about which three elements of U were involved.
Then I began to worry that this assertion was a bit too hand-waving.
It took me a while to come up with the more rigorous argument given
in Problem [11].

Now back to <34>. Remember that Sn = g(Y1) + . . . g(Yn) and Tn =
g(X1) + . . . g(Xn). The sum Sn can be re-expressed using the counts

Nn(j) = number of times j appears amongst C(Y1), . . . ,C(Yn).

For example, if n = 6 and Y = (u7, u3, u9, u7, u2, u3, . . . ) then

(X1, . . . , X4) = (u7, u3, u9, u2) and C(Y ) = ( 1 , 2 , 3 , 1 , 4 , 2 . . . ) ,

so that N6(1) = N6(2) = 2 and N6(j) = 1 for j = 3, 4, which gives

g(Y1) + · · ·+ g(Y6) = 2g(X1) + 2g(X2) + g(X3) + g(X4).

Notice that we only need the counts up to j = 6, at most, because (Y1, . . . , Y6)
can involve at most 6 different elements X1, . . . , X6 of U . In general,

Sn = g(Y1) + · · ·+ g(Yn) =
∑n

j=1
Nn(j)g(Xj)

and

Pf
(
Sn

)
= Pf

(∑n

j=1
Nn(j)Xj

)
\E@ Y.rep\E@ Y.rep <35>

Unfortunately, the final expression is not symmetric in X1, . . . , Xn; it
is hard to see how it is related to Pf(Tn). My method for determining
patterns broke the symmetry but it can be restored using a sneaky trick.
As the Nn(j)’s depend only on C(Y ) they are independent of X. We could
replace (X1, . . . , Xn) by any other random sequence (X̃1, . . . , X̃n) that is
independent of C(Y ) and has the same distribution as (X1, . . . , Xn). For
example, for any fixed permutation σ of [[n]] := {j ∈ N : j ≤ n} we could
use (Xσ(1), . . . , Xσ(n)):

Pf
(
Sn

)
= Pf

(∑n

j=1
Nn(j)Xσ(j)

)
for each permutations σ of [[n]].

We can even average out over the uniform distribution Q on the set of all
permutations of [[n]] then use Jensen to take the Q integral inside the convex
function:

Pf
(
Sn

)
= QσPf

(∑n

j=1
Nn(j)Xσ(j)

)
≥ Pf

(
Qσ
∑n

j=1
Nn(j)Xσ(j)

)
From the facts that

∑n
j=1Nn(j) = n and

Qσg(Xσ(j)) = n−1
∑n

i=1
g(Xi) = n−1Tn for 1 ≤ j ≤ n

it now follows that Pf(Sn) ≥ Pf(Tn), as asserted.�
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3.9 Problems
MGF::S:Problems

For Problems [1] through [7], the function φ(x) denotes the N(0, 1) density
and Φ̄(x) =

∫∞
x φ(t) dt; the functions R(·) and ρ(·) and r(·) are defined on R

by 1/ρ(x) = R(x) = Φ̄(x)/φ(x) and r(x) = ρ(x)− x.

[1] Inequality <11> is just the initial part of a sequence of upper and lowerMGF::P:Laplace

bounds for R(x), which are apparently due to Laplace (see Notes). Each
bound is of the form p(1/x) with p a polynomial.

(i) Show that p(1/x) > R(x) for all x > 0 if

\E@ Mill.upper\E@ Mill.upper <36> − d

dt
(p(1/t)φ(t)) > φ(t) for all t > 0

and p(1/x) < R for all x > 0 if

\E@ Mill.lower\E@ Mill.lower <37> − d

dt
(p(1/t)φ(t)) < φ(t) for all t > 0

Hint:
∫∞
x .

(ii) Show that<36> holds if and only if p(t) + t3p′(t) > t for all t > 0. Charac-
terize <37> by the reverse inequality.

(iii) Define a sequence of monomials by ∆0(t) = t and ∆k(t) = −t3∆′k−1(t)
for k ≥ 1. Show that

∆k(t) = (−1)kakt
2k+1 where ak = 1× 3× · · · × (2k − 1).

(iv) Define pk(t) =
∑k

i=0 ∆i(t). Show that pk(t) + t3p′k(t) = t+ ∆k+1(t).

(v) Conclude that pk(1/x) > R(x) > pk+1(1/x) for each even k. For example,
for k = 1 and k = 2 we have, for all x > 0,

x−1 > R(x) > x−1 − x−3

x−1 − x−3 + 3x−5 > R(x) > x−1 − x−3 + 3x−5 − 15x−7

(vi) From the inequality for k = 2 deduce that xr(x)→ 1 as x→∞.

[2] Here are the basic facts about ρ(·) and r(·).MGF::P:rho.facts

(i) Suppose Z ∼ N(0, 1). Show that

R(x) =

∫ ∞
0

φ(x+ t)/φ(x) dt =

∫ ∞
0

e−xt−t
2/2dt =

√
π/2 Pe−x|Z|.
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(ii) Using Section 2.3, show that L(x) := logR(x) = − log ρ(x) is a strictly
decreasing, convex function. Deduce that ρ(x) = e−L(x) is strictly increasing
with ρ(x) → 0 as x → −∞ and ρ(x) → ∞ as x → ∞. Also log ρ(x) =
−x2/2− log

√
2π − log Φ̄(x) is concave.

(iii) Using the bounds from Problem [1], show that ρ(x) > x and r(x) > 0 for
all x. (Note that ρ(x) > x is trivially true for x ≤ 0.) Also show that
xr(x)→ 1 as x→∞.

(iv) Show that log(Φ̄) has derivative −ρ so that ρ′(x)/ρ(x) = d log ρ(x)/dx =
ρ(x) − x. That is, ρ′(x) = ρ(x)r(x) for all x. From the concavity of log ρ
deduce that r is a decreasing function.

(v) (Sampford, 1953) Show that γ(x) := ρ′′(x)/ρ(x) = 2r(x)2 +xr(x)−1. Show
that

γ′(x) = (4r(x) + x) r′(x) + r(x) = 2r(x)r′(x) + ρ(x)γ(x) < ρ(x)γ(x).

Argue as follows to show that γ(x) > 0 for all x ∈ R, which implies
that ρ is strictly convex. Suppose there were an x0 for which γ(x0) ≤ 0.
By the preceding argument, γ′(x0) would be < 0. There would therefore
be some δ > 0 and x1 > x0 at which γ(x1) < −δ. By part (iii), γ(x) → 0
as x → ∞. For some finite K there would exist some K > x1 for which
|γ(x)| < δ for x > K. The difefrentiable function γ would achieve its
minimum value on [x0,∞) at some point x2 in [x0,K] at which 0 > −δ ≥
γ(x2) and γ′(x2) = 0, a contradiction.

[3] Show that Φ̄(x) ≤ 1
2e
−x2/2 for x ≥ 0. Hint: From Problem [2](i) we haveMGF::P:half

R(0) > R(x).

[4] For each x show (by means of integration-by-parts) that
∫∞
x tφ(t) dt = φ(x)MGF::P:Px

and
∫∞
x t2φ(t) dt = xφ(x) + Φ̄(x). Let Px be the probability measure

with density px(t) = φ(t){t ≥ x}/Φ̄(x) with respect to Lebesgure mea-
sure on the real line. Show that the variance of Px is 1− ρ(x)r(x). Deduce
that ρ(x)r(x) < 1 for all x.

[5] (Birnbaum, 1942). Use Cauchy-Schwarz and facts from Problem [4] to showMGF::P:Birnbaum

that

φ(x)2 =

(∫ ∞
x

t
√
φ(t)

√
φ(t) dt

)2

≤
(
xφ(x) + Φ̄(x)

)
Φ̄(x).

Deduce that 1 ≤ (x+ R(x))R(x) =
(
R(x) + 1

2x
)2 − x2/4, which implies

ρ(x) ≤
(
x+
√
x2 + 4

)
/2.
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[6] (Sampford, 1953) Let γ(x) = 2r(x)2 + xr(x) − 1, as in Problem [2](v).MGF::P:Sampford

Remember that γ(x) > 0 for all x ∈ R. Argue that r(x) cannot be-
long to the closed interval Ix := {t ∈ R : 2t2 + xt − 1 ≤ 0}, which has

endpoints
(
−x±

√
x2 + 8

)
/4. Deduce that r(x) > (−x +

√
x2 + 8)/4 =

2/(x+
√
x2 + 8 ) and ρ(x) > (3x+

√
x2 + 8)/4. Note: r(x) > 0.

[7] Suppose Z1, . . . , Zn are random variables, each distributed N(0, 1) but, forMGF::P:expected.max

the moment, not necessarily independent. Define Mn = maxi≤n Zi.

(i) Even without independence the MGF approach also gives an upper bound an
for the expected value of Mn, via Jensen’s inequality: for each λ > 0,

exp (λPMn) ≤ PeλMn = P maxi e
θZi ≤

∑
i
PeλZi = neλ

2/2.

Deduce that PMn ≤ infλ>0

(
log n+ λ2/2

)
/λ = an =

√
2 log(n) . The case

where Zi = Z1 for all i shows that the bound is not sharp in general.

(ii) If the Zi’s are independent, show that PMn ≥ an − c log(an)/an for some
constant c, if n is large enough. First show that

Mn ≥ maxi≤n Z
+
i −

(∑
i≤n
|Zi|
)
{Mn ≤ 0}

so that PMn ≥ P maxi≤n Z
+
i − nP|Z1|/2n−1. Then argue that

O(n/2n−1)+PMn ≥ P maxi≤n Z
+
i =

∫ ∞
0

P{Mn > t} dt ≥ xnP{Mn > xn}.

Look at Example <13> for a way to choose xn.

[8] Suppose Z1, . . . , Zn are independent random variables, each distributedN(0, 1).MGF::P:max.abs.normals

(i) Show that P{maxi≤n |Zi| ≤ xn} =
(
1− 2Φ̄(xn)

)n
.

(ii) Mimic the argument from Example <13> to deduce that maxi≤n |Zi| con-
centrates near an.

[9] Suppose X has a standard exponential distribution.MGF::P:std.exp

(i) Show that P{X ≥ x} = e−x for all x ≥ 0 and PX = 1.

(ii) Show that the method from Section 3.1 gives P{X ≥ x} ≤ (ex)e−x for
x ≥ 1.

(iii) What bound does the method give for 0 ≤ x < 1?
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[10] Suppose A1, . . . , An are independent events with
∑

i PAi = ε , for a small ε.MGF::P:union.indep
Show that

P ∪i Ai = 1− exp
[∑

i
log(1− PAi)

]
≥ 1− e−ε = ε−O(ε2).

[11] Here is a rigorous way to establish independence of X and C(Y ) in Exam-MGF::P:indep.code

ple <33>. Notation (derived from Section 3.8):

a) Regard Y as the identity map (that is, Y (y) = y) on UN equipped with
its product sigma-field and product measure P = νN, where ν denotes
the uniform distribution on U .

b) B = { i : i = 1, . . . , N}, the code symbols. Regard C as a measurable
map from UN into the product space BN (equipped with its product
sigma-field).

c) W = the set of all permutations of U . (Thus |W| = N !.) If x =
(x1, . . . , xN ) ∈W and i ∈ B, interpret x i to mean xi.

d) Treat X = X(y) as the map from UN into the set W that is defined by
discarding repetitions of each yi after its first appearance in y.

e) For y = (y1, y2, . . . ) ∈ UN and B = (b1, b2, . . . ) ∈ BN define C(y) 8 n =
(C1(y), . . . ,Cn(y)) and B 8 n = (b1, . . . , bn).

The argument:

(i) Show that the distribution of X is uniform on W. Deduce that

P{Xj = xj , . . . , XN = xN} =
1

N
× 1

N − 1
× 1

N − j + 1
=

1

(N)j

for each x ∈W and 1 ≤ j ≤ N . (Exchangeability helps.)

(ii) Show that the distribution of C(Y ) concentrates on the set P of all feasi-
ble B’s in BN, that is, those B that start with 1 and for all i, j with 1 ≤
j < i ≤ N the codeword j first appears in B before i .

(iii) Suppose B ∈ P and B 8 n uses only the k code symbols 1 , . . . , k . Show
that

P{C(Y ) 8 n = B 8 n} =
N(N − 1) . . . (N − k + 1)

Nn
=

(N)k
Nn

.

Hint: Each repeat of a codeword corresponds to an event that has probabil-
ity 1/N and the first appearance of codeword j indicates a selection from
a set N − j + 1 elements from U .

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



3.10. Notes 29

(iv) Suppose x = (x1, . . . , xN ) ∈W and B ∈ P, with B 8n using only the k code
symbols 1 , . . . , k . Justify the following assertions.

Define

A = {y : C(y) 8 n = B 8 n, Xi = xi for i = 1, . . . , k }.

The assumption about B means that y1, . . . , yn select only k distinct ele-
ments of U , namely U1 := {xi : i = 1, . . . , k}, with first selections occurring
in the order (x1, . . . , xk). Thus

PA = P{y : yi = xbi for i = 1, . . . , n } = (1/N)n.

Conditional on the occurrence ofA, the remaining observations yn+1, yn+2, . . .
are left to select each element of U2 := {xi : n + 1 ≤ i ≤ N}. If we also
require Xi = xi for k + 1 ≤ i ≤ N then we have specified the order of first
selections of the elements of U2, namely (xk+1, . . . , xN ). Thus

P{Xi = xi for k + 1 ≤ i ≤ N | A} =
1

N − k
× 1

N − k − 1
×· · ·×1

1
=

1

(N − k)!
.

Combining these two results we get

P{y : C(y) 8 n = B 8 n, X = (x1, . . . , xN )}
= P (A ∩ {Xi = xi for k + 1 ≤ i ≤ N })

= (1/N)n × 1

(N − k)!
=
N(N − 1) . . . (N − k + 1)

Nn
× 1

N !

= P{C(Y ) 8 n = B 8 n} × P{X = x}.

It follows that C(Y ) and X are independent.

3.10 Notes
MGF::S:Notes

Bennett (1962) and Hoeffding (1963) are good sources for a host of expo-
nential inequalities. Massart (2003, Chapter 2) and Boucheron, Lugosi, and
Massart (2013, Chapter 2) persuaded me that it is a good idea to have the
relevant ideas collected together in one place, rather than deriving them on
an ad hoc basis.

The following lengthy discussion is aimed particularly at younger (or not
so young) researchers who rely on Wikipedia for their probability theory and
their history.
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Many authors seem to credit Chernoff (1952) with the moment gener-
ating trick in <1>, even though the idea is obviously much older. Here is
what Chernoff actually said. He first noted (page 494) that Cramér (1938)
had already established excellent results for sums of independent random
variables using the MGF method.

Remark. Cramér’s 1938 paper summarized asymptotic approximations
to the tail probabilities for a sum of independent random variables,
rather than bounds on those tail probabilities; details appeared in
Chapter 7 of Cramér (1937). See Cramér (1976, Section 4.9) for
comments about the conference where he presented the 1938 paper.

Chernoff (page 494) continued:

Since the results of Cramér are extremely more powerful
tha[n] we require here and the (finite) existence of third order
moments is not necessary for the results that we desire, we shall
state and briefly outline a proof of Theorem 1. Before doing this
we shall first formally state some notation and lemmas which we
shall use throughout this paper. These lemmas state known re-
sults which are rather obvious, depending mainly on Lebesgue’s
Theorem on integration of monotone sequences [reference to the
Saks book].

Note the words ‘state known results’.

Remark. In the following paragraphs I have slightly modified Chernoff’s
notation, to make it agree with my notation.

He then proceeded (page 495) to list some properties of the MGF for
Sn = X1+· · ·+Xn, a sum of independent random variables, each distributed
like X. He defined m(a) = inft∈R e

−atMX(t). After noting some facts about
derivatives of MX , he came to his Theorem 1. He listed several inequalities,
such as

P{Sn ≥ na} ≤ [m(a)]n if PX ≤ a <∞.

Chernoff provided (page 496) a brief sketch of the proof of his Theorem 1.
He began with the ‘extended Tchebycheff inequality’ for a = 0 ≤ PX,

PetSn = [MX(t)]n ≥ P{Sn ≤ 0} for t ≤ 0,

citing the German original of Kolmogorov (1933). (See page 42 in the En-
glish translation.) Kolmogorov gave no source, although the 1927 edition of
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Bernstein’s probability book was listed in his Bibliography. Chernoff then
went on to derive properties of the minimum that were of interest to him.

Undoubtedly there was much in Chernoff’s paper that was new and
highly influential on the subsequent statistical literature. The idea of bound-
ing a tail probability by a minimization involving the MGF was not new.
From the pen of Chernoff himself (DasGupta, 2004, page 3):

That semester, two topics that arose from the ONR project
gave rise to two papers that I wrote and of which I was very
proud. They pointed to a direction in optimal experimental de-
sign on which I spent much time later. Part of one of these pa-
pers involved finding asymptotic upper and lower bounds on the
probability that the mean of a sample of independent identically
distributed random variables would exceed a certain constant.
This paper represented the first application of large deviation
theory to a statistical problem. Cramer had derived a much
more elegant result in 1938, of which I had been ignorant. My
result, involving the infimum of a moment generating function,
was less elegant and less general than the Cramer result, but
did not require a special condition that Cramer required. Also,
my proof could be described as crudely beating the problem to
death. Herman claimed that he could get a lower bound much
easier. I challenged him, and he produced a short Chebyshev
Inequality type proof, which was so trivial that I did not trouble
to cite his contribution.

What a mistake! It seems that Shannon had incorrectly ap-
plied the Central Limit theorem to the far tails of the distribution
in one of his papers on Information theory. When his error was
pointed out, he discovered the lower bound of Rubin in my paper
and rescued his results. As a result I have gained great fame in
electrical engineering circles for the Chernoff bound which was
really due to Herman. One consequence of the simplicity of the
proof was that no one ever bothered to read the original paper of
which I was very proud. For years they referred to Rubin’s bound
as the Chernov bound, not even spelling my name correctly. I
once had the pleasure of writing to a friend who sent me a copy
of a paper improving on the Chernov bound, that I was happy
that my name was not associated with such a crummy bound.
For many years, electrical engineers have come to me and told
me that I saved their lives, because they were able to describe

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



§3.10 Notes 32

the bound on their preliminary doctoral exams. Fortunately for
me, my lasting fame, if any, will depend, not on Rubin’s bound,
but on Chernoff faces.

I think it is very clear that Chernoff was not claiming credit for the
whole of the MGF method. Perhaps it was just Chernoff’s superlatively
clear style that has persuaded some later researcher to call it the Chernoff
bound. Maybe someone should modify the Wikipedia entry (copied 28 July
2020):

In probability theory, the Chernoff bound, named after Her-
man Chernoff but due to Herman Rubin,[1] gives exponentially
decreasing bounds on tail distributions of sums of independent
random variables. It is a sharper bound than the known first-
or second-moment-based tail bounds such as Markov’s inequality
or Chebyshev’s inequality, which only yield power-law bounds on
tail decay. However, the Chernoff bound requires that the vari-
ates be independent—a condition that neither Markov’s inequal-
ity nor Chebyshev’s inequality require, although Chebyshev’s in-
equality does require the variates to be pairwise independent.

It is related to the (historically prior) Bernstein inequalities
and to Hoeffding’s inequality.

ps. The MGF method does not require sums of independent random vari-
ables. That case just happens to be the situation that interested Chernoff
in 1952.

Now for some more reliable history. In a paper celebrating Bernstein’s
eightieth birthday, Kolmogorov and Sarmanov (1960) wrote:

3. Beginning in 1921 Sergei Natanovich published a number
of papers dealing with various special problems in the appli-
cation of probability theory . . . and in 1927 appeared the first
edition of the fundamental text “The Theory of Probability”,
which was reprinted with large supplements in 1934 and 1946.
At the mathematical congresses in Moscow (1927) and Zürich
(1932) Sergei Natanovich delivered long survey reports on the
problems of probability theory. We . . . emphasize that at this
time such a wide range of work on all the fundamental theoreti-
cal and applied problems of probability theory was a totally new
thing. . . . It is natural that the theoretical and applied works of
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Sergei Natanovich and his text in probability theory have deter-
mined to a considerable degree the development of research in
probability theory in the USSR.

And then

4. A whole series of papers by Sergei Natanovich are con-
nected with the strengthening of Chebyshev’s inequality [citing
papers from 1918, 1924, and 1937] and the calculation of the
error in the Laplace formula . . .

I took the quotes from the SIAM translation of Volume V number 2 of the
Russian original.

The proof of the Bernstein inequality given by Uspensky (1937, pages 204–
206) used the MGF method. He prefaced the “Indication of the Proof” by
the remark “S. Bernstein has shown that Tchebycheff’s inequality can be
considerably improved”. I thank Elena Khusainova, who translated four
pages from Bernstein’s probability book for me, clearly showing that Us-
pensky was following that book, which appeared in his list of references
(page 207).

Now for the view from the West. Hoeffding (1963, page 14) gave Bern-
stein credit for the MGF approach: “The method employed to derive the
inequalities, which has often been used (apparently first by S. N, Bern-
stein),. . . ”. Hoeffding (1963, page 15-16) also commented that Chernoff
(1952) had already used the Binomial case as one of his examples. See
also the comments by Bennett (1962, page 35): “Bernstein’s original work
was published in Russian, and appears to be unobtainable. It is reported—
indirectly—by [Craig, 1933] . . . and by [Uspensky (1937, pages 204–206)]
who indicates the proof in a series of exercises. The inequality is mentioned
or quoted without proof by . . . Apart from these brief references, Bernstein’s
inequality seems to have escaped notice in the English-speaking world.” It
is also interesting to note Craig’s comment (on his page 94) “Another in-
teresting and important attempt in this direction due to S. N. Bernstein
seems to have generally escaped attention in the English-speaking world,
at least, since it has been published only in Russian”, with the footnote
“Bernstein, S., Theory of Probability, (Moscow, 1927), pp. 159-165. The
present account of this work of Bernstein is taken from a lecture of Profes-
sor J. V. Uspensky.” Craig also mentioned that his paper was written while
he was at Stanford University, where Uspensky was a mathematics faculty
member, until his death in 1947. At least some at Stanford had been aware
of Bernstein’s contributions.

Chap 3. The moment generating function method ./ Draft: 26 Oct 2021



§3.10 Notes 34

Inequality <12> for R(x) = Φ̄(x)/φ(x) is classical. It corresponds to
the first two terms in the asymptotic expansion derived in Problem [1].
The analogous result for the error function (that is,

∫ x
0 e
−t2dt) together

with a continued fraction expansion was given by Laplace in his Celestial
Mechanics, reprinted 1805 in Volume IV, Book X, Chapter 1, §5 of his
collected works (pages 489–492 in the Bowditch translation).

The ratio R(x) is often called the Mills ratio, because it was discussed by
Mills (1926). Actually Mills was just constructing a table of R, using earlier
tables for the normal distribution function and numerical methods proposed
by other authors. There has been a long history of authors deriving upper
and lower bounds for R, such as the upper bound from Problem [5] and the
lower bound from Problem [6]. See Baricz (2008) or Gasull and Utzet (2014)
for recent examples, which include some history. As far as I can tell, none of
these bounds is sharp enough to compete with the usual numerical methods
(Press et al., 1987, Section 6.2) for calculating various tail probabilities. I
assume that modern computing power makes printed tables rather irrelevant
these days. Nevertheless, some of the host of papers about M do contain
interesting theoretical ideas.

The subGamma idea is clearly present in the derivation of the Bernstein
inequality from the Bernstein moment assumption (see Section 8.3) but, to
my knowledge, Boucheron, Lugosi, and Massart (2013, page 28) were the
first to anoint it as a general concept. It seems that the neat trick <25> with
the square roots was first noted by Birgé and Massart (1998, Section 7.6),
although I would not be surprised if someone else had also noticed the same
facts during the long history of the Bernstein inequality. Nevertheless, there
is no doubting that the research group associated with Lucien Birgé and
Pascal Massart, in Paris, contributed many new and significant ideas.

Okamoto (1959) stated the Binomial tail bounds <29> and its analog
for the lower tail in a slightly different form, with the comment that “We
shall state two Lemmas the first of which is a corollary of a theorem given
by [Chernoff 1952, Theorem 1]”. He then derived several more attractive
bounds that could be derived from the MGF bound. He omitted the Calculus
(which I provided in Section 3.7) for the MGF bound; he only gave the details
for the weaker upper bounds. He also commented that his proof simplified
a “tedious, although elementary” calculation by Uspensky (1937, page 102).
It seems strange to me that Okamoto did not also cite Uspensky (1937,
page 204).
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