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Chapter 6

Multivariate normal

Gaussian::Gaussian
Section 6.1 describes some wondrous properties of the (multivariate) normal

distribution. By way of preview, it presents two examples of what can
be achieved by using the masterly trick of studying relationships between
different normals by integrating along a path.

Section 6.2 describes the path method. It also draws your attention to a
simple integration-by-parts trick used by Charles Stein to prove amazing
facts about normal approximation.

Section 6.3 presents three different path methods for slightly different versions
of the lipschitz concentration inequality.

*Section 6.4 describes the gaussian isoperimetric inequality.
Section 6.5 derives some comparison inequalities (initially due to Slepian,

with a generalization due to Gordon) by means of the path method.
*Section 6.6 uses the gordon inequality to derive a special case of a result

by Dvoretzky regarding cross sections of convex bodies in high dimensional
Euclidean spaces.

Section 6.7 presents Chatterjee’s proof of Fernique’s inequality.

6.1 Introduction
Gaussian::S:intro

The normal distribution has many amazing properties. This Chapter presents
a few results that give a glimpse of the heights achieved by the those who
have worked on the theory of gaussian processes in the last half century
or so. Even for those readers who are primarily interested in nongaussian
processes, it helps to see what is possible in the cleanest case before plunging
into more general theory; often the gaussian results provide the benchmarks
against which the nongaussian analogs are judged. In any case, the gaussian
results provide an example of beautiful probability theory, which is worthy
of attention for aesthetic reasons.

A little bit of notation is needed before I can describe the main focus of
the Chapter. As in Section 3.3, the symbol Φ denotes the N(0, 1) distribution
function with Φ̄ = 1 − Φ, and ϕ denotes the standard normal density. The
symbol γn denotes the N(0, In), the probability measure on B(Rn) with
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§6.1 Introduction 2

density ϕn(x) =
∏

j ϕ(xj) = (2π)−n/2 exp(−|x|2/2) with respect to Lebesgue
measure on Rn. More generally, if µ ∈ Rn and V is an n× n positive semi-
definite matrix then N(µ, V ) denotes the probability measure on B(Rn)
with Fourier transform exp(it′µ − t′V t/2). Such a measure is often called
a multivariate normal (mvn for short) distribution. It has mean µ and
variance matrix V . If µ is zero the distribution is said to be a centered
mvn. Only if V is nonsingular does the N(µ, V ) have a density with respect
to Lebesgue measure. Sometimes it helps to add a subscript, Nn(. . . ), if
there is any ambiguity about the dimension of the Euclidean space where
the measure lives. For example, if X ∼ Nn(µ, V ) and F is an m×n constant
matrix then FX has a Nm(Fµ, FV F ′) distribution. As a special case for m
equal to n, if FF ′ = V and Z ∼ Nn(0, In) then µ+FZ ∼ Nn(µ, V ). Finally,
the general fact that independence implies zero correlation can be run in the
other direction for the mvn: if(

X
Y

)
∼ N(µ, V ) with V =

(
Vx Cx,y

C ′
x,y Vy

)
,

then X and Y are independent if and only if Cx,y = 0.
All the assertions in the previous paragraph are easy to prove using

Fourier transforms.
Now back to the main focus of the Chapter. The unifying concept is that

of a path argument (described in Section 6.2) to establish two very useful
properties of the mvn:

(i) subgaussian concentration of f(Z) if Z ∼ N(0, In) and f : Rn → R is
lipschitz (in Section 6.3);

(ii) comparison inequalities relating probabilistic bounds for two cen-
tered mvn distributions based on simple comparisons between their
variance matrices (in Sections 6.5 and 6.7).

Here is a preview.

6.1.1 Subgaussian concentration
Gaussian::Lip.subg

Remember that a function f : Rn → R is said to be lipschitz if there exists
a finite constant κ for which

|f(y)− f(z)| ≤ κ|y − z| for all y, z in Rn.

Here | · | denotes the usual Euclidean (ℓ2) distance, |w|2 :=
∑

iw
2
i . The

smallest κ for which the inequality holds is called the lipschitz constant,
which I denote by ∥f∥Lip.

The following concentration result is proved in Section 6.3.3. A much
simpler argument, which produces a slightly larger subgaussian scale param-
eter, appears in in Section 6.3.1. Of course I suggest that you start with the
easier derivation.

Draft: 6feb24, Chap 6 ©David Pollard
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Gaussian::Lipschitz.subg <1> Theorem. If Z ∼ γn = N(0, In) and f : Rn → R is a lipschitz function
with ∥f∥Lip ≤ κ then f(Z)− γnf has a subgaussian distribution,

Peλ(f(Z)−γnf) ≤ eλ
2κ2/2 for each λ ∈ R,

which implies P{|f(Z)− γnf | ≥ tκ} ≤ 2e−t2/2 for each t ≥ 0.□

Remark. Notice that n does not appear explicitly in the upper bound,
although it might be hiding inside the constant κ.

The bound is sharp, in the following sense: If u is a unit vector
then the linear function f(x) = u′x is lipschitz with ∥f∥Lip = 1 and
the function f(Z) has a N(0, 1) distribution if Z ∼ γn.

Gaussian::Borell.subg <2> Example. Let M equal supi Yi for a gaussian process {Yi : i ∈ N}. If both
m := PM and σ2 := supi∈N var(Yi) are finite then Theorem <1> can be used
to show that

\E@ max.conc\E@ max.conc <3> P{|M −m| ≥ σx} ≤ 2 exp(−x2/2) for all x ≥ 0.

In special cases—such as the maximum of independent N(0, 1)-distributed
variables, as discussed in Section 3.3—there exist much tighter bounds.
However, inequality <3> has the great virtues of both being impervious
to the effects of possible dependence between the Yi and of not depending
(except through m and σ) on the size of the index set.

All the real work is carried out for the case of a finite index set. Suppose
W := (Y1, . . . , Yn) ∼ Nn(µ, V ). We may write W as µ + LZ with Z ∼ γn
and an n×n constant matrix L for which LL′ = V . If ℓi denotes the ith row
of L then Yi = µi + ℓiZ and σ2 ≥ var(Yi) = var(µi + ℓiZ) = ℓiInℓ

′
i = |ℓi|2.

Define a real-valued function fn(z) := maxi≤n (µi + ℓiz) on Rn. It is
lipschitz with ∥fn∥Lip ≤ σ: for z1, z2 ∈ Rn,

|fn(z1)− fn(z2)| = |maxi≤n(µi + ℓiz1)−maxi≤n(µi + ℓiz2)|
≤ maxi |(µi + ℓiz1)− (µi + ℓiz2)|
≤ maxi |ℓi| |z1 − z2| by cauchy-schwarz

≤ σ|z1 − z2|.

Define Mn := maxi≤n Yi = maxi≤n(µi + ℓiZ) = fn(Z). Theorem <1>
gives P exp (λ(Mn − PMn)) ≤ exp(λ2σ2/2) for all real λ, which implies
P{Mn ≥ PMn + σx} ≤ e−x2/2. Put another way,

P{Mn > m+ σ(x− ϵ)} ≤ e−(x−ϵ)2/2 for 0 < ϵ < x and each n.

As n tends to ∞ the events {Mn > r} increase to {M > r} for each r.
Consequently, P{M ≥ m + σx} ≤ P{M > m + σ(x − ϵ)} ≤ e−(x−ϵ)2/2

for 0 < ϵ < x. Let ϵ decrease to zero to obtain a one-sided analog of the
asserted inequality. A similar argument applied to −fn followed by a passage
to the limit leads to a similar bound for the lower tail of M − PM .□

Remark. You might be puzzled by the sneaky use of a strict inequal-
ity near the end of the argument. The trick is made necessary by
the annoying fact that if M(ω) > r then Mn(ω) > r for all n large
enough, but if M(ω) ≥ r then we might have Mn(ω) < r for all n.
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6.1.2 Comparison inequalities
Gaussian::comparison

The following inequality is a special case of a result proved in Section 6.7.

<4> Theorem. (Fernique, 1975, Section 2.1) Suppose both X = (X1, . . . , Xn) andGaussian::Fernique0

Y = (Y1, . . . , Yn) have centered mvn distributions. If P|Xi−Xj |2 ≤ P|Yi−Yj |2
for all i, j then PmaxiXi ≤ Pmaxi Yi.□

<5> Example. (sudakov “minoration”) If Y := (Y1, Y2, . . . , Yn) has a centeredGaussian::Sudakov

mvn distribution with P|Yj − Yk|2 ≥ δ2 for all distinct j ̸= and k, then
Pmaxi≤n Yi ≥ Csudδ

√
log2 n with Csud a universal (positive) constant.

I leave to you the trival case where n = 1.
The asserted inequality follows directly from Theorem <4>. Consider

first the case where n = 2k, for some k ∈ N, so that the index set can be
identified with S := {−1,+1}k. Construct {Xs : s ∈ S} from a set Z1, . . . , Zk

of independendent N(0, 1)’s:

Xs :=
1
2δk

−1/2
∑k

j=1
sjZj .

For s ̸= s′,

P|Xs −Xs′ |2 = 1
4δ

2k−1
∑k

j=1
(sj − s′j)

2 ≤ δ2 ≤ P|Ys − Ys′ |2.

The X process is more tractable than Y . Its expected maximum can be
calculated exactly.

PmaxsXs =
1
2δk

−1/2P

(
maxs

∑k

j=1
sjZj

)
= 1

2δk
−1/2P

∑k

j=1
|Zj | = 1

2δk
1/2P|Z1| = 1

2δk
1/2

√
2/π .

For a general n ≥ 2 define k = ⌊log2 n⌋

Pmaxi≤n Yi ≥ Pmaxi≤2k Yi ≥ 1
2δk

1/2
√

2/π .

The choice Csud = (4π)−1/2 suffices.□

Remark. The lower bound for Pmaxi Yi is sharp within a constant, in
the following sense. Suppose P|Yj − Yk|2 ≤ (Aδ)2 for all j, k, with A a
positive constant. First note that

Pmaxi Yi = PY1 + Pmaxi(Yi − Y1) = Pmaxi(Yi − Y1).

Then argue as in Section 3.3. For each λ > 0,

exp (λPmaxi Yi) = P exp (λmaxi(Yi − Y1)) by Jensen’s inequality

≤ P
∑

i
exp (λ(Yi − Y1)) ≤ neλ

2A2δ2/2.

Take logs of both sides, divide through by λ, then choose λ =
√
2 log n /(Aδ)

to minimize, leaving Pmaxi Yi ≤ Aδ
√
2 log n .
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6.2 The path method
Gaussian::S:paths

The path method usually involves the construction of a smooth multivariate
gaussian process {Wt : 0 ≤ t ≤ 1} with W0 and W1 suggested by the particular
problem at hand. For example, to attack Theorem <4> the random vector W0

could be chosen to have the same distribution as X and the random vector W1

could be chosen to have the same distribution as Y . For f a suitably smooth
function on Rn we have a representation

f(W1)− f(W0) =

∫ 1

0
df(Wt)/dt dt

=

∫ 1

0
⟨

•

f(Wt),
•

Wt⟩ dt =
∑

i≤n

∫ 1

0

•

fi(Wt)Wt,i dt,\E@ path.rep\E@ path.rep <6>

where
•

Wt denotes the derivative of Wt with respect to t, with ith component
•

Wt,i, and
•

f = ∇f denotes the derivative of the map x 7→ f(x), with ith

component
•

fi(x) := ∂f(x1, . . . , xn)/∂xi. To learn something about Pf(W1)−
Pf(W0) we need to control P

•

fi(Wt)
•

Wt,i at each point of the path.

Remark. As I have been using the prime symbol ′ to denote transpose
of a vector or matrix I need something different to indicate deriva-
tives. For a real-valued function D = D(x1, . . . , xn) on Rn the deriva-

tive will be denoted by
•

D (or sometimes ∇D), with components
•

Di =

∂D(x)/∂xi. If D also depends on another real argument, t, then
•

Dt

will denote ∂D(x, t)/∂t. Similarly
••

Di,j will denote the partial deriva-

tive ∂2D(x)/∂xi∂xj . The function
∑

i

••

Di,i is called the Laplacian.
It is often denoted by ∆D, a notation that I need to avoid because I
want to reserve ∆ to denote an increment.

In general, the choice of a good path is a rather mysterious business,
although the examples I know all seem to share a few tricks. Talagrand
(2003, Section 1.3) suggested that the choice of starting point of the path is
the real subtlety:

To study a difficult situation one can compare it to a simpler
one, by finding a path between them and controlling derivatives
along this path. This is an old idea. In practice we are given
the difficult situation, and the key to the effectiveness of the
method is to find the correct simple situation to which it should
be compared. This can be done only after the problem is well
understood. To insist upon the fact that the choice of the path is
the real issue, we call this method the smart path method. (More
precisely, the real issue is in the choice of the “easy end of the
path”. Once this has been chosen, the choice of the path itself
will be rather canonical, except for its “orientation”. We make
the convention that the “smart path” moves from the “easy end”
to the “hard end”) The smart path method, under various forms,
will be the main tool throughout the book.
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§6.2 The path method 6

Often the path is constructed in a rather rigid way, starting from inde-
pendent random vectors W0 ∼ N(0, V0) and W1 ∼ N(0, V1). For smooth
deterministic functions at and bt with a0 = 1 = b1 and a1 = b0 = 0
we define Wt = atW0 + btW1. That gives

•

Wt =
•
atW0 +

•

btW1, which has a

N
(
0, (

•
at)

2V0 + (
•

bt)
2V1

)
distribution. More importantly, the joint distribution

of Wt and
•

Wt is also MVN, with

\E@ covWdotW\E@ covWdotW <7> cov(
•

Wt,Wt) =
•
atatV0 +

•

btbtV1.

It often seems to help if we choose at and bt so that a2t + b2t = 1 for each t,
a constraint that implies

\E@ dot.unitvector\E@ dot.unitvector <8> 0 = ∂(a2t + b2t )/∂t = 2
(

•
atat +

•

btbt

)
so that

\E@ WdotW.cov\E@ WdotW.cov <9> cov(
•

Wt,Wt) =
•

btbt (V1 − V0) .

This simplification is most convenient when dealing with theorems that
impose assumptions on the difference V1 − V0. See Theorem <33> for an
example.

Strangely enough, the argument in Section 6.3.1 involves a path construc-
tion with V1 = V0, so that cov(

•

Wt,Wt) = 0, implying that
•

Wt and Wt are
independent. In that case, the random variables g(W0) and g(W1) have the
same distribution, so it would be pointless to take expected values in <6>.
Instead, as you’ll see, a little jensen trick gives a bound on the expected
value of exp (λ(g(W1)− g(W0)).

If V1 ̸= V0 the expected value P
•
gi(Wt)

•

Wt,i can still be simplified by using
an integration-by-parts trick that was often used by Charles Stein to perform
miracles. See the Notes.

<10> Theorem. [i-b-p trick] Suppose (Z,X1, . . . , Xm) has a mvn distributionGaussian::i-b-p

with PZ = 0. (No assumptions are made about the means or covariances for
the Xi’s.) Suppose also that a continuously differentiable function G : Rm → R
has partial derivatives

•

Gj(x1, . . . , xm) := ∂G(x1, . . . , xm)/∂xj for which

P|
•

Gj(X1, . . . , Xm)| <∞ for each i. Then

PZG(X1, . . . , Xm) =
∑

j≤m
τjP

•

Gj(X1, . . . , Xm) where τj := P(ZXj).□

For the proof see Problems [2] (the one dimensional case) and [3], which
involves many appeals to the one-dimensional case.

For future reference, here is a result that summarizes these ideas. Rather
than imposing explicit assumptions on the f in <6>, I’ll stick with the
vague term ‘suitably regular’ to suggest any requirement that would ensure
integrability of various random variables and justify taking derivatives insides
integrals with respect to P and integrations-by-parts. Twice continuous
differentiability with second partial derivatives

••

fi,j(x) that grow no faster
than exp(C|x|) would suffice in the next Lemma.
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Gaussian::general.path <11> Lemma. Suppose Wt = atW0 + btW1 for 0 ≤ t ≤ 1, where W0 and W1 are
independent random vectors with Wα ∼ Nn(0, Vα) and at, bt are chosen so
that a2t + b

2
t = 1 and 0 = b0 < bt ↑ 1 as t ↑ 1. If G(t) := Pg(Wt) for a suitably

regular real-valued function g on Rn then

•

G(t) =
∑
i≤n

P
•

Wt,i
•
gi(Wt) =

•

btbt
∑

i,j∈[[n]]

(V1[i, j]− V0[i, j])P
••
gi,j(Wt).□

Remark. The assumption on bt ensures that
•

btbt = d(b2t/2)/dt > 0, a
convenience if we want to show H is an increasing function of t.

The choice at =
√
1− t and bt =

√
t, or its reparametrization at = cos(πt/2)

and bt = sin(πt/2), works well for all of the applications in this Chapter. We
could also change the index set to some other subinterval, such as at = cos(t)
and bt = sin(t) with 0 ≤ t ≤ π/2.

6.3 Concentration of lipschitz functionals
Gaussian::S:Lipschitz

This Section contains three different path arguments, presented in order of
increasing subtlety, that show f(Z)− γnf has a subgaussian distribution if
Z ∼ γn = N(0, In) and f is lipschitz. The easiest argument (in Section 6.3.1)
yields a subgaussian bound with scale parameter π∥f∥Lip/2. Section 6.3.2
improves the scale parameter to

√
2∥f∥Lip by using a slightly better path.

Finally, Section 6.3.3 uses a path constructed from a brownian motion to
obtain the scale factor ∥f∥Lip. A completely rigorous argument in the third
case uses the itô formula from stochastic calculus. On the assumption that
my readers might not be completely familiar with that formula, I also include
a heuristic argument that gives some insight into what is really going on.

The three different proofs helped me when I was first trying to understand
what made one path smarter than another.

An analog of Theorem <1>, with centering at the median rather than at
the expected value, can also be derived easily from a very deep result known
as the gaussian isoperimetric inequality, which is discussed briefly in
Section 6.4.

Remark. Unfortunately, most proofs that I know of for that inequal-
ity are quite involved. It is worth knowing at least a little about isoperime-
try because it lurks behind several interesting facts about the normal
distribution. It would, however, be discouraging if the only path to
Theorem <1> ran through isoperimetry.

Roughly speaking, when proving mgf results about a generic lipschitz
function f there is no harm in pretending that it is infinitely differentiable,
with derivative

•

f(x) (sometimes denoted by ∇f) whose euclidean length is
everywhere bounded above by ∥f∥Lip. Such a simplification is justified by
Problem [1], which shows how to use convolution smoothing to construct a
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family {fσ : σ > 0} of infinitely differentiable functions with ∥fσ∥Lip ≤ ∥f∥Lip
and supx |fσ(x)− f(x)| → 0 as σ → ∞ and

\E@ Lip.grad\E@ Lip.grad <12> |
•

fσ(x)|2 =
√∑

i
(∂fσ(x)/∂xi)

2 ≤ ∥f∥Lip for all x.

Moreover, P exp(λfσ(W )) → P exp(λf(W )) as σ → 0 for each real λ
if P{|W | ≥ t} decreases fast enough. Subgaussianity suffices.

6.3.1 The pisier-maurey method
Gaussian::Lip-PisierMaurey

The method in this subsection comes from Theorem 2.2 of Pisier (1986,
page 176), who commented that “The proof below is a simplification, due to
Maurey, of my original proof which used an expansion in Hermite polynomi-
als”. Pisier was primarily interested in a concentration bound for the norm of
a banach-valued gaussian process X. He also noted that his method would
“apply to more general functions of X than the norm of X (and even vector
valued functions) provided a suitable bound is known for the gradients of
the functions”.

The proof starts with a symmetrization trick. (Compare with Chapter 13.)
For notational reasons, which should soon be apparent, let me rewrite the mgf
for f(Z)− Pf(Z) as an iterated integral, then invoke the jensen inequality
for the integral appearing within the exponent:

Peλ(f(X)−Pf(X)) = γxn exp (λ(f(x)− γynf(y)))

≤ γxnγ
y
n exp (λ(f(x)− f(y))) = Peλ(f(X)−f(Y )),\E@ symm.MGF\E@ symm.MGF <13>

where X and Y are independent random vectors that both have distribu-
tion γn.

Remark. The argument could also be written as a conditional jensen
inequality using the fact that P (f(Y ) | X) = γnf . I prefer fubini to
conditioning when I am trying to deal carefully with symmetrization
arguments involving independence.

Notice that var(f(X)− f(Y )) = 2var(f(X)). This symmetrization approach
inevitably leads to at least a doubling of the squared scaling factor.

The distribution of |X − Y | depends on n. If we were to bound the
difference f(X) − f(Y ) in the exponent by κ|X − Y | we would introduce
an explicit dependence on n in the upper bound. Instead we need to exploit
cancellations due to independence along a one-dimensional path from W0 = Y
to W1 = X. For 0 ≤ t ≤ 1 define at = cos(tπ/2) and bt = sin(tπ/2) and
Wt = atW0 + btW1. The derivative with respect to t along the path equals

•

Wt =
∂Wt

∂t
=

•
atW0 +

•

btW1 =
π

2
(−btW0 + atW1)) ∼ N(0, (π/2)2In).

As explained in Sections 6.2, this choice ensures that cov(
•

Wt,Wt) = 0, making

the random vectors (2/π)
•

Wt and Wt independent, each with distribution γn.
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Moreover

f(X)− f(Y ) = f(W1)− f(W0) =

∫ 1

0

∂f(Wt)

∂t
dt =

∫ 1

0
⟨

•

Wt,
•

f(Wt)⟩ dt.

By the jensen inequality for lebesgue measure on [0, 1],

P exp
(
λ
(
f(X)− f(Y )

))
≤ P

∫ 1

0
exp

(
λ⟨

•

Wt,
•

f(Wt)⟩
)
dt.

For each fixed s in Rn we have P exp(⟨
•

Wt, s⟩) = exp(π2|s|22/8). Independence
of

•

Wt and
•

f(Wt) lets us treat λ
•

f(Wt) like a constant s (more conditioning?
or Fubini?) to deduce that

P exp
(
λ
(
f(X)− f(Y )

))
≤

∫ 1

0
P exp

(
λ2π2|

•

f(Wt)|22/8
)
dt

≤ exp
(
λ2κ2π2/8

)
by <12>.

We have a subgaussian bound with scale parameter πκ/2. Derive the tail
bound as in Section 3.3.

Remark. The argument does not work with the choice at =
√
1− t

and bt =
√
t, because then

•

Wt ∼ N(0, σ2
t In) with 1/σ2

t = 4t(1−t). The
average over the

•

Wt distribution then leaves a σ2
t in the exponent.

The trigonometric parametrization, which gives a constant variance

matrix for
•

Wt, seems better in this case.

6.3.2 The smart path method
Gaussian::Lip-Talagrand

This refinement of the path method from Section 6.3.1 comes from Talagrand
(2011, Section 1.3). The method this time is similar to the one in 6.3.1 ,
except that now the path argument is carried out directly using the function

g(w) := g(x, y) := exp(λf(x)− λf(y)) for w = (x, y) ∈ R2n.

Notice that

•
g(w) =

(
λ

•

f(x)g(w),−λ
•

f(y)g(w)
)

=
( •

f1(x), . . . ,
•

fn(x),−
•

f1(y), . . . ,−
•

fn(y)
)
λg(w).

To avoid some notational confusion, I’ll use Greek letters (α, β) when referring
to elements of [[2n]] = {1, 2, . . . , 2n} and Roman letters (i, j, . . . ) when referring
to elements of [[n]] = {1, 2, . . . , n}.

The smarter path is defined using three independent random vectors X,
Y an Z, each distributed N(0, In), and at =

√
1− t and bt =

√
t:

Wt = (Xt, Yt) for 0 ≤ t ≤ 1,

Xt = (Xt,1, . . . , Xt,n) = atZ + btX,

Yt = (Yt,1, . . . , Yt,n) = atZ + btY.
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Remark. You might find it informative to check that the argument
still works with at = cos(t) and bt = sin(t) for 0 ≤ t ≤ π/2.

For some calculations it helps to think of the {Xt} and {Yt} as two n-
dimensional gaussian processes, each with the same distribution as the {Wt}
process from Section 6.3.1. In particular,

cov(
•

Xt, Xt) =
(

•
atat +

•

btbt

)
In = 0 = cov(

•

Yt, Yt).

The processes inherit a dependence from the Z that they share. In particular,
W0 = (Z,Z) and W1 = (X,Y ), so that

∆V := V1 − V0 := var(W1)− var(W0) = I2n −
(
In In
In In

)
=

(
0 −In

−In 0

)
.\E@ Tal-var-diff\E@ Tal-var-diff <14>

Consequently

∆V [α, β] =
{−1 if α = β − n = i ∈ [[n]] or α− n = β = i ∈ [[n]]
0 otherwise

.

The sparsity of ∆V greatly simplifies the application of Lemma <11> to
the function G(t) := Pg(Wt):

•

G(t) =
•

btbt
∑

α,β∈[[2n]]
∆V [α, β]P

••
gα,β(Wt)

= 1
2

∑
i∈[[n]]

P2λ2
•

fi(Xt)
•

fi(Yt)g(Wt)

≤ λ2P|
•

f(Xt)| |
•

f(Yt)|g(Wt) by cauchy-schwarz

≤ λ2κ2G(t) by inequality <12>.

Remark. It helped me to write the the αth component of
•
g as

•
gα(w) =

{
λ

•

fi(x)g(w) if α = i ∈ [[n]]

−λ
•

fi(y)g(w) if α− n = i ∈ [[n]]
.

The partial derivative with respect to wβ , with |α − β| = n, then acts
only on the g(w) factor.

That is, d(log(G(t))/dt ≤ λ2κ2 and

logG(1) ≤ logG(0) +

∫ 1

0
λ2κ2 dt = λ2κ2.

Take exponentials, using the fact that G(1) = Pg(X,Y ) and G(0) =
Pg(Z,Z) = 1, to deduce that Pg(X,Y ) ≤ exp

(
λ2κ2)

)
. Finally, again

invoke the jensen inequality <13> to conclude that

P exp (λf(X)− λγnf) ≤ P exp (λf(X)− λf(Y )) = G(1) ≤ eλ
2(2κ2)/2.

The centered random variable f(X)−γnf is subgaussian with scale parameter√
2κ.
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6.3.3 The stochastic calculus method
Gaussian::Lip-Ito

The pisier-maurey argument showed that f(Z)− γnf is subgaussian with
scale factor approximately 1.57κ Talagrand’s argument brought the scale factor
down to approximately 1.4κ. In this Section, with a lot more technical effort
the scale factor is reduced to κ, the best possible. For many purposes, where
the size of various constants is not a great concern, the pisier-maurey bound
should suffice. If you find yourself in that situation then you might want to
skip this Section. However, the stochastic calculus approach (apparently
due to Maurey) has proved itself useful in other problems. You might find
it helpful, therefore, to at least glance at the heuristic argument just to get
a feel for how this approach works.

This very smart proof creates a different sort of path, from γnf to f(Z),
using a stochastic integral with respect to an n-dimensional brownian
motion, Bt = (Bt,1, . . . , Bt,n) for 0 ≤ t ≤ 1. That is, the {Bt,i : 0 ≤ t ≤ 1},
for i = 1, . . . , n, are independent brownian motions on [0, 1].

Remark. I have no satisfying intuitive explanation for why a wiggly
Brownian motion path does better than the more rigid paths from the
previous two Sections. A miracle, perhaps.

Write Ft for σ{Bs : 0 ≤ s ≤ t}, a sigma-field that corresponds to what we
learn by watching {Bs : 0 ≤ s ≤ t}. Given Ft, the process {Bs : t ≤ s ≤ 1} is
brownian motion started from Bt. In particular, the conditional distribution
of B1 −Bt is Nn(0, (1− t)In), so that

\E@ M.def\E@ M.def <15> Mt := PFtf(B1) = F (Bt, t) where F (x, t) := γznf(x+ z
√
1− t ).

The process {(Mt,Ft) : 0 ≤ t ≤ 1} is a martingale.
Notice the reappearance of our old friend at =

√
1− t. The function F

satisfies the boundary conditions F (x, 1) = f(x) and F (0, 0) = γnf . If we

again assume f to be very smooth then the derivative
•

F = ∂F (x, t)/∂x, with

components
•

Fi(x, t), is controlled by the lipschitz property:

\E@ grad2\E@ grad2 <16>

√∑
i

•

Fi(x, t)2 = |
•

F (x, t)| ≤ γzn|
•

f(x+ atz)| ≤ κ.

The key to the whole subgaussian proof is a stochastic integral represen-
tation of M in a form that allows us to exploit <16>. The rigorous argument
uses Itô’s formula to express M as a stochastic integral:

\E@ Ito1\E@ Ito1 <17> Mt − γnf =

∫ t

0
⟨

•

F (Bs, s), dBs⟩ =
∑

i

∫ t

0

•

Fi(Bs, s) dBs,i.

Instead of starting with the itô formula, I’ll first present a non-rigorous
calculation that gives a rough idea of what is going on. If you are comfortable
with stochastic calculus you can skip the next few pages of heuristics by
jumping straight to equation <24>.
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The trick with stochastic integration is to carry taylor expansions of
functions of Bt out to second order, using the fact that for δ > 0

∆Bt := Bt+δ −Bt = (∆Bt,1, . . . ,∆Bt,n)

has a N(0, δIn) distribution independent of Ft. In particular,

PFt∆Bt,i = 0 and PFt∆Bt,iBt,j =

{
δ if i = j

0 otherwise
.\E@ DelB\E@ DelB <18>

Accordingly, if 0 ≤ t < 1 and δ is positive and small enough,

∆Mt :=Mt+δ −Mt ≈
•

Ft(Bt, t)δ +
∑

i∈[[n]]

•

Fi(Bt, t)∆Bt,i

+ 1
2

∑
i,j∈[[n]]

••

Fi,j(Bt, t)∆Bt,i∆Bt,j .\E@ M.incr1\E@ M.incr1 <19>

The approximation sign (≈) is intended to suggest that terms of order smaller
than δ (in some probabilistic sense) have been omitted. A rigorous argument

would need to include error terms. As before,
•

Ft denotes ∂F (x, t)/∂t, and
•

Fi

denotes ∂F (x, t)/∂xi, and so on.
We can get a good approximation for M1 − M0 by summing up the

increments ∆Mt over a fine grid G(m) = {ℓδ : ℓ = 0, 1, . . . ,m − 1}, where
δ = 1/m for a large positive integer m.

The martingale property for Mt and <18> give

0 = PFt∆Mt ≈
•

Ft(Bt, t)δ +
1
2

∑
i

••

Fi,i(Bt, t)δ,

which suggests (correctly) that
•

Ft +
1
2

∑
i

••

Fi,i = 0. That is,

\E@ backward.heat\E@ backward.heat <20> ∂F (x, t)/∂t+ 1
2

∑
i
∂2F (x, t)/∂x2i = 0 for x ∈ Rn and 0 < t < 1,

an equality that is easy to verify by means of an appeal to the i-b-t trick:
see Problems [2] and [5].

With the help from <20>, the approximation <19> simplifies to

\E@ M.incr2\E@ M.incr2 <21> ∆Mt ≈
∑

i

•

Fi(Bt, t)∆Bt,i +R1(t, δ) +R2(t, δ)

where

R1(t, δ) =
1
2

∑
i

••

Fi,i(Bt, t)
(
∆B2

t,i − δ
)
,

R2(t, δ) =
1
2

∑
i,j
{i ̸= j}

••

Fi,j(Bt, t)∆Bt,i∆Bt,j .

Both PFtR1 and PFtR2 are zero. If we could keep Bt in a bounded region

then the contributions from the
••

Fi,j ’s would stay bounded and a conditioning
argument could be used to show that the contributions from R1 and R2 would
be small in an L2 sense if m were large.
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Such a boundedness effect could be achieved by borrowing a stopping time
trick that is often used in proofs of Itô’s formula (see Karatzas and Shreve,
1988, page 149, for example): replace Bt by the stopped process Zt = Bt∧τ(r)
where τ(r) := inf{t ∈ R+ : |Bt| > r}. Unfortunately, such a substitution
would complicate the heuristics based on <18> but, as you’ll soon see, it is
easy to accommodate in a rigorous stochastic calculus argument.

In the heuristic spirit I’ll just ignore the R1 and R2 contributions, sim-
plifying <21> to ∆Mt ≈

∑
i

•

Fi(Bt, t)∆Bt,i. Another conditioning arguments
(which kills off cross-product terms) then gives

PFt (∆Mt)
2 ≈

∑
i
PFt

•

Fi(Bt, t)
2δ = PFt |

•

F (Bt, t)|2δ ≤ κ2δ by <16>.

Remark. In stochastic calculus jargon, this approximation corre-
sponds to a doob-meyer decomposition of the submartingale M2

t .

Further approximation then leads to

PFte
λ∆Mt ≈ 1 + λPFt∆Mt +

1
2λ

2PFt (∆Mt)
2 ⪅ exp(λ2κ2δ/2).

Successive conditioning steps finally produce (approximately) the conclusion

\E@ peel\E@ peel <22> PeλM1−λγnf ≈ P
∏

t∈G(m)
eλ∆Mt ≤ exp

(
mλ2κ2δ/2

)
= eλ

2κ2/2,

which should give the desired subgaussian bound in the limit.
End of heuristics.
To turn the last few pages of approximations into a rigorous argument

one would need to engage in exactly the sort of calculations that lead to
the itô formula. Instead of providing those details I’ll just refer you to the
places in that excellent book by C&W = Chung and Williams (2014) where
the stochastic calculus is derived.

Start again with the martingale Mt = F (Bt, t) for 0 ≤ t ≤ 1. By C&W
Theorem 5.10 (the multidimensional version of the itô formula), the crude
approximation <19> is replaced by

F (Bt, t)− F (B0, 0) =

∫ t

0

•

Ft(Bs, s)ds+
∑

i∈[[n]]

∫ t

0

•

Fi(Bs, s) dBs,i

+ 1
2

∫ t

0

∑
i,j∈[[n]]

∫ t

0

••

Fi,j(Bs, s)d[B·,i, B·,j ]s .\E@ multiIto\E@ multiIto <23>

The quadratic variation-covariation process of B is a deterministic matrix
valued-process with (i, j)th component

[B·,i, B·,j ]t =

{
t for i = j
0 for i ̸= j

.

All the terms with i ̸= j in the final double sum in <23> vanish, leaving
only the i = j terms:∫ t

0

••

Fi,i(Bs, s)d[B·,i, B·,i]s =

∫ t

0

••

Fi,i(Bs, s) ds.
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Thus <23> becomes

F (Bt, t)− F (B0, 0) =

∫ t

0

•

Ft(Bs, s) +
1
2

∑
i

••

Fi,i(Bs, s) ds

+
∑

i

∫ t

0

•

Fi(Bs, s) dBs,i.\E@ Ito2\E@ Ito2 <24>

Once again the identity <20> kills the
∫ t
0 . . . ds contribution, leaving

\E@ Ito3\E@ Ito3 <25> Mt − γnf =
∑

i
Nt,i where Nt,i :=

∫ t

0

•

Fi(Bs, s) dBs,i.

Remark. In fact we don’t even need <20> because Mt −
∑

iNt,i

is a continuous local martingale whose sample paths are locally of
bounded variation, which forces it to be (for almost all paths) equal
to M0 = γnf . See C&W Corollary 4.5.

The quadratic variation [M,M ] process, which is usually abbreviated
to [M ], corresponds to the limiting form of the heuristic

∑
t∈G(m) (∆Mt)

2.
It can be derived from the variation-covariation processes of the brownian
motions: by C&W Theorem 5.7,

[M ]t =
∑

i,j
[N·,i, N·,j ]t

=
∑

i,j

∫ t

0

•

Fi(Bs, s)Fj(Bs, s) d[B·,i, B·,j ]s

=
∑

i

∫ t

0

•

Fi(Bs, s)
2ds =

∫ t

0
|

•

F (Bs, s)|2 ≤ κ2t.\E@ [M]\E@ [M] <26>

Finally, to bound the MGF Peλ(Mt−M0) we can use another stochastic
calculus trick to replace the peeling argument <22>. By C&W Theorem 6.2,
the process Zt := exp(λMt− 1

2λ
2[M ]t) is a local martingale, that is, for some

sequence of bounded stopping times τj that increases pointwise to ∞, the
process Z(t ∧ τj) is a martingale. For each j,

eλM0 = PZ0 = PZ(1 ∧ τj) = P exp
(
λM1∧τj − 1

2λ
2[M ]1∧τj

)
≥ P exp

(
λM1∧τj − 1

2λ
2κ2

)
.

That is,

P exp
(
λM1∧τj

)
≤ exp

(
λγnf + 1

2λ
2κ2

)
for each j.

Complete the argument by letting j tend to infinity. An appeal to the fatou
lemma as j → ∞ then gives

Peλf(B1) = PeλM1 ≤ lim infj PeλM1∧τj ≤ exp
(
λγnf + 1

2λ
2κ2

)
,

the desired subgaussian bound.
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*6.4 The gaussian isoperimetric inequality
Gaussian::S:iso

For each subset A of Rn define Aδ := {z ∈ Rn : d(a,A) ≤ δ}, where
d(z,A) := inf{|z − y| : y ∈ A}.

Gaussian::gisop <27> Gaussian isoperimetric inequality. If A is a borel subset of Rn with
γnA = Φ(α) then γnA

δ ≥ Φ(α + δ) for each δ ≥ 0. The lower bound is
achieved when A is any closed halfspace with gaussian measure Φ(α).

It is the reduction from an n-dimensional problem, with n arbitrarily
large, to a one-dimensional calculation for the lower bound that makes
the isoperimetric inequality so powerful. The next Example, which derives
concentration of lipschitz functionals around a median, illustrates.

Recall that a median of a (real valued) random variable X is any con-
stant m for which P{X ≥ m} ≥ 1/2 and P{X ≤ m} ≥ 1/2. Such an m always
exists, but it need not be unique.

Gaussian::gauss.conc <28> Example. Suppose f is a lipschitz function on Rn with ∥f∥Lip ≤ κ.
Under γn, the random variable f(z) has at least one median, a number M
for which

γn{f(z) ≤M} ≥ 1
2 and γn{f(z) ≥M} ≥ 1

2 .

Define A = {z ∈ Rn : f(z) ≤ M} so that γnA ≥ 1/2 = Φ(0). If d(x,A) < u
then there exist a point z ∈ A with d(z, x) < u. From the lipschitz property
and the fact that f(x) ≤M we then get

f(x) < f(z) + κu < M + κu.

Conversely, if f(x) ≥M + κu then d(x,A) ≥ u. It follows that

γn{f(x) ≥M + κu} ≤ γn{d(x,A) ≥ u} ≤ Φ̄(0 + u) ≤ 1
2 exp(−u

2/2).

An analogous argument for deviations from the set {z : f(z) ≥ M} gives
the companion lower bound. Together the two bounds give a concentration
property for f ,

\E@ med.conc\E@ med.conc <29> γn{z : |f(z)−M | ≥ κy} ≤ 2Φ̄(u) ≤ exp(−y2/2),

where M is a median for f under γn.□

Remark. Inequality <29> also gives concentration around the mean µ =
Pf(Z) because it also implies that the mean and the median are close
to each other:

|µ−M | ≤ γn|f −M | ≤ κ

∫ ∞

0

γn{|f(z)−M | ≥ κy} dy = Cκ,

with C = 1/(2
√
2π). Thus

γn{|f − µ| ≥ κ(C + y)} ≤ γn{|f −M | ≥ κy} ≤ exp(−y2/2).
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6.5 Tail bound comparisons
Gaussian::S:TailComparison

One of the earliest comparison inequalities for the mvn is due to Slepian
(1962, page 498).

Gaussian::Slepian <30> Slepian’s comparison inequality. For some finite index set B suppose
X = (Xb : b ∈ B) and Y = (Yb : b ∈ B) both have centered mvn distributions.
Suppose also that, for all (b, b′) ∈ B ×B,

\E@ Slep\E@ Slep <31> ∆(b, b′) := P(YbYb′)− P(XbXb′) ≤ 0 with equality when b = b′.

Then P ∪b {Xb ≥ rb} ≤ P ∪b {Yb ≥ rb} for each r in RB.□

Remarks.

(i) Of course the prime on b′ does not denote a derivative. I just need some
way of distinguishing between two elements of B. I’ll also write X(b) for
Xb, and so on, if the subscripts get too messy.

(ii) If you are wondering whether the equality constraint in <31> could be
omitted, consider the case where B = {1, 2} with Y ∼ N2(0, I2) and
X1 = Y1 and X2 = 100Y2. Note that

P ({X1 ≥ 5} ∪ {X2 ≥ 5}) ≈ 1/2,

P ({Y1 ≥ 5} ∪ {Y2 ≥ 5}) ≈ 0,

which clearly would violate the conclusion of the Theorem.

(iii) I often have trouble remembering which way the inequalities should go.
It helps me to rewrite the covariance assumptions as PX2

b = PY 2
b and

P|Xb − Xb′ |2 ≤ P|Yb − Yb′ |2 for all b, b′. The Y components are more
‘spread out’ than the X components, which makes maxb Yb stochastically
larger than maxbXb, that is,

P{maxbXb ≥ r} ≤ P{maxb Yb ≥ r} for each real r.

This property ensures (Marshall et al., 2011, Chapter 11) existence of
a pair of random variables on some new probability space, MX with
the same distribution as maxbXb and MY with the same distribution
as maxb Yb, such that MX ≤ MY almost surely. For each increasing
function h we then have h(MX) ≤ h(MY ) almost surely and hence

\E@ Slepian.max\E@ Slepian.max <32> Ph(maxbXb) = Ph(MX) ≤ Ph(MY ) = Ph(maxb Yb),

provided the expected values are well defined (no ∞−∞ difficulties).
In particular Pmaxb Yb ≤ Pmaxb Yb. Compare with the version of the
Fernique inequality stated in Theorem <4>, which does not require the
equality PX2

b = PY 2
b .

Gordon (1985) extended the slepian inequality to doubly indexed arrays
with a more complicated comparison between tail events. If you are wondering
why anyone would be interested in this ∩∪ stuff take a look at Section 6.6
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Gaussian::Gordon <33> Theorem. Suppose A and B are finite sets and X = (Xa,b : (a, b) ∈ A×B)
and Y = (Ya,b : (a, b) ∈ A×B) both have centered mvn distributions. Suppose
also that, for all i = (a, b) and j = (a′, b′) in A×B,

∆(i, j) := PYiYj − PXiXj


= 0 if i = j
≤ 0 if a = a′ and b ̸= b′

≥ 0 if a ̸= a′
.

Then

P ∩a∈A ∪b∈B{Xa,b ≥ ra,b} ≤ P ∩a∈A ∪b∈B{Ya,b ≥ ra,b}

for each r in RA×B.□

Gaussian::Gordon.minmax <34> Corollary. Under the conditions of the Theorem, by taking ra,b = r for
all a, b we get P{minamaxbXa,b ≥ r} ≤ P{minamaxb Ya,b ≥ r} for each
real r. That is, minamaxb Ya,b is stochastically larger than minamaxbXa,b,
implying

Ph (minamaxbXa,b) ≤ Ph (minamaxb Ya,b)

for each increasing function h, provided there are no ∞−∞ difficulties.

Notice that the gordon inequality reduces to the slepian inequality if
the set A is taken to be a singleton.

Remark. The covariance assumptions of Theorem <33> imply, for all
distinct i = (a, b) and j = (a′, b′) in A×B,

P|Yi − Yj |2 − P|Xi −Xj |2

=
(
PY 2

i + PY 2
j − PX2

i − PX2
j

)
− 2 (PYiYj − PXiXj){

≥ 0 if a = a′ and b ̸= b′

≤ 0 if a ̸= a′
.\E@ better.GF\E@ better.GF <35>

Gordon (1985, Theorem 1.4) actually established an analog of the
fernique inequality,

\E@ Gordon.Fernique\E@ Gordon.Fernique <36> Pmina∈A maxb∈B Xa,b ≤ Pmina∈A maxb∈B Ya,b,

under assumption <35>. That is, he derived the special case of Corol-
lary <34> where h is the identity map without requiring that PX2

a,b =

PY 2
a,b for all (a, b) in A × B. Unfortunately, the proof is more compli-

cated than the proof of Theorem <33>, just as the original proof of
the fernique inequality is more complicated than the proof of The-
orem <30>.

See Section 6.6 for a Lemma and an Example that show the ex-
tra costs incurred by the extra assumption that PX2

a,b = PY 2
a,b for

all (a, b).
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Kahane (1986) provided a most elegant derivation of both the slepian
and gordon inequalities, by a single theorem whose proof can be slightly
modified to become a path argument with an appeal to i-b-p trick. The
theorem involves a twice continuously differentiable function f for which
various differentiations inside expectations are legitimate. Once again, rather
than hardcoding the necessary regularity requirements into the Theorem I
will merely refer to f as having ‘suitably integrable partial derivatives’. For
example, it would suffice that f be derived from a lipschitz function by
means of smoothing operations like those in Problem [1]. For the derivation
of the slepian and gordon inequalities, the f is used to approximate sets
that are products of intervals of the form [r,∞).

Gaussian::Kahane <37> Theorem. (Kahane) Suppose X = (Xi : i ∈ I) and Y = (Yi : i ∈ I) both
have centered mvn distributions, for some finite index set I. Suppose also
that

(i) a function f : RI → R is twice continuously differentiable and has
‘suitably integrable partial derivatives’;

(ii) the set I × I can be partitioned into three disjoint subsets Z, P, and N

for which

∆(i, j) := PYiYj − PXiXj


= 0 if (i, j) ∈ Z

≥ 0 if (i, j) ∈ P

≤ 0 if (i, j) ∈ N

••

fi,j(w) :=
∂2f

∂wi∂wj

{
≥ 0 if (i, j) ∈ P

≤ 0 if (i, j) ∈ N
for all w ∈ RI .

Then Pf(X) ≤ Pf(Y ).□

Proof. Let W0 and W1 be independent random vectors, with W0 having
the same distribution as X and W1 having the same distribution as Y . As
before, define Wt = atW0 + btW1, this time (just for the sake of variety)
with at = cos(t) and bt = sin(t) for 0 ≤ t ≤ π/2. Define H(t) := Pf(Wt).

Note that
•
at = −bt and

•

bt = at, so that

P
( •

WtW
′
t

)
=

•
atatvar(X) +

•

btbtvar(Y ) = atbt (var(Y )− var(X)) .

Or, in coordinate form, τt(i, j) := P
•

Wt,iWt,j = atbt∆(i, j). By assumption and

the fact that atbt ≥ 0, the product τt(i, j)
••

fi,j(w) is nonegative for every w
in RI .

As before, we now have
•

H(t) = P⟨
•

Wt,
•

f(Wt)⟩

=
∑

i∈I
P

•

Wt,i

•

fi(Wt)

=
∑

i∈I,j∈I
τt(i, j)P

••

fi,j(Wt) by Theorem <10>

≥ 0.

It follows that Pf(X) = F (0) ≤ F (1) = Pf(Y ), as asserted.□
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The remainder of this Section is devoted to explaining how Kahane’s
result covers both Theorems <30> (slepian) and <33> (gordon). Even
though the first Theorem is a special case of the second, I’ll prove both results
because the first proof gives some insight into the second.

The slepian inequality involves two centered mvn distributions, repre-
sented by random vectors X = (Xb : b ∈ B) and Y = (Yb : b ∈ B). The
Theorem gives conditions under which is that Pg(X − r) ≤ Pg(Y − r) for
each r in RB, where g is the indicator function of {z ∈ RB : zb ≥ 0}. In
de Finetti notation, g can be reexpressed as

g(z) = 1−
∏

b∈B
{zb < 0},

a convenient representation of a union as a complement of an intersection.
To employ Kahane’s result we need to approximate the indicator function

of (−∞, 0) by a smooth, decreasing function ψσ that equals 1 on (−∞,−σ)
and 0 on [0,∞). (In fact, existence of a bounded, continuous derivative

•

ψσ

will suffice, as far as smoothness is concerned.) At some stage the positive
parameter σ is sent to zero, which ensures that

f(z) := 1−
∏

b∈B
ψσ(zb)

converges pointwise to g(z). If we can show that Pf(X − r) ≤ Pf(Y − r)
for each r in RB then an appeal to dominated convergence will give the
coreesponding inequality with f replaced by g.

The function f has partial derivatives, for distinct b and b′ in B,

•

fb(z) :=
∂f(z)

∂zb
= −

•

ψσ(zb)
∏

β∈B\{b}
ψσ(zβ),

••

fb,b′(z) :=
∂2f(z)

∂zb∂zb′
= −

•

ψσ(zb)
•

ψσ(zb′)
∏

β∈B\{b,b′}
ψσ(zβ).

The function
•

fb is everywhere ≥ 0 because ψσ is decreasing and non-negative.
The function

••

fb,b′ is everywhere ≤ 0.
The signs of the partial derivatives are unchanged if f(z) is replaced

by f(z − r).
The assumptions of Theorem <37> hold when applied to f(· − r) for a

fixed r in RB with I = B and Z = {(b, b′) ∈ B×B : b = b′} and N = I\N. It
follows that Pf(X − r) ≤ Pf(Y − r), which implies the slepian inequality
in the limit as σ → 0.

For the gordon inequality, I = A×B and

Z = {(a, b, a′, b′) ∈ I × I : a = a′, b = b′},
N = {(a, b, a′, b′) ∈ I × I : a = a′, b ̸= b′},
P = {(a, b, a′, b′) ∈ I × I : a ̸= a′}.

Think of elements of RI as |A| by |B| matrices. If Z ∈ RI define Za :=
(Z[a, b] : b ∈ B), the Ath row of Z. The function g is replaced by

G(Z) =
∏

a∈A
g(Za) = ∩a∈A ∪b∈B {Z[a, b] ≥ 0},
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which is approximated by the smooth function

F (Z) :=
∏

a∈A
f(Za).

If i = (a, b) and j = (a′, b′) then

•

Fi(Z) :=
∂F (Z)

∂Z[a, b]
=

•

fb(Za)
∏

α∈A\{a}
f(Zα),

which is everywhere ≥ 0, and

••

Fi,j(Z) =

{ ••

fb,b′(Za)
∏

α∈A\{a} f(Zα) ≤ 0 if a = a′
•

fb(Za)
•

fb′(Za′)
∏

α∈A\{a,a′} f(Zα) ≥ 0 if a ̸= a′
.

That is, the partial derivative
••

Fi,j is everywhere ≥ 0 if (i, j) ∈ P and is
everywhere ≤ 0 if (i, j) ∈ N, which agrees with the sign of ∆(i, j). The
partial derivatives for F (Z −R) follow the same pattern, for each R = (ra,b)
in RA×B. Theorem <37> gives PF (X − R) ≤ PF (Y − R). The limit as σ
tends to zero then gives the inequality asserted by Theorem <33>.

*6.6 An application of the gordon inequality
Gaussian::S:Gordon

Both inequalities let us control complicated gaussian processes by means of
simpler gaussian processes, as illustrated by the following result of Gordon
(1985, Theorem 2.1).

Gaussian::Gthm2.1 <38> Lemma. Let G = [gi,j ] be an N×k matrix of independent standard normals,
and let Z ∼ N(0, IN ) be independent of W ∼ N(0, Ik) If A is a compact
subset of Rk and B is a compact subset of RN , with 0 ∈ B, then

αminP supb∈B⟨b, Z⟩ − βmaxP supa∈A |⟨a,W ⟩| − αmaxβmax

≤ P infa∈A supb∈B⟨b,Ga⟩ ≤ P supa∈A supb∈B⟨b,Ga⟩
≤ αmaxP supb∈B⟨b, Z⟩+ βmaxP supa∈A |⟨a,W ⟩|+ αmaxβmax

where αmin := infa∈A |a|2 and αmax := infa∈A |a|2 and βmax = supb∈B |b|2.

Proof. It suffices to prove an analogous set of inequalities with A replaced by
a finite subset A and B replaced by a finite subset B. (Then invoke dominated
convergence as A expands up to a countable dense subset of A and B expands
up to a countable dense subset of B.)

Define two gaussian processes indexed by A × B:

Xa,b = |a|2|b|2ξ + ⟨b,Ga⟩ = |a|2|b|2ξ +
∑

i,j
bigi,jaj ,

Ya,b = |a|2⟨b, Z⟩+ |b|2⟨a,W ⟩,

where ξ ∼ N(0, 1) is independent of G. The role of ξ is to ensure that
PX2

a,b = PY 2
a,b. It comes at the slight ±αmaxβmax cost because

|Xa,b − ⟨b,Ga⟩| ≤ αmaxβmax|ξ| for all (a, b) ∈ A × B,
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which implies

| infa∈A supb∈BXa,b − infa∈A supb∈B⟨a,Gb⟩| ≤ αmaxβmax|ξ|,
| supa∈A,b∈BXa,b − supa∈A,b∈B⟨a,Gb⟩| ≤ αmaxβmax|ξ|.

The gordon inequality does most of the work. It is easy to check, for
(a, b) and (a∗, b∗) in A×B, that

PXa,bXa∗,b∗ = |a|2 |a∗|2 |b|2 |b∗|2 + ⟨a, a∗⟩⟨b, b∗⟩,
PYa,bYa∗,b∗ = |a|2 |a∗|2 ⟨b, b∗⟩+ |b|2 |b∗|2 ⟨a, a∗⟩,

which gives

PXa,bXa∗,b∗ − PYa,bYa∗,b∗ = (|b|2 |b∗|2 − ⟨b, b∗⟩) (|a|2 |a∗|2 − ⟨a, a∗⟩){
= 0 if a = a∗

≥ 0 if a ̸= a∗
.\E@ Gord\E@ Gord <39>

The inequality

Pmina∈Amaxb∈B Ya,b ≤ Pmina∈Amaxb∈BXa,b

follows from Corollary <34> with the roles of X and Y reversed. The in-
equality

Pmaxa∈A,b∈BXa,b ≤ Pmaxa∈A,b∈B Ya,b

follows from the slepian inequality via <32>.
The calculations now involve only the Y process. Write YA for supa∈A |⟨a,W ⟩|

and YB for maxb∈B⟨b, Z⟩. Then, from the definition of Ya,b,

|a|2YB − βmaxYA ≤ maxb∈B Ya,b ≤ |a|2YB + βmaxYA,

Take the maximum or minimum over a ∈ A then take expectations.□

Gaussian::Dvor <40> Example. A compact, convex subset K of RN with non-empty interior is
called a convex body. It is called symmetric if −x ∈ K for each x ∈ K.
A famous result of Dvoretzky (1961) asserts that low-dimensional cross
sections of symmetric, convex bodies look like balls. More precisely, for
each ϵ > 0 there is a small η(ϵ) > 0 such that: if K is a symmetric, convex
body in RN and k is a positive integer with k ≤ η(ϵ) logN then there exists
a k-dimensional subspace H of RN and a closed ball B in H for which

\E@ Dvor.statement\E@ Dvor.statement <41> B ⊂ K ∩H ⊂ (1 + ϵ)B.

In fact it also doesn’t much matter if we require B to be a ball or an ellipsoid.
See Problem [6].

In this Example I’ll derive Dvoretzky’s theorem by applying the gordon
inequality, but only for the special case where K = [−1,+1]N .
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Remark. The tricks for this special case can be extended to cover
more general convex bodies. See Gordon (1985, 1988, 2005), for ex-
ample.

The set K is the unit ball for the ℓN∞ norm, |x|∞ := maxj |xj |. It is an
easy exercise to prove that |x|∞ is equal to sup{⟨b, x⟩ : b ∈ Ko}, where Ko =
{b ∈ RN : |b|1 ≤ 1} is the unit ball for the ℓN1 norm. The little superscript ‘o’
means that the convex body Ko is the polar of K, that is, Ko = {b ∈ RN :
⟨x, b⟩ ≤ 1 for all x ∈ K }.

The subspace H will be defined as span{z1, . . . , zk}, where z = (z1, . . . , zk)
is a carefully chosen realization of Z = (Z1, . . . , Zk), for independent N(0, IN )-
distributed random vectors Zj .

If a = ru with r ≥ 0 and |u|2 = 1 then |a|∞ = r|u|∞. Thus

|a|2h(Z) ≤
∣∣∣∑

j
ajZj

∣∣∣
∞

≤ |a|2H(Z) for each a in Rk,

where

h(Z) := infu∈A

∣∣∣∑
j
ujZj

∣∣∣
∞

= infu∈U supb∈Ko⟨b,
∑

j
ujZj⟩

H(Z) := supu∈A

∣∣∣∑
j
ujZj

∣∣∣
∞

= supu∈U supb∈Ko⟨b,
∑

j
ujZj⟩.

We are now in the setting described by Lemma <38> for B = Ko, with
αmax = αmin = 1 = βmax. The Lemma gives

P|Z|∞ − P|W |2 − 1 ≤ Ph(Z) ≤ PH(Z) ≤ P|Z|∞ + P|W |2 − 1,\E@ Gordon.bounds\E@ Gordon.bounds <42>

where Z ∼ N(0, IN ) and W ∼ N(0, Ik).
The quantity P|W |2 is bounded above by

√
P|W |22 =

√
k. As was explained

in Section MGF:sharp.normal , maxj≤N Z[j] concentrates very tightly around
a value only slightly smaller than

√
2 logN . A cruder form of the argument

(Problem [8]) shows that P|Z0|∞ = Pmaxj≤N |Z[j]| ≥ (1 − o(1))
√
logN ,

with P|Z0|∞ ≥ 0.65
√
logN for N ≥ 2 suggested numerically. It is safe to

assert for N ≥ 2 that, for some positive constant c,

c
√
logN −

√
k − 1 ≤ Ph(Z) ≤ PH(Z) ≤ c

√
logN +

√
k + 1,

and hence, if
√
k + 1 ≤ cϵ

√
log(N)/3 and 0 < ϵ < 1,

PH(Z)

Ph(Z)
≤ c

√
logN +

√
k + 1

c
√
logN −

√
k − 1

≤ 1 + ϵ/3

1− ϵ/3
≤ 1 + ϵ.

From Problem [7] there must exist some realization z = (z1, . . . , zk) of Z
for which 0 < h(z) ≤ H(z) ≤ (1 + ϵ)h(z). If we write R for H(z) then

|a|2R/(1 + ϵ) ≤ |
∑

i
aizi|∞ ≤ |a|2R for each a in Rk.

Let H be the k-dimensional subspace of RN spanned by z1, . . . , zk and
define T : Rk → H by Tei = zi, where {e1, . . . , ek} is the usual orthonormal
basis for Rk. Define B = {a ∈ Rk : |a|2 ≤ 1/R}. The ellipsoid D := TB has
the properties asserted by Dvoretzky’s theorem.

D ⊂ H ∩K∞ =
{∑

i
aizi : |

∑
i
aizi|∞ ≤ 1

}
⊂ (1 + ϵ)D.□
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6.7 A generalized fernique inequality
Gaussian::S:Fernique

The main topic of this Section is the proof of a stronger version of The-
orem <4> from Section 6.1.2: for random vectors X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn) with centered mvn distributions, if

\E@ Fernique.assump\E@ Fernique.assump <43> P|Xi −Xj |2 ≤ P|Yi − Yj |2 for all i, j.

then

\E@ Fernique1\E@ Fernique1 <44> PmaxiXi ≤ Pmaxi Yi.

Fernique (1975, Section 2.1) deduced <44> from a stronger inequality for
the ranges max(Yi − Yj) and max(Xi −Xj). He pointed out that <43> is
weaker than the assumption made for the slepian inequality, in that it does
not require PX2

i = PY 2
i for each i.

Fernique’s proof combined a path argument, fourier inversion, and a
decomposition of Rn into polyhedral subsets corresponding to the regions
where the max is achieved by different coordinates. Subsequently, Chatterjee
(2005) gave a much simpler path proof based on a smooth approximation to
the maximum function. Chatterjee’s method also covered a result of Vitale
(2000), who had employed an ingenious limit argument to show that <44>
also implies result,

\E@ Fernique2\E@ Fernique2 <45> Pmaxi(Xi + µi) ≤ Pmaxi(Yi + µi) for all µ ∈ Rn.

That is, Vitale effectively removed the assumption that the variables are
centered to zero expected values.

Remark. See Pollard (2001, Section 12.3) for a a slightly flawed ex-
position of Fernique’s original method. As a friend pointed out to
me, with my usual interpretation of {i ̸= j} as the indicator func-
tion of the set {i ∈ [[n]] : i ̸= j} the quantity max{i ̸= j}xi
on page 276 would correspond to the function Lj(x)

+, not the in-
tended Lj(x) := max{xi : i ∈ [[n]]\{j}}.

Chatterjee’s smooth approximation to m(w) := maxi≤nwi is sometimes
called a soft maximum. The relevant facts are summarized in the next
Lemma.

Gaussian::soft.max <46> Lemma. For w in Rn and λ > 0 define S(w, λ) =
∑

i≤n exp(λwi) and

M(w, λ) := λ−1 logS(w, λ). Then

(i) M(w, λ) = m(w) + R(w, λ) where 0 ≤ R(w, λ) ≤ λ−1 log n → 0
as λ→ ∞.

(ii) The function w 7→ M(w, λ) is infinitely differentiable with

pi(w, λ) :=
•

Mi(w, λ) :=
∂M(w, λ)

∂wi
= eλwi/S(w, λ)
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and

••

Mi,j(w, λ) :=
∂2M(w, λ)

∂wi∂wj
=

{
λpi(w, λ)− λpi(w, λ)

2 if j = i

−λpi(w, λ)pj(w, λ) if j ̸= i
.

Proof. For (i) write S(w, λ) as eλmw)
∑

i≤n e
λ(wi−m(w)) then note that

λ(wi−m(w)) ≤ 0 for all i with equality at any wi that achieves the maximum,
m(w).

The equalities in (ii) are just calculus exercises.□

The proof of <45> also depends on a simple real variable fact: for any
real numbers p1, . . . , pn with

∑
i pi = 1 and real numbers z1, . . . , zn we have

the identity∑
i,j
zizj

(
{i = j}pi − pipj

)
=

∑
i
piz

2
i −

(∑
i
pizi

)2

= 1
2

∑
i,j
pipj(zi − zj)

2
\E@ identity\E@ identity <47>

Define G(t) := G(t, µ, λ) = Pg(Wt) for g(w) := g(w, µ, λ) := M(w+µ, λ),
with both µ and λ held fixed. Write pi(w) = pi(w, µ, λ) for

•
gi(w, µ, λ) =

•
Mi(w + µ, λ) and let X̃, Ỹ ,W0,W1 be independent random vectors, with
both X̃ and W0 distributed like X and both Ỹ and W1 distributed like Y .
Then Lemma <11> and <47> give

•

G(t) =
•

btbt
∑

i,j∈[[n]]
P
(
ỸiỸj − X̃iX̃j

)
P

••

Mi,j(Wt + µ, λ)

= λ
•

btbtP
∑

i,j∈[[n]]

(
ỸiỸj − X̃iX̃j

)(
{i = j}pi(Wt)− pi(Wt)pj(Wt)

)
= 1

2λ
•

btbtP
∑

i,j∈[[n]]

(
(Ỹi − Ỹj)

2 − (X̃i − X̃j)
2
)
pi(Wt)pj(Wt)

= 1
2λ

•

btbt
∑

i,j∈[[n]]
DijPpi(Wt)pj(Wt)

where Di,j := P|Yi − Yj |2 − P|Xi −Xj |2 ≥ 0 for all (i, j).
The function G is increasing, which implies

G(0) = PM(X + µ, λ) ≤ PM(Y + µ, λ) = G(1).

The desired inequality <45> then emerges as the limit when λ tends to ∞.

Remark. It seemed equally natural to me that Gordon’s extension of
Fernique’s inequality, inequality <36>, should be derivable by re-
placing minmax by mM, where m is a ‘soft minimum’ function. I
tried this approach but did not succeed. Maybe some clever reader
can make this idea work, perhaps by using a diferent form of smooth
approximation to minmax.
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6.8 Problems
Gaussian::S:problems

[1] Suppose f is a real valued function on Rn with ∥f∥Lip ≤ κ. Let ψ be anGaussian::P:smooth.Lip
infinitely differentiable, nonnegative function on Rn with compact support
and

∫
ψ(z) dz = 1. For each σ > 0, define

fσ(x) :=

∫
Rn

f(x+ σz)ψ(z) dz = σ−n

∫
f(w)ψ ((w − x)/σ) dw.

(i) Show that

sup
x

|fσ(x)− f(x)| ≤ sup
x

∫
|f(x+σz)− f(x)|ψ(z) dz ≤ κσ

∫
|z|ψ(z) dz.

Deduce that fσ converges uniformly to f as σ tends to zero.

(ii) Show that fσ is infinitely differentiable.

(iii) Use the inequality

|fσ(x)− fσ(y)| ≤
∫

|f(x+ σz)− f(y + σz)|ψ(z) dz ≤ κ|x− y|

to show that ∥fσ∥Lip ≤ κ.

(iv) Show that all the partial derivatives of fσ are also lipschitz functions (with
lipschitz norms depending on σ and ψ).

(v) From (iii), we have |fσ(x + tu) − fσ(x)| ≤ tκ for each unit vector u and
each t > 0. Use the fact that (fσ(x+ tu)− fσ(x)) /t→ ⟨u,∇fσ⟩ as t↘ 0 to
show that

∑
i(∂fσ/∂xi)

2 = |∇fσ|2 ≤ κ2.

(vi) Suppose W has a subgaussian distribution. Show that Peλfσ(W ) → Peλf(W )

for each real λ as σ → 0. Hint: dominated convergence using |fσ(x)| ≤
|f(0)|+ κ|x|+ 1 for small enough σ.

[2] Suppose Z is N(0, 1) distributed and F is an absolutely continuous, real-valuedGaussian::P:Stein

function on the real line with almost sure (lebesgue) derivative f . That is

f is integrable at least on each bounded interval and F (b)−F (a) =
∫ b
a f(t) dt

for −∞ < a < b < ∞. If P|f(Z)| < ∞, show that P|ZF (Z)| < ∞
and PZF (Z) = Pf(Z) by these steps. The argument is essentially just a
very careful integration-by-parts, making sure there are no hidden ∞−∞
cancellations.

(i) Explain why we may assume F (0) = 0 and f ≥ 0 without loss of generality.
Note that these assumptions imply that xF (x) ≥ 0 for all x. Hint: Split into
f± contributions.

(ii) Let ϕ denote the N(0, 1) density. Use the fubini theorem to show that

P{Z > 0}ZF (Z) =
∫ ∞

0

∫ ∞

0
zϕ(z){0 ≤ t ≤ z}f(t) dt dz =

∫ ∞

0
f(t)ϕ(t) dt.

(iii) Argue similarly for P{Z < 0}ZF (Z).
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[3] Suppose (Z,X1, . . . , Xm) has a mvn distribution with Z ∼ N(0, σ2) (butGaussian::P:gauss.ibp

no assumptions about the means or covariances for the Xi’s). Suppose also
that G : Rm → R is continuously differentiable, with partial derivatives
•

Gi(x1, . . . , xm) := ∂G(x1, . . . , xm)/∂xi. If P|ZG(X1, . . . , Xm)| < ∞ and

P|
•

Gi(X1, . . . , Xm)| <∞ for each i, show that

PZG(X1, . . . , Xm) =
∑

i≤m
τiP

•

Gi(X1, . . . , Xm) where τi := PZXi.

Follow these steps.

(i) Without loss of generality suppose σ equals 1. (Equivalently, divide both
sides of the asserted representation by σ.)

(ii) Show that Z is independent of the random variables Yi := Xi − τiZ for
i ∈ [[m]]. [Check that cov(Z, Yi) = 0.] For fixed yi values, use Problem [2] to
show that

P (ZG(X) | Yi = yi for i ∈ [[m]] )

= γznzG(y1 + τ1z, . . . , ym + τmz)

=
∑

i
τiγ

z
n

•

Gi(y1 + τ1z, . . . , ym + τmz).

(iii) Average out over the yi’s with respect to the joint distribution of Y1, . . . , Ym.

[4] (cf. Isserlis 1918; or google “Wick”; or look at Janson 1997, Theorem 1.28)Gaussian::P:Isserlis

Suppose X ∼ Nn(0, V ). For each subset A of [[n]] define MA := P
∏

i∈AXi.

(i) Use Problem [3] to show that M[[n]] =
∑

j≥2 V1,jM[[n]]\{1,j}.

(ii) Deduce that M[[n]] is either zero (for n odd) or it can be written as a sum of
products of off-diagonal elements of V .

(iii) Calculate the representations for n = 4 and n = 5.

[5] For suitably regular f (such as the fσ from Problem [1]) and at =
√
1− t,Gaussian::P:pde

show that the function F (x, t) = γznf(x+zat) (as in equation <15>) satisfies

∂F (x, t)/∂t =
•
at

∑
i
γznzi

•

fi(x+ zat) for 0 < t < 1

= at
•
at

∑
i
γzn

••

fi,i(x+ zat) by Problem [2]

= −1
2

∑
i
∂2F (x, t)/∂x2i .

Remark. If the “−” sign in the final line were removed the equation
would become ∂F (x, t)/∂t = 1

2

∑
i ∂

2F (x, t)/∂x2i , the heat equation.
The negative sign comes from the 1 − t in the definition of at; time is
running backwards. Maybe the partial differential equation could be
called the ‘backwards heat equation’.

[6] A subset D of RN is called an ellipsoid in a k-dimensional subspace H of RN
Gaussian::P:ellipsoid

if there is a linear map T that is a bijection from Rk onto H of RN such that
such that D = h+ TB, where B = {x ∈ Rk : |x|2 ≤ 1} and h ∈ H.
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(i) Suppose T has the singular value decomposition Tvi = λiui for 1 ≤ i ≤ k,
for singular values λ1 ≥ λ2 ≥ · · · ≥ λk > 0 with {vi : i ≤ k} an onb of Rk

and {ui : i ≤ k} an onb of H. Show that

TB =
{∑

i≤k
tiui :

∑
i≤k

(ti/λi)
2 ≤ 1

}
.

In particular, TB is a closed ball in H if λi = λ1 for all i.

(ii) Show that there is a subspace L0 of Rk of dimension approximately k/2 for
which D∩(TL0) is a closed ball. Argue as follows. Suppose k is even, k = 2ℓ.
Choose any value λ with λℓ ≥ λ ≥ λℓ+1. For i ≤ ℓ choose positive numbers ci
and si for which c

2
i+s

2
i = 1 and c2iλi+s

2
iλk−i+1 = λ2. Define Vi = civi+sivk−i+1

and Ui = (ciλiui + siλk−i+1uk−i+1) /λ. Show that Vi and Ui are unit vectors
with TVi = λUi for i ≤ ℓ. Define L0 = span{V1, . . . , Vℓ}.

If k is odd, k = 2ℓ+ 1, argue similarly with λ = λℓ+1 and Vℓ+1 = vℓ+1.

[7] Suppose h and H are random variables defined on a probability space (Ω,F,P)Gaussian::P:select

for which 0 < h ≤ H almost surely and PH ≤ (1 + ϵ)Ph < ∞ for some
positive ϵ. Argue as follows to show that there exists an ω in Ω for which
1 ≤ H(ω)/h(ω) ≤ 1+ϵ. Define a new probability measure Q by dQ/dP = h/Ph.
Show that Q(H/h) ≤ 1 + ϵ, so that Q{ω : H(ω)/h(ω) > 1 + ϵ} < 1.

[8] (repeated from Chapter 3) Suppose ξ1, . . . , ξN are independent randomGaussian::P:PP.max

variables, each N(0, 1) distributed. Define Mn = maxj≤N |ξj | and xn =
√
log n.

(i) Show that

PMn =

∫ ∞

0
P{Mn > t} dt ≥ xnP{Mn > xn}.

(ii) Show that P{Mn > t} = 1− (1− 2Φ̄(t))n ≥ 1− exp
(
−2nΦ̄(t))

)
.

(iii) Use Laplace’s bound from Section MGF:sharp.normal , Φ̄(t) ≥ (t−1−t−3)ϕ(t)
for t > 1, to show that P{Mn > xn} → 1 as n→ ∞.

(iv) Deduce that PMn ≥ xn(1− o(1)).

[9] Suppose {Xi : i ∈ N} is a centered Gaussian process with Xi ∼ N(0, σ2i ).Gaussian::P:bdd.sup

Define Mn = maxi≤nXi and M∞ = supi∈NXi. Show that M∞ < ∞
almost surely if and only if PM∞ < ∞. Argue as follows for the nontrivial
implication. Suppose P{M∞ <∞} = 1.

(i) Show that there exists an R ∈ R for which P{Mn > R} < 1/4 for all large
enough n.

(ii) Show that 1/4 > P{Xn > R} = Φ̄(R/σn) if n is large enough. Deduce that
σ2 = supi∈N σ

2
i is finite.

(iii) Write mn for PMn. Use the concentration inequality from Section 6.1 to
show that P{|Mn −mn| ≥ σr} ≤ 2 exp(−r2/2) for each n and each r ≥ 0.
Deduce that there exists an r for which P{Mn > mn−σr} ≥ 3/4 for each n.

(iv) From (i) and (iii) deduce that mn ≤ R+ σr for all n large enough.
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(v) Show that PM∞ = limn→∞mn ≤ R+σr. Hint: 0 ≤Mn+ |X1| ↑M∞+ |X1|.
(vi) Extend the argument to a two-sided equivalence: P{supi |Xi| < ∞} = 1 iff

P supi |Xi| <∞. Hint: supi |Xi| = max (supiXi, supi(−Xi)).

[10] Let {Xt : t ∈ T} be a centered gaussian process, defined on a probabilityGaussian::P:embed.hilbert

space (Ω,F,P). Equip T with the semi-metric d(s, t) := ∥Xs −Xt∥2 :=(
P|Xs −Xt|2

)1/2
.

(i) Show that Xs = Xt ae[P] if d(s, t) = 0. Explain why this fact might cause
difficulties with sample-path continuity if the inequality could not be strength-
ened to Xs(ω) = Xt(ω) for all ω.

(ii) Replace T by a subset T0 for each equivalence class [t] := {s ∈ T : d(s, t) = 0}
contains at most one point of T0. Show that {Xt : t ∈ T0} can be identified
with a subset of the hilbert space H := L2(Ω,F,P) via the map Xt ↔ [Xt]
in such a way that

cov(Xs, Xt) = ⟨[Xs], [Xt]⟩

where [Xt] denotes the equivalence class of Xt in L
2(Ω,F,P). Remark: This

representation explains why some authors regard all centered gaussian
processes as subsets of an isonormal process indexed by a hilbert space.

[11] Let H be a hilbert space with inner product ⟨·, ·⟩, and an orthonormal basisGaussian::P:iso.normal

{eα : α ∈ I}. Let {ηα : α ∈ I} be a set of independent random variables, each
distributed N(0, 1), defined on a probability space (Ω,F,P). (Kolmogorov’s
existence theorem would provide such a space.)

(i) For h in H define I(h) := {α ∈ I : ⟨h, eα⟩ ̸= 0}, a countable set for which
h =

∑
α∈I(h) eα⟨h, eα⟩, a series that converges in norm. Show that the sum

Zh :=
∑

α∈I(h) ηα⟨h, eα⟩ converges in the L2(Ω,F,P) sense. Hint: For each
finite subset A of I, show that

P
∣∣∣∑

α∈A
ηα⟨h, eα⟩

∣∣∣2 = ∑
α∈A

|⟨h, eα⟩|2.

Note: The limit is defined only up to a P -equivalence. Perhaps it would be
more elegant to work with limits in L2(Ω,F,P).

(ii) Show that {Zh : h ∈ H} is a centered gaussian process with cov(Zg, Zh) =
⟨g, h⟩ for g, h ∈ H. Remark: This process is sometimes called the isonormal
process indexed by H. See Dudley (2014, §2.2.1) for an insightful discussion.

6.9 Notes
Gaussian::S:Notes

I know little about the early history of the path idea, except that it appears
in the work of Plackett (1954, page 353), Chover (1962), and Slepian (1962,
page 483).

The most stunning fact about γn—the so-called isoperimetric inequality—
was established independently by Borell (1975) and Sudakov and Tsirel’son
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(1978), a translation from a 1974 paper in Russian. See the concise and
informative book by Ledoux (2001) for more about concentration inequalities.
For an exposition of a proof due to Ehrhard (1983a,b) see Pollard (2001,
Section 12.5). The inequality can be rewritten more compactly as

γk(A
δ) ≥ Φ

(
Φ−1(γnA) + δ

)
,

slightly disguising the fact that equality is achieved by halfspaces but leading
towards a functional form of the inequality that was developed by Bobkov
(1996, 1997). See Boucheron, Lugosi, and Massart (2000, pages 290–298,
303–307) for an insightful discussion of Bobkov’s method. For elegant re-
formulations of the functional approach see Ledoux (1998) and Barthe and
Maurey (2000).

The lower bound in Example <5> was proved by Sudakov (1973) using
a different method.

The integration by parts formula, PZF (Z) = P
•

F (Z) if Z ∼ N(0, 1), (see
Problem [2]) actually characterizes the N(0, 1) distribution. This fact lies at
the heart of Charles Stein’s astounding theory of normal approximation, as
exposited in his Lecture notes (Stein, 1986). See page 21 of that volume for
a proof of the characterization. Undoubtedly the same trick has been used
for many other purposes. See Problem [4], for example.

A huge part of the modern theory of Gaussian process (and stochastic
processes in general) grew from the ideas of Xavier Fernique. For example, see
Fernique (1975, 1983) or search for his name at the French digital mathematics
library, http://www.numdam.org/. See also Ledoux and Talagrand (1991,
page 87–88) and Dudley (2014, Chapter 2 Notes) for more about the history
of comparison methods and where credit is due.

My introduction to the stochastic integration method described in Sec-
tion 6.3.1 came from Adler (1990, Section 2.1), who attributed the method to
Maurey and Pisier, citing lectures by Pisier (1986). In those lectures Pisier
(page 180) had provided a sketch of Maurey’s argument, prefaced by the
comment “B. Maurey found a proof of theorem 2.1 with the best constant
. . . His proof uses stochastic integrals and apparently does not extend to the
setting of theorem 2.2.” Only later did I notice that Ledoux (2001, page 45)
gave credit for the stochastic calculus proof to Cirel’son, Ibragimov, and Su-
dakov (1976), with the comment that their paper “was unfortunately ignored
for a long time”. That 1976 paper had attributed the concentration result
(via the isoperimetric inequality) to the 1974 Russian version of Sudakov and
Tsirel’son (1978), with the remark (page 25) that the 1974 proof was “not a
purely probabilistic one . . . But sometimes the following assertion, provable
in a purely probabilistic way, can replace it”. They then gave a stochastic
calculus argument that started in the same way as the proof in Section 6.3.1,
with the identification of the martingale M , but then they invoked a time-
change argument (Chung and Williams, 2014, Section 9.3) to represent M
as γnf +W ([M ]t) for a new Brownian motion W . In my notation, the rest
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of their proof used the fact (inequality <26>) that [M ]1 ≤ κ2 to deduce that

P{M1 ≥ γnf + κx} ≤ P{sup0≤s≤κ2 Ws ≥ κx}
= 2P{Wκ2/κ ≥ x} reflection principle

= 2Φ̄(x).

That is, they actually established a result sharper than the e−x2/2 bound.
See Davidson and Szarek (2001, Section II) and Vershynin (2018) for

discussion of ways that concentration and comparison inequalities enter the
theory of random matrices.

References

Adler90gauss Adler, R. J. (1990). An Introduction to Continuity, Extrema, and Related
Topics for General Gaussian Processes, Volume 12 of Lecture Notes–
Monograph series. Hayward, CA: Institute of Mathematical Statistics.

BartheMaurey2000AIHP Barthe, F. and B. Maurey (2000). Some remarks on isoperimetry of Gaussian
type. Annales de l’Institut Henri Poincaré, Probability and Statistics 36 (4),
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Springer Lecture Notes in Mathematics 976, 1–74. École d’Été de Proba-
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