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Chapter 12

Majorizing measures for
gaussian processes

Majorizing::Majorizing
Section 12.1 introduces the functional that underlies some of the remarkable

properties of centered gaussian processes with bounded sample paths.
Section 12.2 identifies the special property of gaussian processes—a strength-

ened version of the sudakov minoration—that plays a key role in the
development of lower bounds that complement the chaining upper bounds.

Section 12.3 constructs nested partitions with weights for doob-separable
gaussian processes with bounded sample paths.

Section 12.4 describes the effect on the majorizing measure lower bound if
a centered gaussian processes has uniformly continuous sample paths.

Section 12.5 constructs admissible partitions for doob-separable gaussian
processes with bounded sample paths.

Section 12.6 briefly describes why a thorough understanding of the gaussian
case is a good starting point for further exploration of Talagrand’s amazing
discoveries.

12.1 Introduction
Majorizing::S:intro

Broadly speaking, Chapter 11 established the equivalence of three methods
for deriving upper bound and oscillation control for stochastic processes
whose increments are controlled by an orlicz norm for a Ψ in Yexp. It was
also noted that there are companion lower bounds for gaussian processes, a
fact that the current Chapter focuses on.

Throughout the Chapter, X := {Xt : t ∈ T} will always be a centered,
doob-separable, gaussian process with bounded sample paths. As shown by
Problem [1], the assumption about the sample paths implies that P supt∈T Xt

is finite. Consequently, the functional

\E@ F.def\E@ F.def <1> F(A) := P supt∈AXt for A ⊂ T

is well-defined and finite.
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2

The index set T will always by equipped with the natural metric, d(s, t) :=
∥Xs −Xt∥2. The diameter of T , the supremum of d(s, t) over all pairs of
points s and t in T , will always be denoted by diam(T ) or abbreviated to D.
As noted in Section 11.3, there is no loss of generality in assuming that T is
countably infinite.

Remark. In the greatest generality, d would be a semi-metric if we al-
lowed the possibility that Xs = Xt almost surely, for some pair with
s ̸= t. Such minor complications could always be avoided by partition-
ing X into equivalence classes then selecting only one representative
from each class.

The functional F is the key to the whole analysis. It works its magic
through a strengthened form of the sudakov minoration (Lemma <2>)
that captures everything we need to know about gaussianity. With just that
Lemma in hand we can recursively construct two slightly different nested
sequences of finite partitions A = {Ai : i ∈ N0} of T . The easier construction,
in Section 12.3, gives weighted partitions like those in Section 11.5; the other,
in Section 12.5, involves some extra subtleties in building admissible sequences
like those in Section 11.7.

Of course there is some redundancy in proving two separate equivalences
with the existence of a majorizing measure (MM). However, I think it is
worthwhile to see both constructions, as a way of comparing the advantages
of (and the technical difficulties involved in) both approaches.

12.2 A gaussian growth property
Majorizing::S:superSud

Recall the following two results from Section 6.1.

GG1 (sudakov minoration) If (W1,W2, . . . ,Wk) has a centered normal
distribution with P|Wi − Wj |2 ≥ δ2 for all distinct i and j, then
Pmaxj≤k Wj ≥ CsudδL(k) with Csud a universal (positive) constant and
L(k) := (log k)1/2.

GG2 (subgaussian max) Suppose M := supt∈B Yt where {Yt : t ∈ B} is a
doob-separable gaussian process. If both PM and σ2 := supt∈B var(Yt)
are finite then M − PM has a subgaussian distribution:

Peλ(M−PM) ≤ exp(σ2λ2/2) for all real λ.

Remark. GG1 also proves that T is totally bounded if F(T ) is finite.

Majorizing::superSud <2> Lemma. If {ξ1, . . . , ξk} is a δ-separated subset of T and Bj ⊆ B[ξj , θδ] for
each j, then

\E@ superSud.lower\E@ superSud.lower <3> F
(⋃

j≤k
Bj

)
≥ CθδL(k) + minj≤k F(Bj) where L(k) :=

√
log k ,

with Cθ := Csud − 4θ, which is > 0 if θ is small enough.□
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§12.2 A gaussian growth property 3

Remark. I write ξj , instead of the more natural tj , to avoid subse-
quent confusion with the points in a chaining framework.

Proof. The assertion of the Lemma is trivially true when k equals 1, so
assume k ≥ 2.

Define Wj := Xξj and Yt := Xt −Wj for t ∈ Bj and

Mj := supt∈Bj
Yt = supt∈Bj

Xt −Wj .

Notice that PMj = P supt∈Bj
Xt − PWj = F(Bj) and

var(Yt) = ∥Xt −Wj∥22 = d(t, ξj)
2 ≤ (θδ)2 for all t in Bj .

Similarly, from P|Wi −Wj |2 = d(ξi, ξj)
2 > δ2 for i ̸= j we get

Pmaxi≤k Wj ≥ CsudδL(k) by GG1.

The idea behind inequality <3> is that supt∈Bj
Xt = Wj +Mj should

be close to the corresponding Wj + F(Bj) for each j, by virtue of GG2.
The supremum of Xt over ∪jBj should then be close to the maximum of
Wj + F (Bj). More precisely,

supt∈∪jBj
Xt = maxj supt∈Bj

Xt

= maxj
(
Wj + F(Bj) +Mj − F(Bj)

)
≥ maxj

(
Wj +minj F(Bj)− |Mj − F(Bj)|

)
≥ maxj Wj +minj F(Bj)−maxj |Mj − F(Bj)|.

Taking expected values then invoking GG1 we get <3> if Pmaxj |Mj−F(Bj)|
is small enough. To control that term the usual jensen inequality trick
suffices: by GG2, for λ > 0,

exp (λPmaxj |Mj − F(Bj)|) ≤
∑

j
P exp (λ|Mj − F(Bj)|)

≤
∑

j
P exp (λ(Mj − PMj)) + P exp (−λ(Mj − PMj))

≤ 2k exp
(
λ2(θδ)2/2

)
.

Take logs, divide through by λ, then minimize by choosing λ =
√
2L(2k)/(θδ)

to get, for k ≥ 2,

Pmaxj |Mj − F(Bj)| ≤ 2θδ
√

2 log(2k) ≤ 4θδL(k)

and hence

F (∪jBj) ≥ CsudδL(k) + minj≤k F (Bj)− 4θδL(k).

We just need to make sure that 4θ < Csud.□
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12.3 From functional to nested partitions with weights
Majorizing::S:fnal-to-Wpartition

The main result (Theorem <5>) in this Section uses the functional F
from <1> to construct suitable weighted partitions by an argument adapted
from Talagrand (1992) via the exposition of Ledoux (1996, Chapter 6). It
complements the main Theorem from Section 11.5, which I wrote using a
weighted chaining framework, but which could also have been written (as in
Theorem <4>) using nested partitions:

Majorizing::Ledoux <4> Theorem. (adapted from Chapter 11) Let {Xt : t ∈ T} be a doob-separable
process indexed by a totally bounded metric space (T, d) for which:

(i) ∥Xs −Xt∥Ψ ≤ K0d(s, t) where Ψ = eg−1 is an orlicz function in Yexp.

(ii) There is a nested sequence A = {Ai : i ∈ N0} of finite partitions
with A0 = {T} and a sequence {δi} of positive constants, for which
and maxA∈Ai

diam(A) ≤ 2δi.

(iii) For each i there exists a weight function wi : Ai → (0, 1].

Let {(Ti, ℓi) : i ∈ N0} be the corresponding chaining framework, with the finite
set Ti consisting of a single point from each A in Ai. Then, for m > k, the
expected value Pmaxt∈Tm |X(t)−X(Lkt)| is bounded by

Cmaxt∈Tm

∑m

i=k+1
δiΨ

−1 (1/wi(Ai(t))) +
∑m

i=k+1
δiwi(Ai),

where t ∈ Ai(t) ∈ Ai and wi(Ai) :=
∑

A∈Ai
wi(A) and C = C(K0,Ψ) is a

constant.□

I also noted that if wi(Ai) = O(Ri) for some R and δi = O(θi) for some θ
with Rθ < 1 then

∑
i δiwi(Ai) converges. For the converse the {δi} sequence

has that form.

Majorizing::fnal.to.Ledoux <5> Theorem. Suppose {Xt : t ∈ T} is a doob-separable centered gaussian
process for which F(T ) := P supt∈T Xt is finite. Define θ := min(Csud/5, 1/3)
and δi := Dθi. Then there exists a nested sequence of finite partitions
A = {Ai : i ∈ N0} with A0 = {T} and maxA∈Ai

diam(A) ≤ 2δi, and weight
functions wi : Ai → (0, 1] with wi(Ai) :=

∑
A∈Ai

wi(A) ≤ 2i, for which

CF(T ) ≥
∑∞

i∈N
δi
√
log(1/wi(Ai(t)) for each t ∈ T ,

where C is a constant that depends on θ.□

Remark. As noted at the start of Section 11.6, the existence of such a
weighting scheme implies existence of a MM µ on T for which C1F(T ) ≥
supt∈T

∫ diam(T )

0
Ψ−1

2 (1/B[t, r]) dr with C1 a universal constant.
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§12.3 From functional to nested partitions with weights 5

The proof of Theorem <5> consists of recursive appeals to a greedy
procedure (wpartition, with the leading w to suggest weights) that partitions
a set into smaller pieces (of diameter at most 2δ) using a localized version
of the functional,

\E@ localF\E@ localF <6> f(S, r) := sups∈S F (S ∩B[s, r] ) for each subset S of T .

The starting point is a set A with weight W . The η provides some wiggle
room when the supremum is not achieved at some s in S.

1: procedure wpartition(A, δ, W , η)
2: Initialize: j = 1, S1 = A.
3: loop
4: Find a ξj in Sj for which the set Bj := Sj ∩B[ξj , θδ]

satisfies F(Bj) ≥ f(Sj , θδ)− η.
5: Define Ej := Sj ∩B[ξj , δ]. % The jth child of A.
6: Attach weight w(Ej) := W/j2 to the set Ej .
7: Define Sj+1 := Sj\Ej .
8: If Sj+1 is empty then
9: Exit the loop.

10: else
11: Increase j by 1 (and continue with the next iteration).
12: end If
13: end loop
14: end procedure

E1

A
E2

B1B1 B2

B[ξ1,θδ]

part of B[ξ1,δ]

B[ξ2,θδ]

After the loop exits we are left with a δ-separated set of points ξ1, . . . , ξJ
from A (so that J ≤ pack(δ, A) < ∞), a weighted partition E1, . . . , EJ of A,
and sets Sj+1 = Sj\Ej with A = S1 ⊃ S2 ⊃ · · · ⊃ SJ = EJ for which

ξj ∈ Bj := Sj ∩B[ξj , θδ] ⊂ Ej := Sj ∩B[ξj , δ].

The greed ensures that

η + F(Bj) ≥ f(Sj , θδ) ≥ F(Sj ∩B[s, θδ]) for each s in Sj .

Most importantly, for 1 ≤ α ≤ J , Lemma <2> gives

F (∪j≤αBj) ≥ Cθδ
√
logα +minj≤α F(Bj)

≥ 2−1/2Cθδ
√
logα2 +minj≤α f(Sj , θδ)− η

= C1δ
√
log(W/w(Eα)) + supξ∈Sα

F (Sα ∩B[ξ, θδ])− η\E@ superSud2\E@ superSud2 <7>
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§12.3 From functional to nested partitions with weights 6

where C1 := 2−1/2Cθ. This inequality will provide an upper bound for F(E′′)
for a partitioning set E′′ generated in a later iteration of wpartition.

Remark. For <7> to hold when α equals 1 then we must have w(E1) =
W . The choice w(Ej) = W/j2 then gives a bound

∑
j w(Ej) ≤ 2W

(Compare with
∑

j∈N j−2 ≈ 1.65.) That was my reason for allow-
ing wi(Ti) > 1 in Section 11.5 and for inserting the 1/3 into the
definition of θ. Talagrand (1992, p. 122)’s argument seems to corre-
sponds to weights w(Ej) = W/(j + 1)2 and Ledoux (1996, p. 243)’s
to w(Ej) = W/(2j2), presumably to ensure

∑
j w(Ej) ≤ W .

Proof (of Theorem <5>, based on Ledoux 1996, pp. 242–244).
For reasons that will become clearer towards the end of the proof, define
ηi := F(T )/2i for i ∈ N.

The construction consists of recursive appeals to wpartition, starting
from A0 = {T} and w0(T ) = 1.

• Let A1 consist of the sets E1, E2, . . . , EJ , with weights w1(Ej) = j−2,
generated by wpartition(T, δ1, w0(T ), η1).

• Then partition each A in A1 by wpartition(A, δ2, w1(A), η2).
• And so on. In general, wpartition(A, δi+1, wi(A), ηi+1) applied to
each A in Ai generates Ai+1.

By construction, wi+1(Ai+1) ≤ 2wi(Ai) and hence wi(Ai) ≤ 2i for each i.
Consider a fixed t in T . To simplify notation write Aj instead of Aj(t)

for j = 0, 1, . . . . Suppose Ai+1 = E′
α (the αth child of Ai) and Ai+2 = E′′

β

(the βth child of Ai+1) as generated by

wpartition(Ai, δi+1, wi(Ai), ηi+1) with δi+1 = Dθi+1 = θδi,

wpartition(Ai+1, δi+2, wi+1(Ai+1), ηi+2) with δi+2 = θ2δi.

The primes identify quantities involved in the construction of Ai+1 and the
double primes identify quantities involved in the construction of Ai+2. (Some
such notation is needed, for example, to distinguish between the E1 that is
a member of Ai+1 and the E1 that is a member of Ai+1.)

The construction gives the following pattern of inclusions and inequalities:

Ai ⊃ S′
α ⊃ Ai+1 = E′

α ⊃ B′
α = S′

α ∩B[ξ′α, θ
2δi]

∪
S′′
β ⊃ Ai+2 = E′′

β = S′′
β ∩B[ξ′′β, θ

2δi];

and

FAi ≥ C1δi+1

√
log (wi(Ai)/wi+1(E′

α)) + FB′
α by <7>;

ηi+1 + F(B′
α) ≥ sup

ξ∈S′
α

F(S′
α ∩B[ξ, θ2δi]) ≥ FE′′

β because ξ′′β ∈ S′′
β ⊂ S′

α.

It follows that

ηi+1 + F (Ai) ≥ C1δi+1
√
ρi+1 + F (Ai+2)

where ρi+1 := log (wi(Ai)/wi+1(Ai+1)) .\E@ grandchild\E@ grandchild <8>
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If you write out <8> for i = 0, 2, . . . , 2m, add, cancel a bunch of terms,
then let m tend to infinity (and remember that A0(t) = T ) you should get

F(T ) +
∑

j odd
ηj ≥ C1

∑
j odd

δj
√
ρj .

A similar summation over i = 1, 3, 5, . . . gives

F(A1) +
∑

j even
ηj ≥ C1

∑
j even

δj
√
ρj .

Replace F(A1) by the larger F(T ) then add the sums for even and odd j to
deduce (remembering that ηi = F(T )/2i) that

3F(T ) = 2F(T ) +
∑

i∈N
ηj ≥ C1

∑
i∈N

δi
√
ρi .

This inequality does not quite match the inequality asserted by Theo-
rem <5>, which has

√
log(1/wi(Ai(t)) in place of

√
ρi(t) . That problem is

easily fixed because w0(A0) = w0T = 1 and∑i

j=1
ρj(t) = log

(
w0(T )

w1(A1)

w1(A1)

w2(A2)
. . .

wi−1(Ai−1)

wi(Ai)

)
= log

(
1

wi(Ai)

)
.

Using the inequality (
∑

i ai)
1/2 ≤

∑
i a

1/2
i for ai ∈ R+ and making an

interchange in the order of summation we then get∑
i∈N

δi
√
log(1/wi(Ai(t)) =

∑
i∈N

δi

√∑
j∈N

{j ≤ i}ρj(t)

≤
∑

j∈N

√
ρj(t)

∑
i∈N0

δi{j ≤ i}

=
∑

j∈N

√
ρj(t) δj/(1− θ).

It is now just a matter of juggling some constants.□

What a beautiful argument! Fernique was correct: existence of a MM is both
necessary and sufficient for a doob-separable, centered gaussian process
to have bounded sample paths.

*12.4 Uniformly continuous gaussian sample paths
Majorizing::S:cts

As you saw in Section 10.6, if the increments of a doob-separable process
are controlled by an orlicz norm ∥·∥Ψ then a sufficient condition for the
process to have uniformly continuous sample paths is the existence of a MM µ
for which

sup
t∈T

∫ δ

0
Ψ−1(1/µB[t, r]) dr → 0 as δ → 0.

For gaussian processes this condition, with the orlicz function Ψ(x) spe-
cialized to Ψ2(x) := exp(x2)− 1, is also necessary.
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§12.4 Uniformly continuous gaussian sample paths 8

Majorizing::MM.cts <9> Theorem. Let X = {Xt : t ∈ T} be a centered gaussian process. Suppose
that T is totally bounded under the metric d(s, t) := ∥Xs −Xt∥2 and that
(almost all) the sample paths of X are d-uniformly continuous:

osc(δ,X, T ) := sup{|Xs−Xt| : d(s, t) < δ} → 0 almost surely as δ → 0.

Then there exists a MM µ on T for which

supt∈T

∫ δ

0
Ψ−1

2 (1/µB[t, r]) dr → 0 as δ → 0.

Proof. The proof will combine the virtues of packing numbers and majorizing
measures.

A uniformly continuous functions on a totally bounded space must be
bounded. Thus F(T ) := P supt∈T |Xt| is finite. Define δk := 2−k. By
dominated convergence (with 2 supt∈T |Xt| as the dominating function)
we have βk := Posc(δk, X, T ) → 0 as k → ∞.

Total boundedness implies that pack(δ, T ) is finite for each positive δ.
As in Section 10.4, there is then a nested sequence of finite sets {Tk : k ∈ N}
with Tk a δk-packing set, |Tk| = Nk ≤ pack(δk, T ). Also there exists a
map τk : T → Tk with sups∈T d(s, τk(s)) ≤ δk. The sets {s ∈ T : τk(s) = t}
for t ∈ Tk form a partition Ek of T with each E in Ek containing exactly one
point, τk(E), from Tk.

From the fact that sups∈E d(s, τk(E)) ≤ δk we get

F(E) := P supt∈E Xt = P supt∈E(Xt −Xτk(E)) ≤ βk for E ∈ Ek.

Theorem <5> then provides a probability measure µE on E for which

\E@ muE\E@ muE <10> sup
t∈E

∫ diam(E)

0
Ψ−1

2 (1/µEB[t, r]) dr ≤ Cβk,

where C is a constant that doesn’t depend on E or k.
I claim that the probability measure

µ :=
∑

k≥1

1

2kNk

∑
E∈Ek

µE ,

is a MM with the property asserted by the Theorem. The proof is easy.
For any given positive ϵ first choose k = k(ϵ) so that βk < ϵ then

choose δ := ϵ/Ψ−1
2 (2kNk). Consider any point t in T . To simplify notation

write Ek for the member of Ek that contains t and abbreviate µEk
to µk.

For r ≤ δ use the fact that µB[t, r] ≥ (2kNk)
−1µkB[t, r] and the inequality

Ψ−1
2 (uv) ≤ Ψ−1

2 (u) + Ψ−1
2 (v) for u, v ≥ 0 to deduce that∫ δ

0
Ψ−1

2 (1/µB[t, r]) dr ≤
∫ δ

0
Ψ−1

2

(
2kNk

µkB[t, r]

)
dr

≤
∫ δ

0
Ψ−1

2 (2kNk) dr +

∫ δ

0
Ψ−1

2 (1/µkB[t, r]) dr.

≤ δΨ−1
2 (2kNk) + Cβk + δΨ−1

2 (1) ≤ (2 + C)ϵ.
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For the final bound it helps to consider two cases: if δ ≤ diam(E) then <10>

bounds the second integral by Cβk; if δ > diam(E) then
∫

diam(E)
0 . . . dr ≤ Cβk

and the integrand for
∫ δ
diam(E) . . . dr is less than Ψ−1

2 (1) because over that

range we have B[t, r] ⊃ E, implying µkB[t, r] = 1.

To check that µ is actually a MM just note that
∫ D
0 . . . dr is smaller

than D/δ times
∫ δ
0 . . . dr when the integrand is a decreasing function of r.□

*12.5 From functional to admissible partitions
Majorizing::S:fnal-to-Apartition

This Section shows how to construct suitable admissible partitions from the
functional F. I have cobbled together a proof from several different arguments
used by Talagrand (see Notes), rearranged to emphasize the similarities with
the proof in my Section 12.3. My treatment corresponds roughly to Talagrand
(2021, pp 47–58).

Remark. The Section has gone through many versions, as each fix led
to new, more subtle errors. I would be very pleasantly surprised if it
were now error-free, even though I am confident that the underlying
idea is sound.

Majorizing::fnal.to.admissible <11> Theorem. Let {Xt : t ∈ T} be a doob-separable, centered gaussian process
for which F(T ) := P supt∈T Xt is finite. Then there exists a nested sequence

A = {Ai : i ∈ N0} of finite partitions, with A0 = {T} and |Ai| ≤ ni := 22
i

such that, for some universal constant C and λ :=
√
2,

CF(T ) ≥
∑∞

i∈N0

diam (Ai(t))λ
i for each t ∈ T ,

where Ai(t) denotes the member of Ai that contains t.□

The construction in Section 12.3 gave a very tight control over the di-
ameters of the individual members of Ai, with the weights providing only
an indirect control for the |Ai|, the number of sets in Ai. By contrast, Tala-
grand’s generic chaining involves the strict bound ni = 22

i
on the size |Ai|

but only indirect control over the diameters of the members of the partitions.
Despite these differences, the two partitioning methods have much in

common. Brutally speaking, the new procedure could be implemented by:

(i) Generate the sets E1, . . . , EJ using wpartition(A, . . . ).

(ii) Discard all the weights.

(iii) Replace Em by ∪j≥mEj if J is larger than some magic number m. and
label the new Em as big. (The sets that are not big are called small,
of course.) Then discard the individual Ej sets for j > m.
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§12.5 From functional to admissible partitions 10

Needless to say, it makes more sense to start from a clean definition,
although the brutal description does explain why some of the arguments in
this Section share similarities with the arguments in Section 12.3. The main
differences comes in:

(a) The key role that is played by the big sets.

(b) The choice θ := min
(
Csud/5, (2λ)

−1
)
. The Csud/5 term will let us invoke

Lemma <2> and the (2λ)−1 will ensure that
∑

i(λθ)
i converges.

(c) The use of a quantity ρ(A) ≥ diam(A)/2 for the each set in each Ai, so
that the desired inequality becomes CF(T ) ≥ supt∈T

∑
i ρ (Ai(t))λ

i.

Again the localized functional, f(S, r) := sups∈S F (S ∩B[s, r]) will guide the
greedy construction of the partitions using the following procedure, which
assumes that we have already assigned the value ρ(A) for the the set that
is to be partitioned. The parameter m plays the role of a generic ni. Again
the small η provides wiggle room below a supremum.

1: procedure apartition(A, m, η)
2: Initialize: j = 1, S1 = A, and define ρ := ρ(A).
3: loop
4: Find ξj in Sj for which the set Bj := Sj ∩B[ξj , ρθ

2]
satisfies F(Bj) ≥ f(Sj , ρθ

2)− η.
5: If j is equal to m then
6: Define Em := Sm and ρ(Em) := ρ and label Em as big.
7: Exit the loop.
8: end If
9: Define Ej := Sj ∩B[ξj , ρθ] and ρ(Ej) := ρθ.

10: Define Sj+1 := Sj\Ej .
11: If Sj+1 is empty then
12: Exit the loop.
13: end If
14: Increase j by 1 (and continue with the next iteration).
15: end loop
16: end procedure

For future reference, here are the most important facts about the output
from apartition summarized in the form of a Lemma.

Majorizing::APART <12> Lemma. The subset A of T , with ρ := ρ(A), can be partitioned into subsets
E1, . . . , EJ , for J ≤ m, such that:

(i) If j < m then Ej is small with ρ(Ej) = ρθ and Ej ⊂ A∩B[ξj , ρθ] for
some ξj in A.

(ii) If J = m then Em is big with ρ(Em) = ρ and

F(A) ≥ Cθρθ
√
logm ,\E@ BIG.Sud2\E@ BIG.Sud2 <13>

η + F(A) ≥ Cθρθ
√
logm + f(Em, ρθ2),\E@ BIG.superSud\E@ BIG.superSud <14>

where f(Em, r) := sup{F(Em ∩B[ξ, r]) : ξ ∈ Em}.□
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Proof. The facts about the the ρθ separated ξj ’s and the greedily chosen Bj ’s
are hidden inside the two inequalities for the big sets. The first is effectively
just the sudakov minoration (GC1). The second comes from Lemma <2>:

F(A) ≥ Cθ(ρθ)
√

logm +minj≤m F(Bj) which is ≥ Cθρθ
√
logm

≥ Cθρθ
√

logm +minj≤m

(
f(Sj , ρθ

2)− η
)

= Cθρθ
√
logm + f(Em, ρθ2)− η.□

Remark. Lemma <2> is invoked only when Em is big. Notice that
the F(Bj)’s need not decrease monotonely but the the f(Sj , ρθ

2)’s do.
I have separated out the role for GC1 in order to emphasize the places
where the full force of Lemma <2> is needed.

Proof (of Theorem <11>). Again define ηi := F(T )/2i+1 for i ∈ N0 and
choose θ := min

(
Csud/5, (2λ)

−1
)
as in (b) on the previous page.

Make recursive appeals to procedure apartition, starting from A0 = {T}
and ρ(T ) := D. For the sake of a uniform notation, define n0 := n1. (The
first step doesn’t fit neatly into the general pattern because |A0| = 1.)

• Let A1 consist of the sets E1, E2, . . . , EJ , with J ≤ n0 = n1, generated by
apartition(T, n0, η0).

• Then partition each A in A1 into the new sets E1, E2, . . . generated by
apartition(A,n1, η1). Each of the (at most) n1 sets in A1 is partitioned
into (at most) n1 subsets to create an A2 consisting of at most n2

1 = n2

subsets, as required by admissibility.

• And so on: in general, apartition(A,ni, ηi) applied to each A in Ai

generates the sets for Ai+1 and |Ai+1| ≤ ni|Ai| ≤ n2
i = ni+1.

As before, consider a fixed t in T and the sets Ai := Ai(t) ∈ Ai for which
t ∈ Ai(t). The sequence {Ai : i ∈ N0} can consist of both small sets and big
sets. To simplify notation I’ll treat A0 = T as small. Lemma <12> gives:

• If Ai+1 is small then ρ(Ai+1) = ρ(Ai)θ and Ai+1 ⊂ Ai ∩B[ξ, ρ(Ai)θ] for
some ξ in Ai.

• If Ai+1 is big then ρ(Ai+1) = ρ(Ai) and

F(Ai) ≥ C1ρ(Ai+1)λ
i+1,\E@ Sud.BIG\E@ Sud.BIG <15>

ηi + F(Ai) ≥ C1ρ(Ai+1)λ
i+1 + f(Ai+1, ρ(Ai+1)θ

2),\E@ Ai+1.BIG\E@ Ai+1.BIG <16>

where C1 := θλ−1Cθ

√
log 2 .

If every Ai is small then ρ(Ai) ≤ Dθi for every i so that∑∞

i∈N0

λiρ(Ai) ≤
∑

i∈N0

D(θλ)i ≤ 2D ≤ 2
√
2πF(T ),

the final inequality coming from Problem [2].
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Things become more interesting if some of the sets are big. The argument
then involves a close cousin of the odd/even subsequencing idea used in
the Proof of Theorem <5>. To make it easier to spot any errors I had to
break the argument into a short sequence of claims followed by proofs and
consequences.

Claim (a):
There can be no infinite subsequence of consecutive big Aj ’s.

Proof of (a):
Suppose Aj is big for α ≤ j ≤ ω, so that ρ := ρ(Aα−1) = ρ(Aα) = · · · = ρ(Aω).
Inequality <15> with i = ω − 1 and monotonicity of F then imply

\E@ one.step\E@ one.step <17> F(T ) ≥ F(Aω−1) ≥ C1λ
ωρ (Aω) = C1λ

ωρ,

an inequality that prevents ω from being too large.□

Remark. Note that argument would not work if we replaced ρ(Ai)
by the smaller diam(Ai)/2. It was important that ρ(Ai) = ρ(Aω) for
α− 1 ≤ i ≤ ω.

Consequence (a):
It follows that each stretch of consecutive big Aj ’s must be finite and
separated from the next stretch of big’s by at least one small set. Moreover,
one stretch of small Aj ’s might be infinite, in which case there are no more
big sets. The pattern could look like:

small0 big1 small1 big2 small2 big3 small3 big4

sss bbb sssss bb sss b sss bb . . .

↓ ↓ ↓ ↓
ω[1] ω[2] ω[3] ω[4]

The index ω[ℓ] gives the position of the last big Aj in bigℓ, the ℓth block of
big sets.□

The contribution from small0 can be handled in the same way as the case
where all Aj ’s are small.

Claim (b):

If Aj is big for α ≤ j ≤ ω and small for ω < j ≤ β then
∑β

j=α λ
jρ(Aj) ≤

C0λ
ωρ(Aω) for some constant C0.

Proof of (b):∑
α≤j≤ω

λjρ(Aj) = ρ(Aω)
∑

α≤j≤ω
λj ≤ ρ(Aω)λ

ω+1/(λ− 1),∑
ω<j≤β

λjρ(Aj) ≤
∑

ω<j≤β
λωλj−ωρ(Aω)θ

j−ω.

The last sum is ≤ λωρ(Aω) because we chose θ to make θλ ≤ 1/2.□
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Consequence (b):
The contributions from any bigℓ plus the following smallℓ are bounded above
by C0λ

ωρ(Aω) with ω = ω[ℓ].□

Thus it remains only to control the sum

\E@ sum.big.ends\E@ sum.big.ends <18>
∑

ℓ∈L
λω[ℓ]ρ(Aω[ℓ]) where L := {ℓ : bigℓ ̸= ∅}.

If |L| ≤ 3 then three appeals to inequality <17> would suffice. If |L| ≥ 4 we
can use a trick that is similar to the odd/even decomposition used to prove
Theorem <5>.

Claim (c):
If ℓ, ℓ+ 1, ℓ+ 2, ℓ+ 3 ∈ L then

\E@ four.step\E@ four.step <19> ηω[ℓ] + F(Aω[ℓ]) ≥ C1λ
ω[ℓ+1]ρ(Aω[ℓ+1]) + F(Aω[ℓ+3]).

Proof of (c):
To slightly simplify notation I’ll assume ℓ = 1. The proof for general ℓ is
similar.

It is just a matter of pulling together the various inequalities derived in
the previous few pages. Define i := ω[2]− 1 and i′ := ω[3].

s . . . bbb
−

s . . . bb
−

s . . . bb
−

s . . . bb
−

. . .

ω[1] ω[2] = i+ 1 ω[3] = i′ ω[4]

Because there is at least one small between each big block we must have
ω[1] + 2 ≤ ω[2] = i + 1 ≤ ω[3] − 2 and ω[3] = i′ ≤ ω[4] − 2. Most
importantly, Ai′+1 is a small set contained within a ball of radius at most
ρ(Ai′)θ ≤ ρ(Ai+1)θ

2 with center in Ai′ , a subset of Ai+1. Thus

ηω[1] + F(Aω[1])

≥ ηi + F(Ai) by monotonicity of F and ηω[1] > ηi

≥ C1ρ(Ai+1)λ
i+1 + sup{F(Ai+1 ∩B[ξ, ρ(Ai+1)θ

2] : ξ ∈ Ai+1}
≥ C1ρ(Aω[2])λ

ω[2] + F (Ai′+1) .

The second inequality comes from <16> with f(Ai+1, ρ(Ai+1)θ
2) replaced

by its definition. Monotonicity gives F (Ai′+1) ≥ F
(
Aω[4]

)
, completing the

argument□
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Consequence (c):
The case where L is infinite is the most interesting. The argument for finite L
is similar.

Successive appeals to inequality <19> gives

ηω[1] + F(Aω[1])− F(Aω[4]) ≥ C1λ
ω[2]ρ(Aω[2]),

ηω[4] + F(Aω[4])− F(Aω[7]) ≥ C1λ
ω[5]ρ(Aω[5]),

ηω[7] + F(Aω[7])− F(Aω[10]) ≥ C1λ
ω[8]ρ(Aω[8]),

. . .

and so on. If we add these inequalities the sum on the left-hand side tele-
scopes, leaving

F(Aω[1])+
(
ηω[1] + ηω[4] + . . .

)
≥ C1

(
λω[2]ρ(Aω[2]) + λω[5]ρ(Aω[5]) + . . .

)
It follows that, for some constant C2,

C2F(T ) ≥
∑

ℓ∈L2

λω[ℓ]ρ(Aω[ℓ]) where L2 := {ℓ ∈ L : ℓ ≡ 2(mod 3) }.

Similar arguments bound the sums over the similarly defined subse-
quences L0 and L1. After combining the three bounds then invoking inequal-
ity <15> to take care of ρ(Aω[1])λ

ω[1] we arrive at the inequality asserted by

Theorem <11>.□

12.6 Beyond gaussian
Majorizing::S:next

Even though this Chapter has established lower bounds only in the gaussian
case, I believe it does point the way to other applications of Talagrand’s
general method. As explained by Talagrand (2021, pp. 47–49), the key
requirement of his approach is existence of an analog of inequality <3> for
analogs of the functional F. I haven’t read enough of his book to provide
any more details. I am looking forward to further exploration.

12.7 Problems
Majorizing::S:Problems

[1] (repeated from Chapter 6) Suppose {Xi : i ∈ N} is a gaussian process withMajorizing::P:bdd.paths

Xi ∼ N(0, σ2
i ). Define Mn := maxi≤nXi and M∞ := supi∈N Xi. Show that

M∞ < ∞ almost surely if and only if PM∞ < ∞. Argue as follows for the
nontrivial implication. Suppose P{M∞ < ∞} = 1.

(i) Show that there exists an R ∈ R for which P{Mn > R} < 1/4 for all large
enough n.

(ii) Show that 1/4 > P{Xn > R} = Φ̄(R/σn) if n is large enough. Deduce that
σ2 = supi∈N σ2

i is finite.
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(iii) Write mn for PMn. Use the concentration inequality from Section 6.1 to
show that P{|Mn −mn| ≥ σr} ≤ 2 exp(−r2/2) for each n and each r ≥ 0.
Deduce that there exists an r for which P{Mn > mn−σr} ≥ 3/4 for each n.

(iv) From (i) and (iii) deduce that mn ≤ R+ σr for all n large enough.

(v) Show that PM∞ = limn→∞mn ≤ R+σr. Hint: 0 ≤ Mn+ |X1| ↑ M∞+ |X1|.
(vi) Extend the argument to a two-sided equivalence: P{supi |Xi| < ∞} = 1 iff

P supi |Xi| < ∞. Hint: supi |Xi| = max (supiXi, supi(−Xi)).

[2] Suppose (X1, X2) has a centered bivariate normal distribution for whichMajorizing::P:pairwise.max

∥X1 −X2∥2 = δ > 0. Show that Pmax(X1, X2) = δ/
√
2π. Hint: First show

that 2max(X1, X2)−X1 −X2 = |X1 −X2|. Also note that P|Z| = 2/
√
2π

if Z ∼ N(0, 1).

[3] Suppose {Xi : i ∈ N} is a centered gaussian process with F := P supi∈N XiMajorizing::P:bdd.paths2
finite.

(i) Show that P supi,j |Xi − Xj | = P supi,j (Xi −Xj) = 2F . Hint: The first
equality comes from the fact that both Xi − Xj and Xj − Xi appear in
supi,j (Xi −Xj). Then note that supi,j |Xi −Xj | is an increasing limit of

max
(i,j)∈[[n]]2

|Xi −Xj | = max
(i,j)∈[[n]]2

(Xi −Xj) = max
i∈[[n]]

Xi + max
j∈[[n]]

(−Xj).

Use the fact that {(−Xj) : j ∈ N} has the same distribution as X.

(ii) Define D := supi,j ∥Xi −Xj∥2. Show that F ≥ D/
√
2π. Hint: Problem [2].

[4] Under the conditions of Theorem <9>, prove that δΨ−1
2 (pack(δ, T, d)) → 0Majorizing::P:Sud.small

as δ → 0.

12.8 Notes
Majorizing::S:Notes

My exposition is based largely on papers by Talagrand (1992, 1996, 2001)
and the three versions of his book on generic chaining: Talagrand (2005,
Sections 1.3 and 2.1), Talagrand (2014, Chapter 2), and Talagrand (2021,
Chapter 2). In particular, Lemma <2> comes from Talagrand (1992) via
Talagrand (2021, Proposition 2.10.8).

The highly informative book of Ledoux and Talagrand (1991) provided
welcome backup, particularly for the insights it gave into earlier ways of
handling chaining ideas. And again I also benefitted greatly from reading
the expositions by Ledoux (1996, Chap 6) and van Handel (2016). See
Chapter 11 for further references.

The proof for Theorem <9> is based on Ledoux and Talagrand (1991,
Thm 12.9), a version of a more involved result presented by Talagrand (1987,
page 122-124). My rearrangement of their argument avoids the need for an
appeal to Ledoux and Talagrand (1991, Cor 3.19).
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