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Chapter 4

Poisson-Binomial

BinFriends::BinFriends
Section 4.1 introduces the idea that the binomial distribution is more spread

out than each Poisson-Binomial distribution with the same number of
trials and the same expected value.

Section 4.2 explains the identification of the Poisson-Binomial as the set
of distributions whose probability generating functions are polynomials
with all their roots real.

Section 4.3 presents some classical facts about polynomials with real roots.
Section 4.4 shows that all the members of a large family of distributions de-

fined by sampling without replacement, which includes the hypergeometric,
have Poisson-Binomial distributions.

Section 4.5 identifies the mode (or modes) of the Binomial distribution, as
a warm-up for the more difficult task of identifying the mode (or modes)
of a Poisson-Binomial distribution.

Section 4.6 shows that Poisson-Binomial distributions are (almost) unimodal,
with modes close to their expected values. To avoid a lot of fiddling with
special cases the results are first derived under a simplifying assumption.

Section 4.7 shows that the exact tail probabilities (as opposed to their upper
bounds calculated by the MGF method) for the Poisson-Binomial are
smaller than the corresponding binomial tails.

Section 4.8 establishes the amazing fact that the median of a Poisson-
Binomial is very close to its expected value. The argument makes a
cunning application of the comparison bound from Section 4.7 followed
by an appeal to the Central Limit Theorem.

4.1 The extreme Binomial
BinFriends::S:intro

Recall that the Poisson-Binomial distribution, PBin(p1, . . . , pn), is the
probability measure on the set {0, 1, . . . , n} defined as the distribution of a
sum S = X1+ · · ·+Xn of independent random variables with Xi ∼ Ber(pi),
for i = 1, . . . , n. As a special case, if pj = θ for all j then S ∼ Bin(n, θ).

Sections 3.7 and 3.8 from the previous chapter presented several examples
of distributions (including the Poisson-Binomial and hypergeometric) whose
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2

MGF’s are smaller than the MGF of a Binomial distribution with the same
expected value. Application of the MGF method from Section 3.1 gave tail
bounds for those distributions that were smaller than the corresponding tail
bounds for the Binomial, inequalities that raised the question of whether the
actual tail probabilities are really smaller than the actual tail probabilities
for the Binomial. This Chapter will show that they are: in a strong sense,
the Binomial is an an extreme member of the set of Poisson-Binomial dis-
tributions. In addition, Section 4.4 will show that the hypergeometric is a
special case of the the Poisson-Binomial, an assertion that I initially found
hard to believe.

Along the way to these conclusions you will learn some surprising facts
about the mode and median of the Poisson-Binomial, both of which lie within
a distance one of their expected values.

Remark. I first encountered the surprising fact about the median
of the Binomial in a small paper on empirical processes by Lucien
Le Cam (Le Cam, 1983). I was in awe that anyone should know such
an amazing fact. Being young and energetic, I wanted to know why
the result was true. After working diligently through the literature I
finally realized that, for Le Cam’s purposes, the Chebyshev inequal-
ity would have sufficed. Nevertheless, I was pleased to have gained a
deeper understanding of the humble Poisson-Binomial. I hope you will
feel the same way by the end of this Chapter.

4.2 The PGF of the Poisson-Binomial
BinFriends::S:PoisBin

Suppose S ∼ PBin(p1, . . . , pn). Some of the most interesting properties of S
lie concealed within its probability generating function (PGF),

g(z) = g(z,p) = PzS =
∏

j≤n
(1− pj + pjz) =

∑n

k=0
P{S = k}zk.

If pj = 0 for some j then the corresponding Xj contributes a 0 to S
and a 1 to the PGF. Thus there is usually no loss of generality in assuming
that pj > 0 for all j, which ensures that g(z) is a polynomial of degree n,
with roots −(1− pj)/pj , for j = 1, . . . , n. Note that all these roots are real
numbers.

The value 0 can be a root of g(z,p) only if at least one of the pj ’s is equal
to 1, contributing a factor z to the PGF and adding 1 to S. On a first pass
I found it helpful to ignore the minor complications caused by pj ’s in {0, 1}
by requiring 0 < pj < 1 for all j. However, there are sometimes good reasons
to allow 0’s and 1’s, as you will see in Sections 4.7 and 4.8.

In general, a polynomial h(z) = a0 + a1z + · · ·+ anz
n of degree n (that

is, an ̸= 0) has exactly n roots r1, . . . , rn in the complex plane,

h(z) = an
∏n

j=1
(z − rj).

The roots need not all be distinct. If the distinct values are R1, . . . , Rt with
multiplicities n1, . . . , nt then

∑t
j=1 nj = n and h(z) = an

∏t
j=1(z −Rj)

nj .
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§4.2 The PGF of the Poisson-Binomial 3

The all-real-roots property characterizes the Poisson-Binomial.

BinFriends::PB.roots <1> Lemma. Suppose a random variable X takes values in {0, 1, . . . , n} with
P{X = n} ≠ 0 and PGF g(z) = PzX . If all n roots r1, . . . , rn of g are real
then X has a PBin(p1, . . . , pn) distribution with pj = (1− rj)

−1.

Proof. Factorize g as

g(z) := PzX =
∑n

k=0
zkP{X = k} = an

∏n

j=1
(z − rj)

where an = P{X = n} and each rj real. Strict monotonicity of g on R+

and g(0) = P{X = 0} ≥ 0 ensure that rj ≤ 0 for each j. Defining pj =
1/(1− rj) we then have rj = −(1− pj)/pj and

g(z) = an
∏n

j=1
(z + (1− pj)/pj) =

an∏n
j=1 pj

∏n

j=1
(1− pj + pjz).

The equality g(1) = 1 forces an =
∏n

j=1 pj .□

Remark. The proof actually establishes a slightly stronger assertion:
If h is a polynomial of degree n with h(1) = 1 and all its roots r1, . . . , rn
are nonpositive (≤ 0) real numbers then h is the PGF of the PBin(p1, . . . , pj)
distribution with pj = 1/(1− rj).

BinFriends::quadratic <2> Example. Suppose W is a random variable that takes values in {0, 1, 2}
with P{W = k} = ak for k = 0, 1, 2, with a2 ̸= 0. Then W has PGF

g(z) = PzW = a0 + a1z + a2z
2.

To decide (without the benefit of Lemma <1>) whether the distribution
of W is Poisson-Binomial we need to determine whether the equations

p1p2 = a2\E@ a2\E@ a2 <3>

p1 + p2 − 2p1p2 = p1(1− p2) + (1− p1)p2 = a1\E@ a1\E@ a1 <4>

1− (p1 + p2) + p1pn = (1− p1)(1− p2) = a0\E@ a0\E@ a0 <5>

have a solution with p1, p2 ∈ [0, 1]. If there were such a solution then we
would have

p1 + p2 = a1 + 2a2 = 2θ := PW,

which would force p1 = θ − t and p2 = θ + t for some real t. Equation <3>
then becomes θ2 − t2 = a2, which has a real solution for t if and only if

\E@ real.NSC\E@ real.NSC <6> θ2 − a2 ≥ 0.

Let me assume that <6> holds. Taking t to be the (positive) square root
of θ2 − a2 and p1 = θ − t and p2 = θ + t, we then have p1p2 = a2 and

(1− p1)(1− p2) = (1− θ + t)(1− θ − t)

= (1− θ)2 − t2

= 1− 2θ + θ2 − t2

= (a0 + a1 + a2)− (a1 + 2a2) + a2 = a0,

p1(1− p2) + (1− p1)p2 = 2θ − 2(θ2 − t2) = a1 + 2a2 − 2a2 = a1.
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Moreover, both pi’s belong to [0, 1] because

0 ≤ θ −
√
θ2 − a2 = p1 ≤ p2 = θ +

√
(1− θ)2 − a0 ≤ 1.

In short, inequality <6> is necessary and sufficient for W to have a
Poisson-Binomial distribution, a fact that might surprise you because the
PGF g has real roots if and only if a21 ≥ 4a0a2. Fortunately,

θ2 − a2 =
(
1
2a1 + a2

)2 − a2

= 1
4a

2
1 + (1− a0 − a2)a2 + a22 − a2 =

1
4

(
a21 − 4a0a2

)
.

That is, <6> holds if and only if g has only real roots. Hooray!
You might check that the recipe in Lemma <1> for generating the prob-

abilities p1 and p2 from the roots of g leads to θ± t for {p1, p2}. It took me
a goodly amount of algebra to convince myself directly of this fact.□□

4.3 Polynomials with real roots
BinFriends::S:rroots

There is an extensive literature, going back several centuries, regarding the
roots of polynomials. For example, see Hardy, Littlewood, and Pólya (1989,
Sections 2.2 and 4.3) and Pólya and Szegö (1976, Part 5, Chap 1) for a
result due to Isaac Newton, which is derived in Example <10>. For a more
exhaustive treatment see Prasolov (2004). Here are some results related to
real roots that are useful for Poisson-Binomial purposes.

To avoid constant repetition of the clumsy “all-real-roots”, for n ≥ 1
define Pn to be the set of all polynomials of degree n with real coefficients
such that all n of its roots are real. Write P for ∪n≥0Pn, where P0 consists
of all constant functions. If f ∈ Pn with n ≥ 1 then

\E@ f.poly\E@ f.poly <7> f(z) = a0 + a1z+ · · ·+ anz
n = an

∏n

j=1
(z− rj) = an

∏t

j=1
(z −Rj)

nj

with all the aj ’s and rj ’s real and an ̸= 0. Here the rj ’s are the n roots
of f and R1, . . . , Rt are the distinct roots with multiplicities nj , that is,
nj = |{i ∈ [n] : ri = Rj}|.

BinFriends::rroot.facts <8> Lemma.

(i) If f ∈ Pn and g ∈ Pm then fg ∈ Pn+m.

(ii) If f ∈ P then its derivative Df also belongs to P.

(iii) If f ∈ Pn has representation <7> then the polynomial

(τf)(z) := an + an−1z + · · ·+ a1z
n−1 + a0z

n

belongs to Pn−ℓ, where ℓ is the multiplicity (possibly zero) of 0 as a
root of f . The roots of τf are the reciprocals of the nonzero Rj’s with
multiplicities nj.
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§4.3 Polynomials with real roots 5

(iv) If f ∈ Pn then f(α+ βz) ∈ Pn for all real constants α and β ̸= 0.□

Proof. For (i): If g(z) has roots s1, . . . , sm then the polynomial fg has
roots r1, . . . , rn, s1, . . . , sm.

For (ii): Without loss of generality suppose R1 < R2 < · · · < Rt in <7>.
By the mean value theorem, Df has at least one zero in each of the t − 1
open intervals (Rj , Rj+1). The expansion

Df(z) = an
∑t

j=1
nj(z −Rj)

nj−1
∏

i:j ̸=i
(z −Ri)

ni

shows that Rj is a root of f with multiplicity at least nj − 1. That gives at
least (t−1)+

∑t
j=1(nj−1) = n−1 real roots, counting multiplicities, for Df .

For (iii): If ℓ > 0 suppose r1, . . . , rℓ are the zero roots. First note that,
for z ̸= 0,

(τf)(z) = zn(a0 + a1/z + · · ·+ an/z
n)

= znf(1/z) = anz
nz−ℓ

∏n

j=ℓ+1
(z−1 − rj)

= an
∏n

j=ℓ+1
(1− rjz).

The final expression is a polynomial (of degree n− ℓ) in z that agrees with
the polynomial (τf)(z) for all z ̸= 0, so it must also agree at z = 0. It follows
that τf has roots 1/rj for ℓ < j ≤ n.

For (iv):
∏

j(α+ βz − rj) has roots z = (rj − α)/β.□

The next two Examples make use of the falling factorial function,
which is defined for real x as (x)0 = 1 and

(x)k =
∏k−1

j=0
(x− j) = x(x− 1) . . . (x− k + 1) for k ∈ N.

If x is a positive integer then (x)k = 0 for k ≥ x+ 1.

BinFriends::preVM <9> Example. Let me show you one way to use Lemma <8> to create a new
member of P from a given polynomial

g(z) = a0 + a1z + · · ·+ anz
n

in Pn for which ak > 0 for all k. The result will be most useful in Section 4.4.

Remark. I spent a lot of energy trying, without success, to relax the
strict positivity assumption on the coefficients. Eventually I gave up
because a stronger result was not needed for the argument in Sec-
tion 4.4. My failures led me to think that this result is not as elemen-
tary as it seems.

Suppose s and N are integers for which N ≥ n and 1 ≤ s < N . Define
bj := aj(N − j)s for 0 ≤ j ≤ n. Note that (N − j)s is nonzero iff N − j ≥ s.
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§4.3 Polynomials with real roots 6

That is, a bj is nonzero iff 0 ≤ j ≤ m := min(N − s, n). I assert that the
polynomial f(z) = b0 + · · ·+ bmzm belongs to Pm.

Note that N − s − m = κ := max(0, N − s − n) ≥ 0. The following
assertions are all justified by Lemma <8>.

g1(z) := zN−n(τg)(z) = anz
N−n + · · ·+ a0z

N ∈ PN ,

Differentiate s times, noting that DszN−j = 0 if j > N − s.

g2(z) := Dsg1(z) =
∑N−s

j=0
aj(N − j)sz

N−j−s

=
∑(N−s)∧n

j=0
bjz

N−j−s

= b0z
m+κ + · · ·+ bmzκ

= zκ(bm + · · ·+ b0z
m) ∈ Pm+κ.

If κ > 0 then the zκ contributes κ zero roots to g2, with the other real roots
coming from g3(z) := bm + · · · + b0z

m. Thus all m of the roots of g3 must
be real. One more application of τ then gives

f(z) = τg3(z) = b0 + · · ·+ bmzm ∈ Pm,

as asserted.□

The knowledge that a polynomial in P has only real roots tells us some-
thing about the coefficients of the polynomial, information that can be
extracted by repeated appeals to Lemma <8>. The short story is that the
result is due to Isaac Newton; see the Notes for the long story.

BinFriends::Newton <10> Example. Suppose g(z) = a0 + · · · + anz
n ∈ Pn with aj ̸= 0 for all j. I

claim that, for 0 ≤ k ≤ n− 2,

a2k+1 ≥
(n− k)(k + 2)

(n− k − 1)(k + 1)
akak+2 > akak+2.\E@ Newton.strong\E@ Newton.strong <11>

Remark. The inequality a2k+1 > akak+2 also holds for k ∈ {−1, n− 1}
if a−1 = an+1 = 0.

The k-fold derivative of g is a polynomial of degree n− k,

Dkg(z) = b0 + b1z + · · ·+ bn−kz
n−k where bj := ak+j(k + j)k,

which belongs to Pn−k. Focus your attention on the terms involving b0, b1, b2,
that is, the terms involving ak, ak+1, ak+2. The operator τ then trans-
forms Dkg to

b0z
n−k + b1z

n−k−1 + b2z
n−k−2 + · · ·+ bn−k ∈ Pn−k.
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Another ℓ := n − k − 2 differentiations leaves DℓτDkg(z) as a quadratic
in P2:

b0z
2(ℓ+ 2)ℓ + b1z(ℓ+ 1)ℓ + b2(ℓ)ℓ

= (ℓ+ 2)ℓ(k)kakz
2 + (ℓ+ 1)ℓ(k + 1)kak+1z ++(ℓ)ℓ(k + 2)kak+2

= ℓ!k!(Az2 +Bz + C)

where

A = (ℓ+ 1)(ℓ+ 2)× ak/(1× 2) = 1
2(n− k − 1)(n− k)× ak

B = (ℓ+ 1)(k + 1)× ak+1 = (n− k − 1)(k + 1)× ak+1

C = (k + 1)(k + 2)× ak+1/(1× 2).

By Lemma <8>, this quadratic has real roots, which happens if and only
if B2 ≥ 4AC, which is equivalent to the first inequality in <11>.□

4.4 Sampling and the Poisson-Binomial
BinFriends::S:hypergeometric

The main result in this Section is a tiny variation on an amazing result due
to Vatutin and Mikhailov (1983).

BinFriends::VM+ <12> Theorem. Suppose U is a finite set of size N and F and G are independent
random members of 2U , the collection of all 2N subsets of U . Suppose also
that |F |, the size of F , has a Poisson-Binomial distribution and, for a fixed m,

P{G = J} = 1/

(
N

m

)
for each J ∈ 2U of size m.

Then the size X = |F ∩G| also has a Poisson-Binomial distribution.

Remark. Vatutin and Mikhailov (1983) actually assumed (in my no-
tation) that F1, . . . , Fn were independent random subsets of U of sizes
|Fj | = Nj = N − sj . They showed that N − | ∩j Fj | has a PBin distri-
bution, from which they deduced several interesting limit theorems.

The VM result follows by repeated appeals to Theorem <12>
starting from the fact that Pz|F1| = zN1 , a polynomial with only real
roots. This fact was my motivation for the modification.

My modification of the theorem allows different ways to gen-
erate F1. For example, it could be degenerate at a fixed subset of
size N1 or it could be generated by Poisson sampling, whereby the
points of U are included independently in F1 with P{u ∈ F1} = πu for
a fixed set of values {πu : u ∈ U}. It could even be generated by some
combination of the two methods, whereby some subset U0 is always
included in F1 and other points are included randomly. I don’t have
any striking examples in mind.

As an immediate consequence of Theorem <12> we learn that the hy-
pergeometric is a special case of the Poisson-Binomial. The case where the
sample size equals 2 gave me some insights into the subtlety of the Theorem.
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§4.4 Sampling and the Poisson-Binomial 8

BinFriends::hyper.in.PB <13> Example. If a sample of size n is taken without replacement from an urn
(the set U) containing R red balls and B = N −R black balls then W , the
number of red balls in the sample, has distribution hyper(n,R,B), that is,

ak := P{W = k} =
(
R

k

)(
B

n− k

)
/

(
N

n

)
for k = 0, 1, . . . , n.

Here F1 is taken to be degenerate at the set of all red balls and F2 is a
random subset of size n.

Remark. The usual definition of binomial coefficients ensure that
P{W = k} is zero if k > n or n− k > B.

If the sample for F2 is selected one ball at a time then W can be written
as a sum ξ1+ · · ·+ ξn, with ξi = 1 if the ith selection is red and ξi = 0 if it is
black. Marginally speaking, each ξi has a Ber(p) distribution, with p = R/N ,
but they are not independent, as would be required to show directly that W
has a PBin distribution. Nevertheless, Theorem <12> tells us that there
must be another decomposition of the distribution of W that corresponds to
a sum of independent Bernoulli variables.

Consider the simplest case, where n = 2. First note that,

P{ξ2 = 1 | ξ1 = y1} =

{
(R− 1)/(N − 1) if y1 = 1

R/(N − 1) if y1 = 0
.

Clearly ξ1 and ξ2 are not independent. If both R and B were large then ξ1
and ξ2 would be close to independent, in some sense, but for an extreme case
like R = 1 and B = 2 they would be far from independent.

The distribution of W is determined by the joint distribution of ξ1 and ξ2:
for y1, y2 ∈ {0, 1},

P{ξ1 = y1, ξ2 = y2} =
1

N(N − 1)


R(R− 1) if y1 = y2 = 1

B(B − 1) if y1 = y2 = 0

RB if y1 + y2 = 1

.

It follows that h(z) = a0 + a1z + a2z
2, where

a0 =
B(B − 1)

N(N − 1)
, a1 =

2RB

N(N − 1)
, a2 =

R(R− 1)

N(N − 1)
.

The quadratic h has two real roots, {r1, r2} given by

−RB ±
√

R2B2 −BR(B − 1)(R− 1)

R(R− 1)
=
−RB ±

√
RB(N − 1)

R(R− 1)
,

both of them negative. Thus W ∼ PBin(p1, p2) for some values p1, p2 in [0, 1].
By the method from Example <2> we can take p1 = θ− t and p2 = θ+ t

where θ = 1
2PW = R/N and

t2 = θ2 − a2 =
R2

N2
− R(R− 1)

N(N − 1)
=

RB

N2(N − 1)
,
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§4.4 Sampling and the Poisson-Binomial 9

which gives

{p1, p2} =
R

N
±

√
RB

N2(N − 1)
.

Remark. Of course you should now feel obliged to check that the val-
ues {p1, p2} do correspond to {(1− r1)

−1, (1− r2)
−1}, as promised by

Lemma <1>. (I found that it cost me a good bit of algebra.)

For example, if R = B = N/2 then

{p1, p2} =
1

2
± 1

2
√
N − 1

.

In this case, for sampling with replacement we would toss two fair coins and
count the number of heads. For sampling without replacement we would
toss two coins, one slightly biased towards red and the other equally biased
towards black.□

Proof (of Theorem <12>). To simplify notation I’ll assume that P = P⊗Q
on the product space 2U×2U , with (F,G) as the generic point. Thus, under P,
the coordinate map F has distribution P and G has distribution Q. Under Q,
the distribution of Gc is uniform over the collection of all subsets of U of
size s = N −m.

Here is the main idea. By assumption |F | ∼ PBin(p1, . . . , pt) where,
without loss of generality, we may assume pj > 0 for each j. Define

h(z) = Pz|F | =
∑t

j=0
P{|F | = j}zj ,

f(z) = PzX .

We need to show that f has only real roots. This fact will follow from the
representation

\E@ f.rep\E@ f.rep <14> f1(z) := f(1 + z) = Cm

∑t

k=0
ak(N − k)sz

k

for some positive constant Cm, where the aj ’s are defined by

h(1 + z) =
∑t

j=0
ajz

j .

If we can also show that ak > 0 for all k then the result from Example <9>
will imply that f1 ∈ P. As the roots of f are just the roots of f1 shifted up
by 1, it will then follow that f ∈ P so that X also has a PBin distribution.

Let me start by proving the strict positivity of the aj ’s and then turn to
the representation <14>.

If L of the pj ’s were equal to 1 then the probabilities P{|F | = j} would
equal 0 for j < L. However we always have P{|F | = t} =

∏t
j=1 pj > 0.
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§4.4 Sampling and the Poisson-Binomial 10

The 1 + z takes care of any difficulties with the coefficients of h:

h(1 + z) =
∑t

j=0
P{|F | = j}

(∑t

k=0

(
j

k

)
zk
)

=
∑t

k=0
zk

(∑t

j=0
P{|F | = j}

(
j

k

))
Thus ak =

∑t
j=0 P{|F | = j}

(
j
k

)
≥

(
t
k

)
P{|F | = t} > 0 for 0 ≤ k ≤ t. We could

also expand h(1 + z) as

P(1 + z)|F | =
∑t

k=0
P

(
|F |
k

)
zk,

which shows that ak = P
(|F |

k

)
.

Now comes the really clever part. Because X ≤ |F | ≤ t we have the
expansion

f(1 + z) = P(1 + z)X =
∑t

k=0
P

(
X

k

)
zk.

The binomial coefficient
(
X
k

)
counts the number of subsets of F ∩G of size k,

which can written as a sum of
(
N
k

)
indicator functions:(

X

k

)
=

∑
|J |=k
{J ⊆ F ∩G} =

∑
|J |=k
{J ⊆ F}{J ⊆ G}.

Take expectation with respect to Q, the marginal distribution of G:

Q

(
X

k

)
=

∑
|J |=k
{J ⊆ F}Q{J ⊆ G}.

The event {J ⊆ G} is the same as {Jc ⊇ Gc}. Remember that the distribution
of Gc is uniform over the collection of all subsets of U of size s = N −m.
Thus

Q{J ⊆ G} =
(
|Jc|
s

)
/

(
N

s

)
= Cm × (N − k)s with C−1

m = s!
(
N
s

)
.

Now take expectation with respect to P .

P

(
X

k

)
= Cm × (N − k)sP

∑
|J |=k
{J ⊆ F}

= Cm × (N − k)sP

(
|F |
k

)
= Cm × (N − k)s × ak.

Summation over k then gives the asserted representation <14>.□
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4.5 Ratios and mode(s)
BinFriends::S:modeBin

You could regard this Section as mainly a warm-up for an analogous, but
more delicate, argument for the general Poisson-Binomial.

Recall that if a random variable Y takes only integer values then mode(Y )
can be defined as {k : P{Y = k} = M} where M = maxk P{Y = k}. If
mode(Y ) is a singleton, {ν}, then ν is called ‘the mode’ of the distribution;
otherwise the members of mode(Y ) are often referred to as modes.

For example, if S ∼ PBin(p1, . . . , pn) with 0 < pj < 1 for all j and
aj = P{S = j} then inequality <11> (with k replaced by k − 1) implies

ak/ak−1 > ak+1/ak for 0 < k < n.

(For a more direct coupling proof see Section 13.1.) That is, the sequence
ak/ak−1 decreases as k increases. If K denotes the largest value for which
aK/aK−1 > 1 then we have ak−1 < ak for k ≤ K. It might happen that
aK+1/aK = 1 and then ak > ak+1 for k ≥ K + 1, in which case mode(S) =
{K,K + 1}. If aK+1/aK < 1 then K is the unique mode.

It takes a fair amount of work to determine the value K for the general
Poisson-Binomial because the distribution of S involves an intimidating
multinomial in the components of p = (p1, . . . , pn):

\E@ fk.def\E@ fk.def <15> f(k) := f(k,p) := P{S = k} =
∑

|J |=k

(∏
j∈J

pj

)(∏
j /∈J

(1− pj)
)
,

where
∑

|J |=k denotes summation over all
(
n
k

)
subsets J of [n] := {1, 2, . . . , n}

of size k. The probabilities are strictly positive for k = 0, 1, . . . , n.

Remark. The function f(k,p) is symmetric in the variables p1, . . . , pn.
Its value does not depend on the order in which the pj ’s are listed in
the vector p.

The task is much easier for the special case of the binomial.

BinFriends::Bin.mode <16> Example. If X ∼ Bin(n, p) then

b(j) := P{X = j} =
(
n

j

)
pjqn−j for j = 0, 1, . . . , n.

Here I again write q for 1− p and assume that 0 < p < 1. As in the general
PBin case, the ratio of consecutive b(j)’s is a strictly decreasing function
of j with

b(j + 1)

b(j)
=

n!(n− j)!j!pj+1qn−j−1

(j + 1)!(n− j − 1)!n!pjqn−j
=

(n− j)p

(j + 1)q
for 0 ≤ j < n.

It follows that

b(j + 1) ⪌ b(j) if j + 1 ⪋ np+ p for 0 ≤ j < n.

If K := ⌈np+ p⌉ − 1, the unique integer for which K < np+ p ≤ K + 1,
the pattern of inequalities is:
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For K < np+ p = K + 1,

b(0) <
b(1) < . .

. < b(K) = b(K + 1) > . . . > b(n− 1)
> b(n).\E@ mode.Bin=\E@ mode.Bin= <17>

For K < np+ p < K + 1,

b(0) <
b(1) < . .

. < b(K) > b(K + 1) > . . . > b(n− 1)
> b(n).\E@ mode.Bin<\E@ mode.Bin< <18>

That is, K and K+1 are both modes if np+p is an integer, and otherwise K
is the unique mode. In particular if p = 1/2 and n is even then n/2 is the
unique mode but if n is odd then the modes are (n− 1)/2 and (n+ 1)/2.□

4.6 Mode(s) of the Poisson-Binomial
BinFriends::S:modePoisBin

Throughout this section suppose S = X1 + · · ·+Xn ∼ PBin(p1, . . . , pn) and
f(k) := f(k,p) := P{S = k}. To avoid tedious special cases, for most of the
Section assume 0 < pj < 1 for all j and the pj ’s are not all equal to p. Only
at the end of the Section (in subsection 4.6.1) will I discuss what happens
if pj = 0 or pj = 1 for some j. The main result is given by the following
Theorem, that shows P{S = k} is maximized by k close to PS.

BinFriends::mode.PoisBin <19> Theorem. Suppose S ∼ PBin(p1, . . . , pn) with

\E@ not.Bin\E@ not.Bin <20> 0 < pmin := min1≤j≤n pj < max1≤j≤n pj =: pmax < 1.

Define L := ⌊pmin + PS⌋ and K := ⌈pmax + PS⌉ − 1. Then there are only
two possibilities:

(i) L = K and

f(0) < · · · < f(K) > f(K + 1) > · · · > f(n),

which makes K the unique mode;

(ii) L+ 1 = K and

f(0) < · · · < f(L) and f(K) > f(K + 1) > · · · > f(n),

with no assertion regarding the comparison between f(L) and f(K).
That is, mode(S) is either {K} or {K + 1} or {K,K + 1}.□

Remark. Compare the upper tails with the situation where X ∼
Bin(n, p) with b(j) = P{X = j}.

f(Kpb) > f(Kpb + 1) > . . . f(n) if Kpb < pmax + PS ≤ Kpb + 1

b(Kb) = b(Kb + 1) > · · · > b(n) if Kb < p+ PX = Kb + 1,

b(Kb) > b(Kb + 1) > · · · > b(n) if Kb < p+ PX < Kb + 1.

The gap between pmin and pmax has subtle consequences. In the next
Section it will be most helpful not having to worry about a possible
equality between P{S = Kpb} and P{S = Kpb + 1}. Strict inequalities
are sensitive to very small changes.
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§4.6 Mode(s) of the Poisson-Binomial 13

The proof of the Theorem depends on two Lemmas, which are stated
next. Then comes the proof of the Theorem, followed by the proofs of the
Lemmas.

BinFriends::monotone <21> Lemma. Under assumption <20>, for each j the ratio f(k,p)/f(k − 1,p)
is strictly increasing in pj, for fixed values of the other pi’s.□

BinFriends::fk.increase <22> Lemma. Under assumption <20>, f(k,p) > f(k − 1,p) for each k in the
range 1 ≤ k ≤ pmin + PS.□

Proof (of Theorem <19>). From Lemma <22> and the definition of L
as the largest integer that is ≤ pmin + PS we have

f(0) < f(1) < · · · < f(L).

For the other part of the range note that n−S has a PBin(n, q1, . . . , qn)
distribution for qi = 1− pi and P{n− S = k} = f(n− k). Also

mini qi + P(n− S) = 1− pmax + n− PS ≥ (n+ 1)− (K + 1).

Again from Lemma <22> it follows that

P{n− S = n−K} > P{n− S = n−K − 1} > · · · > P{n− S = 0},

which implies f(K) > f(K + 1) > · · · > f(n).

Relationship between L and K
The integers L and K are defined by the inequalities

L ≤ pmin + PS < L+ 1 and K < pmax + PS ≤ K + 1.

The inequalities 0 < pmin < pmax < 1 give

L ≤ pmin + PS < pmax + PS ≤ K + 1.

The strict inequality then ensures that L ≤ K. Similarly,

pmax + PS < pmin + PS + 1 < (L+ 1) + 1,

which implies L+ 2 ≥ ⌈pmax + PS⌉ = K + 1, so that L+ 1 ≥ K.□

Proof (of Lemma <21>). The assertion is that f(k,p)/f(k − 1,p) is
strictly increasing in each pj . For notational simplicity consider only the case
where j = 1.

Define S0 =
∑n

i=2Xi and g(k) := g(k, p2, . . . , pn) = P{S0 = k}, for which
g(k) > 0 for 0 ≤ k ≤ n− 1. By the weak form of Newton’s inequality from
Example <10>,

\E@ g.Newton\E@ g.Newton <23> g2(k − 1) > g(k)g(k − 2) for 1 ≤ k ≤ n.
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(The inequalities for k = 1 and k = n hold for the trivial reason that
g(−1) = g(n) = 0.) Decompose according to the value of X1:

f(k,p)

f(k − 1,p)
=

(1− p1)g(k) + p1g(k − 1)

(1− p1)g(k − 1) + p1g(k − 2)
for 1 ≤ k ≤ n.

The denominator is strictly positive for 0 < p1 < 1. The partial derivative
with respect to p1 equals(

f(k − 1,p) [g(k − 1)− g(k)]− f(k,p) [g(k − 2)− g(k − 1)]
)
/f(k − 1)2

The numerator is linear in p1 and approaches

g(k − 1) [g(k − 1)− g(k)]− g(k) [g(k − 2)− g(k − 1)]

= g2(k − 1)− g(k)g(k − 2) as p1 → 0,

g(k − 2) [g(k − 1)− g(k)]− g(k − 1) [g(k − 2)− g(k − 1)]

= g2(k − 1)− g(k)g(k − 2) as p1 → 1.

Thus the numerator is constant at the value g2(k − 1) − g(k)g(k − 2) > 0.
The p1 derivative of f(k,p)/f(k − 1,p) is strictly positive.□

Now comes the real work. Lemma <21> will play a crucial role.

Proof (of Lemma <22>). The assertion is: if 1 ≤ k ≤ pmin + PS then
f(k) > f(k − 1).

Define p0 = pmin, so that
∑n

i=0 pi ≥ k. Choose X0 ∼ Ber(p0) indepen-
dently of the other Xi’s. Define S∗ = X0 + S and

T ∗
i = S∗ −Xi =

∑n

j=0
{j ̸= i}Xj for 0 ≤ i ≤ n.

Note that T ∗
0 = S and T ∗

i ∼ PBin(p1, . . . , pi−1, p0, pi+1, . . . , pn). Symmetry
of PBin in its arguments lets me write the distribution in this way, which
emphasizes that the change in distribution from T ∗

i to S is caused by an
increase from p0 to pi. Writing fi(j) for P{T ∗

i = j} we then have, via
Lemma <21>, the inequalities

\E@ ffi.ratios\E@ ffi.ratios <24> f(k)/f(k − 1) = f0(k)/f0(k − 1) ≥ fi(k)/fi(k − 1) for 1 ≤ i ≤ n,

with strict inequality if p0 < pi.
You should check the following equalities,

{S∗ = k} = Xi{T ∗
i = k − 1}+ (1−Xi){T ∗

i = k} for each i,

k{S∗ = k} =
∑n

i=0
Xi{T ∗

i = k − 1},

by calculating the values on both sides of each equality when S∗ = j, for
0 ≤ j ≤ n + 1. (For example, the second equality corresponds to the fact
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that S∗ = k iff exactly k of the Xi’s equal 1 and 1 + T ∗
i = k for those i.)

Then take expectations, using independence of Xi and T ∗
i , to deduce that

P{S∗ = k} = pifi(k − 1) + qifi(k) for each i,\E@ S*Ti*\E@ S*Ti* <25>

kP{S∗ = k} =
∑n

i=0
pifi(k − 1).\E@ sum.Ti*\E@ sum.Ti* <26>

Combine. From the inequality k ≤ PS + pmin =
∑n

j=0 pj we have∑n

i=0
pifi(k − 1) = kP{S∗ = k}

≤
(∑n

i=0
pi

)
P{S∗ = k} from<26>

=
∑n

i=0
pi (pifi(k − 1) + qifi(k)) by <25>.

Subtract.

0 ≤
∑n

i=0
pi

[
pifi(k − 1) + qifi(k)− (pi + qi)fi(k − 1)

]
=

∑n

i=0
piqi

[
fi(k)− fi(k − 1)

]
=

∑n

i=0
piqifi(k − 1)

[
fi(k)/fi(k − 1)− 1

]
≤

∑n

i=0
piqifi(k − 1)

[
f(k)/f(k − 1)− 1

]
by <24>.

In fact the last inequality must be strict because <24> is strict for at least
one i (such as the i for which pmax = pi). That is,[

f(k)/f(k − 1)− 1
]
× (something > 0) > 0.

It follows that f(k)/f(k − 1) > 1 and f(k) > f(k − 1).

Remark. It is worth noting that strict inequality in <24> was only
needed to deduce the strict inequality for the final conclusion. If <24>
might not be strict, as in the case where pmin = pmax, the Lemma
would still apply but with the conclusion weakened to f(k) ≥ f(k−1).□

4.6.1 Zeros and ones
BinFriends::zo

Theorem <19> assumed that

0 < pmin := min{pj : j ∈ [n]} < max{pj : j ∈ [n]} =: pmax < 1.

What annoyances could result from the violation of this assumption?
To avoid total triviality, I still assume that

\E@ weaker\E@ weaker <27> 0 < p := n−1
∑n

i=1
pi < 1.

Define

I0 = {i : pi = 0} with size n0

M = {i : 0 < pi < 1} with size m

I1 = {i : pi = 1} with size n1.
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§4.6 Mode(s) of the Poisson-Binomial 16

If m = 0 then P{S = n1} = 1, so that the mean, mode, and median of S
are all equal to n1.

If m > 0 things are little more interesting/complicated. Write θ for the
vectors of length m obtained by deleting all the 0’s and 1’s from p. Define

θmin := minθ, θ = m−1
∑

j∈M
θj , θmax := maxθ.

The sum T :=
∑

j∈M Xj has a PBin(θ) distribution and S = T +n1 so that

PS = n1 + PT = n1 +mθ

P{S = n1 + j} = f(n1 + j) = g(j) := P{T = j} for 0 ≤ j ≤ m.

The behavior of S is just the behavior of T translated by m to the right. In
particular,

mode(S) = {n1 + j : j ∈ mode(T )}.

It is now just a matter of applying the results from inequalities <17>
and <18> or Theorem <19>, with minor notational changes.

In both of the following cases P{S = k} = 0 for integers k that lie outside
the range {n1 + j : 0 ≤ j ≤ m}.

Case: m ≥ 1 and θj = θ for all j
Here T ∼ Bin(m, θ). For K = ⌈θ+PS⌉− 1 = n1+ ⌈θ+PT ⌉− 1, the integer
defined by the inequalities K < θ + PS ≤ K + 1, we have two possibilities.

(i) If θ + PS is an integer then K = θ + PS and

P{S = n1} < . . . < P{S = K}
= P{S = K + 1} > . . .P{S = n1 +m}.

(ii) If θ + PS is not an integer then K < θ + PS < K + 1 and

P{S = n1} < . . . < P{S = K}
> P{S = K + 1} > · · · > P{S = n1 +m}.

Remark. For m = 1 we have T ∼ Ber(θ) and the results reduce to

P{S = n1} = 1− θ ⪌ P{S = n1 + 1} = θ if θ ⪋ 1/2,

as can be verified by direct calculation.
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Case: m ≥ 2 and θmin < θmax

For integers L and K defined by

L ≤ θmin + PS < L+ 1 and K < θmax + PS ≤ K + 1,

we have only two possibilities.

(i) L = K and

P{S = n1} < . . . < P{S = K}
> P{S = K + 1} > · · · > P{S = n1 +m}

(ii) L+ 1 = K and

P{S = n1} < · · · < P{S = K − 1}
P{S = K} > P{S = K + 1} > · · · > P{S = n1 +m},

with no assertion regarding the comparison between P{S = K − 1}
and P{S = K}.

4.7 Binomial tails versus Poisson-Binomial tails
BinFriends::S:compare-tails

Suppose S ∼ PBin(p) for p = (p1, . . . , pn) ∈ [0, 1]n. Elementary calculations
show that

PS = np :=
∑

j≤n
pj and var(S) =

∑
j≤n

pj(1− pj).

By the jensen inequality, for a given p the variance of S is maximized when
pj = p for all j. That is, var(S) ≤ var(X) where X ∼ Bin(n, p), an inequality
that adds support to the idea that the distribution of X is more spread out
than the distribution of S. The following Theorem adds rigor to this intuition.

BinFriends::PB<B <28> Theorem. Suppose S ∼ PBin(p) with p ∈ [0, 1]n and µ := PS ∈ (0, n).
Let k be an integer with n ≥ k ≥ 1 + µ. Then

(i) P{S ≥ k} ≤ P{X ≥ k} where X ∼ Bin(n, p) with p = µ/n

(ii) The inequality in (i) is strict if not all pi’s are equal to p.□

The Theorem holds for trivial reasons if pj ∈ {0, 1} for all j: in the
notation of subsection 4.6.1, we would have S = n1 = µ with probability 1,
so that P{S ≥ 1+µ} = 0. Enough said. For the rest of this Section, I assume
that {j : 0 < pj < 1} ≠ ∅.

The main idea in the proof is easiest to understand when n = 2 and
0 < µ ≤ 1, so that the only k with 1+µ ≤ k ≤ 2 is k = 2. If p1+r = p = p2−r
for some r ̸= 0 then we have

P{S = 2} = p1p2 = p2 − r2 < p2 = P{X = 2}.
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§4.7 Binomial tails versus Poisson-Binomial tails 18

The general case, with n ≥ 3, involves the same idea, applied repeatedly,
transforming the initial p through a sequence of vectors a(1),a(2), . . . in [0, 1]n

that converges to p1, the vector of probabilities for which PBin(p1) reduces
to the Bin(n, p). (It can also happen that some a(j) is equal to p1.) At each

iteration two component a
(j)
α and a

(j)
β are replaced by (a

(j)
α + a

(j)
β )/2, for a

pair of distinct values α, β that might depend on what has happened up to
step j. I denote this operation by the procedure smoothα,β. It keeps the sum

of the components (a
(j)
1 , . . . , a

(j)
n ) of a(j) equal to µ. For the specification

of α and β it helps to have the components of a(j) sorted into increasing
order, which I denote by the procedure sort. In short, the iteration scheme
is described by

a(0) ← sort(p)

while (a(j) ̸= p1)

a∗ ← smoothα,β

(
a(j)

)
with (α, β) depending on past?

a(j+1) ← sort (a∗)

For the sake of a clean notation, it helps to think of the Xj ’s as the
coordinate maps on {0, 1}n with Pa = ⊗j∈[n]Ber(aj), the product of the the
Ber(aj) measures on {0, 1}. That is, for each x = (x1, . . . , xn) in {0, 1}n we
have

Pa{x} =
∏n

j=1

(
aj{xj = 1}+ (1− aj){xj = 0}

)
.

With that interpretation, the random variable S is always the same function,∑
j≤nXj =

∑
j≤n xj , on {0, 1}n; only the underlying Pa changes when a

changes.
The following Lemma captures the important consequences of replacing

a generic a by a∗ = smoothα,β(a).

BinFriends::pwise.ave <29> Lemma. Suppose a = (a1, . . . , an) with a1 ≤ · · · ≤ an and at least one aj
satisfying 0 < aj < 1. For a pair α, β ∈ [n] with 1 ≤ α < β ≤ n define a∗ by

a∗j =

{
t if j ∈ {α, β} where t := (aα + aβ)/2
aj otherwise

.

Also define Sα,β =
∑

j∈[n]\{α,β}Xj = S −Xα −Xβ. Then:

(i) Pa∗{S ≥ k} − Pa{S ≥ k} = r2∆ where r := (aβ − aα)/2 and

∆ := Pa{Sα,β = k − 2} − Pa{Sα,β = k − 1}.

(ii)
∑

i≤n(ai − p)2 =
∑

i≤n(a
∗
i − p)2 + 2r2.

(iii) if β = n and k ≥ 1+PaS then ∆ ≥ 0, which ensures that the inequality
Pa∗{S ≥ k} ≥ Pa{S ≥ k} holds.□
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Proof. Decompose the event {S ≥ k} as

XαXβ{Sα,β ≥ k − 2}+ [Xα(1−Xβ) + (1−Xα)Xβ] {Sα,β ≥ k − 1}
+ (1−Xa)(1−Xβ){Sα,β ≥ k}

then take expected values under Pa to get

Pa{S ≥ k}

= aαaβPa{Sα,β ≥ k − 2}+
(
aα + aβ − 2aαaβ

)
Pa{Sα,β ≥ k − 1}

+
(
1− aα − aβ + aαaβ

)
Pa{Sα,β ≥ k}

= aαaβ

(
Pa{Sα,β ≥ k − 2} − 2Pa{Sα,β ≥ k − 1}+ Pa{Sα,β ≥ k}

)
+ 2t

(
Pa{Sα,β ≥ k − 1} − Pa{Sα,β ≥ k}

)
+ Pa{Sα,β ≥ k}

= aαaβ

(
Pa{Sα,β = k − 2} − Pa{Sα,β = k − 1}

)
+ 2tPa{Sα,β = k − 1}+ Pa{Sα,β ≥ k}.

Under Pa∗ the calculation is almost the same because Sα,β has the same
distribution under Pa and Pa∗ and aα+aβ = 2t = α∗

α+a∗β. The only change
is replacement of aαaβ by a∗αa

∗
β; all other terms stay the same. Many terms

cancel when Pa{S ≥ k} is subtracted from Pa∗{S ≥ k}, leaving(
a∗αa

∗
β − aαaβ

)
∆ = (t2 − (t− r)(t+ r))∆k = r2∆,

the equality asserted by (i).
The argument for (ii) is similar, with a cancellation of all except the

terms with j ∈ {α, β}:∑
j
(aj − p)2 −

∑
j
(a∗j − p)2

= (aα − p)2 + (aβ − p)2 − (a∗α − p)2 − (a∗β − p)2

= (t+ r − p)2 + (t− r − p)2 − 2(t− p)2 = 2r2.

Assertion (iii) is the trickiest part of the proof. It involves an appeal to
the inequalities from Section 4.6.1 applied to Sα,β instead of S. In general,
the vector a looks like

n0 m n1

a = a1 0 · · · 0 a2+n0 · · · a2+n0+m−1︸ ︷︷ ︸ 1 · · · 1 an .\E@ 2a.form\E@ 2a.form <30>

M

Here 0 < aj < 1 for j ∈ M , with m ≥ 1 by assumption; the coordinate a1
must equal 0 if n0 > 0; the coordinate an must equal 1 if n1 > 0. Define

θmin = min
j∈M

aj = a2+n0 and θmax = max
j∈M

aj = a2+n0+m−1.

Draft: 3 Jan 2021, Chap 4 ©David Pollard



§4.7 Binomial tails versus Poisson-Binomial tails 20

Define K := ⌈θmax+PaSα,β⌉−1. (Note that if m = 1 then θmax = θmin = θ :=
m−1

∑
j∈M aj .) Corresponding to both the nontrivial cases from Section 4.6.1

we have

Pa{Sα,β = K} ≥ Pa{Sα,β = K + 1} > . . .Pa{Sα,β = n1 +m} > 0,\E@ Sab\E@ Sab <31>

and Pa{Sα,β = k} = 0 for k > n1 +m,

Moreover, the first inequality in <31> is strict if m ≥ 2 and θmin < θmax

or if aj = θ for j ∈ M and (m + 1)θ is not an integer. The conditions for
strict inequality are not needed for part (i) of Theorem <28> but they are
needed for part (ii).

If we choose β = n then aβ ≥ θmax and

k ≥ 1 + PaS = 1 + PaSα,β + aα + aβ ≥ 1 + PaSα,β + θmax,\E@ k>=\E@ k>= <32>

which implies that the integer k− 2 is ≥ θmax +PSα,β − 1, thereby ensuring
that

k − 2 ≥ ⌈θmax + PSα,β⌉ − 1 = K.

That is, k− 2 and k− 1 lie in the range where the inequalities <31> apply.
Assertion (iii) follows.□

With the results from the Lemma it is now easy to prove the first part
of the Theorem.

Proof (for part (i) of Theorem <28>). At each step j choose α = 1
and β = n. If some a(j) has all of its components the same (namely, all equal

to p because
∑

i a
(j)
i = np) then we have reached the binomial and no more

averaging is needed. Otherwise we get an infinite sequence for which

\E@ increasing.tails\E@ increasing.tails <33> Pp{S ≥ k} = Pa(0){S ≥ k} ≤ · · · ≤ Pa(j){S ≥ k} ≤ Pa(j+1){S ≥ k} ≤ . . .

From equality (ii) of the Lemma we have∑
i≤n

(a
(j)
i − p)2−

∑
i≤n

(a
(j+1)
i − p)2 = 2r2j where rj := a

(j)
n − a

(j)
1 .

where rj = a
(j)
n − a

(j)
1 . Sum over j = 0, . . . , N for an arbitrarily large N to

deduce that∑
i≤n

(pi−p)2−
∑

i≤n
(a

(N+1)
i −p)2 = 2

∑
j≤N

r2j where rj := a
(j)
n − a

(j)
1 .

The series
∑∞

j=0 r
2
j must converge, implying a

(j)
n − a

(j)
1 → 0 as j → ∞. It

follows that maxi |a(j)i − p| → 0 and a(j) → p1. Continity (compare with
representation <15>) of the map a 7→ Pa{S ≥ k} then leads to the desired
conclusion,

Pp{S ≥ k} ≤ Pp1{S ≥ k} = P{X ≥ k}

where X ∼ Bin(np).□
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Now for the complication. In order to prove part (ii) of the Theorem,
starting from a p that is not equal to p1, it would suffice to have

Pa(j+1){S ≥ k} > Pa(j){S ≥ k}

for even a single j. That is, for the Pa(j) analog of <31> we would need to
satisfy one of the conditions for strict inequality in the first ≥. How hard can
that be? I must admit that I had some trouble coming up with a watertight
argument—special cases kept causing difficulties. The following example
shows where the problem lies.

BinFriends::trouble <34> Example. Suppose p = (0, 1/2, 1/2, 1/2, 1), with PpS = 5/2 and p = 1/2
and K = ⌈1/2 + 5/2⌉ − 1 = 2. We need to consider k ≥ 1 + 5/2, that is,
values of k in the set {4, 5}. Unfortunately, under Pp, the random variable S1,5

has a Bin(3, 1/2) distribution, which is one of those cases that produces an
equality in <31>. For k − 2 = 2 = K, the very first step in the procedure
used for proving part (i) would jump straight to the Bin(5, 1/2) with an
equality in the tail bound.

It is easy to work around the difficulty in this particular example: start
with

p(1) = sort (smooth2,5(p)) = (0, 1/2, 1/2, 3/4, 3/4)

then continue as in the proof for part (i) with α = 1 and β = 5. The Lemma
gives Pp(1){S ≥ 4} ≥ Pp{S ≥ 4} and then the second step gives a strict

improvement.□

In general I found it difficult to keep track of all the special cases, so I
opted for the following multistep approach. The idea is to leave p1 unchanged
while replacing each of p2, . . . , pn by the same value. That precaution en-
sures that we don’t transform prematurely to the binomial case, as in
Example <34>. Thereafter a few a well chosen pairwise smoothings lead to
the desired increase in the tail probabilities while en route to the Bin(n, p).

Proof (for part (ii) of Theorem <28>). Consider an initial vector p
with 0 ≤ p1 ≤ · · · ≤ pn ≤ 1 and p1 < pn. We must have p1 < p, for otherwise
we could not have

∑
i pi = np. (If pn > p1 ≥ p then

∑
i pi > np.) Argue

as in the proof for part (i) but with α = 2 and β = n. In the limit we get
a b = (p1, b . . . , b) with p1 + (n− 1)b = np and

Pb{S ≥ k} ≥ Pp{S ≥ k}.

It must be true that p1 < p < b and r := (p1+ b)/2 < p < b. Why? Then

c = sort(smooth1,n(b)) = (r, r, b, . . . , b) with r < p < b .

If n ≥ 4 or n = 3 and r ̸= 1/2 then a smooth1,n would give a strict in-
crease in the tail probability. And so on, as for part (i). If n = 3 and r = 1/2
then S1,3 ∼ Bin(1, 1/2) under Pc, another bad case. However a sort(smooth1,3(c))
would leave a newvector (1/2, u, u) for which u = (1/2 + b)/2 > 1/2. An-
other sort(smooth1,3) would then give a strict increase in the tail probability.
And so on, as for part (i).□
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4.8 The median of the Poisson-Binomial
BinFriends::S:medianPB

Theorem <28> provides the tool for proving the result about the median
described at the end of Section 4.1. The following argument repackages a
clever idea of Jogdeo and Samuels (1968).

Recall that a median of a random variable Y is a value M for which

P{Y ≤M} ≥ 1/2 and P{Y ≥M} ≥ 1/2.

Such an M always exists but it need not be unique. In fact, for each random
variable Y there exist two medians, m0(Y ) ≤ m1(Y ) such that the set of all
medians equals the closed interval [m0(Y ),m1(Y )]. If m0(Y ) = m1(Y ) then
the median is unique. If m0(Y ) < m1(Y ) then

P{Y ≤ m0(Y )} = 1/2 = P{Y ≥ m1(Y )},

so that P{m0(Y ) < Y < m1(Y )} = 0. All of these results, and more, are
derived in Problem [4]. If any of these facts are new to you it would be a
good idea to glance at that Problem before reading the proof of the next
Theorem.

In the proof I rely on changing subscripts on the random variables instead
of adding subscripts to the P as in the previous Section.

BinFriends::median <35> Theorem. Suppose S ∼ PBin(p) with p ∈ [0, 1]n and µ = PS ∈ (0, n).
Then ⌊µ⌋ ≤ m0(S) ≤ m1(S) ≤ ⌈µ⌉.

Proof. From Problem [4], both endpoints m0(S) and m1(S) for the set of
medians take values in the set {0, 1, . . . , n}.

For m1(S) it is enough to show that

P{S ≥ k} < 1/2 where k := 1 + ⌈µ⌉.

That inequality and the fact that P{S ≥ m1(S)} ≥ 1/2 would give

m1(S) ≤ k − 1 = ⌈µ⌉.

Remark. If ⌈µ⌉ = n then the inequality m1(S) ≤ ⌈µ⌉ holds for trivial
reasons. Thus we need only consider the case where k ≤ n.

Control of P{S ≥ k} via Theorem <28>
By definition, k ≥ 1 + µ. For θn := µ/n, the Theorem gives

P{S ≥ k} ≤ P{Wn ≥ k} where Wn ∼ Bin(n, θn).

Remark. The inequality is strict if S is not actually binomial dis-
tributed.
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Define Sn+2 = 0 + Wn + 1, which has a PBin(a) distribution for
a = (0, θn, . . . , θn, 1), with the θn repeated n times. Another appeal to
Theorem <28> gives

P{Wn ≥ k} = P{Sn+2 ≥ k + 1} < P{Wn+2 ≥ k + 1},

where Wn+2 ∼ Bin(n + 2, θn+2) with (n + 2)θn+2 = PSn+2 = 1 + µ. Then
define Sn+4 = 0 +Wn+2 + 1. And so on.

In this way we get a sequence of random variables {Wn+2j : j ∈ N} for
which

Wn+2j ∼ Bin(n+ 2j, θn+2j) with (n+ 2j)θn+2j = j + µ ,

P{Wn+2j ≥ k + j} < P{Wn+2j+2 ≥ k + j + 1}.

Note that θn+2j = (µ+ j)/(n+ 2j) → 1/2 as j increases. The variance
of Wn+2j equals σ2

n+2j = (µ+ j)(1− θn+2j)→∞. By a central limit theorem
for a sequence of binomial’s (see Exercise 7.20 of Pollard, 2001, for example),

Zj :=
Wn+2j − (µ+ j)

σn+2j
⇝ Z ∼ N(0, 1) as j →∞.

It follows that

P{Wn+2j ≥ k + j} = P{Zj ≥ (k − µ)/σn+2j} → P{Z ≥ 0} = 1/2.

The tail probability P{S ≥ k} is bounded above by the limit of a strictly
increasing sequence of numbers that converges to 1/2, which implies the
desired inequality P{S ≥ k} < 1/2.

An analogous argument with n − S, which is also Poisson-Binomial
distributed, shows that

n−m0(S) = m1(n− S) ≤ ⌈P(n− S)⌉ = n− ⌊µ⌋,

which rearranges to m0(Sn) ≥ ⌊µ⌋. The first equality in the previous line
comes from Problem [4] (v).□

4.9 Problems
BinFriends::S:Problems

[1] Suppose f is a convex function on [0, 1] and θ ∈ (0, 1). Amongst probabilityBinFriends::P:Ber.extreme

measures P on [0, 1] with mean θ, show that Pf is maximized by the Ber(θ)
distribution.

[2] (Hoeffding, 1956, comment at the foot of page 713) As in Section 4.7, thinkBinFriends::P:Hoeff.max

of S as the sum of coordinate maps on the set {0, 1}n equipped with Pp, a
product of Ber(pi) distributions. For a given real valued function g on the
set {0, 1, . . . , n} define a map G : [0, 1]n → R by

G(p) = Ppg(S) =
∑n

k=0
g(k)Pp{S = k}.
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(i) Show that G(p) = G(pσ(1), . . . , pσ(n)) for each permutation σ of [n] and
that pj 7→ G(p) is linear for each j (with the other coordinates held fixed).
Hint: Look at equations <15> and <25>.

(ii) Conversely, suppose a map H : [0, 1]n → R has the two properties (symmetry
and linearity in each coordinate) identified in part (i). For 0 ≤ k ≤ n define
h(k) := H(1k,0n−k), where the argument denotes a vector with 1 repeated k
times followed by 0 repeated n− k times. Show that H(p) = Pph(S). Hint:

H(p) = H(p1 × 1 + (1− p1)× 0, p2 . . . , pn)

= p1H(1, p2, . . . , pn) + (1− p1)H(0, p2, . . . , pn)

= p1

[
p2H(1, 1, p3 . . . , pn) + (1− p2)H(1, 0, p3 . . . , pn)

]
+ (1− p1)

[
p2H(0, 1, p3 . . . , pn) + (1− p2)H(0, 0, p3 . . . , pn)

]
,

and so on. Remember that the order of the arguments of H is irrelevant.

[3] (Chebyshev 1846; Hoeffding 1956, Corollary 2.1) Suppose G(p) = Ppg(S), asBinFriends::P:shift.Binomial
in the previous Problem. As a continuous function on the compact set [0, 1]n

it must achieve its maximum at some point a, which is not unique. Amongst
the maximizers choose a vector a of the form (a1, . . . , am,0n0 ,1n1) with
0 < a1 ≤ · · · ≤ am < 1 and n0 + n1 maximal.

(i) Define b := (am + a1)/2 and t0 = (am − a1)/2 and ϵ := min(b, 1− b). Show
that a1 = b− t0 and am = b+ t0 and 0 ≤ t0 < ϵ.

(ii) Define T = S −X1 −Xm. Show that G(a) = a1amA+ 2bB + C where

A = Pa

[
g(2 + T )− 2g(1 + T ) + g(T )

]
,

B = Pa

[
g(1 + T )− g(T )

]
, and C = Pag(T )

do not depend on a1 or am.

(iii) Define b ∈ [0, 1]n by b1 = b− t and bm = b+ t and bj = aj otherwise, for a
value of t with |t| ≤ ϵ.

(iv) Show that 0 ≤ G(a)−G(b) = (t2 − t20)A.

(v) Show that A < 0 by considering the choice t = ϵ: if A ≥ 0 then G(b) ≥ G(a),
which would mean that b is another maximizer with∑

j
({bj = 0}+ {bj = 1}) > n0 + n1.

(vi) Consider t = 0. Show that G(b) > G(a) if t0 ̸= 0.

(vii) Conclude that a1 = · · · = am = b. That is, S−n1 has a Bin(m, b) distribution
under Pa.

[4] Suppose Y is a real valued random variable. Define F (y) = P{Y ≤ y}, theBinFriends::P:medians

usual distribution function, and G(y) = P{Y ≥ y}.
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(i) Show that F is a non-decreasing function that is continuous from the right.
Show also that G is non-increasing and continuous from the left.

(ii) Define

U = UY = {y ∈ R : F (y) ≥ 1/2}
L = LY = {y ∈ R : G(y) ≥ 1/2}

and define m0 = m0(Y ) = inf UY and m1 = m1(Y ) = sup LY . Show that
both mi values are finite and m0 ≤ m1. (Hint: If y > m1 then P{Y ≥ y} <
1/2, so that P{Y < y} > 1/2.) Then use the results from part (i) to show
that

L = (−∞,m1] and U = [m0,∞).

(iii) Show that the set of all medians of Y is equal to L ∩ U = [m0,m1].

(iv) If m0 < y < m1 show that

1/2 ≤ F (m0) ≤ P{Y ≤ y}
1/2 ≤ G(m1) ≤ P{Y > y}

Then deduce that P{Y ≤ m0} = 1/2 = P{Y ≥ m1} and, by subtraction,
P{m0 < Y < m1} = 0.

(v) Suppose c is a constant and W = c− Y . Show that y ∈ LW iff c− y ∈ UY .
Deduce that m1(W ) = c−m0(Y ). Argue similarly to show that m0(W ) =
c−m1(Y ).

(vi) Suppose Y takes values in a finite subset H of the real line. Show that m0(Y )
and m1(Y ) both belong to H. Hint: Draw pictures of F and G.

4.10 Notes
BinFriends::S:Notes

See Pitman (1997) for a well-written survey of various ways to characterize
the Poisson-Binomial distribution, with probabilistic and combinatorial
consequences.

The inequality <11>, in Section 4.3, was attributed to Isaac Newton by
Hardy, Littlewood, and Pólya (1989, Sections 2.22, 4.3), who cited page 173
of Newton’s Arithmetica Universalis: sive de compositione et resolutione
arithmetica liber [Opera, I.]. Unfortunately I was unable to find the target
(in Latin) of this citation, or an English translation thereof. At first I found
it easier to follow the sketch proof by Lévy (1937, page 88). I was puzzled
why HLP needed to replace the polynomial p(x) by ynp(x/y) until I saw an
argument (replacing p(z) by znp(1/z)) by Vatutin and Mikhailov (1983),
which revealed that the HLP trick was merely a device to change the order
of the coefficients in the same way as operator τ in Lemma <8> does. I
decided to include my more pedantic treatment of τ in that Lemma because
I was worried about the role of roots of p(z) that equal zero. This possibility
caused me a lot of trouble. See my Remark in Example <9>.
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Fortunately, my problems with Newton’s inequality were solved when I
looked at an unpublished paper by Stein (1990, page 5), which pointed me
at Whiteside (2008, Volume 1, page 519), which contained a translation of
some of Newton’s work on roots of equations. Footnote (38) on page 523
described Newton’s method in modern algebraic notation. As explained in
the General Introduction to Whiteside (2008, Volume 5), the Arithmetica
Universalis evolved from a set of notes submitted to a Cambridge library by
Newton, in fulfillment of an obligation attached to the chair he held. They
were later published by another professor, much to Newton’s displeasure.
Interesting reading.

Section 4.6 is my reworking of material from a short (but most impres-
sive) paper by Samuels (1965), with much help from Hoeffding (1956). As
the reader might suspect, I had a lot of trouble with strict inequalities;
counterexamples to my theorems kept popping up.

Samuels attributed the results that appear in my Section 4.7 to Hoeffding,
although he also noted that similar results were obtained by Chebyshev (1846).
The pairwise averaging method that I used in my Theorem <28> is due to
Chebyshev. The method was later (apparently independently) reinvented by
Hoeffding (1956). Chebyshev showed, for a fixed value of

∑n
j=1 pj , that the

tail probability P{S ≥ m} for S ∼ PBin(p1, . . . , pn) is maximized when there
is a value θ such that every pj belongs to {0, θ, 1}. Hoeffding derived the same
fact for a general Pg(S). See Problems [2] and [3]. See Seneta (1998, pages
206–207) and Maistrov (2014, pages 191,196) for very interesting discussions
of Chebyshev (1846).

Section 4.8 is based on Jogdeo and Samuels (1968).
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