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Chapter 5

Orlicz spaces

Orlicz::Orlicz
Section 5.1 introduces LΨ spaces, generalizations of the usual Lp spaces,

which have proved useful in the study of sample paths of stochastic processes
and in the theory of empirical processes.

Section 5.2 describes some useful properties of orlicz functions Ψ on R+,
the convex functions that are used to define the LΨ spaces. They are
shown to have left- and right-derivatives everywhere, which leads to useful
integral representation.

Section 5.3 describes a set of orlicz functions that grow much faster than
any pth power, a property that leads to several useful inequalities.

Section 5.4 presents a few simple methods for proving maximal inequalities
using orlicz norms. These inequalities are the basis for some chaining
bounds that were popular in empirical process theory.

Section 5.5 shows how the conjugate of Φ of an orlicz function Ψ is related
to the young inequality, an analog of the hölder inequality. The orlicz
space LΦ is then identified with a subset of the space of continuous linear
functionals on LΨ.

*Section 5.6 describes some of the differences and similarities between Lp

and LΨ if Ψ grows rapidly enough.

5.1 What is an orlicz space?
Orlicz::S:definition

During the 1980’s, bounds involving norms on orlicz spaces of functions
became very popular in the empirical process literature, in part I suspect
because chaining arguments (see Chapter 10) are cleaner with norms than
with tail probabilities. More recently, the literature seems to have turned
back to working with tail probabilities.

An orlicz space is a most useful generalization of the concept of an Lp

space. It replaces the pth power function by a general orlicz function, that
is, a convex, increasing function Ψ : R+ → R+ with Ψ(0) = 0 and Ψ(x) → ∞
as x→ ∞. The concept applies with any measure but I have used it mostly
for probability measures. The special case where Ψ2(x) = exp(x2) − 1 is
particularly useful in the study of subgaussianity.
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§5.1 What is an orlicz space? 2

Remark. Here and subsequently in this Chapter “increasing” is treated
as a synonym for the clumsier “nondecreasing”. It allows an orlicz
function Ψ to be zero on an interval [0, x0] but then convexity forces Ψ
to be strictly increasing on [x0,∞).

Henceforth Y will denote the set of all orlicz functions on R+, with Y∞
the subset where Ψ(x)/x→ ∞ as x→ ∞.

Orlicz::Luxemburg.norm <1> Definition. For a measure space (X,A, µ) and an orlicz function Ψ define
LΨ(X,A, µ) to be the set of all A-measurable real-valued functions f on X

for which µΨ(|f |/c0) < ∞ for at least one positive constant c0. For each
such f the orlicz norm ∥f∥Ψ (or Ψ-norm) is defined as

∥f∥Ψ := inf{c > 0 : µΨ(|f(x)|/c) ≤ 1}.□

Remark. Some authors define ∥f∥Ψ for every measurable f , inter-
preting the infimum as +∞ when µΨ(|f(x)|/c) = ∞ for each c > 0.
The space LΨ then consists of all f for which ∥f∥Ψ < ∞. Actually,
it was Luxemburg (1955) who first introduced the norm ∥f∥Ψ; Or-
licz (1932, 1936) had worked with another norm, which I will tem-
porarily denote by ∥·∥• to avoid confusion. However the name Or-
licz seems to be firmly attached to ∥·∥Ψ in a lot of the literature. As
shown in Problem [17], the two norms are equivalent, in the sense
that ∥f∥Ψ ≤ ∥f∥• ≤ 2 ∥f∥Ψ for all f in LΨ. I like to use the let-
ter Y as an indirect nod to the work of William Henry Young. See
Section 5.5 for more about that remarkable mathematician.

If µΨ(|f |/c0) < ∞, a dominated convergence argument shows that
µΨ(|f |/(c0 + n)) → 0 as n → ∞. The set {c > 0 : µ (|f |/c) ≤ 1} is
either (0,∞), in which case ∥f∥Ψ = 0 and f = 0 ae[µ], or an interval of the
form [c1,∞) in which case ∥f∥Ψ = c1 (Problem [1]).

For the special case where Ψ(x) = xp, the inequality µΨ(|f |/c)) ≤ 1 is
equivalent to µ|f |p ≤ cp, which ensures that the orlicz norm agrees with
the usual ∥f∥p norm (for p ≥ 1) and the orlicz space is the same as the
usual Lp(X,A, µ) space.

For the general case it is important to keep the constant c inside that Ψ
function. For example, here is how to prove that ∥f + g∥Ψ ≤ ∥f∥ψ + ∥g∥Ψ
for f, g ∈ LΨ: for each c > ∥f∥Ψ and d > ∥g∥Ψ, convexity and monotonicity
of Ψ give

Ψ

(
|f + g|
c+ d

)
≤ Ψ

(
c|f |/c
c+ d

+
d|f |/d
c+ d

)
≤ c

c+ d
Ψ(|f |/c)+ d

c+ d
Ψ(|g|/d).

Integrate both sides with respect to µ, using the fact that µΨ(|f |/c) ≤ 1
and µΨ(|g|/d) ≤ 1 to deduce that

µΨ

(
|f + g|
c+ d

)
≤ 1 if c > ∥f∥Ψ and d > ∥g∥Ψ.

It follows that ∥f + g∥Ψ ≤ c+d. Complete the argument by letting c decrease
to ∥f∥Ψ and d decrease to ∥g∥Ψ. (If you believe the result from Problem [1]
you could also take c = ∥f∥Ψ and d = ∥g∥Ψ, except in some trivial cases.)
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3

Remark. As usual ∥·∥Ψ fails to be a norm on LΨ only because ∥f∥Ψ =
0 if and only if µ{x : f(x) ̸= 0} = 0. The usual trick of working with
the space LΨ(X,A, µ) of µ-equivalence classes makes ∥·∥Ψ a true norm
and LΨ a banach space.

The most important orlicz functions for my purposes are the power
functions, Ψ(x) = xp for a fixed p ≥ 1, and the exponential power func-
tions Ψα(x) := exp(xα) − 1 for α ≥ 1. The function Ψ2 corresponds to
subgaussian, and Ψ1 to subexponential, tail behaviour.

Remark. It is also possible (Problem [9]) to define an orlicz func-
tion Ψp, for 0 < p < 1, that behaves like exp(xp) far enough from the
origin.

When seeking to bound ∥f∥Ψ for some f in LΨ I often find it easier to
first obtain a constant c0 for which µΨ(|f |/c0) ≤ K0, where K0 is a constant
larger than 1. As the next Lemma shows, a simple convexity argument turns
such an inequality into a bound on ∥f∥Ψ.

Orlicz::Psi.bound <2> Lemma. Suppose Ψ is an orlicz function. If µΨ(|f |/c0) ≤ K0 for some
finite constants c0 and K0 > 1 then ∥f∥Ψ ≤ c0K0.

Proof. For each θ in [0, 1] convexity of Ψ gives

µΨ

(
θ|f |
c0

)
≤ θµΨ

(
|f |
c0

)
+ (1− θ)Ψ(0) ≤ θK0.

The choice θ = 1/K0 makes the last bound equal to 1.□

5.2 Facts about orlicz functions
Orlicz::S:convex.facts

Suppose Ψ ∈ Y. Define the slope function

S(x, y) :=
Ψ(y)−Ψ(x)

y − x
for 0 ≤ x < y.

The slope is always nonnegative because Ψ is increasing.

0 x0 xt x1

0

(1 − t)Ψ(x0) + tΨ(x1)
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§5.2 Facts about orlicz functions 4

Most of the useful properties of orlicz functions follow from a pair of
inequalities for the slope function. For given values 0 ≤ x0 < x1 = x0 +D
and 0 < t < 1 define xt := (1 − t)x0 + tx1. Note that xt − x0 = tD
and x1 − xt = (1− t)D. Convexity of Ψ gives

Ψ(xt) ≤ (1− t)Ψ(x0) + tΨ(x1),

which implies

S(x0, xt) =
Ψ(xt)−Ψ(x0)

xt − x0
≤ tΨ(x1)− tΨ(x0)

tD
= S(x0, x1),

S(xt, x1) ≥
(1− t)Ψ(x1)− (1− t)Ψ(x0)

(1− t)D
= S(x0, x1).

Re-expressed more suggestively, (first with x = x0 and y = xt and y
′ = x1

then with x = x0 and x′ = xt and y = x1) the inequalities become

S(x, y) ≤ S(x, y′) if 0 ≤ x < y < y′

S(x, y) ≤ S(x′, y) if 0 ≤ x < x′ < y.

That is,

\E@ slope.inc\E@ slope.inc <3>
the function y 7→ S(x, y) is increasing for each fixed x;

the function x 7→ S(x, y) is increasing for each fixed y.

Remark. The preceding argument used only the convexity of Ψ. Prop-
erties <3> are general facts about convex functions on R or a subin-
terval thereof. If Ψ is also increasing then S ≥ 0.

Orlicz::Young.derivs <4> Theorem. If Ψ ∈ Y then

(i) At each x ≥ 0 the right-derivative

•

ΨR(x) = lim
t↘0

(Ψ(x+ t)−Ψ(x)) /t

exists. The function
•

ΨR is nonnegative, increasing, and continuous
from the right.

(ii) At each x > 0 the left-derivative

•

ΨL(x) = lim
w↗0

(Ψ(x)−Ψ(w)) /(x− w)

exists. The function
•

ΨL is nonnegative, increasing, and continuous
from the left.

(iii) The function Ψ is continuous on R+.

(iv) If 0 ≤ x < y then
•

ΨR(x) ≤
•

ΨL(y) ≤
•

ΨR(y) and

(y − x)
•

ΨR(x) ≤ Ψ(y)−Ψ(x) ≤ (y − x)
•

ΨL(y).
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§5.2 Facts about orlicz functions 5

(v) Ψ(x) =
∫ x
0

•

ΨR(t) dt =
∫ x
0

•

ΨL(t) dt for each x > 0. Consequently, the

set {t > 0 :
•

ΨR(t) >
•

ΨL(t)} has zero lebesgue measure.□

Proof.
For (i): The function t 7→ S(x, x+ t) is increasing and nonnegative. Thus

S(x, x+ t) decreases to a finite limit
•

ΨR(x) ≥ 0 as t↘ 0.
If x < x′ and t > 0 then S(x, x + t) ≤ S(x, x′ + t) ≤ S(x′, x′ + t) Let t

decrease to 0 to deduce that
•

ΨR(x) ≤
•

ΨR(x
′).

For right-continuity at a given x, we need to show that
•

ΨR(y) ≈
•

ΨR(x)
if y lies in a small enough interval to the right of x. Given a small ϵ > 0
first choose a t0 > 0 for which

•

ΨR(x) ≤ S(x, x + t0) ≤
•

ΨR(x) + ϵ then
consider δ > 0 and y for which x < y < x+ δt0 < x+ t0, so that

x y x + δt0 x + t0

•

ΨR(x) ≤
•

ΨR(y) = lim
t↘0

S(y, y + t) decreasing limit

≤ S(y, x+ t0) =
Ψ(x+ t0)−Ψ(y)

x+ t0 − y

≤ Ψ(x+ t0)−Ψ(x)

x+ t0 − (x+ δt0)
=
S(x, x+ t0)

1− δ

≤ (1− δ)
•

ΨR(x) + δ
•

ΨR(x) + ϵ

1− δ

≤
•

ΨR(x) + 2ϵ if δ is small enough.

For (ii): For 0 ≤ w < x the function 7→ S(w, x) is increasing and nonnegative.

Thus S(w, x) increases to a limit
•

ΨL(x) ≥ 0 as w ↗ 0. The limit is finite
because

S(w, x) ≤ S(w, x+ t) for each t > 0

≤ S(x, x+ t) ↘
•

ΨR(x) as t↘ 0,

showing that
•

ΨL(x) ≤
•

ΨR(x) < ∞. The rest of the argument is analogous
to the argument for (i), except that approximations are made from below
instead of from above.
For (iii): Existence of left and right derivatives implies continuity.

For (iv): The inequality
•

ΨL(y) ≤
•

ΨR(y) was already established in the
proof of (ii). If x < y then

•

ΨR(x) = lim
w↘x

S(x,w) ≤ S(x, y) ≤ lim
w↗y

S(w, y) =
•

ΨL(y).

Multiply through by y − x to get the other inequality.
For (v): For a positive integer n define δ = x/n and xi = iδ for i = 0, 1, 2, . . . .
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§5.2 Facts about orlicz functions 6

Then we have

Ψ(x) =
∑n

i=1

(
Ψ(xi)−Ψ(xi−1)

)
≥

∑n

i=1
δ

•

ΨR(xi−1) by (iv)

≥ δ
•

ΨR(0) +
∑n

i=2

∫ xi−1

xi−2

•

ΨR(t) dt = δ
•

ΨR(0) +

∫ xn−1

0

•

ΨR(t) dt

→
∫ x

0

•

ΨR(t) dt as n→ ∞, by dominated donvergence.

Similarly,

Ψ(x) ≤
∑n

i=1
δ

•

ΨR(xi) ≤
∑n

i=1

∫ xi+1

xi

•

ΨR(t) dt =

∫ xn+1

x2

•

ΨR(t) dt,

which also converges to
∫ x
0

•

ΨR(t) dt as n→ ∞. Together the upper and lower
bounds establish the first asserted integral representation. The argument
for

•

ΨL is similar.

By subtraction, 0 =
∫ x
0

( •

ΨR(t)−
•

ΨL(t)
)
dt = 0. By (iv), the integrand

is nonegative. Hence the integrand must equal 0 except on a set of zero
lebesgue measure.□

Remarks.

(i) Problem [4] strengthens part (v) by showing that the both the nonde-

creasing functions
•

ΨL and
•

ΨR can have, at worst, only countably many

jumps. Thus the set {t > 0 :
•

ΨR(t) >
•

ΨL(t)} is not just lebesgue
negligible but is also, at worst, countably infinite.

(ii) Problem [5] show that every Ψ on R+ defined by Ψ(x) =
∫ x

0
ψ(t) dt, with ψ

nonnegative and nondecreasing, is an orlicz function. Moreover, such
a ψ must satisfy the inequalities

•

ΨL(t) ≤ ψ(t) ≤
•

ΨR(t) for all t > 0.

Thus ψ can differ from
•

ΨL or
•

ΨR only at the (at worst countable) set

of t’s at which
•

ΨR(t) ̸=
•

ΨL(t). In this sense, the function Ψ essentially
determines ψ uniquely.

(iii) The condition Ψ(x)/x→ ∞ as x→ ∞ that is also required for orlicz
functions in Y∞ can also be written as ψ(t) → ∞ as t→ ∞ because

ψ(x) ≥ x−1Ψ(x) ≥ x−1

∫ x

x0

ψ(t) dt ≥ x−1(x− x0)ψ(x0)

for x ≥ x0, for arbitrarily large x0.
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5.3 Orlicz functions that grow exponentially fast
Orlicz::S:expOrlicz

To avoid a lot of nitpicking, each orlicz function Ψ in this Section should
be assumed to have {Ψ = 0} = {0}.

For some purposes, it helps to have Ψ(x)/xp → ∞ as x → ∞, for each
finite p. For example, Ledoux and Talagrand (1991, page 310) required

\E@ LTinv\E@ LTinv <5> Ψ−1(ab) ≤ C0

(
Ψ−1(a) + Ψ−1(b)

)
if min(a, b) ≥ a0,

for constants C0 and a0 > 0. Equivalently,

\E@ LTgrowth\E@ LTgrowth <6> Ψ(x)Ψ(y) ≤ Ψ(C0(x+ y)) if min(x, y) ≥ x0.

Write YLT for the set of all orlicz functions that satisfy this condition for
each strictly positive x0, with C0 allowed to depend on x0. (Often such a
bound also holds for x0 equal to 0.)

The main result in this Section provides a simple sufficient condition
for <6>.

Van der Vaart and Wellner (1996, Lemma 2.2.2) imposed a similar-looking
condition to control the Ψ-norm of a maximum:

\E@ VWgrowth\E@ VWgrowth <7> Ψ(x)Ψ(y) ≤ Ψ(C1xy) if min(x, y) ≥ x1.

for constants C1 and x1 > 0. Write YVW for the set of all orlicz functions
that satisfy this condition for each strictly positive x1, with C1 depending
on x1.

It is easy to show for the orlicz function Ψ(x) = xp, with p ≥ 1, that
Ψ ∈ YVW but Ψ /∈ YLT: consider the case where x = y. Thus <7> does not
require exponential growth, although its most interesting uses do involve
rapidly growing orlicz functions—see Example <13>. However, the YLT

condition implies Ψ(x)2 ≤ Ψ(2C0x) for x ≥ x0 > 0, an exponential growth
rate. (It also forces 2C0 ≥ 1 because Ψ(x) ≤ Ψ(x)2 when Ψ(x) ≥ 1.)

For the purposes of deriving sufficent conditions for rapid growth it
is cleaner to work with g(x) := log (1 + Ψ(x)), a nonnegative, increasing
function with g(0) = 0. The g function inherits continuity and existence
of left and right derivatives from Ψ. Conversely, a quick way to generate
orlicz functions is to start from a twice-differentiable, increasing function g
with g(0) = 0. If we define Ψ(x) = eg(x)−1 then

••

Ψ(x) =
( •
g(x)2 +

••
g(x)

)
Ψ(x),

which shows that Ψ ∈ Y if
•
g(x)2 +

••
g(x) ≥ 0 for all x > 0.

yyexp <8> Definition. Define Yexp to be the set of orlicz functions Ψ = eg − 1 for
which there exists a constant Cg such that g(x)+ g(y) ≤ g (Cgmax(x, y)) for
all x, y in R+.

As you will see in later Chapters, the Yexp property turns out to be a very
natural assumption for a lot of theory developed in the past few decades.

Orlicz::g.growth <9> Lemma. Suppose Ψ = eg − 1 is an orlicz function with {Ψ = 0} = {0}.
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§5.3 Orlicz functions that grow exponentially fast 8

(i) If there exist constants K0 and y0 > 0 such that 2g(x) ≤ g(K0x)
whenever x ≥ y0 then Ψ is a member of Yexp.

(ii) If Ψ ∈ Yexp then Ψ(x)Ψ(y) ≤ Ψ(Cgmax(x, y)) for all x, y in R+ and
(equivalently) Ψ−1(ab) ≤ Cgmax

(
Ψ−1(a),Ψ−1(b)

)
for all a, b in R+.

Consequently, Ψ ∈ YLT.

(iii) Yexp ⊂ YVW

(iv) If Ψ ∈ Yexp then there is a positive x0 such that g(x) ≥ (x/Cgx0)
αg(x0)

for x ≥ x0, where α := 1/ log2Cg.

Proof. For (i), first extend the upper bound on 2g(x) to cover a neighborhood
of the origin. Define x1 := Ψ−1(1)/4. Then, from the facts that y 7→ Ψ(y)/y
is an increasing function on (0,∞) and y/(1+ y) ≤ log(1+ y) ≤ y for y > 0,
we have

g(4x) ≥ Ψ(4x)

1 + Ψ(4x)
≥ 4Ψ(x)

1 + Ψ(4x1)
= 2Ψ(x) ≥ 2g(x) for 0 ≤ x ≤ x1.

Extend to cover the range [x1, y0]. Define K1 by 2g(y0) = g(K1x1), so that

max
x1≤x≤y0

2g(x)/g(K1x) ≤ 2g(y0)/g(K1x1) = 1.

With Cg := max(K0, 4,K1) we then have 2g(x) ≤ g(Cgx) for all xin R+,
implying

\E@ g.claim\E@ g.claim <10> g(x) + g(y) ≤ 2g(x) ≤ g (Cgmax(x, y)) if 0 ≤ y ≤ x.

For (ii) and (iii), first note that

Ψ(x)Ψ(y) = eg(x)+g(y) − eg(x) − eg(y) + 1

≤ eg(x)+g(y) − 1 ≤ eg(Cg max(x,y)) − 1 = Ψ (Cgmax(x, y)) .

For Ψ in YLT use max(x, y) ≤ x+ y and for Ψ in YVW use max(x, y) ≤ xy/x1
when min(x, y) ≥ x1.

For (iv), suppose Ck−1
g x0 ≤ x < CkΨx0 with k ∈ N. By induction,

2pg(x0) ≤ g(Cpgx0) for each p in N0. Thus

g(x) ≥ g(Ck−1
g x0) ≥ 2k−1g(x0) =

(
Cαg

)(k−1)
g(x0).

By definition of k we have Ck−1
g > x/(CΨx0).□

Orlicz::e^g <11> Example. The constant Cg calculated for the previous Lemma might be
unnecessarily large. Consider the case where gα(x) := xα for some α ≥ 1.
By direct calculation,

•
g(x)2 +

••
g(x) = αx2α−1 (αx+ (α− 1)) ≥ 0 and

2xα ≤ (Kx)α if K = 21/α. Thus Ψα(x) := exp(xα)− 1 is an orlicz function
in Yexp if 1 ≤ α <∞.
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The simple form of the gα function allows us to derive a result slightly
sharper than Lemma <9>. As before, for all x, y in R+,

Ψα(x)Ψα(y) ≤ exp (gα(x) + gα(y))− 1.

If x+ y > 0 and x/(x+ y) = r then

gα(x) + gα(y)

gα(x+ y)
= Rα(r) := rα + (1− r)α for 0 ≤ r ≤ 1.

The function Rα is convex on [0, 1], with maximum value 1 achieved at the
endpoints {0, 1} and minimum value (1/2)α−1 at r = 1/2, which implies

gα(x) + gα(y) ≤ ga(x+ y) for all x, y in R+.

Consequently Ψα ∈ YLT. We also have

Ψα(x)Ψα(y) ≤ egα(x+y) − 1 = Ψα(x+ y) for all x, y ∈ R+

and

Ψ−1
α (ab) ≤ Ψ−1

α (a) + Ψ−1
α (b) for all a, b ∈ R+,

which is much cleaner than <5>.□

Problem [9] extends the Example to values of α in (0, 1): there is a Ψα

in Yexp for which Ψα(x) = exp(xα)− 1 when x is large enough.

5.4 Norms of maxima of finitely many variables
Orlicz::S:OrliczMax

As noted near the start of the Chapter, my interest in orlicz norms was
first aroused by their use with the chaining method for constructing simple
uniform approximations to stochastic processes {Xt : t ∈ T}. That method
requires some sort of probabilistic control over the increments Xt − Xs,
expressible in terms of some distance function on T . When that distance
takes the form of an orlicz norm ∥Xt −Xs∥Ψ and when the probabilistic
approximations are expressed using some other orlicz norm, the chaining
method takes a particularly simple form. The key idea is to control the
maximum of finite sets of random variables. The following Theorem collects
together a few techniques that I have extracted from various chaining proofs
in the literature. The results are stated for probability measures.

Orlicz::Orlicz.maximal <12> Theorem. Let X1, . . . , XN be nonnegative random variables, not necessarily
independent, but all defined on the same probability space. Define M :=
maxi≤N Xi. Suppose maxi≤N ∥Xi∥Ψ ≤ 1 for some orlicz function Ψ.

(i) PM ≤ Ψ−1(N).

(ii) PBM ≤ Ψ−1(N/PB) where PB denotes conditional expectation given
an event B with PB > 0.

(iii) If Ψ ∈ YVW then ∥M∥Ψ ≤ 2CΨ−1(N) for some constant C.

Proof. The assumption that maxi≤N ∥Xi∥Ψ ≤ 1 implies PΨ(Xi) ≤ 1 for
each i.
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§5.4 Norms of maxima of finitely many variables 10

For (i):
Even though the assertion is a special case of assertion (ii), I think it helps
build intuition to see this proof first. Jensen’s inequality then non-negativity
and monotonicity of Ψ imply

Ψ (PM) ≤ Pmaxi≤N Ψ(Xi) ≤
∑

i≤N
PΨ(Xi) ≤ N.

For (ii):
Partition B into disjoint subsets Bi such that M = Xi on Bi. Without loss
of generality assume PBi > 0 for each i. (Alternatively, just discard those Bi
with zero probability.) By definition,

PBM = PB
(∑

i
BiXi

)
=

∑
i

PBi
PB

PBiXi.

By Jensen’s inequality,

Ψ(PBiXi) ≤ PBiΨ(Xi) =
PBiΨ(Xi)

PBi
≤ PΨ(Xi)

PBi
≤ 1

PBi
.

Thus

Ψ (PBM) = Ψ

(∑
i

PBi
PB

PBiXi

)
≤

∑
i

PBi
PB

Ψ(PBiXi) by convexity of Ψ

≤
∑

i

PBi
PB

1

PBi
=

N

PB
.

Perhaps it would be better to write the last equality as an inequality, to
cover the case where some PBi are zero.

For (iii):
Choose x1 = min(1,Ψ−1(1)), so that β := Ψ−1(N) ≥ x1. On the set {M ≥
βC1} we then have

NΨ(M/βC1) = Ψ(β)Ψ(M/βC1) ≤ Ψ(M) ≤
∑

i
Ψ(Xi).

Thus Ψ(M/βC1) ≤ Ψ(1)+N−1
∑

iΨ(Xi) for all values of M . Take expected
values to deduce that PΨ(M/βC1) ≤ Ψ(1) + 1, which, by Lemma <2>,
implies ∥M∥Ψ ≤ C1 (2Ψ(1) + 1)β.□

See Section 10.5 for an example that demonstrates the surprising power
of inequality (ii) from the Theorem.

Orlicz::pnorm.max <13> Example. Suppose {Z(t) : t ∈ T} is a stochastic process indexed by a set
equipped with a metric for which ∥Z(s)− Z(t)∥Ψ2

≤ d(s, t) for s, t ∈ T .
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Lemma <9> shows that each of the orlicz functions Ψp(x) = exp(xp)−1,
with p ≥ 1 satisfy the assumption of inequality (iii). In particular, it holds
for Ψ2. If p ≥ 1 and k = ⌈p/2⌉ then, for a constant Cp depending on p,

∥X∥p ≤ ∥X∥2k ≤ Cp ∥X∥Ψ2
for each random variable X

by virtue of the fact that P|X/c|2k ≤ k!PΨ2(|X|/c). The constant (k!)1/2k is
of order O(

√
p).

In consequence, if si, ti are pairs of points with d(si, ti) > 0 then∥∥∥∥max
i≤N

|X(si)−X(ti)|
d(si, ti)

∥∥∥∥
p

≤ Kp

√
1 + logN .

This bound can be used to derive the inequalities from Pollard (1989, Sec-
tion 3) that became the main technical tool for the cube-root asymptotic
theory developed by Kim and Pollard (1990).□

5.5 Conjugacy and the young inequality
Orlicz::S:conjugate

This Section explains a connection between orlicz functions and the con-
jugates from Chapter 2. Before writing this Chapter, I regarded conjugacy
as a slightly exotic topic that would not not really be needed in the rest of
the book. Subsequently I came to think that this convexity idea is actually
closely related to several constructions that appear in later Chapters. For
example, the splitting idea of Fernique for deriving maximal inequalities,
which is described and extended in Section 11.5, seems to be closely related
to the young inequality.

As noted in Section 2.4, it is convenient to define the conjugate of an
orlicz function Ψ by first extending its domain of definition to the whole
real line: define Ψ(x) = +∞ for x < 0. The conjugate Ψ∗ is defined by

Ψ∗(y) := supx∈R F (x, y) where F (x, y) := yx−Ψ(x) for x, y ∈ R.

Write Λ for the restriction of Ψ∗ to R+. The main task in this Section is to
find conditions to ensure that Λ is also an orlicz function and then to show
how Ψ and Λ fit together to produce a result due to Young (1912).

The choice x = 0 gives the value F (0, y) = 0, and the choice x < 0 gives
the value F (x, y) = −∞. It follows that

\E@ Psi*\E@ Psi* <14> Λ(y) = supx≥0

(
yx−Ψ(x)

)
for y ≥ 0.

Temporarily write ψ(t) for
•

ΨR(t). By Theorem <4> we have Ψ(x) =∫ x
0 ψ(t) dt for all x ≥ 0. If c := supt ψ(t) were finite then we would have
Ψ(x) ≤ cx for all x, implying Λ(y) = +∞ for y > c. As we want Λ to be
an orlicz function we need ψ(t) → ∞ as t → ∞. Equivalently, we need
Ψ(x)/x→ ∞ as x→ ∞, that is, Ψ ∈ Y∞.
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§5.5 Conjugacy and the young inequality 12

Orlicz::Lam.properties <15> Theorem. If Ψ ∈ Y∞ then Λ ∈ Y∞ with Λ(y) =
∫∞
0 (y −

•

ΨR(t))
+ dt.

Proof. As above, write ψ(t) for
•

ΨR(t) and define q(y) := inf{t ≥ 0 : ψ(t) ≥ y},
with q(y) = 0 if ψ(0) > y. The assumption that Ψ belongs to Y∞ ensures
that q(y) → ∞ as y → ∞.

For x ≥ 0 and y ≥ 0 we have

F (x, y) = xy −Ψ(x) =

∫ x

0
y − ψ(t) dt.

By definition, y − ψ(t) > 0 if t < q(y) and y − ψ(t) ≤ 0 if t > q(y). Thus
x 7→ F (x, y) is increasing while 0 ≤ x < q(y) and nonincreasing for x > q(y).
(There is actually be a flat spot if {t : ψ(t) = y} is a nondegenerate interval.)
It follows that

Λ(y) = supx F (x, y) =

∫ q(y)

0
y − ψ(t) dt =

∫ ∞

0
(y − ψ(t))+ dt.

Also, for y > 0 we have

Λ(y)/y = supx F (x, y) =

∫ ∞

0
(1− ψ(t)/y)+ dt.

At each fixed t the integrand increases monotonely to 1 as y ↑ ∞. By
monotone convergence it follows that Λ(y)/y ↑ ∞ as y ↑ ∞.□

Orlicz::dual <16> Example. Everything is much simpler when the orlicz function Ψ is
everywhere differentiable. For example, if Ψ(x) = xp/p with 1 < p <∞ and
p−1 + q−1 = 1 then the maximizing x in the definition of Λ(y) equals yq/p,
so that Λ(y) = yq/q. Without the 1/p in the definition of Ψ the function
would be a messier multiple of yq.

A tad more interesting is the case where Ψ(x) = ex−1. For y ≤ 1 =
•

Ψ(0)
the maximum is achieved at x = 0, so that Λ(y) = 0. If y > 1 the maximum
is now achieved at x = log y so that Λ(y) = 1 + y log y − y. That is

Λ(y) = 0{0 ≤ y ≤ 1}+ (1 + y log y − y) {y > 1}

The flat spot on [0, 1] comes from the fact that Ψ′(0) > 0.
The flat spot can be removed by subtracting off a linear function to get

a zero right-hand derivative at the origin: if Ψ0(x) := ex − 1 − x then
•

Ψ0(x) = ex − 1. Now the maximum is achieved at x = log(1 + y) so
that Λ0(y) = Λ(1 + y) = (1 + y) log(1 + y)− y.

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

Λ

Λ0
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§5.5 Conjugacy and the young inequality 13

Problem [11] shows that LΨ0(X,A,P) = LΨ(X,A,P), for probability mea-
sures P, with

KΨ ∥X∥Ψ0
≥ ∥X∥Ψ ≥ ∥X∥Ψ0

for all X ∈ LΨ

and LΛ = LΛ0 with

∥Y ∥Λ ≤ ∥Y ∥Λ0
≤ KΛ ∥Y ∥Λ for all Y ∈ LΛ.

where KΨ = 1 +Ψ−1(1) ≈ 1.7 and KΛ = 1 + Λ(2) ≈ 2.3.□

Theorem <15> has another, more impressive, consequence. The conclusion
from the Theorem,

Λ(y) = supx≥0 xy−Ψ(x) with equality when x = q(y) := inf{t ≥ 0 :
•

ΨR(t) ≥ y},

can be rewritten as

\E@ Young\E@ Young <17> Λ(y) + Ψ(x) ≥ xy for all x, y ≥ 0,

with equality if x = q(y). This result is often called “Young’s inequality”.
A very similar result was derived by William Henry Young, whom I cannot
resist quoting:

The method [. . . ] has the great advantage as regards the details of
the work that it is based on an extremely simple inequality. From this
point of view it is far superior to the other methods of proof, almost
intuitive as they are, when the necessary preliminary theorems have
been proved, that I have indicated elsewhere. Instead of requiring
the generalisation of Schwarz’s well-known inequality, it suffices to
be acquainted with the generalisation of the relation

2ab ≤ a2 + b2, namely, that (p+ 1)ab ≤ ap+1 + pb1+1/p.

In the prosecution of research one is often hampered by the
difficulty of generalising a known formula, owing to the very simplicity
and obviousness of its statement. The inequality just written down
possesses, however, the great advantage over Schwarz’s inequality
that its generalisation is almost immediate.

[Young, 1912, pp 225-226]

Why don’t mathematicians write like that any more?

Remark. The equality Ψ∗∗ = Ψ ensures that there is a symmetry
in the roles of Λ and Ψ. That is, Λ∗ = Ψ. There is also equality
in <17> if y = Ψ′

R(x).

The young inequality tells us something about linear functionals on
orlicz spaces. Remember that a linear map T : Z → R from a vector
space Z equipped with a norm (or semi-norm) ∥·∥ is continuous if and only
if

∥T∥ := sup{|Tz| : ∥z∥ ≤ 1} is finite.
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For ancient reasons, such a T is also called a continuous linear functional.
(Once upon a time, functions whose domains were sets of functions were
considered scary objects.)

For example, if 1 < p <∞ and p−1 + q−1 = 1 then each g in Lq defines
a continuous linear functional on Lp by

Tg(f) := µ(fg) for each f ∈ Lp.

The continuity comes directly from the hölder inequality:

|Tg(f)| = |µ(fg)| ≤ ∥f∥p ∥g∥q ,

which implies ∥Tg∥ ≤ ∥g∥q. In fact more is true: ∥Tg∥ = ∥g∥q and every
continuous linear functional T on Lp(X,A, µ) can be represented (µ-almost
uniquely) by means of a function g ∈ Lq(X,A, µ) (Folland, 1999, Theo-
rem 6.15).

The analogous results for general orlicz spaces take a slightly less pleasing
form. The role played by the hölder inequality is taken over by the young
inequality

Orlicz::norm.via.Young <18> Example. Suppose Ψ and Λ are conjugate orlicz functions, both in Y∞.
Suppose also that f ∈ LΨ and g ∈ LΛ. For finite constants c > ∥f∥Ψ and
d > ∥g∥Λ, the young inequality gives

|fg|/(cd) ≤ Ψ(|f |/c) + Λ(|g|/d),

which integrates to give

µ|fg|/(cd) ≤ µΨ(|f |/c) + µΛ(|g|/d) ≤ 2.

Rearrange then take infima over c and d to deduce that

µ|fg| ≤ 2 ∥f∥Ψ ∥g∥Λ .

This inequality tells us that Tg(f) := µ(fg) is a well defined linear functional
on LΨ for which satsifies

∥Tg∥ := sup{|Tg(f)| : ∥f∥Ψ ≤ 1} ≤ 2 ∥g∥Λ .

That is, g defines a continuous linear functional on LΨ.
Note the extra factor of 2. Problem [16] provides the corresponding lower

bound, ∥g∥Λ ≤ ∥Tg∥.
The gap between the upper and lower bounds for ∥Tg∥ might seem a

small price to pay for the generalization from Lp to LΨ. Unfortunately there
is worse news. These bounds leave open the possibility that there might
be other continuous linear functionals on LΨ that cannot be represented
as f 7→ µ(fg) for some function g. Indeed, as shown in the next Section,
if Ψ increases rapidly enough then such functionals do exist.□
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*5.6 Comparison of Lp and LΨ

Orlicz::S:LpLPsi
As you saw from the Young quotation, the original motivation for the young
inequality was generalization of the theory of Lp spaces. In some ways LΨ

is better behaved than Lp; in other ways worse. To keep the story as simple
as possible, in this Section I consider only the case where the underlying
measure is a probability measure, even though much of the discussion could
be extended to other measures.

The use of the norms to bound tail probabilities is an example where LΨ

can be better behaved than Lp.

Orlicz::llp.tails <19> Example. If f ∈ Lp with 0 < σ = ∥f∥p then

P{|f | ≥ t} ≤ P|f/t|p = σpt−p for t > 0.

The implication does not go the other way. If P{|f | ≥ t} ≤ Ct−p for all t > 0
then, by the tonelli inequality,

P|f |p =
∫ ∞

0
ptp−1P{|f | > t} dt ≤ Cp

∫ ∞

0
t−1dt = ∞.

The problem occurs as t gets large; for t near zero the tail bound can be im-
proved to min(1, Ct−p). Of course an infinite upper bound does not make P|f |p
infinite. The example where U ∼ unif(0, 1) and X = (1/U)1/p provides a
specific example where P{X ≥ t} = min(1, t−p) but PXp = ∞.□

Remark. If p ≥ 1 + δ with δ > 0 and P{|f | ≥ t} ≤ Ct−p for t > 0
then P|f |p−δ <∞.

The story for LΨ is slightly more encouraging. Suppose Ψ(x) =
∫ x
0 ψ(t) dt

for each x ≥ 0 (as in Section 5.2) and Ψ increases rapidly enough to ensure
that

\E@ rapid.increase\E@ rapid.increase <20>

∫ ∞

0

ψ(t)

max(1,Ψ(At))
dt <∞ for some constant A > 0.

Then the next Example shows that there is an equivalence between the tail
bound and finiteness of the LΨ norm. It is not hard to show that each Ψp,
for p ≥ 1, has property <20>.

Orlicz::llPsi.tails <21> Example. If f ∈ LΨ with 0 < σ = ∥f∥Ψ then

P{|f | ≥ t} ≤ min

(
1,P

Ψ(|f |/σ)
Ψ(t/σ)

)
≤ min

(
1,

1

Ψ(t/σ)

)
for t > 0.

Conversely, suppose Ψ has property <20> and there is a positive constant a
for which

P{|f | ≥ t} ≤ min (1, 1/Ψ(at)) = 1/max(1,Ψ(at)) for each t > 0.
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§5.6 Comparison of Lp and LΨ 16

Then the tonelli inequality gives

PΨ(|f |/c) = P
∫ ∞

0
ψ(t){|f |/c > t} dt

=

∫ ∞

0
ψ(t)P{|f |/c > t} dt

≤
∫ ∞

0

ψ(t)

max(1,Ψ(act))
dt .

The final integral is finite if ac ≥ A.□

As Problem [14] shows, the characterization of LΨ in Example <21> via
tail probabilities comes at a cost: under the rapid-growth assumption <20>
there always exist continuous linear functionals that are not of the form f 7→
P(fg) for some g.

In trying to understand what goes wrong, I found it instructive to try
to adapt the Lp proof for 1 < p < ∞ (?, Section 6.2) to a general orlicz
function Ψ and a probability space (X,A,P). We start with a continuous
linear map T from LΨ(X,A,P) into the real line. There is no loss of generality
(Bourbaki, 2004, Section II.2.2) in assuming that T (f) ≥ 0 whenever f ≥ 0.

Here is an outline the steps of that proof. Notice the switch from LΨ

to Lp at step (iii).

(i) The indicator function 1A of a set A ∈ A has PΨ(1A/c) = PAΨ(1/c).
It follows that ∥1A∥Ψ = 0 if PA = 0 and 1/Ψ−1(1/PA) otherwise. The
set function νA := T (1A) inherits finite additivity from the linearity
of T and countable additivity from the continuity of T : If An ↓ ∅ then

|ν(An)| = |T (1An)| ≤ ∥T∥ ∥1An∥Ψ → 0 because PAn → 0.

Thus ν is a countably additive measure with νX = T (1) <∞ and for
which νA = 0 whenever PA = 0. By the radon-nikodym theorem
(?, Section 3.2), there exists a nonnegative, P-integrable function ∆
for which νA = P(A∆) for each A ∈ A.

(ii) If h(x) =
∑

i αi{x ∈ Ai} is a simple function then, by linearity of T
and of the integrals with respect to ν and P,

Th =
∑

i
αiT (1Ai) =

∑
i
αiν(Ai) = νf = P(f∆).

(iii) The set of all simple functions is dense in Lp. That is, for each f
in Lp(X,A,P) and each ϵ > 0 there exists a simple function hϵ for
which ∥f − hϵ∥p < ϵ. Continuity of T extends the equalities from
step (ii) from simple functions to all of Lp.

(iv) We then play around with various choices for f in Lp to show that
P∆q <∞, where p−1 + q−1 = 1 and ∥∆∥q = ∥T∥.

Draft: 3jul25, Chap 5 ©David Pollard



17

It is step (iii) that fails for an orlicz function Ψ satisfying the rapid-
growth condition. As shown in Problem [14], under that condition there
are always simple probability spaces (X,A,P) with some function in f0 ∈
LΨ(X,A,P) that cannot be closely approximated in LΨ norm by any bounded
measurable function, let alone by a simple functions.

The main difficulty is well illustrated by the following Example for the
orlicz function Ψ2(x) = exp(x2)− 1.

Orlicz::simple.dense <22> Example. Let P be the N(0, 1) distribution on B(R). Consider f0(x) = x,
which belongs to LΨ2 because

1 + PΨ2(f
2
0 /c

2) = (2π)−1/2

∫
R
exp(−x2/2 + x2/c2) dx

=

{
c/
√
c2 − 2 if c2 > 2

+∞ if 0 < c2 ≤ 2
.

Consequently, ∥f0∥Ψ2
=

√
8/3 and f0 ∈ LΨ2 .

Surprisingly, no bounded function (let alone a simple function) can
approximate f0 very closely. Suppose |h(x)| ≤ K < ∞. The fact that
x−K ≥ x/2 when x ≥ 2K implies

1 + µΨ2(|f0 − h|/c) ≥ (2π)−1/2

∫ ∞

2K
exp(−x2/2 + x2/4c2) dx,

which is infinite if 0 < c ≤ 1/
√
2. Thus ∥f0 − h∥Ψ > 1/

√
2.

It follows that f0 does not belong to the smallest closed subspace H of LΨ2

that contains all the bounded, measurable functions. By the hahn-banach
theorem ?, Theorem 5.8 there exists a continuous linear functional T on LΨ2

with T (h) = 0 for all h in H and T (f0) ̸= 0. There can be no measurable
function ∆ for which f∆ ∈ L1 and T (f) = P(f∆) for all f ∈ LΨ2 : the
choice h = sgn(∆) would force P|∆| = 0 and consequently P(f0∆) = 0 ̸= T (f0).

□

5.7 Problems
Orlicz::S:Problems

[1] Suppose f ∈ LΨ(X,A, µ) and c1 := ∥f∥Ψ > 0. Show that µΨ(|f |/c1) ≤ 1.Orlicz::P:achieved
Hint: Use dominated convergence and µΨ

(
|f |/(c1 + n−1)

)
≤ 1 for n ∈ N.

[2] Suppose {fn : n ∈ N} ⊂ LΨ = LΨ(X,A, µ) and 0 ≤ fn ↑ f pointwise. IfOrlicz::P:increasing

c0 := supn ∥f∥Ψ <∞ show that f ∈ LΨ and ∥f∥Ψ = c0. Hint: Use monotone
convergence for µΨ(fn/c) with c > c0.

[3] Suppose h(x) = eg(x), where g is a twice differentiable real-valued functionOrlicz::P:e.to.g

on R+. Show that h is convex on any interval J for which (g′(x))2+g′′(x) ≥ 0
for x ∈ int(J).
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[4] Let
•

ΨL and
•

ΨR be the left- and right-derivative functions for an orliczOrlicz::P:convex.derivs

function Ψ. For x > 0 let
•

Ψ(x−) denote the limit of
•

ΨR(y) as y ↗ x, which

exists because
•

ΨR is an increasing function.

(i) For an x > 0, let {yi} be a strictly increasing sequence in R+ for which

0 ≤ y1 < y2 < · · · ↗ x. Explain why
•

ΨR(yi) ≤
•

ΨL(yi+1) for each i. Deduce

that
•

ΨR(x−) =
•

ΨL(x), so that Ψ is differentiable at x if and only if the

size
•

Ψ(x)−
•

ΨL(x) of the jump at x is zero.

(ii) For each ϵ > 0 and A > 0 show that there are at most finitely many x in (0, A]

for which
•

ΨR(x)−
•

ΨL(x) > ϵ. Deduce that
•

ΨR has at most countably many

jumps in R+ and hence
•

ΨR(x) ̸=
•

ΨL(x) for, at worst, a countable set of x
in R+.

[5] Suppose ψ : R+ → R+ is nondecreasing. For x in R+ define Ψ(x) =
∫ x
0 ψ(r) dr.Orlicz::P:convex.integral

Show that Ψ ∈ Y. Hint: Suppose xθ = θx0 + θx1, where θ = 1 − θ with
x0 < x1 and 0 < θ < 1. Show that

θΨ(x0) + θΨ(x1)−Ψ(xθ) = −θ
∫ xθ

x0

ψ(r) dr + θ

∫ x1

xθ

ψ(r) dr.

Use the bounds ψ(r0) ≤ ψ(xθ) ≤ ψ(r1) for r0 ≤ xθ ≤ r1.

[6] Suppose Ψ ∈ Y has a representation Ψ(x) =
∫ x
0 ψ(t) dt with ψ an increasingOrlicz::P:Psi.rep

function on R+. Show that
•

ΨR(t) ≥ ψ(t) for all t ≥ 0 and
•

ΨL(t) ≤ ψ(t) for
all t > 0. Hint: For δ > 0 we have

δ
•

ΨR(t0 + δ) ≥
∫ t0+δ

t0

•

ΨR(t) dt = Ψ(t0 + δ)−Ψ(t0) =

∫ t0+δ

t0

ψ(t) dt.

[7] Suppose Ψ(x) = eg(x) − 1, where g(x) = (x log x)+.Orlicz::P:xlogx

(i) Show that g is convex and g(x) + g(y) ≤ g(x + y) for all x, y ≥ 0. Deduce
that Ψ ∈ Yexp.

(ii) Show that ∥X∥Ψ <∞ if X has a poisson(θ) distribution.

[8] Suppose Ψ0 is a convex, nonnegative, increasing function defined on anOrlicz::P:extend.to.Young

interval [a,∞), with a > 0. Suppose also that there exists an x0 ∈ [a,∞)
for which Ψ0(x0)/x0 = γ := infx≥aΨ0(x)/x. Show that the extension
Ψ(x) := γx{0 ≤ x < x0}+Ψ0(x){x ≥ x0} is an orlicz function.

[9] For a fixed α in (0, 1) define fα(x) = ex
α
for x ≥ 0.Orlicz::P:alpha.lt.1

(i) Show that x 7→ fα(x) is convex for x ≥ zα := (α−1 − 1)1/α and concave for
0 ≤ x ≤ zα.

(ii) Define xα = (1/α)1/α and τα = fα(xα)/xα = (αe)1/α. Show that

Ψα(x) := τx{x < xα}+ fα(x){x ≥ xα}
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is an orlicz function.

(iii) Show that there exists a constant Kα for which

Ψα(x) ≤ exp(xα) ≤ Kα +Ψα(x) for all x ≥ 0.

(iv) Show that Ψα(x)Ψα(y) ≤ Ψα(2
1/αxy) for x ∧ y ≥ xα.

[10] Suppose Ψ ∈ Y and X ∈ LΨ(X,A,P), for a probability measure P. ShowOrlicz::P:ll1.llPsi

that P|X| ≤ Ψ−1(1) ∥X∥Ψ. Hint: the jensen inequality.

[11] Suppose Ψ ∈ Y∞ with
•

ΨR(0) = τ > 0. Define Ψ0(x) = Ψ(x)− τx for x ≥ 0.Orlicz::P:slope.zero

(i) Show that Ψ0 ∈ Y. Suppose X ∈ LΨ0(X,A,P), for a probability measure P.
For KΨ := 1 + τΨ−1

0 (1) show that KΨ ∥X∥Ψ0
≥ ∥X∥Ψ ≥ ∥X∥Ψ0

. Deduce

that LΨ = LΨ0 . Hint: previous Problem.

(ii) Suppose Ψ has conjugate Λ and that Ψ0 has conjugate Λ0. Show that Λ0(y) =
Λ(y + τ) for y ≥ 0.

(iii) Define KΛ := 1 + Λ(2τ). For each Y ∈ LΛ show that

∥Y ∥Λ ≤ ∥Y ∥Λ0
≤ KΛ ∥Y ∥Λ

Deduce that LΛ0 = LΛ. Hint: The first inequality follows from Λ0 ≥ Λ. For
the second inequality first show that Λ0(|Y |/c) ≤ Λ(2τ) + Λ(2|Y |/c) then
take expected values with c > ∥Y ∥Λ.

[12] Suppose n0 = 1 ≤ n1 < n2 < . . . is an increasing sequence of positive integersOrlicz::P:interp

with supk∈N nk/nk−1 = B <∞ and f : [1,∞) → R+ is an increasing function
with supt≥1 f(Bt)/f(t) = A < ∞. For each random variable X show that
supr≥1 ∥X∥r/f(r) ≤ A supk∈N ∥X∥nk

/f(nk).

[13] For p ≥ 1 prove the existence of positive constants cp an Cp for whichOrlicz::P:moment.Psia

cp ∥X∥Ψp
≤ sup

r≥1

∥X∥r
r1/p

≤ Cp ∥X∥Ψp

for every random variable X. Hint: previous Problem.

[14] Suppose P is lebesgue measure on the B(0, 1) and Ψ ∈ Y∞ satisfies theOrlicz::P:non.dense

rapid-growth condition <20>:∫ ∞

0

ψ(t)

max(1,Ψ(At))
dt <∞ for some constant A > 0.

Define f0(x) = Ψ−1(1/x).

(i) Show that P{x : f0(x) ≥ t} = P{x ≤ 1/Ψ(t)} = min(1, 1/Ψ(t)). Deduce from
Example <21> that f ∈ LΨ.
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(ii) Suppose h is a B(0, 1)-measurable function that is bounded in absolute value
by a constant K. Define Ak = {x ≤ 1/Ψ(2K)}. Argue that f0(x) ≥ 2K
on Ak, so that f0(x)/2 ≥ |h(x)|

PΨ(2|f0 − h|) ≥ PΨ(f0){x ∈ Ak} = P{x ∈ Ak}x−1 = ∞.

Deduce that ∥f0 − h∥Ψ ≥ 1/2.

(iii) Let H denote the closure (in LΨ) of the set of all bounded functions in LΨ.
Explain why f0 /∈ H. Use the hahn-banach theorem (?, Theorem 5.8)
to prove the existence of a continuous linear functional T on LΨ for which
T (h) = 0 for h ∈ H and T (f) ̸= 0. Explain why there cannot exist a function g
in LΛ for which T (f) = P(fg) for each f in LΨ. Hint: Consider h = sgn(g).

[15] For f ∈ LΨ(X,A, µ) show that ∥f∥Ψ ≤ 1 + µΨ(|f |). Hint: If c = ∥f∥Ψ > 1Orlicz::P:Psinorm.bnd
then convexity gives Ψ(t/c) ≤ Ψ(t)/c for t > 0.

[16] (cf. Garling, 2007, Theorem 6.3.2) Suppose Ψ ∈ Y∞ and (X,A, µ) is aOrlicz::P:Tg

σ-finite measure space. Suppose a function g : X → R is A-measurable
and fg ∈ L1(X,A, µ) whenever f ∈ LΨ. Suppose also that the linear
functional T (f) := µ(fg) on LΨ is continuous. Let Λ denote the conjugate
of Ψ, as in Section 5.5. Show that g ∈ LΛ and

∥g∥Λ ≤ ∥T∥ := sup{|T (f)| : ∥f∥Ψ ≤ 1}.

Follow these steps.

(i) Replace f ∈ LΨ by |f |sgn(g) to show that there is no loss of generality in
assuming that g ≥ 0 and ∥T∥ = sup{µ(fg) : 0 ≤ f and ∥f∥Ψ ≤ 1}.

(ii) By σ-finiteness there exist sets Bn in A for which Bn ↑ X and µBn < ∞
for each n. Define gn(x) = {x ∈ Bn} (n ∧ g(x)), so that dn := ∥gn∥Λ ≤
Λ(n)µBn < ∞. Also define fn(x) = Λ′

R(gn(x)/dn), which is also bounded
by a constant multiple of {x ∈ Bn}, so that cn := ∥fn∥Ψ < ∞. (Here I am
tacitly assuming that dn ̸= 0 and, later, cn > 0. I leave it to you to handle
the trivial cases where either dn = 0 or cn = 0.) Use the young inequality
(for the case where there is equality) and Problem [15] to show that

∥T∥ /dn ≥ µ (fngn/(cndn)) =
[
µΨ(fn) + µΛ(gn/dn)

]
/cn ≥ 1.

(iii) Invoke Problem [2] to deduce that ∥T∥ ≥ limn→∞ cn = ∥g∥Λ.

[17] Let Ψ and Λ be conjugate members of Y∞. For f ∈ LΨ(X,A, µ) defineOrlicz::P:Onorm

∥f∥• = sup{∥fg∥1 : ∥g∥Λ ≤ 1}.

If µ is σ-finite, appeal to Example <18> and Problem [16], with the roles
of Ψ and Λ interchanged, to deduce ∥f∥Ψ ≤ ∥f∥• ≤ 2 ∥f∥Ψ for all f in LΨ.
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5.8 Notes
Orlicz::S:Notes

If I remember rightly, my introduction to the virtues of using expected values
instead of tail probabilities in empirical process theory came from Giné and
Zinn (1984, Lemmas 2.8 and 2.9). That paper (in its preprint form) and
advice from its authors led me to the work of Pisier (1980, 1983), who used
orlicz norms to establish sufficient conditions for existence of versions of
stochastic processes with continuous sample paths. It was then just a short
step to the amazing work of Ledoux and Talagrand (1991, Chapter 11).

My subsequent orlicz education came from Dudley (1999, Appendix H)
and Garling (2007, Chapter 6), whose brief accounts led me to the beautiful
PhD thesis of Luxemburg (1955), where the ∥·∥Ψ is defined (page 43). My
remarks about the difference between the norms defined by Orlicz and by
Luxemburg are based on a rather quick reading of Orlicz (1932, 1936). There
appears to be some controversy about the assignment of priority in this area.
I do not claim to have made any careful study of the early contributions; my
historical remarks should be treated with caution.

There also seems to be some disagreement in the literature about the
precise definition of an orlicz function. Garling (2007, page 73) used the
name Young function for the members of my Y∞. Dudley (1999, Appendix H)
used the name Young-Orlicz modulus for a my Y and Orlicz modulus for
those Ψ in my Y∞ for which Ψ′

R(0) = 0. The latter also correspond to
the N -functions of Krasnosel’skĭı and Rutickĭı (1961).

The special orlicz functions Ψ(x) = xp for p = 1, 2 and Ψ(x) = Ψ2(x) =
ex

2 − 1 were behind the inequalities from Pollard (1989, Section 3). I was
(perhaps overly) pleased with myself for being able to replace the Lp norms
by the LΨ2 norm in Pollard (1990, Section 3). Subsequently van der Vaart
and Wellner (1996, Lemma 2.2.2) extended the inequality to a large collection
of orlicz functions. It now seems that the inequality in part (ii) of Theo-
rem <12>, which I learned from Ledoux and Talagrand (1991, Chapter 11),
is even better at delivering maximal inequalities. In the notes to that chapter,
L&T gave credit to Fernique (1983), by noting that their “Theorem 11.2 is
equivalent to the (perhaps somewhat unorthodox) formulation of [Fernique]”.
I think they were referring to Fernique’s Lemme 2.2.1 and Corollaire 3.1.

More recently, van de Geer and Lederer (2013) used the orlicz function

Ψ(x) = exp
(
(
√
1 + 2Lx − 1)2/L

)
,

for positive constants L, and Wellner (2017) used the orlicz function

Ψ(x) = exp
(
2L−2h(Lx)

)
− 1 where h(x) := (1 + x) log(1 + x)− x,

to derive empirical process maximal inequalities of the bernstein\bennett
variety (see Chapter 8).

My enthusiasm for things orlicz grew after I finally understood the role
played by the young inequality as an extension of the hölder inequality, a
powerful tool for generalizing from Lp to LΨ. It was with some disappointment
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that I eventually learned that the dual space of LΨ could not always be
identified with LΛ, for the orlicz function Λ that is conjugate to Ψ. Whence
Section 5.6. I have no idea whether the counterexamples in that Section
are well known. It would be better to call the young inequality “one of
the inequalities to which the name of W. H. Young has been attached”.
fourier theorists think of the young inequality as another result involving
convolutions (Folland, 1999, p 247).

By the way, Dudley (2003, Notes to Section 5.1) made a good case for
adding the name Leonard James Rogers to that of Hölder for the hölder
inequality.
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1965, 1967, 1959.

Dudley1999UCLT Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge University
Press.

Dudley2003RAP Dudley, R. M. (2003). Real Analysis and Probability (2nd ed.), Volume 74 of
Cambridge studies in advanced mathematics. Cambridge University Press.

Fernique83StFlour Fernique, X. (1983). Regularité de fonctions aléatoires non gaussiennes.
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