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Chapter 10

Chaining

Chaining::Chaining
Section 10.1 introduces the idea of a maximal inequalities. It explains why

it often suffices to consider finite, or countable, collections of random
variables.

Section 10.2 summarizes some useful facts about orlicz norms.
Section 10.3 introduces chaining, a strategy for approximation by means

of a sequence of finite sets linked together to decompose a process into a
sum of increments.

Section 10.4 defines covering and packing numbers, which are often used
in the construction of chaining approximations.

Section 10.5 gives four examples of chaining with packing numbers, each
based on control of increments by an orlicz norm.

Section 10.6 shows how chaining can be used to prove uniform continuity
of sample paths, at least when the inequalities are derived from nested
chaining frameworks.

*Section 10.7 presents an example to point out some some subtle differences
between the approach described in Section 10.3 and the way chaining was
employed in earlier literature.

10.1 Maximal inequalities
Chaining::S:intro

This Chapter introduces a powerful method for deriving various probabilistic
bounds for stochastic processes, X = {Xt : t ∈ T}, where the index set T is
equipped with a metric d that gives some control over the increments of the
process. For example, we might have

\E@ norm.incr\E@ norm.incr <1> ∥Xs −Xt∥ ≤ K0d(s, t)

for some norm ∥·∥ and some constant K0, or we might have a tail bound

\E@ tail.incr\E@ tail.incr <2> P{|Xs −Xt| > K1d(s, t)r} ≤ β(r) for all s, t ∈ T , and r ≥ 0.

for some decreasing function β with limr→∞ β(r) = 0 and some other
constant K1.
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§10.1 Maximal inequalities 2

To simplify the exposition, in this Chapter I’ll always take the norm
in <1> to be ∥·∥Ψ for some orlicz function Ψ, with β derived from Ψ. To
avoid having to fuss about some special cases I’ll also assume that Ψ is strictly
increasing on R+, with no flat spot. That is, Ψ(x) = 0 only at x = 0. For
your convenience the relevant properties from Chapter 5 are summarized in
Section 10.2.

Remark. It is not essential that d(s, t) = 0 should imply s = t. That
is, d might be a semi-metric, in which case, it suffices to have Xs = Xt

almost surely if d(s, t) = 0. Inequality <2> ensures that this property
holds. Similarly, ∥·∥ could be a semi-norm provided ∥W∥ = 0 if and
only if W = 0 almost surely, as happens with the usual Lp and orlicz
“norms”. I leave it to the fastidious reader to modify the arguments
to accommodate semi-metrics and semi-norms.

The central task in many probabilistic and statistical problems is to find
good upper bounds for quantities such as supt∈T |Xt| or the oscillation,

\E@ osc.def\E@ osc.def <3> osc(δ,X, T ) := sup{|Xs −Xt| : s, t ∈ T, d(s, t) < δ}.

For example, we might seek bounds on ∥supt∈T |Xt| ∥ or ∥osc(δ,X, T ) ∥, or
on their tail probability analogs

P{supt∈T |Xt| > η} or P{osc(δ,X, T ) > η}.

Such bounds are often referred to as maximal inequalities because they
involve maxima (or suprema) over potentially large sets of random variables.

Maximal inequalities play an important role in the theory of stochas-
tic processes, empirical process theory, and statistical asymptotic theory.
Bounds for the oscillation are essential for the construction of processes with
continuous sample paths (Section 10.6) and for the study of convergence in
distribution of sequences of stochastic processes (Chapter 14). In particular,
oscillation control is the key ingredient in the proofs of donsker theorems for
empirical processes. In the literature on the asymptotic theory for estima-
tors defined by optimization over random processes, oscillation bounds (or
something similar) have played a major role under various names, such as
“stochastic asymptotic equicontinuity” or “uniform tightness”.

For uncountable index sets T we encounter complications regarding the
integrability of quantities like supt∈T |Xt|, because uncountable unions need
not preserve measurability. Some authors, such as Ledoux and Talagrand
(1991, page 298) and Talagrand (2021, page 13), got around this difficulty
by interpreting the inequalities as statements about arbitrarily large finite
subsets of T : they interpreted

P supt∈T Xt to mean sup{P supt∈F Xt : finite F ⊂ T}.

With such a convention the real challenge becomes: find bounds for finite F
that do not grow unhelpfully large as the cardinality (size) of F increases.
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This convention is (essentially) equivalent to replacing supt∈T Xt by the
essential supremum of {Xt : t ∈ T}. See Section 9.2 for details.

Another solution to the problem when T is an uncountable, but separable,
metric space involves the replacement of {Xt : t ∈ T} by a new version of
the process: a new stochastic process {X̃t : t ∈ T} on the same probability
space, for which the set Nt := {ω : Xt(ω) ̸= X̃t(ω)} is P-negligible for each
fixed t. Such a modification is particulary unobjectionable if the Xt’s are
really only defined up to an almost sure equivalence. Doob (1953, Section II.2)
showed that the version can always be chosen in such a way that there exists
a countable, dense, approximating subset T∞ of T and a single P-negligible
set N such that:

for each ω in Nc and each t ∈ T ,

there is a sequence {sn} (depending on ω) in T∞

for which X̃(sn, ω)→ X̃(t, ω).

For the technical details see Section 9.4, where I use the term doob-separable
to avoid confusion with separability (meaning existence of a countable, dense
subset) of a metric space.

If X is doob-separable then supt∈T |X̃(t, ω)| = supt∈T∞ |X̃(t, ω)| for
each ω in Nc. Similar equalities holds for the oscillation and other quantities
involving suprema and infima over T . Effectively all probability calculations
can be carried out using only {X̃t : t ∈ T∞}, a process with a countable
index set.

There is a significant simplification if the doob-separable process is
continuous in probability, that is, for each t in T ,

\E@ cts.in.prob\E@ cts.in.prob <4> Xsn → Xt in probability as sn → t.

In that case every countable, dense subset of T is an approximating subset.
Property <4> follows from either of <1> or <2>. Again see Section 9.4 for
details (and fine print) regarding doob-separable stochastic processes.

In view of the previous few paragraphs, you will be quite safe if you
prefer to ignore all that stuff about doob-separable processes and just focus
on how to handle {Xt : t ∈ T∞} for some countable, dense subset T∞ of T .
Equivalently, you could just consider very simple processes, {Xt : t ∈ F}
with F a finite subset of T , as long as the bounds do not blow up when the
size of F is sent off to infinity.

10.2 A reminder about orlicz norms
Chaining::S:Orlicz

If an orlicz function Ψ has no flat spot then g := log(1+Ψ) is continuous and
strictly increasing with g(0) = 0, and Ψ = eg − 1. The inverse functions Ψ−1

and g−1 are well defined, continuous, and strictly increasing.
Assumption <1> with ∥·∥ = ∥·∥Ψ becomes

∥Xs −Xt∥Ψ := inf{c > 0 : PΨ(|Xs −Xt|/c) ≤ 1} ≤ K0d(s, t).

Draft: 2mar24, Chap 10 ©David Pollard



§10.2 A reminder about orlicz norms 4

If d(s, t) > 0, the standardized increment Ys,t := |Xs − Xt|/K0d(s, t) has
∥Ys,t∥Ψ ≤ 1, so that PΨ(Ys,t) ≤ 1 and

2 ≥ 1 + PΨ(Ys,t) = P exp(g(Ys,t)).

It then follows that

\E@ Orlicz.tails\E@ Orlicz.tails <5> P{|Xs −Xt| ≥ K0d(s, t)r} ≤ P exp (g(Ys,t)− g(r)) ≤ 2e−g(r).

That is, the β(r) in <2> can be taken to equal 2e−g(r).
For the special case where X is a centered gaussian process it is natural

to define the metric by d(s, t) = ∥Xs −Xt∥2 and use the orlicz function cor-
responding to g(x) = x2. For those choices (see Section 5.6) the constant K0

equals the awkward
√
8/3. Even with the choice g(x) = x2/2, which would

produce the ‘subgaussian tail bound’ 2 exp(−r2/2), the constant K0 would
be
√
2, only slightly less awkward. I’ll often ignore such nuisances, perhaps

with the suggestion that we could just work with X/K0.
For some calculations it is convenient to have a graceful way to bound

products of the form Ψ(x)Ψ(y). The easiest approach is to assume that Ψ
belongs to Yexp, as described in Section 5.3. That is, there exists a constant Cg

such that

\E@ g.bnd\E@ g.bnd <6> g(x) + g(y) ≤ g (Cg max(x, y)) for all x, y ∈ R+.

Equivalently,

\E@ ig.bnd\E@ ig.bnd <7> g−1(a+ b) ≤ Cg max
(
g−1(a), g−1(b)

)
for all a, b in R+.

These inequalities for g imply analogous inequalities for Ψ:

\E@ Psi.bnd\E@ Psi.bnd <8> Ψ(x)Ψ(y) =
(
eg(x) − 1

)(
eg(y) − 1

)
≤ eg(x)+g(y)− 1 ≤ Ψ(Cg max(x, y))

for all x, y in R+ and

\E@ yyexp.inv\E@ yyexp.inv <9> Ψ−1(ab) ≤ Cg max
(
Ψ−1(a),Ψ−1(b)

)
for all a, b in R+.

For 1 ≤ α <∞, each of the orlicz functions Ψα := egα−1, with gα(x) = xα,
belongs to Yexp. Moreover, gα is convex and ga(x) + gα(y) ≤ gα(x + y) for
all x, y ∈ R+, so that <6> actually holds with Cgα = 2.

The bounds from Section 5.4 for handling maxima of finitely many
variables will also be particularly useful in the present Chapter. Here is a
slight restatement of the main result:

Chaining::Orlicz.maximal <10> Theorem. Let W1, . . . ,WN be random variables, not necessarily indepen-
dent, but all defined on the same probability space. Define M := maxi≤N |Wi|.
Suppose maxi≤N ∥Wi∥Ψ ≤ 1 for some orlicz function Ψ. Then:

(i) PM ≤ Ψ−1(N).

(ii) PBM ≤ Ψ−1(N/PB) where PB denotes conditional expectation given
an event B with PB > 0.

(iii) If Ψ ∈ Yexp then ∥M∥Ψ ≤ 2CΨ−1(N) for some constant C.
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10.3 What is chaining?
Chaining::S:chains

The workhorse of the modern approach to approximating stochastic processes
is called chaining, which seems to have an undeserved reputation as a
complicated and difficult idea. I suspect the reputation comes from the earlier
literature where it was mostly applied to bound tail probabilities. As you
will soon see, it is not difficult to bound tails by sums involving arbitrarily
chosen small constants; but it can be messy to transform such sums into
easily interpreted expressions. Many earlier papers gave little insight into
how those constants were chosen. I suspect the choices involved some trial
and error. (Of course I intend no criticism of those earlier authors. Indeed,
I count myself amongst those who engaged in much trial and error.) In this
Chapter I hope to dispel some of the mysteries of chaining by departing from
the historical order in which chaining ideas first emerged, proceeding instead
from simpler to more subtle constructions.

Remark. A wise probabilist once told me that he couldn’t understand
all the mystery surrounding chaining, for ‘it is really not much more
than the triangle inequality’. It is indeed (mostly) just the triangle
inequality, applied many times. The cleverness comes from the choices
of when to invoke the inequality and how to collect terms into man-
ageable chunks.

The following Example introduces the key to the chaining idea’s success.

Chaining::BM.bnd <11> Example. Consider the problem of bounding P supt |Bt| for a brownian
motion process {Bt : 0 ≤ t ≤ 1}. Quite sharp inequalities have been derived
using special properties of the process, such as linearity of the index set and
independence of the increments across disjoint intervals. Less precise bounds,
to show that the expected supremum is finite, can be derived using only the
fact that Bt−Bs has a subgaussian distribution with scale parameter equal
to

√
|t− s| .

The main tool is a simple maximal inequality: if X1, . . . , XN are random
variables with Xi ∈ subg(τ2i ) then

\E@ max.subg\E@ max.subg <12> PmaxiXi ≤ τ
√

2 logN where τ := maxi τi.

To derive this bound, argue for λ > 0, that

exp (λPmaxiXi) ≤ P exp (λmaxiXi) by the jensen inequality

= Pmaxi e
λXi ≤

∑
i
PeλXi

≤
∑

i
eλ

2τ2i /2 ≤ Neλ
2τ2/2.

Take logs, divide through by λ, then choose λ = τ−1
√

2 logN to minimize.

It is natural to approximate the supremum by a maximum taken over a
large, finite subset such as

Ti := {jδi : j = 0, 1, . . . , 2i} where δi := 2−i.
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§10.3 What is chaining? 6

Then we can let i tend to infinity, with the hope that the limit will be finite.
To emphasize the fact that the bound will only depend on information

about the increments of the process I’ll write Bt − B0 instead of Bt, using
the fact that B0 = 0. Inequality <12> with τ2 = 1 gives

Pmaxt∈Ti(Bt −B0) ≤
√

2 log(1 + 2i) ,

which blows up as i → ∞. You might protest that τ2 = 1 is a gross over-
estimate when jδi is close to zero. However, half of the members of Ti have
a τ2j of at least 1/2, which is enough to lead to failure.

For the next part of the discussion it will be cleaner to work with two-
sided bounds. If one of the Xi’s in <12> is identically zero, as will always
be the case in what follows, then

\E@ max.subg2\E@ max.subg2 <13> Pmaxi |Xi| ≤ P (maxiXi +maxi(−Xi)) ≤ 2τ
√

2 logN .

Remark. Another way to derive a two-sided bound like <13> is: for
the orlicz function Ψ(x) = exp(x2)−1 we have ∥Xi∥Ψ ≤ C0τi for some
constant C0. Theorem <10>(i) then gives

Pmaxi |Xi| ≤ C0τΨ
−1(N) = C0τ

√
log(1 +N) .

It is indeed wasteful to apply the subgaussian bound directly to the
Bt−B0 increments. It would be better to relate each Bjδi to a value Bℓi−1(jδi),
where ℓi−1 rounds down to the nearest multiple of δi−1. Equivalently, ℓi−1

maps Ti into the set Ti−1 := {jδi−1 : 0 ≤ j ≤ 2i−1} with |t − ℓi−1(t)| ≤ δi.
The triangle inequality,

|Bt−B0| ≤ |Bt−Bℓi−1(t)|+|Bℓi−1(t)−B0| ≤ max
t∈Ti

|Bt−Bℓ(t)|+ max
s∈Ti−1

|Bs−B0|,

then leads us to the bound

Pmaxt∈Ti |Bt −B0| ≤ Pmaxt∈Ti |Bt −Bℓi−1(t)|+ Pmaxs∈Ti−1 |Bs −B0|

≤
√

δi

√
2 log(1 + 2i) + Pmaxs∈Ti−1 |Bs −B0|.

By matching each t in Ti with an s in Ti−1 with |t− s| significantly smaller
than |t − 0| we have have solved one explosive problem (for Ti) at the cost
of creating an analogous problem with a slightly smaller index set Ti−1.

So how do we handle the Ti−1 problem? Of course, the answer is: use the
same idea to approximate Ti−1 by an smaller Ti−2. And so on. Eventually
we get a bound

Pmaxt∈Ti |Bt −B0| ≤
∑i

j=1

√
2−j

√
2 log(1 + 2j) ,

which does not blow up as i→∞.
An appeal to monotone convergence then bounds P supt∈T∞ |Bt−B0| for

a countable, dense subset T∞ of [0, 1]. Continuity of sample paths, or even
just doob-separabilty, then takes care of the whole interval [0, 1].□
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§10.3 What is chaining? 7

Remark. You might experiment with different choices of Ti in the
previous Example. For example, for which positive α would the Ti

consisting of integer multiples of i−α lead to a finite bound? Histori-
cally speaking, the 2−i grid seems to have been the favorite choice. It
has the advantage that there is a simple upper bound, δi, for |t− ℓ(t)|.
Something similar, based on packing numbers, will be used in Sec-
tion 10.5. In Chapters 11 and 12 you will learn that a different strat-
egy is sometimes better.

Keeping the message from Example <11> in mind, let us now return to the
general problem of obtaining maximal inequalities for a process {Xt : t ∈ T}
indexed by a metric space (T, d) with a metric that provides some probabilistic
control over the increments of the process, as <1> or <2>. As a typical
example, suppose we wish to bound P{supt∈T |Xt| > η}, for a countably
infinite or finite T . We might try the union bound,

P{supt∈T |Xt| > η} ≤
∑

t∈T
P{|Xt| > η},

Unfortunately, the sum might be larger than 1, especially if T is big.
Instead we could creep up on T through a sequence of finite subsets,

T0, T1, . . . such that, for each fixed s in T ,

\E@ denser\E@ denser <14> d(s, Tm) := min{d(s, t) : t ∈ Tm} → 0 as m→∞.

It simplifies some notation if we insist that T0 = {t0}, a singleton set.
The chaining method works by breaking the process on Tm into a contribu-

tion from t0 plus a sum of increments across each Ti to Ti−1 pair. To achieve
such a decomposition, for each i in N we need a map ℓi−1 : Ti → Ti−1, thereby
arranging the Ti’s into a tree. The tree then defines maps Li : Tm → Ti for
i ≤ m by following paths towards t0: for each t in Tm,

Lit := the point of Ti on the tree path from t to t0.

More formally, if t ∈ Tm and i < m then Lit := ℓi ◦ ℓi+1 ◦ · · · ◦ ℓm−1(t).

t=t4

t3 = L3t

t0= L0t

t2 = L2t
T1

T2

T3

T4 Remark. To cut down on parenthetic clutter I’ll abbreviate ℓi(t) to ℓit
and Li(t) to Lit whenever there is no ambiguity. Parentheses seem
advisable for things like ℓi−1(jδi).

The edges of the tree correspond to the increments of the process,

Xt −Xt0 =
∑m

i=1
X(Lit)−X(Li−1t) if t ∈ Tm,\E@ X.increments\E@ X.increments <15>

with a corresponding bound derived from the triangle inequality,

|Xt −Xt0 | ≤
∑m

i=1
|X(Lit)−X(Li−1t)| if t ∈ Tm.

Remark. Here the | · | stands for the absolute value of a real-valued
random variable. The same argument works if X takes values in some
more exotic normed vector spaces (such as RN ) with | · | denoting the
corresponding norm.
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§10.3 What is chaining? 8

Clearly we must lose something by using such an inequality. (See Problem [2]
for an example.) Against that cost we receive a payoff from the simple fact
that many different t’s in Tm can share the same increment:

X(Lit)−X(Li−1t) = X(s)−X(ℓi−1s) if Lit = s.

We need to control that increment only once, not separately for each path.
Inequalities <1> and <2> are tailor-made for that purpose. This sharing of
increments is the main reason for the effectiveness of chaining arguments.

If you were suspecting that the cleverness of the chaining method lies
mostly in the choice of the Ti’s then you would, in general, be correct. How-
ever, for the most important special case based on packing numbers (discussed
in the next two Sections), the choices are fairly straightforward. Moreover, for
that special case the Ti’s can be chosen as nested, T0 = {t0} ⊂ T1 ⊂ T2 ⊂ . . . .
The countable set T∞ := ∪j∈N0Tj is dense in T . It becomes a natural candi-
date for the approximating subset of a doob-separable version of a process
satisfying <1> or <2>. The passage from a bound over Tm to a bound
over T∞ then involves little more than an appeal to the monotone conver-
gence theorem.

For future reference, I’ll give a name to the approximation scheme de-
scribed in the previous few pages.

Chaining::framework <16> Definition. A chaining framework {(Ti, ℓi) : i ∈ N0} on a metric
space (T, d) consists of:

• a sequence {Ti : i ∈ N0} of finite subsets of T with T0 a singleton set

• maps ℓi−1 : Ti → Ti−1 for each i ∈ N

for which

(i) d(s, Tm) := min{d(s, t) : t ∈ Tm} → 0 as m→∞ for each fixed s in T .

(ii) The {ℓi} define a tree on T∞ := ∪j∈N0Tj rooted at t0, with edges
(s, ℓi−1s) for s ∈ Ti. The paths along the tree toward the root define
maps Li : T∞ → Ti such that ℓi−1 ◦ Li = Li−1 for each i.

(iii) The framework is said to be nested if Ti−1 ⊂ Ti for each i. In that
case it is required that ℓi−1t = t when t ∈ Ti−1.□

Remark. It turns out that for some purposes (such as the construc-
tion in Section 11.6) it is useful to allow frameworks {(Ti, ℓi) : i =
0, . . . ,m} for a fixed finite m. Clearly the assumption that d(s, Tm)→
0 should be ignored in such a case. Rather than complicate the cur-
rent definition—which is adequate for the present Chapter—with fur-
ther subcases (such as dense frameworks and finite frameworks) I’ll
leave it to you to ignore assertion involving m → ∞ when there are
only finitely many Ti’s.
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§10.3 What is chaining? 9

Sometimes—particularly when the ultimate aim is control of the oscillation
of a process—it pays to stop following the links of the chain (= the edges in
the tree) before they reach the T0 level. For 0 ≤ k < m we then have

|X(t)−X(Lkt)| ≤
∑m

i=k+1
|X(Lit)−X(Li−1t)| for t ∈ Tm,

with a corresponding inequality that provides a uniform approximation for
{Xt : t ∈ Tm} via the simpler process {Xt : t ∈ Tk}:

Mk,m := maxt∈Tm |X(t)−X(Lkt)|

≤ maxt∈Tm

∑m

i=k+1
|X(Lit)−X(Li−1t)|\E@ max.sum\E@ max.sum <17>

≤
∑m

i=k+1
maxs∈Ti |X(s)−X(ℓi−1s)|.\E@ sum.max\E@ sum.max <18>

The early literature typically worked with the upper bound <18>, with
the ith summand a maximum of at most |Ti| random variables, which was
usually controlled by simple tail bounds. For example, if <2> holds then

P{maxs∈Ti |X(s)−X(ℓi−1s)| > ηi} ≤
∑

s∈Ti

P{|X(s)−X(ℓi−1s)| > ηi}

≤ |Ti|maxs∈Ti β (ηi/(K1d(s, ℓi−1s)) .\E@ tail.max\E@ tail.max <19>

Actually, I should be more careful regarding the possibility that ℓi−1s might
be equal to s, particularly if the framework is nested.

In the later literature, bounds based on orlicz norms (of the type de-
scribed in Theorem <10>) became popular. Those bounds involve maxima
of random variables with orlicz norms at most 1, which suggests a preliminary
standardization: for s in Ti,

\E@ Del.def\E@ Del.def <20> ∆i(s) :=

{ |X(s)−X(ℓi−1s)|
ρi(s)

if ρi(s) := ∥X(s)−X(ℓi−1s)∥Ψ ̸= 0

0 otherwise

.

With Mi := maxs∈Ti ∆i(s), inequality <17> then gives

Mk,m ≤ maxt∈Tm

∑m

i=k+1
ρi(Lit)∆i(Lit)\E@ max.Deli\E@ max.Deli <21>

≤ maxt∈Tm

∑m

i=k+1
∥X(Lit)−X(Li−1t)∥Ψ Mi\E@ max.MMi\E@ max.MMi <22>

≤ maxt∈Tm

∑m

i=k+1
K0d(Lit, Li−1t)Mi by <1>.\E@ diMM\E@ diMM <23>

As you will learn in Section 10.4, by design the packing method starts from
given constants {δi} to construct Ti’s for which maxs∈Ti d(s, ℓi−1s) ≤ δi−1. In
that case, the bound <23> is at most

∑m
i=k+1K0δi−1Mi. From there a host

of probabilistic bounds are easy to derive. For example, by Theorem <10>(i)
we have

\E@ pack.bnd1\E@ pack.bnd1 <24> PMk,m ≤
∑m

i=k+1
K0δi−1PMi ≤

∑m

i=k+1
K0δi−1Ψ

−1(|Ti|).
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Once we have a suitable chaining framework in place and some control over
the increments of the process it then takes little further effort to control Mk,m

in various ways. See Section 10.5.
An inequality like <24> is particularly useful if we can bound the size of

the finite set Ti by some function of δi (and the sum on the right-hand side
stays bounded as m increases). Such bounds have been available for quite
some time. For example, Kolmogorov and Tikhomirov (1959) had obtained
results for many kinds of function spaces; and in empirical process theory (see
Chapters 15 and 16) packing bounds were later obtained by combinatorial
arguments. All in all, the results derivable from an inequality like <24>
justify the position of traditional chaining arguments in the toolbox of every
user of probability theory.

Nevertheless, largely through the work of Fernique and Talagrand and
their collaborators, it became known that some more delicate problems lie
beyond the reach of traditional chaining methods. That difficulty led to a
searching re-examination of the chaining idea, which resulted in modifications
that created new tools capable of handling some of the delicate problems.
For the start of that story see Chapter 11, then move on to Chapter 12 for
a discussion of how the new ideas play out for gaussian processes.

10.4 Covering and packing numbers
Chaining::S:packing

This Section describes two classical ways of quantifying the ‘size’ of a metric
space (T, d).

The simplest strategy for chaining is to minimize the size (cardinality)
of the approximating subsets Ti for a chaining framework subject to a given
upper bound on supt∈T mins∈Ti d(t, s). That idea translates into a statement
about covering numbers.

Remark. The logarithm of the covering number is sometimes called
the metric entropy. See Dudley (1973, page 70) for the origin of
that name.

Chaining::covering <25> Definition. For a subset S of T write coverT (δ, S, d) for the δ-covering
number, the smallest number of closed δ-balls whose union contains S.
That is, the covering number is the smallest N for which there exist points
t1, . . . , tN in T with mini≤N d(t, ti) ≤ δ for each t in S. The set of centers {ti}
is called a δ-net for S.□

Remark. Notice a small subtlety related to the subscript T in the def-
inition. If we regard S as a metric space in its own right, not just as
a subset of T , then the covering numbers might be larger because the
centers ti would (implicitly) be forced to lie in S. It is an easy exer-
cise (select a point of S from each covering ball that actually inter-
sects S) to show that coverS(2δ, S, d) ≤ coverT (δ, S, d). The extra
factor of 2 would usually be of little consequence.
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§10.4 Covering and packing numbers 11

Some metric spaces (such as the whole real line under its usual metric)
cannot be covered by a finite set of balls of a fixed radius. A metric space T
for which coverT (δ, T, d) <∞ for every δ > 0 is said to be totally bounded,
a concept very close to compactness: a metric space is compact if and only
if it is both complete and totally bounded (Dudley, 2003, Section 2.3).

I prefer to work with the packing number pack(δ, S, d), defined as the
largest N for which there exist points t1, . . . , tN in S that are δ-separated,
that is, for which d(ti, tj) > δ if i ̸= j. Notice the lack of a subscript T ; the
packing numbers are an intrinsic property of S, and do not depend on T
except through the metric it defines on S.

Chaining::cover.pack <26> Lemma. For each δ > 0,

coverS(δ, S, d) ≤ pack(δ, S, d) ≤ coverT (δ/2, S, d).

Proof. Suppose pack(δ, S, d) = N and the points of F = {t1, . . . , tN} are
δ-separated. If t ∈ S\F then the set F ∪ {t} cannot be δ-separated, which
implies mini d(t, ti) ≤ δ. The closed balls B[ti, δ] for 1 ≤ i ≤ N cover S.

For the second inequality, observe that no closed ball of radius δ/2 can
contain two points more than δ apart. In particular, each of the points ti
must lie in a different ball for a δ/2 covering of S.□

The Lemma suggests that it is largely a matter of taste whether one
works with covering or packing numbers, provided an occasional extra factor
of 2 causes no significant concerns.

Henceforth I’ll call a (finite) subset F of S a δ-packing set if it is δ-
separated and maximal, in the sense that it is a not a proper subset of any
other δ-separated set. As in the proof of the Lemma, for such an F the
maximality implies sups∈S d(s, F ) ≤ δ. Also I’ll write pack(ϵ, S), instead
of pack(ϵ, S, d), when there is no ambiguity regarding the metric d.

Chaining::rr.norm <27> Example. Let ∥·∥ denote some norm on Rn, such as an ℓp norm, |x|p =(∑
i≤n |xi|p

)1/p
for p ≥ 1. As usual, write B[t, r] := {x ∈ Rn : ∥x− t∥ ≤ r},

the closed ball centered at t with radius r. Let mn denote Lebesgue’s measure
on B(Rn).

The covering/packing numbers for such norms share a common geometric
bound, a property derived from the fact that

mnB[t, r] := {x ∈ Rn : ∥x− t∥ ≤ r} = rnΛn where Λn := mnB[0, 1].

Let {x1, . . . , xN} be any ϵr-separated set of points in Br. The closed
balls B[xi, ϵr/2], of radius ϵr/2 centered at the xi, are disjoint and their
union lies within Br+ϵr/2. Thus

N ≤ (r + ϵr/2)nΛn

(ϵr/2)nΛn
=

(
2 + ϵ

ϵ

)n

≤ (3/ϵ)n if 0 < ϵ ≤ 1.

That is, pack(ϵr, Br, d) ≤ (3/ϵ)n for 0 < ϵ ≤ 1, where d denotes the metric
corresponding to ∥·∥.□
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Another reason for preferring packing to covering is that it easily generates
nested chaining frameworks, as shown by the following construction.

Chaining::framePack <28> Lemma. Suppose (T, d) is a totally bounded metric space with diameter D.
Let δ0 = D > δ1 > δ2 . . . be a sequence of positive numbers that decreases to
zero. Then there exist a nested chaining framework for which:

(i) Each Ti is a δi-packing set, so that |Ti| ≤ pack(δi, T ) for each i.

(ii) If t ∈ Ti then d(t, ℓi−1t) ≤ δi−1 and ℓi−1t = t if t ∈ Ti−1. Consequently,
the countable set T∞ := ∪iTi is dense in T .□

Proof. By total boundedness, D and each of the numbers pack(δi, T ) is
finite for each i.

We have pack(D,T ) = 1 for the trivial reason that no pair of points in T
is greater than D apart. Define T0 = {t0} for an arbitrarily chosen point t0
in T . Build T0 up to a δ1-separated set: start with T1 = T0 then loop,

while R := {t ∈ T : d(t, T1) > δ1} ≠ ∅
T1 ← T1 ∪ {t} for some t in R # a new δ1-separated set

This procedure must exit with R = ∅ after a finite number of steps because
pack(δ1, T ) is finite. By construction d(t, T1) := min{d(t, s) : s ∈ T1} ≤ δ1
for all t in T\T1. Let ℓ1t be a point of T1 for which d(t, ℓ1t) = d(t, T1), with
some suitable tie-breaking rule such as: choose the point that was added
earlier to T1. And, of course, choose ℓ1t = t for t ∈ T1.

To construct T2, start with T2 = T1 then repeat the loop with T1 replaced
by T2 and δ1 by δ2. And so on.

Assertions (i) and (ii) are easy consequences of the way the iterative
construction was carried out.□

For future reference, I’ll call the chaining framework described by the
Lemma as a {δi : i ∈ N0}-packing framework, or {δi}-packing framework,
for short.

10.5 Chaining with packing numbers
Chaining::S:chainPack

This Section presents several ways to obtain probabilistic bounds involving
supt∈T |Xt|, where {Xt : t ∈ T} is a doob-separable stochastic process
indexed by a totally bounded metric space (T, d). The real work involves
only calculations with supt∈T∞ |Xt|, where T∞ is a countable, dense subset
of T . If you prefer to ignore all that stuff about doob-separable processes
you could just focus on T∞. As you will see, most of that real work involves
only {Xt : t ∈ F}, for finite subsets F of T , followed by a passage to a limit.

From now on I’ll omit the annoying constant K0 from <1> and just
assume

\E@ incr.norm\E@ incr.norm <29> ∥Xs −Xt∥Ψ ≤ d(s, t) for all s, t ∈ T .
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§10.5 Chaining with packing numbers 13

If you find this simplification troubling, you could work with X/K0.
The inequalities in the rest of the Section usually involve various constants,

all denoted by C (or something similar), which depend only on Ψ (and the
abolished K0). Here I am following the lead of Talagrand (2021, page 24), to
avoid having to keep track of how a host of different constants are interrelated.
I leave for you the instructive, if somewhat tedious, exercise of determining
how the constants are interrelated.

The increment bound <29> ensures that the X process is continuous
in probability: Xs → Xt in probability if d(s, t) → 0. Thus it suffices to
consider the behavior of X on any countable, dense subset of T .

Consider any {δi}-packing framework, constructed using the method
described in Lemma <28> with δi = D/2i, where D := diam(T ). That is, we
have an increasing sequence of finite subsets T0 = {t0} ⊂ T1 ⊂ . . . with Ni :=
|Ti| ≤ pack(δi, T ) for each i. The ℓi−1 maps each t in Ti to its closest point
in Ti−1. In particular, d(s, ℓi−1s) ≤ δi−1 for each s in Si := Ti\Ti−1. The
set T∞ = ∪i∈N0Ti is countable and dense in T .

In each case the starting point is inequality derived from <23> (with K0

equal to 1): for 0 ≤ k < m,

\E@ pack.bnd2\E@ pack.bnd2 <30> Mk,m := maxt∈Tm |X(t)−X(Lkt)| ≤
∑m

i=k+1
δi−1Mi.

As m increases to ∞ the set Tm expands up to T∞, which implies
that Mk,m increases to Mk,∞ := supt∈T∞ |X(t) − X(Lkt)|. Probabilistic
bounds for Mk,∞ can usually be obtained by taking limits from bounds
for Mk,m.

The following four subsections present four types of chaining argument,
to illustrate the different ways that packing numbers lead to different sorts
of probability bound. For the first subsection Ψ can be any orlicz function;
for the other three Ψ is assumed to belong to Yexp, which makes it easier
to simplify some products. The fourth subsection attacks the complication
mentioned at the start of Section 10.3, the mystery of how to choose the
sequences involved in bounding tail probabilities using a union bound. The
other three subsections use the maximal inequalities from Theorem <10>,
which I’ll refer to as (orlicz.i), (orlicz.ii), and (orlicz.iii).

10.5.1 Expected values
Chaining::expected.chain

Take expected values of both sides of <30>, invoking (orlicz.i) for PMi to
get

PMk,m ≤
∑m

i=k+1
δi−1Ψ

−1(Ni) ≤
∑∞

i=k+1
δi−1Ψ

−1(pack(δi, T )).

Invoke Monotone Convergence as m increases to deduce that

PMk,∞ := P supt∈T∞ |X(t)−X(Lkt)| ≤
∑∞

i=k+1
δi−1Ψ

−1(pack(δi, T )).

It is traditional to exploit the geometric rate of decrease of the δi’s to
bound such a sum by an integral. If the function h(x) = Ψ−1(pack(x, T ))
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§10.5 Chaining with packing numbers 14

is integrable on the interval (0,diam(T )] and δi = D/2i then the method
described in Section 2.7, givesh(x)

xδi-1δiδi+1

area = i-1h(δi)/4δ

PMk,∞ ≤ 4J(δk+1) := 4

∫ δk+1

0
Ψ−1 (pack(x, T )) dx.

Remark. For simplicity, the picture represents h as smoothly decreas-
ing even though it is a decreasing step function. However, in practice,
the step function pack( · , T ) is usually not known exactly but, rather,
is bounded from above by a smooth function.

10.5.2 Orlicz norms
Chaining::Orlicz.chain

Suppose Ψ ∈ Yexp. This time take Ψ-norms of both sides of <30>, invoking
(orlicz.iii) for ∥Mi∥Ψ to get

∥Mk,m∥Ψ ≤ C0

∑m

i=k+1
δi−1Ψ

−1(Ni).

Then take a limit, as in Section 10.5.1, to deduce that

∥Mk,∞∥Ψ ≤ C1

∫ δk+1

0
Ψ−1 (pack(x, T )) dx

for a constant C1 (depending only on Ψ and K0).

Remark. For processes with subgaussian increments the inequal-
ity ∥W∥p ≤ Cp ∥W∥Ψ2

, for p ≥ 1, leads to upper bounds for ∥Mk,∞∥p
similar to those derived by Pollard (1989, Section 3). Those bounds
became the main technical tool for the cube-root asymptotic theory
developed by Kim and Pollard (1990).

10.5.3 Conditional expected values
Chaining::conditional.chain

The bound based on (orlicz.ii) is the most surprising. It uses a delightful trick
(apparently due to Fernique, 1983) that I learned from Ledoux and Talagrand
(1991, Section 11.1). For a fixed event B with PB > 0, the argument parallels
the one for expected values until we get to

PBMk,∞ ≤
∑∞

i=k+1
δi−1Ψ

−1(Ni/PB) with Ni ≤ pack(δi, T ).

To disentangle the Ni from the PB use <9> to split the Ψ−1(Ni/PB):

PBMk,∞ ≤ C0

∑∞

i=k+1
δi−1Ψ

−1(Ni) + C0Ψ
−1(1/PB)

∑∞

i=k+1
δi−1

≤ 4CJ(δk+1) + 4Cδk+1Ψ
−1(1/PB),

with J(r) =
∫ r
0 Ψ−1(pack)x, T ) dx, as in Section 10.5.1.

Now comes the very clever part. Choose

B = {Mk,∞ ≥ 4CJ(δk+1) + 4Cδk+1r} with r > 0,
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so that PBMk,∞ ≥ 4CJ(δk+1)+4Cδk+1r. It then follows that r ≤ Ψ−1(1/PB),
which rearranges to

\E@ tail-by-condit\E@ tail-by-condit <31> P{Mk,∞ ≥ 4CJ(δk+1) + 4Cδk+1r} ≤ 1/Ψ(r).

Remark. For the subgaussian case we have 1/Ψ2(r) ≤ 2 exp(−r2/2)
if r ≥

√
log 2 ≈ 0.83. Thus <31> is a subgaussian tail bound for

deviations above 4CJ(δk+1), which is an upper bound for PMk,∞.

10.5.4 Tail probabilities
Chaining::pack.tail

Finally I come to the chaining based directly on tail probabilities, the method
mentioned (with an oblique warning about the difficulties of interpreting
bounds derived by trial and error) at the start of Section 10.3.

Inequality <30> again provides the starting point. Suppose {ηi} is a
sequence of strictly positive numbers. Define Gi := {Mi ≤ ηi}. On the set
∩mi=k+1Gi we have

|X(t)−X(Lkt)| ≤
∑m

i=k+1
δi−1ηi for t ∈ Tm;

and a union bound based on inequality <5> gives PGc
i ≤ 2Nie

−g(ηi). Thus

\E@ tail1\E@ tail1 <32> P{Mk,m >
∑m

i=k+1
δi−1ηi} ≤

∑m

i=k+1
PGc

i ≤ 2
∑m

i=k+1
Nie

−g(ηi).

So much for the easy bit.
Now we have to figure out a good choice for the ηi’s. If I hadn’t fixed

the choice δi = diam(T )/2i then we would be facing something like an
optimization over a pair of sequences.

Consider first the special case where Ψ1(x) := ex − 1 and g(x) = x.
Inequality <32> is not of much use unless

∑
i≥k+1 exp (logNi − ηi) is small.

That suggests that ηi should be big enough to kill off the logNi, leaving a
remainder γi for which

∑
i≥k+1 e

−γi is small. If we replaced log(Ni) by the

slightly larger log(1 + Ni) = Ψ−1
1 (Ni) then we would have a contribution∑m

i=k+1 δi−1Ψ
−1
1 (Ni) to the sum inside the left side of <32>, an expression

that Section 10.5.1 identified as an upper bound for PMk,m. It seems that
we might be headed for a bound like inequality <31> for deviations beyond
the expected value. That suggests we choose ηi = Ψ−1

1 (Ni) + γi + r, with γi
large enough to make both

∑
i e

−γi and
∑

i≥k+1 δi−1γi not too large. For
example, the choice γi = log(1/δi) would result in sums not much larger than
their first terms. The r would contribute a 2δkr to the left side and 2e−r to
the right side of the tail bound. For universal constants c1 and c2 we would
have

P{Mk,m ≥
∑m

i=k+1
δi−1Ψ

−1
1 (Ni) + c1δk log(1/δk) + 2δkr} ≤ c2e

−r,

which looks a lot like <31>. In fact, if pack(δ, T ) were increasing at least
like 1/δ, which usually happens in nontrivial cases, the contribution of {γi}
to

∑
i δi−1ηi could be absorbed into the Ψ−1

1 (Ni) contribution.
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The lessons I draw from the special case are: the main role of ηi is to
kill off the Ni from the union bound; and the little bit extra needed to keep
the right-hand side under control can be tacked on to (or tacked off from?)
the Ni. Here is one way to apply these lessons for a more general g: choose
ηi so that

g(ηi) = log(1 +Ni/δi) + g(r).

Take g−1 of both sides, invoking inequality <7>:

ηi ≤ C−1
g (log(1 +Ni/δi)) + Cgr = CgΨ

−1(Ni/δi) + Cgr

and

P{Mk,m ≥ Cg

∑m

i=k+1
δi−1Ψ

−1(Ni/δi) + 2Cgδkr}

≤ 2
∑m

i=k+1

Ni

1 +Ni/δi
e−g(r) ≤ 2δke

−g(r).

Again we have a bound that involves deviations beyond a multiple of PMk,m

with a tail that decreases like the tail for a single random variable with
Ψ-norm at most 1. (And if g(x) = xα with α ≥ 1 we would have Cg = 1
and x0 = 0.)

You might ask why I went to so much trouble with the tail probabilities
just to get an inequality comparable with that obtainable using conditional
expectations, as in Section 10.5.3. The reason is that the first three chaining
methods depend on the existence of a deterministic upper bound, δi−1, for
the link lengths maxs∈Si d(s, ℓi−1s); it was essential that P, PB, and ∥·∥Ψ
could be moved inside the sum in inequality <30> to act directly on the Mi.
Chaining with tail probabilities would also work without the uniform bound
on the link lengths, which will be essential for Talagrand’s modification of
the chaining idea.

10.6 Oscillation and continuity of sample paths
Chaining::S:oscF

As in Section 10.1, suppose X = {Xt : t ∈ T} is a stochastic process whose
index set is a totally bounded metric space (T, d). Remember that a sample
path Xω is d-uniformly continuous if

osc(δ,Xω, T ) := sup{|X(ω, s)−X(ω, t)| : s, t ∈ T and d(s, t) < δ}
→ 0 as δ → 0.

If the process is doob-separable (or it is replaced by a doob-separable version)
then we can replace T by any countable, dense subset T∞ of T .

To control the oscillation over T∞ it is enough to show that to each ϵ > 0
there exists a δ > 0 such that Posc(δ,X, T∞) ≤ ϵ Indeed, it is then just
a matter of finding the {δj} correponding to ϵj = 2−j then deducing from∑

j Posc(δj , X, T∞) <∞ that
∑

j osc(δj , Xω, T∞) <∞ for almost all ω. If
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§10.6 Oscillation and continuity of sample paths 17

you wanted a version with all (not just almost all) sample paths uniformly
continuous then you could redefine Xω to be the zero function on a suitable
negligible set.

If {Fj} is a sequence of finite subsets of T that increase to the countable,
dense T∞ then osc(δ,Xω, Fj) increases to osc(δ,Xω, T∞) as j →∞. Thus
it suffices to show that for each ϵ > 0 there exists a δ > 0 such that

\E@ osc.F\E@ osc.F <33> Posc(δ,X, F ) ≤ ϵ for every finite subset F of T .

That is, everything comes down to proving an inequality that holds uniformly
over all finite subsets of T .

Remark. Almost all of the stochastic process maximal inequalities
that I know about seem to have this form: some sort of limit of in-
equalities involving finitely many random variables, {Xt : t ∈ F}
where the size of the index set F does not enter the bounds.

Instead of hard-coding in assumptions about packing numbers and chaining
frameworks I think it preferable to start from a more primitive requirement,
which captures the idea that the behavior of the process is controlled by an
approximation property for finite subsets of T .

Chaining::PP.osc <34> Theorem. Let {Xt : t ∈ T} be a stochastic process indexed by a metric
space (T, d) for which:

(i) ∥Xs −Xt∥Ψ ≤ K0d(s, t) for all s, t in T , for some orlicz norm.

(ii) For each ϵ > 0 there exists a finite N(ϵ) such that: to each finite
subset F of T there corresponds an F0 ⊂ T with |F0| ≤ N(ϵ) and a
map γ : F → F0 such that

PMF ≤ ϵ where MF := maxs∈F |X(s)−X(γs)|.

Then there is a version of the process with d-uniformly continuous sample
paths.

Remark. Problem [3] shows how a typical chaining argument leads to
approximation property (ii).

Proof. Fix an ϵ > 0 and a finite F . Choose F0 as in (ii).
For each u in F0 define u := γ−1(u) = {s ∈ F : γs = u}. The sets

{ u : u ∈ F0} partition F into at most N := N(ϵ) equivalence classes. For
each distinct pair u, v in F0 choose points tu,v ∈ u and tv,u ∈ v such that

d( u , v ) := min(d(s, t) : s ∈ u , t ∈ v } = d(tu,v, tv,u).

Define M := maxu̸=v |X(tu,v)−X(tv,u)|/d(tu,v, tv,u), a maximum of at most

nϵ :=
(
N
2

)
standardized increments. By inequality <5>, we have

PM ≤ Ψ−1(nϵ).
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Consider a pair s, t ∈ Tm with d(s, t) < δ. If s, t belong to the same u
then |Xs −Xt| ≤ |Xs −Xu| + |Xu −Xt| ≤ 2MF . If s ∈ u and t ∈ v for
distinct u and v then

|X(s)−X(t)| ≤ |X(s)−X(tu,v)|+ |X(tu,v)−X(tv,u)|+ |X(tv,u)−X(t)|
≤ 2MF + d(tu,v, tv,u)M + 2MF .

Note that d(tu,v, tv,u) = d( u , v ) < δ if s ∈ u and t ∈ v and d(s, t) < δ.
Take a maximum over all pairs {s, t} with d(s, t) < δ to deduce that

\E@ oscF.bnd\E@ oscF.bnd <35> Posc(δ,X, F ) ≤ 4PMF + δPM ≤ 4ϵ+ δΨ−1(nϵ),

which is ≤ 5ϵ if δ is chosen small enough.□

Remark. If analogous inequalities hold for a whole sequence of pro-
cesses {Xn(t, ω) : t ∈ T} with the same δ and ϵ for each n (or,
sometimes, just for all n large enough) then we have an example of
stochastic equicontinuity. In its tail probability version, this con-
dition asserts: for each η > 0 and ϵ > 0 there exists a δ > 0 such
that

lim supn P{osc(δ,Xn, T ) > η} < ϵ.

Such a property plays a central role in the theory of convergence in
distribution of random processes. See Chapter 14 for details.

*10.7 An example of a classical chaining argument
Chaining::S:classical

The chaining arguments used to derive maximal inequalities in well-known
texts, such as Billingsley (1968, Sections 12, 13), usually involved the index
set [0, 1]. They focussed on processes with sample paths in the space C[0, 1]
of continuous real functions or the space D[0, 1] of right-continuous functions
with left limits at each point of (0, 1], the famous cadlag functions. It was
natural to exploit the ordering of the index set, as in the notion of a limit from
the left or from the right. However, particularly for the theory of empirical
processes, the reliance on ordering properties leads into a chaining cul-de-sac
when one seeks generalizations to more complicated index sets.

Remark. Unfortunately, the empirical distribution function Fn for
a distribution such as the Unif[0, 1] is not measurable with respect
to the sigma-field generated by the uniform metric on D[0, 1]. How-
ever, Fn is measurable with respect to various sigma-fields defined
by Skorohod (1956). He actually defined five different ways for a se-
quence functions xn in D[0, 1] to converge to a limit function x. Each
involved different ways to handle behavior near an index point t at
which x has a discontinuity.

The difficulties involved in efforts to extend Skorohod’s approach
to more general index sets greatly complicated the early attempts to
develop a general empirical process theory. It took many years for
this measurability obstacle to be removed from the general theory.
See Chapter 14 for some of the details.
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§10.7 An example of a classical chaining argument 19

Even more importantly from my point of view, the special features of [0, 1]
allowed for some clever tricks that, to me, made chaining seem more mys-
terious than it really was. To illustrate this point I’ll reinterpret the pre-
sentation by Parthasarathy (1967, page 216) of a technique apparently first
introduced by Kolmogorov (see Notes). The subject is a stochastic process
{Xt : 0 ≤ t ≤ 1} for which

\E@ incr.moment\E@ incr.moment <36> P|Xs −Xt|α ≤ d(s, t)1+r for all s, t ∈ [0, 1],

where d(s, t) = |s− t|2 (the usual Eucliden distance) and both α and r are
strictly positive constants. The aim is to show that there is a version of the
process with continuous sample paths.

The moment assumption <36> implies a tail bound,

\E@ incr.bnd\E@ incr.bnd <37> P{|Xs −Xt| ≥ η} ≤ d(s, t)1+r/ηα for η > 0.

Note that neither <36> nor <37> fits neatly into either of my schemes <1>
or <2> for how a metric should control increments. Nevertheless, chaining
arguments very similar to those in Section 10.5 will provide the necessary
maximal inequalities.

The dyadic rationals provide a very natural chaining framework for [0, 1],
namely T0 = {0} and Ti = {j/2i : j = 0, 1, . . . , 2i}, with ℓi−1 the map
that rounds down to an integer multiple of (1/2)i−1 when t ∈ Si = Ti\Ti−1.
Thus d(t, ℓi−1t) ≤ δi := (1/2)i for each t in Ti. Instead of working with the
scaled maxima Mi, as in Section 10.5, this time use the unscaled random
variables Mi := maxs∈Si |X(s)−X(ℓi−1s)|, so that

Mk,m := maxt∈Tm |X(t)−X(Lkt)| ≤
∑m

i=k+1
Mi.

Inequality <37> gives

P{Mi ≥ ηi} ≤
∑

s∈Si

P{|Xs −Xℓi−1s| ≥ ηi} ≤ 2iδ1+r
i /ηαi = δri /η

α
i .

Notice that 2i is effectively the covering number for a δi-approximation.
(My calculation differs a little from Parthsarathy’s at this point: he was
working with a continuous approximation obtained by linear interpolation
between the values {Xs : s ∈ Ti}. ) The 1 in the 1 + r exponent has been
used to cancel out the size of the set Ti, a slightly subtle idea. Even more
subtle is the choice ηi = δθi where 0 < θ < r/α so that an analog of my
inequality <32> gives

P{Mk,m >
∑m

i=k+1
Cδθi } ≤ C

∑m

i=k+1
δr−θα
i .

The rest of the argument could then follow the method described in Sec-
tion 10.6.
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10.8 Problems
Chaining::S:Problems

[1] Suppose Y1, . . . , Yn are independent random variables. For a fixed y > 0Chaining::P:indep.incr

define M = P{maxi≤n Yi ≥ y} and S =
∑

i≤n P{Yi ≥ y}. Show that

S ≥M ≥ 1− e−S = S + o(S)

The union bound can be quite sharp when dealing with tails of independent
random variables.

[2] This problem provides some insight into the cost of chaining, using theChaining::P:chain.cost

heuristics from Section 10.5.4. Suppose {Bt : 0 ≤ t ≤ 1} is a standard
Brownian motion process. The increment B1−B0 has a N(0, 1) distribution.
The usual subgaussian tail bound gives P{|B1 − B0| > r} ≤ 2 exp(−r2/2)
for r ∈ R+. What sort of bound can we get using

|B(tm)−B(t0)| ≤
∑m

i=1
|B(ti)−B(ti−1)| where ti = 2−i?

(i) The natural metric is d(s, t) = ∥Bs −Bt∥2 =
√
|s− t| . Show that the

increment B(ti)−B(ti−1) has a N(0, δ2i−1), where δi =
√
(1/2)i+1 .

(ii) Define ∆i := |B(ti)−B(ti−1)|/δi−1. Show that P{∆i > ηi} ≤ 2 exp(−η2i /2)
for ηi ∈ R+.

(iii) The heuristic from Section 10.5.4 suggests we choose ηi so that η2i /2 =
r2/2+ γi, with {γi} increasing rapidly enough to make

∑
i∈N exp(−γi) <∞.

Show that this choice leads to

P{|B1 −B0| >
∑

i∈N
δi−1(r +

√
2γi )} ≤ 2

∑
i∈N

e−γie−r2/2.

Experiment with some γi values. With γi = log(i log(2 + i)2) I got∑
i∈N

δi−1 ≈ 2.4
∑

i∈N
δi−1

√
2γi ≈ 4.2

∑
i∈N

2e−γi ≈ 3.7.

[3] As in Section 10.3, suppose {Xt : t ∈ T} is a stochastic process and Ψ = eg−1Chaining::P:FapproxPP

is an orlicz function for which:

(a) ∥Xs −Xt∥Ψ ≤ K0d(s, t) for all s, t ∈ T .

(b) {(Ti, ℓi) : i ∈ N0} is a chaining framework, not necessarily nested, on T
for which to each ϵ > 0 there exists a finite k(ϵ) such that PMk,m ≤ ϵ
if m > k ≥ k(ϵ).

Show that there is a finite N(ϵ) for which: to each finite subset F of T there
exists an F0 ⊂ T with |F0| ≤ N(ϵ) and a map γ : F → F0 such that

Pmaxs∈F |X(s)−X(γs)| ≤ ϵ.
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Argue as follows. Consider any fixed, finite F .

(i) Deduce from Definition <16>(i) that δm,F := max{d(s, Tm) : s ∈ F} → 0 as
m→∞. Choose πm : F → Tm so that d(s, πms) = δm,F . Define γ := Lk ◦πm

(ii) For m > k ≥ k(ϵ/2) show that

Pmaxs∈F |X(s)−X(γs)| ≤ Pmaxs∈F |X(s)−X(πms)|+ PMk,m

≤ K0δm,FΨ
−1(|F |) + ϵ/2,

which is smaller than ϵ if m is large enough.

[4] The following statistical example is based loosely on results from IbragimovChaining::P:Hellinger

and Has’minskii (1981, Section 1.5). It involves a set of probability measures
{Pθ : 0 ≤ θ ≤ 1} all defined on the same (X,F), with densities p(x, θ) =
dPθ/dµ for some dominating measure µ. For simplicity assume θ 7→ p(x, θ) is
continuous. Define Pθ,n = Pn

θ , the probability measure on the product sigma-
field on Xn under which the coordinate maps x1, . . . , xn represent independent
observations from Pθ. As a regularity condition assume existence of positive
constants Ci for which

\E@ euc.hell\E@ euc.hell <38> C1|θ − θ′|2 ≤ h(Pθ, Pθ′) ≤ C2|θ − θ′|2 for all θ, θ′ ∈ [0, 1],

where h(θ, θ′) =
(
µ|
√
p(x, θ)−

√
p(x, θ′)|

)1/2
denotes the Hellinger distance

between Pθ and Pθ′ . See Pollard (2001, Problem 4.18) for useful properties
of Hellinger distance, such as h2(Pn, Qn) ≤ nh2(P,Q).

The maximum likelihood estimator θ̂n is defined to maximize the likelihood
function

Ln(θ) = Ln(θ, x1, . . . , xn) :=
∏

i≤n
p(xi, θ).

Show that there exists constants K1 and K2 for which

Pθ0,n{
√
n|θ̂n−θ0| ≥ y} ≤ K1 exp(−K2y

2) all y ≥ 0, all θ0 ∈ [0, 1], all n.

Argue as follows. (If issues of uniqueness worry you, feel free to generalize.) To
simplify notation, for a fixed θ0 abbreviate Pθ0,n to P, write t̂n for

√
n(θ̂n−θ0),

and define

ξ(z, t) =

√
p(z, θ0 + t/

√
n)/p(z, θ0) .

(Add some indicator functions if you worry about p(z, θ0) = 0.)

(i) Show that t̂n maximizes the process

Zn(t) :=

√
Ln(θ0 + t/

√
n)/Ln(θ0) =

∏
i≤n

ξ(xi, t).

(ii) Show that P|Zn(t1)− Zn(t2)|2 ≤ C2
2 |t1 − t2|2 and PZn(t) ≤ exp(−1/2C2

1 t
2).
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(iii) Use the fact that Zn(t̂n) ≥ Zn(0) = 1 to show that

P{|t̂n| ≥ y} ≤ P{sup|t|≥y Zn(t) ≥ 1} ≤ P sup|t|≥y Zn(t).

(iv) Split the set {t : |t| ≥ y and θ0 + t/
√
n ∈ [0, 1]} into a union of intervals like

J = [yk, yk +1] where yk = y+ k for an integer k. For a suitable δ, let SJ be
a δ-packing set. Use the chaining bound from Section 10.5.1 to show that

P supt∈J Zn(t) ≤ (1/δ)e−
1/2C

2
1y

2
k + C2

√
8δ1/2.

Minimize over δ.

(v) Sum over intervals like J to get a suitable bound for P sup|t|≥y Zn(t).

10.9 Notes
Chaining::S:Notes

Credit for the idea of chaining as a method of successive approximations seems
to belong to Kolmogorov, at least for the case of a one-dimensional index set.
For example, the start of the paper of Chentsov (1956) commented that“In
1934 A. N. Kolmogorov proved [the result described in my Section 10.7]
. . . A generalization of this theorem is the following proposition which was
suggested to the author by A. N. Kolmogorov”. He added the footnote: “This
theorem was first published in a paper by E. E. Slutskii” (=Slutsky, 1937),
a paper that I have not seen. See Billingsley (1968, Section 12) for a small
generalization—with credit to Kolmogorov, via Slutsky, and Chentsov—and
a chaining proof.

The Billingsley book was my main source of information when I first
learned about stochastic processes with well behaved sample paths. It pre-
pared me for the study of general empirical processes, which I first encountered
in the ground-breaking paper of Dudley (1978). To grapple with the host
of ideas in that paper I needed to study the earlier work by Dudley (1967,
1973) on gaussian processes, which became my textbooks for general chain-
ing methods. Only later did I stumble on the French work expounded so
convincingly by Ledoux and Talagrand (1991).

Dudley (1973) used chaining with covering numbers and exponential tail
bounds to establish various probabilistic bounds for gaussian processes. Dudley
(1978) adapted the methods using Bernstein’s inequality for the increments
and metric entropy plus inclusion assumptions (now called bracketing—
see Chapter 19) to extend the gaussian techniques to empirical processes
indexed by collections of sets. He also derived bounds for processes indexed
by VC classes of sets (see Chapter 15) via symmetrization (see Chapter 13)
arguments.

Dudley’s 1978 paper became the basis for his famous St. Flour lectures
(Dudley, 1984), which were widely circulated in note form. Those notes
turned into the 1999 first edition of the definitive Dudley (2014) text. See
Dudley (1973, Section 1) and Dudley (2014, Section 1.2 and Notes) for more
about packing and covering.
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Dudley (2016) took pains to give V.N. Sudakov credit for an earlier use
of covering numbers to bound the expected supremum of a Gaussian process.
(A scholar less scrupulous than Dudley might have been contented to accept
Sudakov’s generous comment that “The idea of using ϵ-entropy characteristics
here is due independently to several authors.”)

Pisier (1983) is usually credited for realizing that the entropy methods
used for Gaussian processes could also be extended to nongaussian processes
with orlicz norm control of the increments. However, as Pisier (page 127)
remarked:

For the proof of this theorem, we follow essentially [10]; I have
included a slight improvement over [10] which was kindly pointed
out to me by X. Fernique. Moreover, I should mention that N.
Kôno [6] proved a result which is very close to the above; at the
time of [10], I was not aware of Kôno’s paper [6].

Here [10] = Pisier (1980) and [6] = Kôno (1980). The earlier paper [10]
included extensive discussion of other precursors for the idea. See also the
Notes to Section 2.8 of Dudley (2014).

Using essentially the method in my Section 10.5.1, Pisier (1983) proved
existence of continuous versions of stochastic processes {Xt : t ∈ T} indexed
by a (semi-)metric space for which ∥Xs −Xt∥Ψ ≤ d(s, t). Under an integral
condition on covering numbers for T he derived a bound Pisier (1980), for
the case Ψ(x) = xp, following comments (Pisier, 1983, page 124) regarding
that possibility by Fernique. In his July 1981 Saint-Flour lectures, Fernique
(1983) gave his own proofs of Pisier’s result and generalizations.

I learned the idea behind the proof of Theorem <34> from Ledoux and
Talagrand (1991, page 306).

Using methods like those in Section 10.5, Nolan and Pollard (1988) proved
a functional central limit for the U-statistic analog of the empirical process.
Kim and Pollard (1990) and Pollard (1990) proved limit theorems for a variety
of statistical estimators using second moment control for suprema of empirical
processes. See also Pollard (1985) for one way to use a form of oscillation
bound (under the name stochastic differentiability) to establish central limit
theorems for M-estimators. Pakes and Pollard (1989, Lemma 2.17) used a
property more easily recognized as oscillation around a fixed index point.

My analysis in Problem [4] is based on arguments of Ibragimov and
Has’minskii (1981, Section 1.5), with the chaining bound replacing their
method for deriving maximal inequalities. The analysis could be extended
to unbounded subsets of R by similar adaptations of their arguments for
unbounded sets.
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