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Chapter 3

The moment generating
function method

MGF::MGF
Section 3.1 introduces the MGF (moment generating function) method for

bounding tail probabilities.
Section 3.3 illustrates the MGF method for the simplest case, the normal

distribution. The normal is the prototype for the subgaussian family of
distributions, which will be discussed in Chapter 7.

*Section 3.4 derives some global properties for the standard normal hazard
function ϕ(x)/Φ̄(x). The value of the global approach is illustrated by
a brief discussion of Charles Stein’s miraculous method for developing
normal approximations.

Section 3.5 derives tail bounds for the poisson distribution. The omnipresent
convex function ψbenn() puts in an appearance. The Poisson is the prototype
for Bennett’s inequalities, which will be derived in Chapter 8.

Section 3.6 establishes tail bounds for the gamma distribution, the prototype
for Bernstein’s inequalities, which will be derived in Chapter 8.

Section 3.7 establishes very good bounds for the tails of the binomial
distribution, which look a lot like a fancier version of the bounds for the
poisson. These bounds also work for poisson-binomial distributions
and other sums of independent random variables taking values in [0, 1].
Both results follow via the jensen inequality from the convexity of the
exponential function.

Section 3.8 shows that the tail bounds derived by the MGF method for the
hypergeometric distribution (sampling without replacement) are smaller
than the bounds for the corresponding binomial(sampling with replace-
ment).

3.1 Tail bounds from the moment generating function
MGF::S:method

Much modern statistical theory relies on a handful of probabilistic inequalities,
often in the form of bounds on tail probabilites or concentration inequalities.
This Chapter introduces one of the main methods for establishing such
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§3.1 Tail bounds from the moment generating function 2

bounds. By way of illustration, the method is applied to derive bounds for
several well studied cases, which provide the prototypes for a handful of very
useful tail bounds.

The method uses the MGF, MX(λ) := PeλX = eLX(λ), to get upper
bounds for P{X ≥ x}. Remember from Section 2.3 that LX is infinitely
differentiable and convex on the set {λ ∈ R :MX(λ) <∞}.

From the fact that the exp() function is everywhere nonnegative and
exp(λ(X − x)) ≥ 1 when X ≥ x and λ ≥ 0 we have

\E@ mgf.upper.tail\E@ mgf.upper.tail <1> P{X ≥ x} ≤ inf
λ≥0

Peλ(X−x) = inf
λ≥0

e−λxMX(λ) = exp

(
inf
λ≥0

(
LX(λ)− λx

))
.

Similarly, exp(λ(X − x)) ≥ 1 if X ≤ x and λ ≤ 0, so that

\E@ mgf.lower.tail\E@ mgf.lower.tail <2> P{X ≤ x} ≤ inf
λ≤0

Peλ(X−x) = exp

(
inf
λ≤0

(
LX(λ)− λx

))
.

Remark. This inequality can also be derived from <1> applied to
bound P{−X ≥ −x} by infλ≥0 e

λ(−x)M−X(λ) = infλ≤0 e
−λxMX(λ).

The analysis is simplified if we assume that X has been centered to
have PX = 0 and LX is finite in a neighborhood of the origin, for then
•

LX(0) = PX = 0 and the convex function LX is minimized at the origin.
Equivalently, we can just replace X by X − PX.

λ 7→ LX−PX(λ)− λy

y=0

y= −1

y= 1

Remark. The picture actually shows the case where X ∼ poisson(1).

The multiplication of MX−PX by e−λy tilts the convex function LX−PX

by −λy, which ensures that LX−PX(λ) − λy achieves its global minimium
on the half line {λ ∈ R : λ ≥ 0} if y > 0 and on the half line {λ ∈ R : λ ≤ 0}
if y < 0. For the purposes of <1> and <2> we no longer have to consciously
think about the sign of y; the infimum in both cases reduces to minimization
over the whole real line and everything can be done by brute force calculus.
In short,

P{X − PX ≥ x} ≤ exp (−Λ(x)) for x ≥ 0,\E@ LX.upper\E@ LX.upper <3>

P{X − PX ≤ x} ≤ exp (−Λ(x)) for x ≤ 0,\E@ LX.lower\E@ LX.lower <4>
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3

where, for all y ∈ R,

Λ(y) := − infλ∈R (LX−PX(λ)− λy) = supλ∈R (λy − LX−PX(λ)) .

Effectively, we need only search for the global solution to
•

L−PX(λ) = y+PX
to determine Λ, except in those pesky cases where the infimum of the convex
function λ 7→ LX−PX(λ)− λy is approached as λ tends to ±∞.

Remark. The nonnegativity of Λ comes from the zero contribution
at λ = 0. The second expression for Λ(y) identifies it as L∗

X−PX(y),
the fenchel-legendre conjugate of the convex function LX−PX .
Exciting as the recognition of this conjugate in a probability bound
might be, it does not seem to help much in the actual calculation for
a given X. Everything comes down to an exercise in calculus and con-
vexity, which can be worked through without any knowledge of the
material in Section 2.4.

*3.2 Behavior of the tail bound near the origin
MGF::S:local

Even though the tail bounds are not particularly useful for small t it is
illuminating to see how the moments of X − PX affect Λ when its MGF is
finite in a neighborhood of the origin.

The MGF gets its name from the coefficients in its power series expansion

MX−PX(λ) = Peλ(X−PX) = 1+
∑

k∈N
µkλ

k/k! where µk = P (X − PX)k .

The quantities µk is often called the kth central moment to distinguish

it from PXk. Note that µ1 = 0 and µ2 = var(X). The quantity µ3/µ
3/2
2 =

P(X − PX)3/var(X)3/2 is called the skewness of the distribution.
The function LX−PX = logMX−PX also has a power series expansion,

LX−PX(λ) =
∑

k∈N
κkλ

k/k! .

The coefficients κk are called the (central?) cumulants and LX−PX , not
surprisingly, is the cumulant generating function. Note that there is
no κ0, because LX−PX(0) = logMX−PX(0) = 0.

The cumulants can be related to the moments by equating coefficients in
power series expansions. Here is how it works for the first three cumulants.

1 + µ2λ
2/2! + µ3λ

3/3! +O(λ4) = exp
(∑

k∈N
κkλ

k/k!
)

= 1 +
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)
+
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)2
+
(
κ1λ+ κ2λ

2/2! + κ3λ
3/3! +O(λ4)

)3
+O(λ4)

= 1 + κ1λ+ κ2λ
2/2! + κ3λ

3/3! +
(
κ21λ

2 + κ1κ2λ
3
)
+
(
κ31λ

3
)
+O(λ4)

= 1 + λ (κ1) +
λ2

2!

(
κ2 + 2κ21

)
+
λ3

3!
(κ3 + 6κ1κ2) +O(λ4).

It follows that κ1 = 0 and κ2 = µ2 and κ3 = µ3.
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§3.2 Behavior of the tail bound near the origin 4

Remark. Don’t get too excited and leap to the conclusion that cumu-
lants are the same as moments. If I hadn’t centered the distribution
to zero expected value then κ1 would not be zero and µk would be a
nasty-looking polynomial in κ1, . . . , κk. By repeated substitutions we
could then write κk as another nasty-looking polynomial in the non-
central moments PX, . . . ,PXk. Even with the centering the remaining
cumulants get messier: κ4 = X2 − (PX2)2 and the expression for κ10
is a sum of 12 terms.

Back to tail probabilities. Remember that Λ(x) is usually obtained by
maximizing λx− LX−PX(λ) with respect to λ, with the task coming down
to solving

t = L′
X−PX(λ) = κ2λ+ κ3λ

2/2! + κ4λ
3/3! + . . . .

This regularity suggests that the maximizing value λt be expressible as a
power series

∑
k∈N akt

k/k!. The ak coefficients can be determined by another
exercise in coefficient matching. First note that

λt = a1t+a2
t2

2!
+a3

t3

3!
+O(t4), λ2t = a21t

2+a1a2t
3+O(t4), λ3t = a31t

3+O(t4).

Thus

t = κ2

(
a1t+ a2

t2

2!
+ a3

t3

3!

)
+
κ3
2!

(
a21t

2 + a1a2t
3
)
+
κ4
3!

(a31t
3) +O(t4)

= t (κ2a1) +
t2

2!

(
κ2a2 + κ3a

2
1

)
+
t3

3!

(
κ2a3 + 3κ3a1a2 + κ4a

3
1

)
+O(t4),

implying

a1 = 1/κ2, a2 = −κ3/κ32, a3 = something.

It now follows that

Λ(t) = t
(
a1t+ a2t

2/2
)
− κ2

2!

(
a21t

2 + a1a2t
3
)
− κ3

3!

(
a31t

3
)
+O(t4)

=
t2

2κ2
− κ3t

3

6κ32
+O(t4) near the origin.

The contributions from a3 and κ4 get absorbed into the O(t4).

Remark. You might be wondering why I bothered expanding λt as a
cubic once I had realized the a3 term would be absorbed into the O(t4).
As a wise friend once advised me, it is always a good idea to expand
an approximating series out to at least one term more than one thinks
is necessary. A classic example of a failure to expand far enough can
be found in the famous paper of Pearson (1900, page 165), which
led to many years of argument between him and R. A. Fisher over
the number of degrees of freedom for a χ2 goodness of fit test. See
Cochran (1952) for a very clear discussion of Pearson’s error.
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5

MGF::Binomial.local <5> Example. Suppose X ∼ Bin(n, p). Then

PX = np, κ2 = P(X − np)2 = npq, κ3 = P(X − np)3 = npq(q − p)

so that

Λ(t) =
t2

2npq
− t3(q − p)

6(npq)2
+O(t4) near the origin.

This approximation shows that Λ(t) ≥ t2/(2npq) if p ≥ 1/2 and 0 ≤ t ≈ 0,
in which case

P{X ≥ np+ t} ≤ e−Λ(t) ≤ exp

(
− t2

2npq

)
0 ≤ t ≈ 0.

In fact, as will be shown in Section 3.7, the inequality holds for all t ≥ 0
if p ≥ 1/2. The local property implied by negative skewness suggests a
subgaussian upper tail; the convexity of the ψbenn function will transform the
local suggestion into a global inequality.□

3.3 Normal
MGF::S:normal

The MGF method is cleanest for the normal distribution. As this Section
will show, the method leads to bounds comparable to very sharp inequalities
that can be derived using special properties of the normal.

MGF::normal <6> Example. If X has a N(µ, σ2) distribution then M(λ) = exp(λµ+ σ2λ2/2)
is finite for all real λ. For x ≥ 0 inequality <1> gives

P{X ≥ µ+ σx} ≤ infλ≥0 exp(−λ(µ+ σx) + λµ+ λ2σ2/2)

= exp(−x2/2) for all x ≥ 0,

the minimum being achieved by λ = x/σ. Analogous arguments, with X−µ
replaced by µ−X, give an analogous bound for the lower tail,

P{X ≤ µ− σx} ≤ exp(−x2/2) for all x ≥ 0,

leading to the inequality P{|X − µ| ≥ σx} ≤ 2e−x2/2, which shows that the
distribution of X is concentrated near µ.□

Of course the algebra in the Example would have been a tad simpler if
I had worked with the standardized variable (X − µ)/σ. I did things the
messier way in order make the point that if Y is any random variable (not
necessarily normally distributed) for which there exist constants ν and τ
(not necessarily the mean and variance) for which

MY (λ) = PeλY ≤ eνλ+λ2τ2/2 for all λ ≥ 0

then

\E@ subg.upper.tail\E@ subg.upper.tail <7> P{Y ≥ ν + τx} ≤ e−x2/2 for x ≥ 0.
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§3.3 Normal 6

This inequality <7> is usually called a subgaussian bound for the upper
tail. However, as explained in Chapter 7, the term ‘subgaussian’ is also often
used in several looser senses.

How good is the upper bound

\E@ normal.subg2\E@ normal.subg2 <8> Φ̄(x) := P{Z ≥ x} ≤ B(x) := e−x2/2 for x ≥ 0?

Clearly, not so good for x close to 0, because Φ̄(0) = 1/2 whereas B(0) = 1.
As will be shown by Example <17>, it does capture the most important tail
properties if x is very large, but how useful is it for intermediate values of x
such as those that appear in typical statistical applications?

MGF::conf.int <9> Example. Anyone who has taken an introductory Statistics course knows
that if T ∼ N(θ, 1) under a Pθ model then, to two decimal places accuracy,

Pθ{T − 1.96 ≤ θ ≤ T + 1.96} = 2Φ̄(1.96) ≈ 0.95.

That is, the range T ± 1.96 is a 95% confidence interval for θ.
Consider the effect of using the upper bound B(x) instead of Φ̄(x) when

constructing the confidence interval. It is certainly true that

Pθ{T ± c fails to contain θ} ≤ 2B(c) = 2 exp(−c2/2),

so that the Pθ probability that the interval T ± c fails to contain θ is smaller
than 2B(c); replacement of Φ̄ by B leads to a “conservative confidence”
assertion. Here are some examples (with values rounded to two decimal
places):

x 1.64 1.96 2.45 2.58 2.72 3.26

Φ̄(x) 5% 2.5% 0.72% 0.5% 0.33% 0.06 %
exp(−x2/2) 25.85% 14.65% 5% 3.62% 2.5% 0.5 %

As judged by B, the range T ± 1.96 will contain θ with probability at
least 70.7%, which is not very comforting given that the nominal value
is 95%. For the 90% interval, the conservative value, 1−2×25.85% = 48.3%,
is even worse. It takes a great stretching of the imagination to describe either
conclusion as ‘not bad’.

There is another way to use the upper bound. Instead of stretching
imagination we could stretch the interval, from T±1.96 to T±c with c = 2.72.
For this interval, the B bound assures coverage of at least 95%. Looking on
the bright side, I think the increase from 1.96 to 2.72 is not too high a price
to pay for an appreciable relaxation of the modeling assumptions from normal
to subgaussian.

The compromise looks even better when the failure probability is smaller.
For example, under the strict N(θ, 1) assumption T±2.58 is a 99% confidence
interval for θ and T ± 3.26 has, according to B, probability at least 99% of
containing θ.□
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§3.3 Normal 7

Sharper tail bounds are possible if we exploit further properties of the
normal density, ϕ(x) := (2π)−1/2 exp(−x2/2), properties that are not shared
by all subgaussian distributions. In fact there is a literature going back over
two centuries that contains numerous facts about Φ̄, including several upper
and lower bounds. For example,

\E@ Laplace.0\E@ Laplace.0 <10>
(
x−1 − x−3

)
ϕ(x) < Φ̄(x) <−1 ϕ(x) for all x > 0,

which can be derived by integrating
∫∞
x through the pointwise bounds (for

r > 0)

− d

dr

[
(r−1 − r−3)ϕ(r)

]
= (1− 3r−4)ϕ(r) < ϕ(r)

< (1 + r−2)ϕ(r) = − d

dr

[
r−1ϕ(r)

]
.

Inequality <10> is the first of a sequence of approximations essential due to
Laplace (see Notes): for k = 0, 2, 4, . . . ,

\E@ Laplace.k\E@ Laplace.k <11> pk+1(1/x) < R(x) := Φ̄(x)/ϕ(x) < pk(1/x) for x > 0,

where pk is a polynomial of degree 2k + 1: p0(r) := r, p1(r) := p0(r) − r3,
p2(r) = p1(r) + 3r5, p3(r) = p2(r)− 15r7, . . . . See Problem [1] for the proof.

The function R(x) := Φ̄(x)/ϕ(x) is often called the “Mills ratio”, for not
particularly compelling reasons (see the Notes). I find it more convenient to
work with the reciprocal of R,

\E@ rho.def\E@ rho.def <12> ρ(x) := 1/R(x) = ϕ(x)/Φ̄(x),

which is sometimes called the hazard rate for the N(0, 1) distribution
because, for small positive δ,

P{x ≤ Z ≤ x+ δ | Z ≥ x} ≈ δρ(x) if Z ∼ N(0, 1).

Of course all the inequalities in <11> are rather useless for x near 0; the
lower bounds pk(1/x) for odd k are all negative for 0 < x ≤ 1. They are
most useful for values of x much larger than 1, where they can be inverted
to give upper and lower bounds for ρ. For example, the case k = 0 gives
1− x−2 < x/ρ(x) < 1, which inverts for small values of y = 1/x to give

\E@ rho.0\E@ rho.0 <13> x < ρ(x) < x
(
1− y2

)−1
= x

(
1 + y2 + y4 + . . .

)
= x+ x−1 +O(x−3).

Similarly for k = 2 we have 1 − y2 + 3y4 − 15y6 < x/ρ(x) < 1 − y2 + 3y4,
which inverts to give

\E@ rho.2\E@ rho.2 <14> ρ(x) = x+ x−1 − 2x−3 +O(x−5) as x→ ∞.

We’ll be needing both <13> and <14> in Section 3.4.
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§3.3 Normal 8

The literature also contains several bounds that do not blow up as x↘ 0.
For example,

\E@ more.bounds\E@ more.bounds <15> (3x+
√
x2 + 8)/4 < ρ(x) ≤

(
x+

√
x2 + 4

)
/2 for all x ∈ R,

the lower bound coming from Birnbaum (1942) and the upper bound from
Sampford (1953). See Problems [4] and [3] for proofs.

Remark. The inequalities <15> are not accurate enough for mod-
erate x to serve as a basis for numerical calculation of normal tail
probabilities. These days, such results are of little interest once one
accords ρ the status of a useful member of the standard repetoire of
functions for which highly accurate approximations can be obtained
in every decent mathematical or statistical computing package.

For x > 1 inequality <10> can be rewritten as

log Φ̄(x) = −x2/2− log(x)− c0 − η(x)\E@ normal.tail2\E@ normal.tail2 <16>

where c0 := log
(√

2π
)
and 0 ≤ η(x) ≤ − log(1 − x−2), which is ≤ 2x−2

for x ≥
√
2. The bound B(x) has captured the −x2/2, which is much more

important than the other terms when x becomes large, a fact illustrated by
the next Example.

MGF::max.normal <17> Example. Suppose Z1, . . . , Zn are random variables, each distributed N(0, 1)
but, for the moment, not necessarily independent. Define Mn := maxi≤n Zi.
A union bound gives some control for the tail:

P{Mn > x} ≤
∑

i
P{Zi > x} = nΦ̄(x) ≤ n exp(−x2/2) for x > 0.

In particular, P{Mn >
√
2 log(n) + 2r } ≤ e−r for each r ≥ 0. Roughly

speaking, with high probability Mn should be not much bigger than an :=√
2 log n . This bound has the advantage of being unaffected by possible

dependence between the Zi’s. It also has the disadvantage that it is sometimes
excessively large. For example, in the extreme case where Zi = Z1 for all i
any bound that involves n would be superfluous.

Remark. The union bound P (∪iAi) ≤
∑

i PAi is quite good if the
events Ai are independent and

∑
i PAi is small. See Problem [8]. It

is part of the folklore that if the Ai’s are ‘almost’ independent then
the union bound is ‘almost’ quite good, with the meaning of ‘almost’
being problem specific.

If the Zi’s are actually independent the union bound can be refined:

P{Mn ≤ x} =
∏

i
P{Zi ≤ x} =

(
1− Φ̄(x)

)n
= exp

(
n log(1− Φ̄(x)

)
= exp

(
−nΦ̄(x)− n

∑
j≥2

(
Φ̄(x)

)j
/j
)

= exp
(
−nΦ̄(x)−Rn(x)

)
where 0 ≤ Rn(x) ≤

nΦ̄(x)2

2(1− Φ̄(x))
.\E@ indepN(0,1)\E@ indepN(0,1) <18>
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If we choose xn so that nΦ̄(xn) is suitably large then P{Mn > xn} is small.
To get sharper bounds we need to take care of the log(xn) + c0 contri-

butions. It will turn out that most of the distribution of Mn concentrates
in a very short interval centered at a point smaller than an. To that end
consider xn of the form an − wn/an with |wn| much smaller than an. Ap-
proximation <16> then gives

log
(
nΦ̄(xn)

)
= log n− (a2n − 2wn + w2

n/a
2
n)/2− log an − c0

− log(1− wn/a
2
n)− η(xn)

= wn − log(an)− c0 − small remainder

where the remainder term is of order O
(
(1 + w2

n)/a
2
n

)
. Thus, for values

wn = r + c0 + log an with, say, |r| = O(log an) we have

P{Mn ≤ an − (r + c0 + log an)/an} = exp
(
−Bn(r)−O(Bn(r)

2/n)
)
.

where

Bn(r) := nΦ̄(xn) = exp
(
r +O(ϵ2n)

)
where ϵn := a−1

n log(an).

For example, when n is large enough, Mn has probability over 0.95 of lying
in the range an − (c0 + log an)/an ± 4/an.□

Remark. Inequalities <10> and <18> are the basis for the classical
fact that an(Mn−bn), with bn = an−(log log n+ log(4π)) /(2an), con-
verges in distribution. See Leadbetter, Lindgren, and Rootzén (1983,
Theorem 1.5.3).

In a digression from MGF methods, the next Section derives inequali-
ties that are much more informative, for theoretical purposes, than <10>
and <15>.

*3.4 Global behavior of the normal hazard rate
MGF::S:better-normal

Perhaps surprisingly, it pays to understand how ρ behaves over the whole real
line, and not just for large x or for x near 0. For example, as a short discussion
(at the end of the Section) of Stein’s method for normal approximation will
show, it is more convenient to deal with a single well-behaved function than
having to argue differently for different ranges of x values. The proof of the
following Theorem, which lists a few basic facts about ρ, also introduces
some useful general tricks.

MGF::rho.facts <19> Theorem. The function ρ(x) := ϕ(x)/Φ̄(x) is infinitely differentiable with:

(i) The function log ρ is strictly concave on R and the function ρ is strictly
{positive & increasing & convex} on R, with ρ(x) → 0 as x→ −∞ and
ρ(x)/x→ 1 as x→ ∞.
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§3.4 Global behavior of the normal hazard rate 10

(ii) The function r(x) := ρ(x) − x is strictly {positive & decreasing &
convex} on R with r(x) → +∞ as x → −∞ and r(x) = O(x−1) as
x→ ∞.

(iii)
•
ρ(x) = r(x)ρ(x) < 1 for all real x with r(0) = ρ(0) =

√
2/π ≈ 0.798.□

The functions ρ (solid line), r (dashed line), and ±x (dotted line)

−10 −5 0 5 10

0
2

4
6

8
10

Proof. The trickiest part of the argument—establishing convexity of ρ—will
be left to last. The rest is mostly calculus with just a few probability tricks.

First note that

1/ρ(x) =

∫ ∞

0
ϕ(x+ t)/ϕ(x) dt

=

∫ ∞

0
e−xt−t2/2dt =

√
π/2 Pe−x|Z| where Z ∼ N(0, 1).\E@ rr.rep\E@ rr.rep <20>

Clearly 1/ρ must be strictly {decreasing & positive} and, by Section 2.3,

\E@ -log.rho\E@ -log.rho <21> L(x) := − log ρ(x) = x2/2 + log
√
2π + log Φ̄(x)

must be strictly convex on the whole real line, ensuring that

•

L(x) = x− ϕ(x)/Φ̄(x) = x− ρ(x) = −r(x)\E@ ll.dot\E@ ll.dot <22>

is strictly increasing and
••

L(x) > 0 for all real x. It follows that ρ must be
strictly {increasing & positive} with limx→−∞ ρ(x) = 0 and limx→−∞ ρ(x) =
∞, and log ρ(x) strictly concave. Moreover, ρ(x) − x = r(x) is strictly
{decreasing & positive} on the whole real line.

Equality <21> also gives − •
ρ(x)/ρ(x) =

•

L(x) = −r(x), that is,

\E@ rho.r\E@ rho.r <23>
•
ρ(x) = ρ(x)r(x) = 1− x−2 +O(x−4) as x→ ∞,

the final assertion coming from equation <14>. Of course the limiting be-
havior does not establish the global property (iii) of the Theorem. A little
probability trick comes to the rescue. Direct calculation shows that

•

ϕ(r) = −rϕ(r) and
••

ϕ(r) = (r2 − 1)ϕ(r).
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§3.4 Global behavior of the normal hazard rate 11

In integrated form: for all real x,∫ ∞

x
rϕ(r) dr/Φ̄(x) = ϕ(x)/Φ̄(x) = ρ(x),∫ ∞

x
r2ϕ(r) dr/Φ̄(x) =

∫ ∞

x

••

ϕ(r) + ϕ(r) dr/Φ̄(x) = xρ(x) + 1.

If Px denotes the probability measure that has density ϕ(r){r ≥ x}/Φ̄(x) with
respect to lebesgue measure on the real line then its expected value is ρ(x)
and its variance is 1+xρ(x)− ρ(x)2 = 1− r(x)ρ(x). As Px is not degenerate
its variance is nonzero, whence the asserted inequality for r(x)ρ(x).

It remains to show that ρ is strictly convex. From <23> we get

••
ρ(x) = r(x)

•
ρ(x) +

•
r(x)ρ(x)

= r2(x)ρ(x) + [ρ(x)r(x)− 1] ρ(x)

= [ψ(x)− 1] ρ(x) where ψ(x) := r(x) [r(x) + ρ(x)] .\E@ mmdot.rho\E@ mmdot.rho <24>

Notice that <23> implies ψ(x) → 1 as x→ ∞. Differentiate again.

•

ψ(x) =
•
r(x) [r(x) + ρ(x)] + r(x) [

•
r(x) +

•
ρ(x)]

= 2
•
r(x)r(x) + [ψ(x)− 1] ρ(x) by <24>.

In the last line the 2
•
r(x)r(x) is strictly negative because it equals the deriva-

tive of the strictly decreasing function r(x)2. Thus we have the strict in-
equality

\E@ psi.dot\E@ psi.dot <25>
•

ψ(x) < [ψ(x)− 1] ρ(x) for all x in R.

By <24>, to prove strict convexity for ρ it suffices to show ψ(x) > 1
for all x. To argue by contradiction (my least favorite method), suppose

there were an x0 for which ψ(x0) ≤ 1. By <25>, we would have
•

ψ(x0) < 0,
implying existence of an x1 slightly larger than x0 at which ψ(x1) < 1. As
limx→∞ ψ(x) = 1, it would follow that the differentiable function ψ must

achieve its infimum on [x1,∞) at some x2 where
•

ψ(x2) = 0 but ψ(x2) ≤
ψ(x1) < 1, contradicting <25>.□

I claim that the results listed in Theorem <19> can simplify the discussion
of other theory involving the normal distribution. The following discussion
illustrates my point.

First a little background. One of the jewels of modern probability theory is
the amazingly powerful method for obtaining normal approximations invented
by Charles Stein (Stein, 1972, 1986). For a variety of random variables X
his method provides bounds for |Ph(X)− γh| for a large family of bounded,
measurable functions h on the real line. It works by means of a smoothing
map κ defined by

H(r) := h(r)− γh = γs [h(r)− h(s)] ,

ϕ(x)κ(x, h) := γr{r < x}H(r) = −γr{r > x}H(r).\E@ f.def\E@ f.def <26>
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§3.4 Global behavior of the normal hazard rate 12

The second representation comes from the fact that γH = 0. In more
traditional notation,

ϕ(x)κ(x, h) :=

∫ x

−∞
H(r)ϕ(r) dr = −

∫ ∞

x
H(r)ϕ(r) dr.

Suppose f(x) = κ(x, h). Typically h will be continuous at all but a finite
number of points. At continuity points of h the function f is differentiable and
•

ϕ(x)f(x)+ϕ(x)
•

f(x) = ϕ(x)H(x). By virtue of the fact that
•

ϕ(x) = −xϕ(x),
this equality simplifies to

\E@ Stein.de\E@ Stein.de <27>
•

f(x)− xf(x) = H(x) := h(x)− γh if h is continuous at x.

If X is a random variable then P
( •

f(X)−Xf(X)
)
= Ph(X)−γh. If we can

show, using various calculus and probability tricks, that the expression on
the left-hand side of this equality is small then we can deduce Ph(X) ≈ γh,
that is, we will have a kind of normal approximation for X. In particular, if
the left-hand side is zero for a large enough collection of h functions then X
has a N(0, 1) distribution.

Stein’s method depends on a small collection of facts that are summarized
in the next Lemma. Initially, all we know is that ∥H∥∞ := supx∈R |H(x)|
is finite and that h is mostly continuous. Extra assumptions about h give
extra smoothness properties for κ(x, h).

You might find it helpful to keep two particular cases in mind while
reading the proofs of (i) through (iv). For h1 equal to the indicator function
of an interval (−∞, x0] we get

ϕ(x)f1(x) = Φ(x ∧ x0)− Φ(x)Φ(x0).

The function f1 is smooth except for a discontinuity in the first derivative
at x0. It can be used to prove the Berry-Esseen extension of the central limit
theorem. See Ho and Chen (1978, §1) for a proof in the case of identically
distributed summands, which they attributed to Stein himself. See also
Hall and Barbour (1984) for related results with non-identically distributed
summands.

For a smoother approximation to (−∞, x0] we could use

h2(r) = {r ≤ x0}+ {x0 < r < x0 + ϵ} (1 + (x0 − r)/ϵ)

for some small, positive ϵ. This function is piecewise linear and lipschitz
continuous, with ∥h2∥ = 1 and ∥h2∥Lip = 1/ϵ. It appeared in a proof by
Stein (1986, pp. 35–36). The corresponding κ(x, h2) is given by

ϕ(x)f2(x) = Φ(x ∧ x1)− Φ(x)Φ(x1) + ϵ−1
[
c2Φ̄(x)−W (x)

]
where

W (x) := {x < x1}
(
x0 [Φ(x1)− Φ(x0 ∨ x)] + ϕ(x1)− ϕ(x0 ∨ x)

)
Draft: 28sep24, Chap 3 ©David Pollard



§3.4 Global behavior of the normal hazard rate 13

and c2 := limx→−∞W (x) = x0 [Φ(x1)− Φ(x0)] + ϕ(x1)− ϕ(x0).

Picture of f1 (solid line), f2 (dotdash line), for x0 = 1 and ϵ = 0.5:

−5.0 1.0 5.0

0.
1

0.
5

Notice that f1 is not differentiable at x0, although it does have left- and right-
derivatives at that point. The function f2 is actually everywhere differentiable
and it has a second derivative everywhere except at x0 and x0 + ϵ.

MGF::Stein <28> Lemma. (based on Stein, 1986, pp 25–28) Suppose f(x) = κ(x, h) for a
bounded measurable function h, as in <26>. Then

MGF::xle0 (i) For g defined by g(r) := −h(−r) we have f(x) = κ(−x, g). Thus it
suffices to concentrate the analysis on a general κ(x, h) for x ≥ 0.

MGF::bnd.f (ii) |f(x)| ≤ ∥H∥∞min (1/ρ(x), 1/ρ(−x)) ≤
√
π/2∥H∥∞ for each x ∈ R.

Consequently, f(x) → 0 as |x| → ∞.

MGF::bnd.fdot (iii) If h is continuous at a particular x then f is differentiable at that x

with |
•

f(x)| ≤ 2∥H∥∞.

MGF::h.Lip (iv) If h is lipschitz then so is
•

f and ∥
•

f∥Lip ≤ 2∥h∥Lip. Consequently,

|f(x+ z)− f(x)− z
•

f(x)| ≤ z2∥h∥Lip.□

Proof. Assertion (iv) will require the most work; the other assertions are
more straightforward.

Proof of (i). For x = −y the replacement of h by the function g(r) := −h(−r)
and the symmetry of the N(0, 1) distribution give

ϕ(−y)κ(−y, h) = γrγs{−r < −y}γs [h(−r)− h(−s)]
= −γrγs{r > y}γs [g(r)− g(s)] = ϕ(y)κ(y, g).

Thus κ(−y, h) = κ(y, g).□

Proof of (ii). Define C0 := ∥H∥∞. Then <26> gives two upper bounds
for |f(x)|:

|f(x)| ≤ γr{r > x}|H(r)|/ϕ(x) ≤ C0Φ̄(x)/ϕ(x) = C0/ρ(x),

|f(x)| ≤ γr{r < x}|H(r)|/ϕ(x) ≤ C0Φ(x)/ϕ(x) = C0/ρ(−x).

Thus |f(x)| ≤ C0min (1/ρ(x), 1/ρ(−x)) ≤ C0/ρ(0), because ρ is an increasing
function and max(x,−x) ≥ 0. If |x| → ∞ then the smaller of 1/ρ(x) and
1/ρ(−x) tends to zero.□
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Proof of (iii). As noted in <27>, if h is continuous at x then f is differentiable

at x with
•

f(x) = G(x) +H(x) where G(x) := xf(x). Also, by (ii),

|
•

f(x)| ≤ |G(x)|+ |H(x)| ≤ C0min (|x|/ρ(x), |x|/ρ(−x)) + C0.

For x > 0 use x ≤ ρ(x); for x < 0 use −x ≤ ρ(−x). (Or just appeal to (i)
for x < 0.)□

Proof of (iv). Write C1 for ∥h∥Lip = ∥H∥Lip.
The lipschitz continuity of h implies that it is also absolutely continuous,

in the sense described by UGMTP §3.4, a property that implies existence of
a measurable function ψ with supx∈R |ψ(x)| ≤ C1 for which:

• h is differentiable with derivative ψ(x) at m-almost all x.

• h(b)− h(a) = mt{a < t < b}ψ(t) for each bounded interval [a, b].

For x ∈ R and δ > 0 we have

|
•

f(x+ δ)−
•

f(x)| ≤ |G(x+ δ)−G(x)|+ |H(x+ δ)−H(x)|

As G has a continous derivative
•

G(x) = (1 + x2)f(x) +H(x) for which

G(x+ δ)−G(x) =
∫ x+δ
x

•

G(t) dt and ∥H∥Lip = C1, it will suffice to show that

supx∈R |
•

G(x)| ≤ C1.
The main idea is to write both H and f as integrals involving ψ, derive

a similar representation for
•

G, then use the bound on |ψ| together with facts

about ρ to bound
•

G(x). Start with H:

H(r) = γs (h(r)− h(s))

= γsmtψ(t) ({s < t < r} − {r < t < s})
= mtψ(t)γs ({s < t}{t < r} − {r < t}{t < s}) by fubini

= mtψ(t)
[
{t < r}Φ(t)− {r < t}Φ̄(t)

]
.\E@ H.rep\E@ H.rep <29>

Then for f , using the second representation in <26>:

− ϕ(x)f(x) = γr{x < r}H(r)

= mtψ(t)γr{x < r}
[
{t < r}Φ(t)− {r < t}Φ̄(t)

]
[{t < x}+ {x < t}]

= −mtψ(t)
[
{t < x}Φ(t)Φ̄(x) + {x < t}Φ̄(t)Φ(x)

]
\E@ f.rep\E@ f.rep <30>

because

Φ(t)γr{x < r}{t < r}{t < x} = {t < x}Φ(t)Φ̄(x),
{x < r}{r < t}{t < x} = 0,

Φ(t)γr{x < r}{t < r}{x < t} = {x < t}Φ(t)Φ̄(t),
−Φ̄(t)γr{x < r}{r < t}{x < t} = −{x < t}Φ̄(t) [Φ(t)− Φ(x)] .

The terms involving Φ(t)Φ̄(t) cancel.
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Combine <29> and <30> to get the representation

•

G(x) = x
•

f(x) + f(x) = (1 + x2)f(x) + xH(x)

= −mtψ(t)Φ(t){t < x}
[
(1 + x2)Φ̄(x)/ϕ(x)− x

]
+

−mtψ(t)Φ̄(t){x < t}
[
(1 + x2)Φ(x)/ϕ(x)− x

]
The two functions of x are closely related:

ℓ(x) := (1 + x2)Φ̄(x)/ϕ(x)− x =
1 + x2 − x(x+ r(x))

ρ(x)
=

1− xr(x)

ρ(x)
,

ℓ(−x) = (1 + x2)Φ(x)/ϕ(x) + x =
1 + xr(−x)
ρ(−x)

.

The function ℓ is strictly positive over the whole real line: trivially for x ≤ 0
because r(x) > 0 and by Theorem <19>(iii) because 1−xr(x) > 1−ρ(x)r(x) >
0 for x > 0. Together with the elementary calculus facts that∫ x

−∞
Φ(t) dt = ϕ(x) + xΦ(x) = ϕ(x) [1 + x/ρ(−x)] = ϕ(x)r(−x)/ρ(−x),∫ ∞

x
Φ̄(t) dt = ϕ(x)− xΦ̄(x) = ϕ(x) [1− x/ρ(x)] = ϕ(x)r(x)/ρ(x),

and the assumption that |ψ(t)| ≤ C1, these equalities and the strict positivity
of ℓ give

|
•

G(x)|/C1 ≤ ℓ(x)

∫ x

−∞
Φ(t) dt+ ℓ(−x)

∫ ∞

x
Φ̄(t) dt

=
[1− xr(x)]ϕ(x)r(−x) + [1 + xr(−x)]ϕ(x)r(x)

ρ(x)ρ(−x)

=
ϕ(x) [ρ(−x) + x+ ρ(x)− x]

ρ(x)ρ(−x)
= ϕ(x) (1/ρ(x) + 1/ρ(−x))

= Φ̄(x) + Φ(x) = 1.

Apparently there were several cancellations, due to the symmetry of the
N(0, 1) distribution, hidden within the upper bound for |

•

G(x)|.
To bound |f(x+ z)− f(x)− z

•

f(x)| write it as an integral:

\E@ R(x,z).def\E@ R(x,z).def <31> |z
∫ 1

0

•

f(x+ tz)−
•

f(x) dt| ≤ |z|
∫ 1

0
∥

•

f∥Lip t|z| dt.

□

3.5 Poisson
MGF::S:Poisson

The normal distribution represents the prototype for the class of subgaussian
distributions. In a similar way the poisson provides the prototype for a
class of distributions that might be called “subPoisson”. These distributions
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behave like subgaussians for moderately large deviations from the mean but
decrease only a little faster than the exponential further out in the tails. The
bennett inequalities in Chapter 8 will provide further examples.

Recall that a random variable Y has a poisson(θ) distribution if

P{Y = k} = e−θθk/k! for k = 0, 1, . . . .

The parameter θ must be strictly positive. The random variable X = Y − θ
has a zero expected value with var(X) = θ and

LX(λ) = θ(eλ − 1− λ) = θf(λ) for all λ ∈ R.

As explained in Section 3.1, we can derive both upper and lower tail
bounds from the function

−Λ(y) = infλ∈R (LX(λ)− yλ) = θ infλ∈R (f(λ)− λy/θ) .

Notice the appearance of our friend f from Section 2.2. Its comrade h is
coming soon.

Temporarily write w for y/θ. Note that f(λ)−λw = eλ−1−λ(1+w) has
derivative eλ− (1+w), which is zero at λ = log(1+w) if w > −1. If w = −1
the derivative is everywhere strictly positive, so that the infimum of −1 is
approached as λ → −∞. If w < −1 then f(λ) − λw = eλ − 1 − λ(1 + w),
which approaches −∞ as λ→ −∞. In summary, infλ∈R (f(λ)− λw) equals

\E@ Poisson.min\E@ Poisson.min <32>

−(1 + w) log(1 + w) + w if w > −1; achieved at λ = log(1 + w)
−1 if w = −1; approached as λ→ ∞
−∞ if w < −1; approached as λ→ ∞

Remark. If you have read Section 2.4 you will realize that I am here
repeating the calculation that showed h is the Fenchel-Legendre con-
jugate of f.

If you have read Section 2.2 you will also know that h(w) = 1
2w

2ψbenn(w)
for w ≥ −1, where ψbenn(·) is a convex, decreasing function on [−1,∞)
with ψbenn(0) = 1. For large w the value of ψbenn(w) decreases like 2w−1 log(w).

w 7→ ψbenn(w)

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Thus

Λ(y) = θh(y/θ) =

{
y2

2θ
ψbenn(y/θ) if y ≥ −θ

∞ if y < −θ
,
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which translates into

P{X ≥ x} ≤ exp

(
−x

2

2θ
ψbenn(x/θ)

)
for x ≥ 0

P{X ≤ −x} ≤ exp

(
−x

2

2θ
ψbenn(−x/θ)

)
for 0 ≤ x ≤ θ

P{X ≤ −x} ≤ 0 for x > θ.

The third inequality is reassuring because P{X < −θ} = 0. The first
inequality shows that the upper tail decreases like a subgaussian in the range
0 ≤ x ≪ θ, because ψbenn(x/θ) ≈ 1 for x/θ near 0, but that the tail decay
becomes more like exp (−x log(x/θ)) further out into the tail. The inequality
for the lower tail is more interesting, because ψbenn(w) > 1 for −1 ≤ w < 0.
The lower tails drop off even faster than one might expect from the N(θ, θ)
approximation to the poisson(θ). This can be interpreted as a skewness
effect: PX3 is the coefficient of λ3/3! in the power series expansion of

PeλX = exp
(
θ(eλ − 1− λ)

)
= 1 + θ

(
λ2

2!
+
λ3

3!
+ . . .

)
+
θ2

2!

(
λ2

2!
+
λ3

3!
+ . . .

)2

+ . . . ,

which is positive. The distribution of X − θ puts more mass to the right of
the origin than the N(0, θ). That fact slows down the decay in the upper
tails but improves the rate of decay in the lower tail.

The MGF tail bound for the poisson does not quite capture the actual
behavior of the probabilities. The deficiency parallels what happens with the
normal, where Φ̄(x) decreases like e−x2

/
(√

2πx
)
for large x but the MGF

method captures only the exp(−x2/2). I hope you drew the conclusion from
Section 3.3 that the failure was not fatal.

For X = Y − θ with Y ∼ poisson(θ), the exp(−θh(y/θ)) tail bound
compares favorably with the probability calculated by means of the stirling
formula (see Section 2.5) for k ∈ N:

k! =
√
2πkk+1/2e−k+rk where

1

12k + 1
< rk <

1

12k
.

If k = θ + y then

log
(√

2πk P{Y = k}
)
= −θ + k log(θ)− k log(k) + k − rk

= y − (θ + y) log(1 + y/θ)− rk

= −θh(y/θ)− rk.

Once again the MGF method has successfully captured the most important
term, −θh(y/θ), in the exponent.

Draft: 28sep24, Chap 3 ©David Pollard



18

3.6 Gamma and chi-squared
MGF::S:Gamma

Suppose X has a gamma(α) distribution, the probability measure on R+

that has density fα(x) = xα−1e−x/Γ(α) with respect to lebesgue measure.
The positive parameter α is often called the shape parameter. The expected
value and variance of X both equal α and

MX(λ) =

∫ ∞

0

xα−1e−x(1−λ)

Γ(α)
dx = (1− λ)−α{λ < 1}+∞{λ ≥ 1}.

Thus LX−α(λ) = −αλ− α log(1− λ) for λ < 1, so that

P{X ≥ α+ t} ≤ exp
(
−Λ(t))

)
for t ≥ 0\E@ upper.gamma.tail\E@ upper.gamma.tail <33>

P{X ≤ α− t} ≤ exp
(
−Λ(−t)

)
for α > t ≥ 0\E@ lower.gamma.tail\E@ lower.gamma.tail <34>

where, for α+ y > 0,

Λ(y) = supλ<1 λ(α+ y) + α log(1− λ) = y − α log(1 + y/α).

The maximum is achieved at λ = y/(α+ y). For t ≥ 0 this gives

logP{X ≥ α+ t} = logP{X ≥ t} ≤ −Λ(t) ≈

{
−t2/(2α) if t is near 0

−t if t is large

and for 0 ≤ t < α it gives

logP{X ≤ α− t} = logP{X ≤ −t} ≤ −Λ(−t) ≤ −t2/(2α).

The lower tail is actually subgaussian.
Boucheron, Lugosi, and Massart (2013, page 28) pointed out that the tail

can also be bounded by first using an upper bound for the logMGF of X−α:
if 0 ≤ λ < 1 then

α−1 logPeλ(X−α) = − log(1− λ)− λ =
∑

i≥2

λi

i
≤
∑

i≥2

λi

2
=

λ2

2(1− λ)
.\E@ gamma.BML\E@ gamma.BML <35>

They referred to this inequality as a Γ+(α, 1) bound (‘subgamma on the right
tail’). As I’ll only work with this tail I’ll drop the ‘on the right’ qualifier.
They also introduced a second parameter, for scaling.

MGF::subGamma.def <36> Definition. For constants α > 0 and β > 0, interpret W ∈ subGamma(α, β)
to mean

PeλW ≤ exp

(
αλ2/2

1− βλ

)
for 0 ≤ λ < 1/β.

Abbreviate subGamma(α, 1) to subGamma(α).□
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Remarks.

(i) If W ∈ subGamma(α) then

MW (λ) = 1 + λPW + o(λ) ≤ exp
(
αλ2 + o(λ3)

)
= 1 +O(λ2)

for small, positive λ, which implies PW ≤ 0.

(ii) Notice that W ∈ subGamma(α, β) iff W/β ∈ subGamma(α/β2). To
me it seems cleaner to derive general theory with β = 1 and then deduce
the corresponding subGamma(α, β) facts by rescaling. For example, if X
is χ2

k distributed then X/2 ∼ gamma(k/2), which implies X/2− k/2 ∈
subGamma(k/2), and hence X − k ∈ subGamma(2k, 2).

MGF::subGamma.tail <37> Theorem. If W ∈ subGamma(α) and t ≥ 0 then

P{W ≥ t} ≤ e−H1(t,α) ≤ e−H2(t,α)

where

H1(t, α) :=
(
t+ α−

√
2tα+ α2

)
=

t2

(t+ α) +
√
2tα+ α2

,

H2(t, α) :=
t2

2(t+ α)
.

Remark. For future reference, here is the rescaled version of the The-
orm: if W ∈ subGamma(α, β) and t ≥ 0 then

P{W ≥ t} ≤ e−H1(t/β,α/β
2) = exp

(
−t2

α+ βt+
√
α2 + 2tαβ

)

≤ e−H2(t/β,α/β
2) = exp

(
−t2

2(α+ βt)

)
.

Proof.

logP{W ≥ t} = inf
0≤λ<1

(
−tλ+

αλ2

2(1− λ)

)
= inf

0<s≤1

(
−t(1− s) + α

1− 2s+ s2

2s

)
= inf

0<s≤1
((t+ α/2)s− (t+ α) + α/(2s))

The replacement of λ by 1 − s makes it easier to calculate the derivative,
t+α/2−α/(2s2), which is zero when s =

√
α/(2t+ α). That value gives the

first expression for H1. The final inequality comes from α2 +2αt ≤ (α+ t)2.□

MGF::weighted.chi2 <38> Example. (Laurent and Massart, 2000, Lemma 1) Consider the weighted
sum W =

∑k
j=1 aj(Z

2
j −1) where a = (a1, . . . , ak) ∈ Rk

+ and Z = (Z1, . . . , Zk)
has a N(0, Ik) distribution. As usual, define

|a|∞ := maxj |aj | and |a|2 :=
√∑

j
a2j .
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§3.6 Gamma and chi-squared 20

Each Z2
j has a χ2

1 distribution which gives

aj(Z
2
j − 1) ∈ subGamma(2a2j , 2aj) ⊂ subGamma(2a2j , 2|a|∞)

Consequently W ∈ subGamma(2|a|22, 2|a|∞) and, for example,

P{W ≥ t} ≤ exp

(
−t2

4|a|22 + 4|a|∞t

)
for t ≥ 0.

Laurent and Massart rearranged the inequality into a form like <39> (see
below) and also derived a companion bound for the lower tail.□

To compare the tail bounds from <33> and Theorem <37> it helps to
isolate the effect of α by writing Λ(t) = αR0(t/α) and Hj(t, α) = αRj(t/α)
for j = 1, 2, for x ≥ 0. Then

0 ≤ R0(t) := t− log(1 + t)

≤ R1(t) := 1 + t−
√
1 + 2t =

t2

1 + t+
√
1 + 2t

≤ R2(t) := t2/(2t+ 2).

The inequalities are all strict for t > 0. All three functions R0, R1, and R2

have first derivatives that are positive and increasing; all are convex and
strictly increasing. Near the origin R0(t) = t2/2− t3/3+0(t3) and both R1(t)
and R2(t) behave like t2/2− t3/2+o(t3). As t→ ∞ both R0(t)/t and R1(t)/t
converge to 1 but R2(t) → 1/2. If one is not too worried about the constants
in the exponent there is not much difference between the three tail bounds.

It might appear that there is little point in recording the H1 tail bound
when it differs so little from the H2 tail bound. However H1 does give a
more pleasing result if we rearrange the bound by solving R1(t) = w for
a fixed w > 0 to get t = w +

√
2w , the larger of the two roots of the

quadratic (1+t−w)2 = 1+2t. Consequently, αR1(t/α) = w if t = w+
√
2αw.

With such a change of variable, the H1 form of inequality from Theorem <37>
takes the neat form (Boucheron et al., 2013, page 29)

\E@ BLM29\E@ BLM29 <39> P{W ≥ w +
√
2αw } ≤ e−w for w ≥ 0 if W ∈ subGamma(α).

Remark. You should carry out the analogous calculation for R2. The
result is not as elegant or useful.

In particular, if X ∼ gamma(α) then

P{
√
X ≥

√
α+

√
w} = P{X ≥ α+ 2

√
αw + w}

≤ P{X − α ≥ w +
√
2αw } ≤ e−w for w ≥ 0.\E@ root.gamma\E@ root.gamma <40>

Substituting t for
√
w we get P{

√
X ≥

√
α + t} ≤ e−t2 , an example of a

“subgaussian bound” for an upper tail beyond a point strictly larger than
the mean: the jensen inequality gives P

√
Y <

√
α.
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MGF::chi2 <41> Example. If W ∼ χ2
k then W/2 ∼ gamma(k/2) and inequality <40> implies

P{
√
W ≥

√
k + t} ≤ e−t2/2 for t ≥ 0.

In particular, P{
√
W ≥ 2

√
k } ≤ e−k/2 is a convenient bound when precise

constant don’t matter and k is large.
As an application, suppose Z1, . . . , Zn are independent N(0, Id) random

vectors. Then we have P ∥Zi∥ ≤
√

P ∥Zi∥2 =
√
d and

∑
i≤n ∥Zi∥2 ∼ χ2

nd.

From the inequality n−1
∑

i≤n ∥Zi∥ ≤
√∑

i≤n ∥Zi∥2 /n it follows that

P{n−1
∑

i≤n
∥Zi∥ ≥ 2

√
d } ≤ e−nd/2,

a neat little bound that is useful in high-dimensional statistical theory. See
Wu and Zhou (2019, Section 9), for example.□

3.7 Binomial
MGF::S:Binomial

The binomial distribution behaves a little like the poisson. It is also a
prototype for other inequalities involving sums of bounded random variables.

Remember that X has a Bin(n, p) distribution if

P{X = k} =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n.

Here and subsequently I write q for 1 − p. The distribution has expected
value np, variance npq, and MX(λ) = (q+peλ)n. The random variable n−X
has a Bin(n, q) distribution. Thus

\E@ upper.lower\E@ upper.lower <42> P{X ≤ np− t} = P{n−X ≥ nq + t}.

That is, the lower tail for the Bin(n, p) corresponds exactly to the upper tail
for the Bin(n, q).

Here is the main result: If X ∼ Bin(n, p) then

P{X ≥ np+ t} ≤ exp (−nph(t/np)− nqh(−t/nq))

= exp

(
− t2

2npq
gp(x)

)
for 0 ≤ t ≤ nq\E@ Bin.upper\E@ Bin.upper <43>

where gp(t) := qψbenn

(
t

np

)
+ pψbenn

(
−t
nq

)
.

From equality <42> the companion inequality for the lower tail is

P{X ≤ np− t} ≤ exp

(
− t2

2npq
gq(t)

)
for 0 ≤ t ≤ np.

It is merely a matter of swapping the roles of p and q.
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Remarks.

(i) See Section 2.2 if you have forgotten about ψbenn.

(ii) Note that

gp(t)/(2npq) → ψbenn(t/θ)/(2θ) if n→ ∞ and np→ θ ∈ R+.

Not surprisingly we then recover the MGF tail bounds for the poisson(θ)
distribution.

(iii) This gp(t) is the same function as the g(t, n, p) in Section 2.5, which
derived sharp approximations for P{X = k} by means of the stirling
approximation: for k = np+ t,

P{X = k} =
exp

[
−t2gp(t)/(2npq) +O

(
k−1 + (n− k)−1

)]√
2πn(p+ t/n)(q − t/n)

.

As happened with the N(0, 1), the MGF method captures the main term
in the exponent but misses the square root term in the denominator.

(iv) The bound t ≤ nq is not really necessary, because P{0 ≤ X ≤ n} = 1.
It merely serves to ensure that t/(np) and −t/(nq) are both ≥ −1, so
that we don’t have to worry about ψbenn() taking the value +∞. We
could also let the the definition of LX−np(t) take care of the difficulty
by having it take the value +∞ when t < −np or t > nq. Compare with
the calculation for the poisson in Section 3.5.

(v) The taylor expansion h(x) = x2/2!− x3/3! +O(x4) gives

nph(t/np)+nqh(−t/nq) = t2

2npq
− t3(q − p)

6(npq)2
+O(t4) for t near 0,

which agrees with the calculations in Section 3.2.

(vi) As explained in Section 2.5, the convexity of ψbenn gives the inequality

gp(t) ≥ ψbenn

(
qt

np
− pt

nq

)
= ψbenn

(
t(q − p)

npq

)
≥ 1 if p ≥ 1/2.

Thus, if p ≥ 1/2, the upper tail is less than exp
(
−t2/(2npq)

)
, a clean

subgaussian bound with scale parameter
√
npq . (As commented in Sec-

tion 2.5, this subgaussian fact can also be interpreted as a skewness effect.)
If p < 1/2 the upper tail is still subgaussian (because ψbenn (−t/(nq)) ≥ 1)
but with a larger scale parameter

√
nq .

Proof (of inequality <43>). For Λ with t ≥ 0 we need to find the supre-
mum over R+ of

L(λ) := (t+ np)λ− n log(q + peλ),

which has derivative
•

L(λ) = (t+ np)− npeλ/(q + peλ).

If t = nq then
•

L(λ) > 0 on R+ and L(λ) = n log
(
eλ/(q + peλ)

)
, so that

the supremum n log(1/p) is approached as λ → ∞. The final bound then
reduces to P{X ≥ n} ≤ pn, which is actually true with equality.
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If 0 ≤ t < nq then the maximum is achieved at the λ for which
•

L(λ) = 0,
that is, when (t+np)(q+peλ) = npeλ. The algebra is then simplified a trifle
if we write z1 for t/(np) and z2 for t/(nq). The equation becomes

(1 + z1)q = eλ [1− p(1 + z1)] = eλq(1− z2)

because p(1 + z1) + q(1 − z2) = 1. That is, the maximizing λ is given
by eλ = (1 + z1)/(1− z2) and

Λ(t) = np(1 + z1) log

(
1 + z1
1− z2

)
− n log (q + p(1− z1)/(1− z2))

= np(1 + z1) log(1 + z1)− np(1 + z1) log(1− z2)

− n log (q(1− z2) + p(1 + z1)) + n log(1− z2)

= np (h(z1) + z1)− log(1) + n (1− p(1 + z1)) log(1− z2)

= np (h(z1) + t/(np)) + nq (h(−z2)− t/(nq)) ,

which simplifies to the nph(z1) + nqh(−z2) for the first line of <43>.□

Now let me move a little beyond the binomial to show that there are
several other distributions, with the same expected value as the Bin(n, p),
that share the tail bounds for the binomial. In this Chapter these bounds
are derived by means of pointwise inequalities for MGFs. As such they leave
open the question of whether analogous inequalities would also hold for the
exact tail probabilities, not just their MGF-derived upper bounds. Chapter 4
will return to this question

MGF::PoisBin <44> Example. Suppose S ∼ PBin(p1, . . . , pn), that is, S is a sum of independent
random variables Y1+ · · ·+Yn, with Yi ∼ Ber(pi) for possibly different pi’s.
Define p = n−1

∑
i pi. Then

MS(λ) =
∏

i≤n

(
qi + pie

λ
)
= exp

(∑
i≤n

log(qi + pie
λ)
)
.

Concavity of the log() function shows that

\E@ PB.MGF\E@ PB.MGF <45> n−1
∑

i≤n
log(qi+pie

λ) ≤ log
(
n−1

∑
i≤n

(qi + pie
θ)
)
= log

(
q + peθ

)
.

Thus MS(θ) ≤MW (θ) where W ∼ Bin(n, p) and q = 1− p. It follows that

P{S ≥ np+ x} ≤ exp

(
− x2

2npq
gp(x)

)
for 0 ≤ x ≤ nq,

with a similar bound for the lower tail.□

The convexity idea from the previous Example can be pushed even further.

MGF::Hoeffding <46> Example. Suppose T = Y1 + · · · + Yn, a sum of independent random
variables Yi with 0 ≤ Yi ≤ 1 and PYi = pi for each i, and np =

∑n
i=1 pi. By

convexity of the exp() function,

eλYi ≤ (1− Yi) + Yie
λ for each real λ.
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The inequality holds for all possible realizations of Yi. Equality is achieved
at Yi ∈ {0, 1}. In particular, equality holds when Yi ∼ Ber(pi), as in the
previous Example. Take expectations.

PeλYi ≤ (1− pi) + pie
λ = qi + pie

λ for each real λ.

By independence,

MT (λ) =
∏

i≤n
PeλYi ≤

∏
i≤n

(
qi + pie

λ
)
=MS(λ) ≤MW (λ),

with S ∼ PBin(p1, . . . , pn) and W ∼ Bin(n, p), as in the previous Example.
Thus

P{T ≥ np+ x} ≤ exp

(
− x2

2npq
gp(x)

)
for 0 ≤ x ≤ nq,

a result due to Hoeffding (1963, Theorem 1).□

3.8 Sampling and the hypergeometric
MGF::S:hypergeometric

Both Example <44> and Example <46> involved sums of independent
random variables. The MGF approach can also work when there is dependence
between the summands, although the argument becomes a little more delicate.

MGF::hyper <47> Example. Suppose U = {u1, . . . , uN} is a finite set, an urn if you like
to think that way. In that interpretation the ui’s are the balls. Suppose
exactly R of the balls are colored red and the other B = N −R are colored
black. If n balls are sampled without replacement then each subset of U with
size n has probability 1/

(
N
n

)
of being selected and the number of red balls Tn

in the sample has a hypergeometric distribution, hyper(n,R,B), meaning
that

P{Tn = k} =

(
R

k

)(
B

n− k

)
/

(
N

n

)
for each nonnegative integer k such that k ≤ R and n− k ≤ B.

If the sampling is carried out with replacement then the number of red
balls in the sample, Sn, has a Bin(n, p) distribution, where p = R/N .

Elementary calculations (Pitman, 1993, Section 3.6) show that

PTn = PSn = np

var(Tn) = np(1− p)(N − n)/(N − 1) < var(Sn) = np(1− p).

If n is much smaller than N then there is actually not much difference be-
tween hyper(n,R,B) and Bin(n, p): if a ball is selected then returned to
the urn, it is unlikely to be selected again if n/N is very small. If n/N is
not so small then, judging by the variances, hyper(n,R,B) is more con-
centrated around np than Bin(n, p). A beautiful result by Hoeffding (1963,
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Section 6) adds some precision to this intuition. He showed that for each
convex function f on the real line,

\E@ Urn.Jensen\E@ Urn.Jensen <48> Pf(Tn) ≤ Pf(Sn).

In particular, the choice f(x) = eλx shows that MTn(λ) ≤ MSn(λ) for
all real λ. Any tail bound for the hypergeometric obtained via the MGF
argument must therefore be smaller than the corresponding MGF tail bound
for the binomial.

To be more precise, Hoeffding’s result didn’t involve red balls and black
balls. It worked for every function g : U → R. (The special case where
g(ui) = 1 for a red ball an g(ui) = 0 for a black ball get us back to the
hypergeometric.) That is, we can take X1, . . . , Xn to be a sample from U
without replacement and Y1, . . . , Yn to be a sample with replacement. If we
define Tn :=

∑
i≤n g(Xi) and Sn :=

∑
i≤n g(Yi) then inequality <48> will

still hold for every convex f .
I had some trouble digesting Hoeffding’s proof. Even after working

through the details I could not have explained to anyone why the method
worked. Subsequently I stumbled on a proof by Le Cam (1986a, page 534),
which involved a much more intuitive explanation, reducing everything to
the jensen inequality. Unfortunately I again had some trouble convincing
myself that all the intuitions were completely watertight, so I wrote out the
following rather more pedantic account based on Le Cam’s idea. For technical
details see Problem [11].

Here is the key idea. Suppose Y = (Y1, Y2, . . . ) is obtained by sampling
repeatedly with replacement from U . With probability one each member
of U appears infinitely often in the Y sequence. If we discard all except the
first appearance of each u in U from the Y sequence then we are left with a
random permutation, (X1, . . . , XN ) of U ; and X1, . . . , Xn forms a sample of
size n taken without replacement from U .

The sequence (Y1, Y2, . . . ) will contain repeats, which can be represented
as a sequence C(Y ) = (C1(Y ),C2(Y ), . . . ) of symbols from a set of ‘code-
words’ B = { j : 1 ≤ j ≤ N}, by the following procedure. Think of B as
ordered: 1 < 2 < · · · < N . The code C(Y ) always starts with 1 . If Y2 = Y1
then C2(Y ) = 1 , otherwise C2(Y ) = 2 . And so on. In general, if a Yi repeats
an earlier Yj then Ci(Y ) = Cj(Y ); if Yi is different from all previous Yj ’s then
it receives the smallest unused code symbol. For example, here is how it
works for a typical Y :

Y : u7 u3 u9 u7 u2 u3 u3 u185 . . .
X: u7 u3 u9 u2 u185 . . .

C(Y ): 1 2 3 1 4 2 2 5 . . .

You should ignore the gaps in the X-vector; I inserted them just to align
each Xj with its first appearance in the Y sequence. The corresponding
positions in C(Y ) contain a repetition of an earlier code symbol. For ex-
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ample, the second u7 in the Y sequence has a gap in X and is coded as 1

because Y1 = u7.
Together, X and C(Y ) allow us to reconstruct Y : for i = 1, . . . , N replace

each i in C(Y ) by Xi, the ith element of X (ignoring the characters).
More concisely, Yj = XC(Yj), provided we ignore the little box around the
code symbol.

I claim that X and C(Y ) are independent.

Remark. Initially I thought the independence was obvious: knowledge
of the pattern tells us nothing about the order in which the elements
of U are first observed. For example, if C(Y ) = ( 1 , 2 , 3 , 1 , . . . )
then we know that Y1, Y2, Y3 are different elements of U and Y4 = Y1
but we have no information about which three elements of U were in-
volved. Then I began to worry that this assertion was a bit too hand-
waving. It took me a while to come up with the more rigorous argu-
ment given in Problem [11].

Now back to <48>. Remember that Sn = g(Y1) + . . . g(Yn) and Tn =
g(X1) + . . . g(Xn). The sum Sn can be re-expressed using the counts

Nn(j) = number of times j appears amongst C(Y1), . . . ,C(Yn).

For example, if n = 6 and Y = (u7, u3, u9, u7, u2, u3, . . . ) then

(X1, . . . , X4) = (u7, u3, u9, u2) and C(Y ) = ( 1 , 2 , 3 , 1 , 4 , 2 . . . ) ,

so that N6(1) = N6(2) = 2 and N6(j) = 1 for j = 3, 4, which gives

g(Y1) + · · ·+ g(Y6) = 2g(X1) + 2g(X2) + g(X3) + g(X4).

Notice that we only need the counts up to j = 6, at most, because (Y1, . . . , Y6)
can involve at most 6 different elements X1, . . . , X6 of U . In general,

Sn = g(Y1) + · · ·+ g(Yn) =
∑n

j=1
Nn(j)g(Xj)

and

Pf
(
Sn

)
= Pf

(∑n

j=1
Nn(j)Xj

)
\E@ Y.rep\E@ Y.rep <49>

Unfortunately, the final expression is not symmetric in X1, . . . , Xn;
it is hard to see how it is related to Pf(Tn). My method for determining
patterns broke the symmetry but it can be restored using a sneaky trick.
As the Nn(j)’s depend only on C(Y ) they are independent of X. We could
replace (X1, . . . , Xn) by any other random sequence (X̃1, . . . , X̃n) that is
independent of C(Y ) and has the same distribution as (X1, . . . , Xn). For
example, for any fixed permutation σ of [[n]] := {j ∈ N : j ≤ n} we could
use (Xσ(1), . . . , Xσ(n)):

Pf
(
Sn

)
= Pf

(∑n

j=1
Nn(j)Xσ(j)

)
for each permutations σ of [[n]].
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We can even average out over the uniform distribution Q on the set of all
permutations of [[n]] then use the jensen inequality to take the Q integral
inside the convex function:

Pf
(
Sn

)
= QσPf

(∑n

j=1
Nn(j)Xσ(j)

)
≥ Pf

(
Qσ
∑n

j=1
Nn(j)Xσ(j)

)
From the facts that

∑n
j=1Nn(j) = n and

Qσg(Xσ(j)) = n−1
∑n

i=1
g(Xi) = n−1Tn for 1 ≤ j ≤ n

it now follows that Pf(Sn) ≥ Pf(Tn), as asserted.□

3.9 Problems
MGF::S:Problems

For Problems [1] through [5], the function ϕ(x) denotes the N(0, 1) density
and Φ̄(x) :=

∫∞
x ϕ(t) dt; the functions R(·) and ρ(·) and r(·) are defined on R

by 1/ρ(x) := R(x) = Φ̄(x)/ϕ(x) and r(x) := ρ(x)− x.

[1] Inequality <10> is just the initial part of a sequence of upper and lowerMGF::P:Laplace

bounds for R(x), which are apparently due to Laplace (see Notes). Each
bound is of the form p(1/x) with p a polynomial.

(i) Show that p(1/x) > R(x) for all x > 0 if

\E@ Mill.upper\E@ Mill.upper <50> − d

dt
(p(1/t)ϕ(t)) > ϕ(t) for all t > 0

and p(1/x) < R for all x > 0 if

\E@ Mill.lower\E@ Mill.lower <51> − d

dt
(p(1/t)ϕ(t)) < ϕ(t) for all t > 0

Hint:
∫∞
x .

(ii) Show that<50> holds if and only if p(s) + s3
•
p(s) > s for all s > 0. Charac-

terize <51> by the reverse inequality.

(iii) Define a sequence of monomials by ∆0(s) = s and ∆k(s) = −s3
•

∆k−1(s)
for k ≥ 1. Define ak := 1× 3× · · · × (2k − 1). Show that

∆k(s) = (−1)kaks
2k+1 = −(2k − 1)s2∆k−1(s) for k = 1, 2, . . . .

(iv) Define pk(s) =
∑k

i=0∆i(s). Show that pk(s) + s3
•
pk(s) = s−∆k+1(s).

(v) Conclude that pk(1/x) > R(x) > pk+1(1/x) for each even k.

[2] Show that Φ̄(x) ≤ 1
2e

−x2/2 for x ≥ 0. Hint: From Theorem <19>(i) we haveMGF::P:half
R(0) > R(x).

[3] (Birnbaum, 1942). Use the cauchy-schwarz inequality and some resultsMGF::P:Birnbaum

from Theorem <19> to show that

ϕ(x)2 =

(∫ ∞

x
t
√
ϕ(t)

√
ϕ(t) dt

)2

≤
(
xϕ(x) + Φ̄(x)

)
Φ̄(x).
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Deduce that ρ(x)2 ≤ xρ(x) + 1, so that |ρ(x) − x/2| ≤
√
1 + x2/4 , which

implies ρ(x) ≤
(
x+

√
x2 + 4

)
/2.

[4] (Sampford, 1953) Define ψ(x) := 2r(x)2 + xr(x), as in the proof of The-MGF::P:Sampford

orem <19>, which showed that ψ(x) > 1 for all x ∈ R. Argue that r(x)
cannot belong to the closed interval Ix := {t ∈ R : 2t2 + xt− 1 ≤ 0}, which
has endpoints

(
−x±

√
x2 + 8

)
/4. Deduce that r(x) > (−x+

√
x2 + 8)/4 =

2/(x+
√
x2 + 8 ) and ρ(x) > (3x+

√
x2 + 8)/4. Note: r(x) > 0.

[5] Suppose Z1, . . . , Zn are random variables, each distributed N(0, 1) but, forMGF::P:expected.max

the moment, not necessarily independent. Define Mn = maxi≤n Zi.

(i) Even without independence the MGF approach also gives an upper bound an
for the expected value of Mn, via Jensen’s inequality: for each λ > 0,

exp (λPMn) ≤ PeλMn = Pmaxi e
θZi ≤

∑
i
PeλZi = neλ

2/2.

Deduce that PMn ≤ infλ>0

(
log n+ λ2/2

)
/λ = an =

√
2 log(n) . The case

where Zi = Z1 for all i shows that the bound is not sharp in general.

(ii) If the Zi’s are independent, show that PMn ≥ an − c log(an)/an for some
constant c, if n is large enough. First show that

Mn ≥ maxi≤n Z
+
i −

(∑
i≤n

|Zi|
)
{Mn ≤ 0}

so that PMn ≥ Pmaxi≤n Z
+
i − nP|Z1|/2n−1. Then argue that

O(n/2n−1)+PMn ≥ Pmaxi≤n Z
+
i =

∫ ∞

0
P{Mn > t} dt ≥ xnP{Mn > xn}.

Look at Example <17> for a way to choose xn.

[6] Suppose Z1, . . . , Zn are independent random variables, each distributed N(0, 1).MGF::P:max.abs.normals

(i) Show that P{maxi≤n |Zi| ≤ xn} =
(
1− 2Φ̄(xn)

)n
.

(ii) Mimic the argument from Example <17> to deduce that maxi≤n |Zi| con-
centrates near an.

[7] Suppose X has a standard exponential distribution.MGF::P:std.exp

(i) Show that P{X ≥ x} = e−x for all x ≥ 0 and PX = 1.

(ii) Show that the method from Section 3.1 gives P{X ≥ x} ≤ (ex)e−x for x ≥ 1.

(iii) What bound does the method give for 0 ≤ x < 1?

[8] Suppose A1, . . . , An are independent events with
∑

i PAi = ϵ , for a small ϵ.MGF::P:union.indep
Show that

P ∪i Ai = 1− exp
[∑

i
log(1− PAi)

]
≥ 1− e−ϵ = ϵ−O(ϵ2).
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[9] Use notation from Example <28>. Suppose W has distribution P . SupposeMGF::P:Stein.exch

we can construct a new random variable W̃ such that the joint distribution
of (W, W̃ ) is the same as the joint distribution of (W̃ ,W ) (an “exchangeable

pair”). Write ∆ for W̃ −W and define

µ1(w) := P(∆ |W = w) and µ2(w) := P
(
∆2 |W = w

)
.

Assume that ∥h∥Lip is finite.

(i) For real x and z := y − x define an antisymmetric function

F (x, y) := (y − x) [f(x) + f(y)] = z
[
2f(x) + z

•

f(x)
]
+R(x, z),

where R(x, z) := f(x+ z)− f(x)− z
•

f(x), as in <31>. Show that

0 = PF (W, W̃ ) = Pw
(
2µ1(w)f(w) + µ2(w)

•

f(w)
)
+ PR(W,∆).

(ii) Suppose µ1(w) = −λw +R1(w) and µ2(w) = 2λ+R2(w) for some positive
constant λ, with R1 and R2 small. Deduce from (i) that

2λ|PH(W )| ≤ 2∥h∥LipP|∆|3+
√
π/2∥H∥∞P|R1(W )|+2∥H∥∞P|R2(W )|.

Compare with Stein (1986, pp. 33–35).

[10] Let {ξn,i : i ∈ [[n]], n ∈ N} be a triangular array of random variables,MGF::P:CLT.nsc
independent within each row. It is a classical result (see Petrov, 1975, §IV.4
and Le Cam, 1986b) that if maxi P{|ξn,i| > ϵ} → 0 for each ϵ > 0 then∑

i ξn,i ⇝ N(0, 1) iff for each ϵ > 0 we have: P{maxi |ξn,i| > ϵ} → 0 and∑
i var (ξn,i{|ξn,i| ≤ ϵ}) → 1 and

∑
i var (ξn,i{|ξn,i| ≤ ϵ}) → 1. Thus, for the

purpose of developing normal approximations for sums of independent random
variables it suffices to consider the case where ξ1, . . . , ξn are independent
random variables with: |ξi| ≤ ϵ for a fixed ϵ > 0; Pξi = 0; and

∑
i var(ξi) = 1.

This Problem will show how the bounds from Problem [9] can handle such
a situation.

Let ξ1, . . . , n, η1, . . . , ηn, J be independent random variables, with ηi having
the same distribution as ξi and J being uniformly distributed on [[n]]. Define

W :=
∑

i ξi and W̃ =
∑

i{J ̸= i}ξi + {J = i}ηi, so that ∆ := W̃ −W =∑
i{J = i}(ηi − ξi).

(i) Show that µ1(w) = −w/n and µ2(w) = 2n−1 + R2(w) where R2(w) =
n−1Pw

∑
i

(
ξ2i − σ2i

)
, where σ2i := Pξ2i and Pw is shorthand for the conditional

distribution of W̃ given W = w.

(ii) Show that

(nP|R2(W )|)2 ≤ P
(∑

i
ξ2i − σ2i

)2
≤
∑

i
Pξ4i ≤ ϵ2,

nP|∆|3 ≤ |ηi − ξi|3 ≤ 4ϵ.

(iii) Deduce that |PH(W )| ≤ Cmax(∥h∥Lip, ∥H∥∞)ϵ for some universal constant C.
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Remark. The previous Problem is just a sanity check for Problem [9].
The real strength of Stein’s approach is its ability to handle problems
caused by dependence, which defy classical method.

[11] Here is a rigorous way to establish independence of X and C(Y ) in Exam-MGF::P:indep.code

ple <47>. Notation (derived from Section 3.8):

a) Regard Y as the identity map (that is, Y (y) = y) on UN equipped with
its product sigma-field and product measure P = νN, where ν denotes
the uniform distribution on U .

b) B = { i : i = 1, . . . , N}, the code symbols. Regard C as a measurable
map from UN into the product space BN (equipped with its product
sigma-field).

c) W = the set of all permutations of U . (Thus |W| = N !.) If x =
(x1, . . . , xN ) ∈ W and i ∈ B, interpret x i to mean xi.

d) Treat X = X(y) as the map from UN into the set W that is defined by
discarding repetitions of each yi after its first appearance in y.

e) For y = (y1, y2, . . . ) ∈ UN and B = (b1, b2, . . . ) ∈ BN define C(y) 8 n =
(C1(y), . . . ,Cn(y)) and B 8 n = (b1, . . . , bn).

The argument:

(i) Show that the distribution of X is uniform on W. Deduce that

P{Xj = xj , . . . , XN = xN} =
1

N
× 1

N − 1
× 1

N − j + 1
=

1

(N)j

for each x ∈ W and 1 ≤ j ≤ N . (Exchangeability helps.)

(ii) Show that the distribution of C(Y ) concentrates on the set P of all feasible B’s
in BN, that is, those B that start with 1 and for all i, j with 1 ≤ j < i ≤ N
the codeword j first appears in B before i .

(iii) Suppose B ∈ P and B 8n uses only the k code symbols 1 , . . . , k . Show that

P{C(Y ) 8 n = B 8 n} =
N(N − 1) . . . (N − k + 1)

Nn
=

(N)k
Nn

.

Hint: Each repeat of a codeword corresponds to an event that has probabil-
ity 1/N and the first appearance of codeword j indicates a selection from a
set N − j + 1 elements from U .

(iv) Suppose x = (x1, . . . , xN ) ∈ W and B ∈ P, with B 8 n using only the k code
symbols 1 , . . . , k . Justify the following assertions.

Define

A = {y : C(y) 8 n = B 8 n, Xi = xi for i = 1, . . . , k }.
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The assumption about B means that y1, . . . , yn select only k distinct elements
of U , namely U1 := {xi : i = 1, . . . , k}, with first selections occurring in the
order (x1, . . . , xk). Thus

PA = P{y : yi = xbi for i = 1, . . . , n } = (1/N)n.

Conditional on the occurrence of A, the remaining observations yn+1, yn+2, . . .
are left to select each element of U2 := {xi : n + 1 ≤ i ≤ N}. If we also
require Xi = xi for k + 1 ≤ i ≤ N then we have specified the order of first
selections of the elements of U2, namely (xk+1, . . . , xN ). Thus

P{Xi = xi for k + 1 ≤ i ≤ N | A} =
1

N − k
× 1

N − k − 1
×· · ·×1

1
=

1

(N − k)!
.

Combining these two results we get

P{y : C(y) 8 n = B 8 n, X = (x1, . . . , xN )}
= P (A ∩ {Xi = xi for k + 1 ≤ i ≤ N })

= (1/N)n × 1

(N − k)!
=
N(N − 1) . . . (N − k + 1)

Nn
× 1

N !

= P{C(Y ) 8 n = B 8 n} × P{X = x}.

It follows that C(Y ) and X are independent.

3.10 Notes
MGF::S:Notes

Bennett (1962) and Hoeffding (1963) are good sources for a host of exponential
inequalities. Massart (2003, Chapter 2) and Boucheron, Lugosi, and Massart
(2013, Chapter 2) persuaded me that it is a good idea to have the relevant
ideas collected together in one place, rather than deriving them on an ad hoc
basis.

Many authors seem to credit Chernoff (1952) with the moment generating
trick in <1>, even though the idea is obviously much older. In that paper
Chernoff first noted that Cramér (1938) had already established excellent
results for sums of independent random variables using the MGF method.
Then he proceeded (page 495) to list a few basic facts:

Since the results of Cramér are extremely more powerful tha[n]
we require here and the (finite) existence of third order moments
is not necessary for the results that we desire, we shall state and
briefly outline a proof of Theorem 1. Before doing this we shall
first formally state some notation and lemmas which we shall use
throughout this paper. These lemmas state known results which
are rather obvious, depending mainly on Lebesgue’s Theorem on
integration of monotone sequences [reference to the Saks book].
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Remark. Cramér’s 1938 paper summarized asymptotic approxima-
tions to the tail probabilities for a sum of independent random vari-
ables, rather than bounds on those tail probabilities; details appeared
in Chapter 7 of Cramér (1937). See Cramér (1976, Section 4.9) for
comments about the conference where he presented the 1938 paper.

Amongst the known results listed by Chernoff was a special case of the
‘extended Tchebycheff’ inequality

P{S ≥ x} ≤ infλ≥0 e
−λxPeλS ,

for which he cited the German original of Kolmogorov (1933). (The inequality
appears in §IV.3.) In a subsequent biographical article Chernoff (2004)
acknowledged that while working on his 1952 paper he had originally been
ignorant of the 1938 Cramér paper.

In the 1933 book Kolmogorov gave no source for the ‘extended Tcheby-
cheff’ inequality, although the 1927 edition of Sergei Bernstein’s probability
book was listed in his Bibliography. Moreover, in a paper celebrating Bern-
stein’s eightieth birthday, Kolmogorov and Sarmanov (1960) noted:

3. Beginning in 1921 Sergei Natanovich published a number of
papers dealing with various special problems in the application
of probability theory . . . and in 1927 appeared the first edition
of the fundamental text “The Theory of Probability”, which
was reprinted with large supplements in 1934 and 1946. At the
mathematical congresses in Moscow (1927) and Zürich (1932)
Sergei Natanovich delivered long survey reports on the problems
of probability theory. We . . . emphasize that at this time such
a wide range of work on all the fundamental theoretical and
applied problems of probability theory was a totally new thing.
. . . It is natural that the theoretical and applied works of Sergei
Natanovich and his text in probability theory have determined to
a considerable degree the development of research in probability
theory in the USSR.

And then

4. A whole series of papers by Sergei Natanovich are connected
with the strengthening of Chebyshev’s inequality [citing papers
from 1918, 1924, and 1937] and the calculation of the error in the
Laplace formula . . .

I took the quotes from the SIAM translation of Volume V number 2 of the
Russian original.

Now for the view from the West. The proof of the Bernstein inequality
given by Uspensky (1937, pages 204–206) used the MGF method. He prefaced
the “Indication of the Proof” by the remark “S. Bernstein has shown that
Tchebycheff’s inequality can be considerably improved”. I thank Elena
Khusainova, who translated four pages from Bernstein’s probability book for
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me, clearly showing that Uspensky was following that book, which appeared
in his list of references (page 207).

Hoeffding (1963, page 14) gave Bernstein credit for the MGF approach:

The method employed to derive the inequalities, which has often
been used (apparently first by S. N, Bernstein),. . .

Bennett (1962) had also cited (page 34) Bernstein’s 1927 book (and an earier
paper) with the comment (page 35):

Bernstein’s original work was published in Russian, and appears
to be unobtainable. It is reported—indirectly—by [Craig, 1933]
. . . and by [Uspensky (1937, pages 204–206)] who indicates the
proof in a series of exercises. The inequality is mentioned or quoted
without proof by . . . Apart from these brief references, Bernstein’s
inequality seems to have escaped notice in the English-speaking
world.

Craig’s had commented (his page 94):

Another interesting and important attempt in this direction due
to S. N. Bernstein seems to have generally escaped attention in
the English-speaking world, at least, since it has been published
only in Russian.

with the footnote

“Bernstein, S., Theory of Probability, (Moscow, 1927), pp. 159-
165. The present account of this work of Bernstein is taken from
a lecture of Professor J. V. Uspensky.”

Craig also mentioned that his paper was written while he was at Stanford
University, where Uspensky was a mathematics faculty member, until his
death in 1947.

I think it abundantly clear that credit for the MGF method should go
to Bernstein, not Chernoff.

The result derived in Problem [1] corresponds to an analogous result for
the error function (that is,

∫ x
0 e

−t2dt) presented by Laplace in his Celestial
Mechanics, reprinted 1805 in Volume IV, Book X, Chapter 1, §5 of his col-
lected works (pages 489–492 in the Bowditch translation). He also developed
a continued fraction expansion.

The ratio R(x) is often called the “Mills ratio”, because it was discussed
by Mills (1926). Actually Mills was just constructing a table of R, using
earlier tables for the normal distribution function and numerical methods
proposed by other authors. There has been a long history of authors deriving
upper and lower bounds for R, such as the upper bound from Problem [3]
and the lower bound from Problem [4]. See Baricz (2008) or Gasull and
Utzet (2014) for recent examples, which include some history. I first came
to appreciate the value of having global control over ρ while working out the
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theory for Carter and Pollard (2004) and UGMTP Appendix D. Most of the
proof for Theorem <19> comes from those two sources, with corrections,
plus ideas adapted from Sampford (1953).

The subGamma idea is clearly present in the derivation of Bernstein’s
inequality from the bernstein moment assumption (see Section 8.3) but,
to my knowledge, Boucheron, Lugosi, and Massart (2013, page 28) were the
first to anoint it as a general concept. It seems that the neat trick <39> with
the square roots was first noted by Birgé and Massart (1998, Section 7.6).

Okamoto (1959) stated the binomial tail bounds <43> and its analog
for the lower tail in a slightly different form, with the comment that “We
shall state two Lemmas the first of which is a corollary of a theorem given by
[Chernoff 1952, Theorem 1]”. He then derived several more attractive bounds
that could be derived from the MGF bound. He omitted the calculus (which
I provided in Section 3.7) for the MGF bound; he only gave the details for
the weaker upper bounds. He also commented that his proof simplified a
“tedious, although elementary” calculation by Uspensky (1937, page 102).
It seems strange to me that Okamoto did not also cite Uspensky (1937,
page 204).
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