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Chapter 7

Between subgaussian and
subexponential

Subexp::Subexp
*Section 7.1 briefly explains the meaning of the Chapter title.
Section 7.2 discusses the Bennett inequality for sums of independent ran-

dom variables that are bounded above by a constant.
Section 7.3 shows how the Bennett inequality implies one form of the Bern-

stein inequality, then discusses extensions to unbounded summands.
Section 7.4 illustrates the ideas from the previous Section by deriving a

subgaussian/subexponential tail bound for quadratic forms in independent
subgaussian random variables.

Section 7.5 discusses the Bennett inequality for sums of martingale differ-
ences that are bounded above by a constant with high probability.

*Section 7.6 presents an extended application of a martingale version of
the Bennett inequality to derive a version of the Kim-Vu inequality for
polynomials in independent, bounded random variables.

7.1 Introduction
Subexp::S:intro

This Chapter mostly discusses some tail bounds of the form

P{X − PX ≥ t} ≤ exp (−B(t)) for t ≥ 0,

where B is an increasing function that behaves like c1t
2 for t ≈ 0 (subgaus-

sian) and no worse than c2t for large t (subexponential), for positive con-
stants c1 and c2. Only in Section 7.6, which is devoted to one example of
the so-called Kim-Vu inequalities, will B(t) not fit this general description.
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7.2. Bennett’s inequality for independent summands 2

I have included this example because it is closely related to a martingale
analog (Section 7.5) of the Bennett inequality.

It seems to me that some authors regard such an e−B(t) bound as uni-
versally inferior to a nice clean subgaussian tail bound. This certainly is not
true, as I pointed out in Section 6.3 for X distributed Bin(n, p). For that
case, the Hoeffding inequality gives P{X ≥ np + t} ≤ exp(−2t2/n), which
is derived via an upper bound for the MGF of X, is always inferior to the
tail bound derived from the actual MGF. For example, if p = 3/4, the tail
bound from Section 3.7 gives P{X ≥ 3n/4 + t} ≤ exp

(
−(8/3)t2/n

)
.

In general, the Hoeffding inequality depends on the somewhat crude
bound

var(W ) ≤ (b− a)2/4 if a ≤W ≤ b = a+ c,

which leads to the MGF bound

\E@ mgf.bdd.range\E@ mgf.bdd.range <1> logPeλW ≤ 1 + λPW + 1
2λ

2c2.

Such an inequality can be too pessimistic if W has only a small probability
of taking values near the endpoints of the interval [a, b]. It can sometimes be
improved by introducing second moments explicitly into the upper bound.

7.2 Bennett’s inequality for independent summands
Subexp::S:Bennett

The one-sided tail bound due to Bennett (1962) provides a particularly
elegant illustration of the idea that it pays to use information about variances
when bounding tail probabilitie using the MGF method.

The following argument simplifies Bennett’s approach. The magic be-
hind the improvement comes from the Fenchel-Legendre dual pair of convex
functions defined in Section 2.2:

f(λ) = eλ − 1− λ = 1
2λ

2�(λ)\E@ fbb\E@ fbb <2>

where �(λ) :=

∫ 1

0
2(1− s)eλsds for λ ∈ R

and

h(t) = (1 + t) log(1 + t)− t = 1
2 t

2ψBenn(t)\E@ hbb\E@ hbb <3>

where ψBenn(t) :=

∫ 1

0

2(1− s)
(1 + ts)

ds for t ≥ −1.
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§7.2 Bennett’s inequality for independent summands 3

The function h could be extended to a convex function on the whole real
line by defining h(x) = +∞ when t < −1. The function � is continuous,
convex, and strictly increasing. The function ψBenn is continuous, convex,
and strictly decreasing on [−1,∞). The conjugacy relationship is given by

\E@ fh.conj\E@ fh.conj <4> f∗(t) := supλ∈R+ (tλ− f(λ)) = h(t) for all t ∈ R.

So much for the magic; now back to the MGF argument. The function f
provides the bound that replaces <1>, via the rearrangement

eλW = 1 + λW + f(λW ) ≤ 1 + λW + 1
2(λW )2�(λW ).

If the random variable has PW 2 = v and W ≤ b for some constant b then,
using the fact that � is an increasing function and λW ≤ λb if λ ≥ 0, we
have

PeλW ≤ 1+λPW + 1
2λ

2v�(λb) ≤ exp
(
λPW + 1

2λ
2v�(λb)

)
for λ ≥ 0.

Divide by eλPW to deduce that

\E@ mgf.Bennett\E@ mgf.Bennett <5> Peλ(W−PW ) ≤ exp
(

1
2λ

2v�(λb)
)

= exp
(
vf(λb)/b2

)
for λ ≥ 0.

Remark. For the next Theorem it is important that summands Xi all
share the same upper bound, Xi ≤ b for all i. If we were to subtract
off the means the PX2

i ’s would be replaced by true variances but the
upper bounds might no longer be equal. We would have to replace b
by maxi(b − PXi). This trade-off has always intrigued me. Some
authors require zero means to get true variances; others just put up
with second moments. I was always left wondering if there was some
optimal compromise.

Subexp::Bennett.indep <6> Theorem. (Bennett’s inequality for independent summands) Let X1, . . . , Xn

be independent random variables with Xi ≤ b, for a positive constant b, and
PX2

i = vi for each i. Then

P

∑
i≤n

(Xi − PXi) ≥ t

 ≤ exp

(
− t2

2V
ψBenn

(
bt

V

))
for t ≥ 0.

where V is any constant with V ≥ Vn :=
∑

i≤n vi.

Remark. The case where b = 0, which gives a subgaussian tail, could
be obtained as a limit as b ↓ 0 if Xi ≤ 0 for all i.

I introduced the V to emphasize that we do not need to know the
exact value of Vn. It also makes the Theorem look more like the result
for martingale differences that will be proved in Section 7.5.
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§7.2 Bennett’s inequality for independent summands 4

Proof. Define S =
∑

i≤n(Xi − PXi) so that multiple appeals to <5> give

PeλS =
∏

i≤n
Peλ(Xi−PXi) ≤ exp

(
Vnf(λb)/b

2
)
.

Notice that the upper bound is an increasing function of Vn. Thus,

P{S ≥ t} ≤ inf
λ>0

e−λt exp
(
Vf(λb)/b2

)
= exp

(
− sup
λ>0

(
λt− Vf(λb)/b2

))
.

The expression in the exponent is V/b2 times

sup
λ>0

(
λb2t/V− f(λb)

)
= sup

s>0
(sbt/V− f(s)) = h(bt/V).

The exponent in the upper bound equals −(V/b2)1
2(bt/V)2ψBenn(bt/V).�

For a comparison between the Bennett and Hoeffding inequalities con-
sider the case where S =

∑
i≤nXi where the Xi’s are independent with

|Xi| ≤ b and PXi = 0 and var(Xi) = σ2 for each i. Then we have var(S) =
nσ2 = V and

P{S ≥ t
√

var(S) } ≤

{
exp

(
−1

2 t
2(σ/b)2

)
using Hoeffding

exp
(
−1

2 t
2ψBenn(bt/σ

√
n
)

using Bennett
.

If σ is smaller than b then the subgaussian Hoeffding bound is penalized by
a small factor (σ/b)2 in the exponent, whereas the exponent for the Bennett
tail is close to −t2/2 for moderate t and slowly degrades towards the nearly
linear −1

2 t
√
n log(2t/

√
n) as t gets large. For example, if σ/b = 1/2 then

the Bennett bound is superior when ψBenn(bt/σ
√
n) ≥ 1/4, that is, when

2t/
√
n ≤ ψ−1

Benn(1/4) ≈ 16.13 or t ≤ 8.06
√
n.

For arguments that do not involve the extreme tails of the S distribution
the Bennett bound provides better control.

Subexp::Binomial <7> Example. As a check on the sharpness of Theorem <6> consider the case
whereXi = ξi−p, where ξ1, . . . , ξn are independent Ber(p)’s and S =

∑
iXi.

Note that PXi = 0 and PX2
i = pq and Xi ≤ q = 1−p. For t ≥ 0 the Theorem

gives

\E@ Bin.Bennett\E@ Bin.Bennett <8> P{S ≥ t} ≤ exp

(
− t2

2npq
ψBenn

(
t

np

))
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7.3. Bernstein’s inequality 5

Using the fact that
∑

i≤n ξ has a Bin(n, p) distributions we also have a
bound, from Section 3.7,

\E@ Bin.mgf\E@ Bin.mgf <9> P{S ≥ t} ≤ exp

(
− t2

2npq

[
qψBenn

(
t

np

)
+ pψBenn

(
− t

nq

)])
for t ≥ 0

As <9> comes from a minimization involving the actual MGF it is better
than <8>, which starts from an upper bound for that MGF. The superiority
can also be seen directly from the fact that a convex combination of two
distinct real numbers is greater than the smaller of the two, together with
the inequality

ψBenn(−t/nq) > 1 > ψBenn(t/np) if t > 0.

The Taylor expansion,

ψBenn(y) = 1− y/3 +O(y2) for y near 0,

sheds some light on the differences between <9> and <8>. For values
of t ≥ 0 with max(t/np, t/nq) not too large,

ψBenn(t/np) = 1− qt

3npq
+O

(
t2

n2
p−2

)
qψBenn

(
t

np

)
+ pψBenn

(
− t

nq

)
= 1− (q − p)t

3npq
+O

(
t2

n2
(p−2 + q−2)

)
.

The general Bennett bound does not capture the skewness contribution from
PS3 = npq(q − p).�

7.3 Bernstein’s inequality
Subexp::S:Bernstein

In Section 2.2 you saw that ψBenn(t) ≥ (1 + t/3)−1 for t ≥ −1. Thus the
Bennett inequality from Theorem<6> implies a weaker result: ifX1, . . . , Xn

are independent with PX2
i = vi and Xi ≤ b = 3B and V ≥

∑
i vi then

\E@ Bernstein.indep0\E@ Bernstein.indep0 <10> P{
∑

i≤n
(Xi − PXi) ≥ t

√
V } ≤ exp

(
− t2/2

1 +Bt/
√
V

)
for t ≥ 0,

a version of Bernstein’s inequality. When t �
√
V /B the exponent is

close to −t2/2. When Bt/
√
V is large, the exponent behaves like −t/(2B).

That is, the inequality looks like a subgaussian bound for Bt/V small and
like an exponential bound further out in the tail.
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§7.3 Bernstein’s inequality 6

Remarks.

(i) I wrote the bounding constant as 3B rather than b in order to avoid a
lot of powers of 3. It is also very convenient that, for each ` ∈ N,

1
2 (`+ 2)! = 3× 4× · · · × (`+ 2) ≥ 3`.

This little trick also puts the moment bound in a form closer to the one
introduced by Bernstein.

(ii) The Bernstein inequality, with attention focussed on the subgaussian
region, played a key role in the early history of empirical process theory:
Dudley (1978) used it to prove his functional central limit theorems.

The boundedness assumption behind <10> can be replaced by a weaker
moment assumption, due to Bernstein, without affecting the tail bound.

Subexp::Bernstein.condition <11> Definition. Say that a random variable X satisfies the Bernstein condition
if there are positive constants v and B for which P|X|k ≤ 1

2vB
k−2k! for

k ≥ 2. Equivalently, P|X/B|k ≤ 1
2vk!/B2 for each k ≥ 2.

Remark. If X is a random variable for which PX2 ≤ v and |X| ≤ b =
3B then P|X|k ≤ PX2(3B)k−2 ≤ vBk−23k−2 ≤ 1

2vB
k−2k! for k ≥ 2.

The constant B plays the role of a scaling parameter. It is often cleaner
to remove the main effect of B by working with the variable Y = X/B and
reparametrizing, α = v/B2. For example, for 0 ≤ λ < 1,

P
(
eλY − 1− λY

)
=
∑

k≥2

λkPY k

k!
≤ α

2

∑
k≥2

λkk!

k!
=
αλ2/2

1− λ
.

which rearranges to

PeλY ≤ 1 + λPY +
αλ2/2

1− λ
≤ exp

(
λPY +

αλ2

2(1− λ)

)
for 0 ≤ λ < 1

and

Peλ(Y−PY ) ≤ αλ2

2(1− λ)
for 0 ≤ λ < 1.

If you have read Section 3.6 you will recognize the final inequality as the
defining property for membership in subGamma(α), for which several tail
bounds were derived. Tail bounds for X can be recovered by means of the
trivial equality P{X ≥ t} = P{Y ≥ t/B}.
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§7.3 Bernstein’s inequality 7

IfW1, . . . ,Wn are independent random variables withWi ∈ subGamma(αi)
for each i then

Peλ
∑
iWi =

∏
i
PeλWi ≤

∑
i αλ

2/2

(1− λ)
for 0 ≤ λ < 1.

That is,
∑

iWi ∈ subGamma(
∑

i αi). Using this fact, together with the
tail bounds from Section 3.6, we then get a result that contains Bernstein’s
version of his inequality.

Subexp::Bernstein.unbdd <12> Theorem. Suppose X1, . . . , Xn are independent random variables with

P|Xi|k ≤ 1
2viB

k−2k! for k ≥ 2, for each i,

for some positive constants vi and B, the same for each i. Then∑
i
(Xi − PXi)/B ∈ subGamma(V/B2) where V =

∑
i vi

and

P
{∑

i≤n
(Xi − PXi) ≥ t

}
≤ e−H1 ≤ e−H2 for t ≥ 0.

where

H1 =
t2

V +Bt+
√
V2 + 2BVt

≥ H2 =
t2

2(V +Bt)
.

Similar bounds also hold for the lower tails, because P|Xi|k = P| −Xi|k.

Remarks.

(i) The H1 and H2 refer to functions defined in Section 3.6.

(ii) I learned of the H1 version from Bennett (1962, page 39). Bernstein only
proved the H2 form of the inequality. See Uspensky (1937, pages 204–
206) for an English translation of Berstein’s argument. Bennett cited a
1924 paper by Bernstein (which I have not seen) as the primary source.
See the Notes to Chapter 3 for more about why the Bernstein result
‘seemed to have escaped notice in the English-speaking world’, an over-
sight perpetuated by modern authors who still credit the whole MGF
method to Chernoff.

(iii) The derivation of the H1 version of the inequality by Bennett (1962,
page 37) contains the amazing assertion that the minimizing value of
a parameter c (corresponding to my λ) is equal to t/(σF ), where F is
actually a function of c. Nevertheless, if one ignores this curious circu-
larity it does lead to a legitimate choice for c, albeit not the minimizing
value.
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§7.3 Bernstein’s inequality 8

(iv) The Bernstein condition for individual Xi’s is used only to establish the
inequality

∑
i≤n P|Xi|k ≤ 1

2VB
k−2k! for k ≥ 2. See Problem [6] for an

example where the added generality helps.

(v) The V in the Theorem plays the role of a variance. The H2 bound from
the Theorem can also be written as

P{
∑

i
(Xi − PXi) ≥ t

√
V } ≤ exp

(
− t2/2

1 +Bt/
√
V

)
.

For a given ε in (0, 1), the upper bound is ≤ exp(−(1 − ε)t2/2) pre-
cisely when 0 ≤ t ≤ ε

√
V / ((1− ε)B), which shows the importance of

having
√
V much larger than B if the Bernstein bound is to provide a

usefully large interval of subgaussian tail behavior.

If we are really only interested in a one-sided, upper bound then it is a
tad superfluous to impose both upper and lower bounds on Xi via control
of P|Xi|k. Boucheron, Lugosi, and Massart (2013, page 37) derived such
a bound from an assumption on the moments of the positive parts X+

i =
max(0, Xi). They attributed the main idea to Emmanuel Rio. They replaced
the assumptions of Theorem <12> by

(i) the Xi’s are independent,

(ii)
∑

i≤n PX
2
i ≤ V,

(iii)
∑

i≤n P
(
X+
i

)k ≤ VBk−2k!/2 for k ≥ 3.

The proof is almost the same as the proof of the Theorem. One starts
from the inequality

ex ≤ 1 + x+ x2/2 +
∑

k≥3
(x+)k/k! for x ∈ R,

which follows from ex − 1− x = 1
2x

2�(x) with �(x) ≤ �(0) = 1 if x < 0 and
is otherwise an equality.

Define Yi = Xi/B and α = V/B2. For λ > 0 we have

PeλYi ≤ 1 + λPYi + λ2PY 2
i /2 +

∑
k≥3

Pλk
(
Y +
i

)k
/k!,

which, for 0 ≤ λ < 1, implies

P exp
(
λ
∑

i
(Yi − PYi)

)
≤ exp

(
λ2α/2 +

∑
k≥3

αλk/2
)
≤ exp

(
αλ2/2

1− λ

)
.

That is,
∑

i(Yi − PYi) ∈ subGamma(α). And so on.
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§7.3 Bernstein’s inequality 9

So far in this Section I have mostly been treating the Bernstein inequality
as a tail bound for a subGamma distribution, following the approach taken
by Boucheron et al. (2013, Sections 2.4, 2.7). In contrast, Vershynin (2018,
Section 2.8) derived Bernstein-style bounds for sums of independent sub-
exponential random variables, that is, random variables with finite LΨ1

norms. Earlier, van der Vaart and Wellner (1996, page 103) had noted the
connection between the Bernstein condition <11> for a random variable X
and the behavior of Pf(|X|/rB), for r = 1, 2. See Problems [2] and [4]
for the inequalities relevant to the connections between LΨ1 (or the closely
related Lf) and various Bernstein inequalities.

It took me some time to realize that the works of the eminent authors
cited in the previous paragraph were actually closely related to each other.
Contemplation of the following Example helped put me on the right track.

Subexp::double.exp <13> Example. Suppose X has a double exponential distribution, which has
density g(x) = 1

2e
−|x| with respect to Lebesgue measure. These facts follow

from easy Calculus exercises:

(i) P{|X| ≥ t} = e−t for t ≥ 0;

(ii) PeλX = (1− λ2)−1 for |λ| < 1;

(iii) PXk = 0 when k is odd and P|X|k = k! for k ∈ N;

(iv) ±X ∈ subGamma(2) because

logMX(λ) = − log(1− λ2) = λ2 + λ4 + . . .

≤
(
λ2 + λ3 + . . .

)
=

2λ2/

1− λ
for |λ| < 1.

Property (iv) leads to the subGamma tail bound

P{|X| ≥ t} ≤ 2 exp

(
− t2

2(2 + t)

)
for t ≥ 0,

which might seem to contradict property (i). However, a little algebra shows
that t2/(4 + 2t) < t for all t > 0.

The moral of the story is: a tail bound that is close to subgaussian for
some range of t need not be better than an exponential bound 2e−t. My
brain had a hard time unlearning the false fact that subgaussian is better
than subexponential. This Example reinforces the message that it is unwise
to interpret Theorem <12> as a promise of useful subgaussian properties
if
√
V /B is not large. Also, the fact that t2 ≤ t for 0 ≤ t ≤ 1 should be

another reminder that subgaussianity is only interesting for larger values
of t.�
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7.4. The Hanson-Wright inequality for subgaussians 10

7.4 The Hanson-Wright inequality for subgaussians
Subexp::S:HW

This Section is based on an elegant argument by Rudelson and Vershynin
(2013) supplemented by Vershynin (2018, Chapter 6). Both these sources
discussed the history of the Hanson-Wright inequality

The problem is to prove concentration of a quadratic X ′AX around its
expected value, whereX = (X1, . . . , Xn) is a vector of independent, subgaus-
sians and A is any n×n real matrix. To simplify the argument I assume that
maxi τ(Xi) ≤ 1 and that the A matrix has zeros down its diagonal, which
ensures P

∑
i,j XiA[i, j]Xj = 0. For the part of the argument that would

deal with
∑

iA[i, i](X2
i − PX2

i ) if diag(A) were nonzero see Problem [6],
which shows there are universal constants c1 and c2 for which

P{
∑

i
ai(X

2
i − PX2

i ) ≥ t} ≤ exp

(
−t2

c1|a|22 + c2|a|∞t

)
for t ≥ 0,

for each a ∈ Rn, again under the assumption that maxi τ(Xi) ≤ 1.

Subexp::HW <14> Theorem. Let X1, . . . , Xn be independent subgaussian random variables
with τ(Xi) ≤ 1 for each i and let A be an n × n matrix of real numbers
with A[i, i] = 0 for each i. Then, for a universal constant C,

P{X ′AX ≥ t} ≤ exp
(
−C min

(
t2/‖A‖2

F
, t/‖A‖2

))
for t ≥ 0,

where ‖A‖2
F

:= trace(A′A) =
∑

i,j A
2
i,j and ‖A‖2 := sup‖u‖2≤1 ‖Au‖2.�

Remarks.
(i) There are no assumptions of symmetry or positive definiteness on A.

The proof also works with A replaced by −A, leading to a similar upper
bound for P{|X ′AX| ≥ t}. To get the analogous result for subgaussians
with different scale factors τ(Xi) = τi, replace A by TAT where T =
diag(τ1, . . . , τn). The constants C is not particularly important.

(ii) Both Rudelson and Vershynin (2013) and Vershynin (2018) wrote the
upper bound as

exp
(
−C min

(
t2/‖A‖2

F
, t/‖A‖2

))
.

The asserted inequality could be put in a form closer to the inequalities
in Theorem <12> by using the fact that

min
(
t2/V, t/B

)
≥ t2/(V + tB) ≥ 1

2 min
(
t2/V, t/B

)
.
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§7.4 The Hanson-Wright inequality for subgaussians 11

(iii) The quantity ‖A‖
F

is called the Frobenius (or Hilbert-Schmidt) norm of
the matrix and ‖A‖2 is the norm of A as a linear map from Rn (under

its usual Euclidean norm ‖u‖ =
√∑

i≤n u
2
i ) back into itself. In general,

if G is a d×m matrix of rank k ≤ min(d,m) then there exist orthonormal
bases {v1, . . . , vm} for Rm and {u1, . . . , ud} for Rd and singular values

σ1 ≥ σ2 ≥ · · · ≥ σk > 0 for which G =
∑k
j=1 σjujv

′
j . The representation

implies that Gvj = σjuj for j ≤ k and Gvj = 0 for j > k. It is also

easy to deduce that ‖G‖F =
√∑

j σ
2
j and ‖G‖2 = ‖Gv1‖2 = σ1. See

Trefethen and Bau (1997, Lectures 4, 5) if you are not familiar with the
singular value decomposition (SVD).

The following Example provides a preview of the method of proof for
Theorem <14>: bound a quadratic function of independent subgaussians
by an analogous quadratic function of independent standard normals. The
rotational invariance of the standard multivariate normal then leads to a
decomposition of the problem into a set of problems for one-dimensional
normals.

Subexp::NolanPollard <15> Example. Suppose W :=
∑

i,j∈[[n]] sisjA[i, j], where A is an n × n sym-
metric matrix with vector of eigenvalues ζ = (ζ1, . . . , ζn) and s1, . . . , sn are
independent Rademacher random variables (P{si = ±1} = 1/2). The diag-
onal contributes only the constant

∑
iA[i, i] to W , so we lose no generality

in assuming diag(A) = 0.
Here is a method, which I learned (in 1984, I think) from Gilles Pisier,

for bounding P{W ≥ t} when t ≥ 0. Define si = sgn(gi), where g =
(g1, . . . , gn) ∼ N(0, In). Write c for (2/π)1/2, the expected value of |gi|.
Then, by invoking Jensen’s inequality conditionally on the si’s and using
the fact that gi = si|gi|, we get

PeλW = P exp

(
λ
∑

i,j∈[[n]]
sisjP|gi|P|gj |A[i, j]/c2

)
≤ P exp

(
λ
∑

i,j
sisj |gi| |gj |A[i, j](π/2)

)
= P exp

(
1
2λπ

∑
i,j
gigjA[i, j]

)
.

By symmetry of A there exists an orthogonal matrix L for which A =
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§7.4 The Hanson-Wright inequality for subgaussians 12

L′diag(ζ)L. Most conveniently we also have∑
j
ζj = trace(diag(ζ)) = trace(A) = 0,

|ζ|22 =
∑

j
ζ2
j = trace(diag(ζ)2) = trace(A2) = ‖A‖2

F
,

|ζ|∞ = maxj |ζj | = ‖diag(ζ)‖2 = ‖A‖2 .

Thus g′Ag = h′diag(ζ)h =
∑

j ζjh
2
j =

∑
j ζj(h

2
j − 1), where h = Lg ∼

N(0, In) and

PeλW ≤ P exp(λY ) where Y = 1
2π
∑

j
ζjh

2
j .

It follows that

P{W ≥ t} ≤ infλ≥0 e
−λtPeλW ≤ infλ≥0 e

−λtPeλY .

If you read Section 3.6 you already know the value for the second infimum

START HERE

�

The main trick in the proof of the Theorem is a decoupling argument,
which Rudelson and Vershynin (2013) attributed to Bourgain (1999), that
lets us replace X ′AX by a simpler quadratic form. The idea is a more refined
and general version of the idea behind Pisier’s argument. The key matrix
facts are contained in the next Lemma, which use the properties of singular
value decompositions given in Remark (iii) following the statement of the
Theorem

Subexp::submatrix <16> Lemma. Suppose A can be written in block form as

A =

[
B1 G
B2 B3

]
where G is a d×m matrix with singular value decomposition G =

∑
i≤k θiuiv

′
i

with θ1 ≥ · · · ≥ θk > 0. Then

(i) ‖A‖
F
≥ ‖G‖

F
=
√∑

i≤k θ
2
i ,

(ii) ‖A‖2 ≥ ‖G‖2 = ‖Gv1‖2 = θ1.�
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§7.4 The Hanson-Wright inequality for subgaussians 13

Proof. For (i) note that

‖A‖2
F

=
∑

i,j∈[[n]]
A[i, j]2 ≥

∑
i∈[[d]],j∈[[m]]

G[i, j]2 = ‖G‖2
F

=
∑

i≤k
θ2
i .

For (ii), remember the SVD fact that ‖G‖2 = ‖Gv1‖2 = θ1. Define ṽ1 =
[0, v1], a unit column vector in Rn. Then

‖A‖2 ≥ ‖Aṽ1‖2 =

∥∥∥∥[Gv1

B3v1

]∥∥∥∥
2

=

√
‖Gv1‖22 + ‖B3v1‖22 ≥ ‖Gv1‖2 = ‖G‖2 .�

Finally we come to the proof of the main result.

Proof (of Theorem <14>). To avoid conditioning arguments, assume P =
⊗i∈[[n]]Pi on B(Rn), where [[n]] := {1, 2, . . . , n}, and each Xi is a coordi-
nate map, that is, Xi(x) = xi and X(x) = x. Write γ for the N(0, In) =
N(0, 1)⊗n distribution on Rn, and Q for the uniform distribution on {0, 1}n.
Under Q, the coordinates of the generic point δ = (δ1, . . . , δn) are inde-
pendent Ber(1/2) random variables. If I ⊂ [[n]] define PI = ⊗i∈IPi
and γI = ⊗i∈IN(0, 1). Notice that the distribution of X changes when P is
replaced by γ as the probability measure on Rn.

For each δ ∈ {0, 1}n define a new n× n matrix Aδ by

Aδ[i, j] = δi(1− δj)A[i, j].

Note that Qδi(1 − δj) = 1/4 if i 6= j but δi(1 − δi) = 0. The assumption
about diag(A) was needed so that QAδ = 1

4A.
By Jensen and Fubini,

\E@ decouple\E@ decouple <17> PeλX
′AX = Pe4λX′(QAδ)X ≤ QPe4λX′AδX .

For most of the remainder of the proof the δ is held fixed. Write D
for {i ∈ [n] : δi = 1} and M for [n]\D. Then X ′AδX = X ′DGXM where G :=
A[D,M ] and XD is made up of the coordinates Xi for i ∈ D. If the rows
and columns of A were permuted so that i < i′ for all i ∈ D and i′ ∈ M
then Aδ and A would look like

Aδ =

[ D M

D 0 G
M 0 0

]
and A =

[ D M

D B1 G
M B2 B3

]
for some Bi’s.

Chap 7. Between subgaussian and subexponential ./ Draft: 5 Aug 2021



§7.4 The Hanson-Wright inequality for subgaussians 14

The quadratic X ′AδX equals X ′DGXM =
∑

i∈D, j∈M XiG[i, j]Xj . Under
both P = PD ⊗ PM and γ = γD ⊗ γM the coordinate blocks XD and XM

are independent. For fixed ξ ∈ RD and η ∈ RM , independence and subgaus-
sianity imply

PDe
4λX′

Dξ ≤ exp
(

1
2(4λ)2 ‖ξ‖22

)
= γDe

4λX′
Dξ,

PMe
4λη′XM ≤ exp

(
1
2(4λ)2 ‖η‖22

)
= γMe

4λη′XM .

Thus, by taking η = G′XD then ξ = GXM we get

PDPMe
4λX′

DGXM ≤ γMPDe
4λX′

DGXM ≤ γMe8λ2‖GXM‖22 .

If G has SVD
∑k

j=1 θjujv
′
j with θ1 ≥ · · · ≥ θk > 0 then

GXM =
∑k

j=1
θjujv

′
jXM =

∑k

j=1
θjZjuj where Zj = vjXM for j = 1, . . . , k

so that ‖GXM‖22 =
∑

j≤k θ
2
jZ

2
j .

Under γM , the random variables Z1, . . . , Zk are independent N(0, 1)’s
and their squares are independent χ2

1’s, with γM exp(λZ2
j ) = (1 − 2λ)−1/2

for 2λ < 1 and γM exp(8λ2θ2
jZ

2
j ) = (1 − 16λ2θ2

j )
−1/2 for 16λ2θ2

j < 1. It
follows that

\E@ logMGF\E@ logMGF <18> logPe4λX′AδX ≤ −1
2

∑
j≤k

log(1−16λ2θ2
j ) if 16λ2θ2

j < 1 for each j.

The last inequality looks a little like the bound from Section 3.6 for the
logMGF of a Gamma(α) distributed random variable. Of course α is now
replaced by 1/2 and the −λ − log(1 − λ) is replaced by log(1 − 16λ2θ2

j ).

The good news is that we already have a λ2 in the bound. The bad news
is that the sneaky tricks that led to the subGamma no longer lead to a
manageable upper bound for the MGF. However there is an alternative way
to get a good upper bound.

Note that, for each constant c with 0 < c < 1

− log(1− t) = t+
t2

2
+
t3

3
+ · · · ≤ t

1− t
≤ t/(1− c2) for 0 ≤ t ≤ c2.

With for t = 16λ2θ2
j ≤ 16λ2θ2

1 for 1 ≤ j ≤ k and an appeal to Lemma <16>,
this inequality bounds the right-hand side of <18> by

\E@ MGF.bnd\E@ MGF.bnd <19> 8λ2/(1− c2)
∑

j
θ2
j ≤ ‖A‖

2
F

provided 4λ ‖A‖2 ≤ c.
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7.5. A Bennett-style inequality for martingales 15

Here I am using the facts that θ1 = ‖G‖2 ≤ ‖A‖2 is the largest of the θj ’s.
To summarize:

Pe4λX′AδX ≤ exp
(
D1λ

2
)

for 0 ≤ λ ≤ D2

where D1 := 8 ‖A‖2
F
/(1− c2) and D2 := c/(4 ‖A‖2).

Notice that the upper bound does not depend on δ. The integration with
respect to Q has no effect; the left-hand side can be replaced by PeλX

′AX .
That leaves us with a simple minimization to bound the tail probabilities:
for t ≥ 0,

logP{X ′AX ≥ t} ≤ min{D1λ
2 − λt : 0 ≤ λ ≤ D2}.

An appeal to Lemma <Subexp::constrained.min> completes the proof.
(Readers with spare time on their hands might want to optimize over the
choice of c.)�

7.5 A Bennett-style inequality for martingales
Subexp::S:BennettMG

Theorem <6> has a very useful generalization where the assumption of
independence of X1, . . . , Xn is replaced by the assumption that they are
martingale differences for a filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn.

Remark. Note that Theorem <6> allowed the possibility that PXi

might not be zero, so that PX2
i might be larger that var(Xi). This time

the martingale difference property requires the conditional epectation
Pi−1Xi to be zero so that Pi−1X2

i is the conditional variance.
As before, I will omit the various ‘almost sure’ qualifications.

Subexp::Bennett.mda <20> Theorem. (Bennett for martingales) Suppose X1,. . . , Xn are martingale
differences for which there exist nonnegative, Fj−1-measurable random vari-
ables Mj and vj such that Xj ≤ Mj and Pj−1X

2
j ≤ vj for each j. Define

Sn = X1 + · · ·+Xn and Vn = v1 + · · ·+ vn. For positive constants b and V

define Gb,V := {maxj≤nMj ≤ b, Vn ≤ V}. Then

P
(
{Sn ≥ t} ∩Gb,V

)
≤ exp

(
− t2

2V
ψBenn

(
bt

V

))
for each t ≥ 0.

Remark. The constants b and V can be allowed to depend on t,
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§7.5 A Bennett-style inequality for martingales 16

Proof. Define Si =
∑

j≤iXj and Vi =
∑

j≤i vj for 1 ≤ i ≤ n. To allow a
clean recursive argument also define S0 = V0 = 0.

As with many martingale proofs, the main idea is to multiply the in-
crements Xj by predictable weights, which sets up an appeal to the analog
of inequality <5> for conditional expectations. The weights come from the
stopping time τ := inf{j ≥ 1 : Mj > b or Vj > V}. As usual, the infimum of
an empty set is taken to be +∞; that is, {τ = +∞} = Gb,V. More generally,

\E@ pred.st\E@ pred.st <21> {τ > j} = {maxi≤jMi ≤ b and Vj ≤ V} ∈ Fj−1 for 1 ≤ j ≤ n.

Remark. The sequences {vj} and {Mj} are said to be predictable,
because the values vj and Mj are both determined by what we learn
up to step j − 1. The event {τ ≤ i} is not just Fi-measurable, as
required by the definition of a stopping time; the random variable τ is a
predictable stopping time. Compare with Pollard (1984, pages 172–
179). The corresponding concept in continuous time is exceedingly
subtle. See Dellacherie and Meyer (1978, § IV.69) for example.

The Fj−1-measurability of the event {τ > j} lets us stop the {Si} process
before the event Gcb,V occurs, without destroying the martingale property.
Define new increments Yj = Xj{τ > j} for 1 ≤ j ≤ n. Then, with probabil-
ity one,

Yj ≤ {τ > j}Mj ≤ b,\E@ Y.bnd\E@ Y.bnd <22>

Pj−1Yj = Pj−1{τ > j}Xj = {τ > j}Pj−1Xj = 0,\E@ Y.mg\E@ Y.mg <23>

wj := Pj−1Y
2
j = Pj−1{τ > j}X2

j = {τ > j}Pj−1X
2
j ≤ {τ > j}vj .\E@ Y.condit.var\E@ Y.condit.var <24>

Inequalities <22> and <23> lead to the conditional analog of inequal-
ity <5>,

\E@ Y.mgf.Dele\E@ Y.mgf.Dele <25> Pj−1e
λYj ≤ 1 + 0 + 1

2λ
2wj�(λb) ≤ exp

(
1
2λ

2wj�(λb)
)

for λ ≥ 0,

and inequality <24> ensures that

\E@ Wn.bnd\E@ Wn.bnd <26> Wi :=
∑

j≤i
wj ≤

∑
j≤n
{τ > j}vj ≤ V for all i.

The partial sums Tj = Y1+· · ·+Yj , with T0 = 0, also define a martingale,
for which Tn = Sn on the set {τ = +∞} = Gb,V. Thus

P
(
{Sn ≥ t} ∩Gb,V

)
= P

(
{Tn ≥ t} ∩Gb,V

)
≤ P{Tn ≥ t} ≤ infλ>0 P exp (λTn − λt) .
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7.6. Concentration of random polynomials 17

We are back to the MGF method for a martingale {Tj : 0 ≤ j ≤ n} with
well behaved increments.

Define Dj = exp
(
λTj − 1

2λ
2Wj∆(λb)

)
with D0 = 1. For j ≥ 1 we have

Pj−1Dj = Pj−1Dj−1 exp
(
λYj − 1

2λ
2wj∆(λb)

)
= Dj−1 exp

(
−1

2λ
2wj∆(λb)

)
Pj−1 exp (λYj)

≤ Dj−1

Take expected values then iterate to deduce that

P exp
(
λTn − 1

2λ
2V∆(λb)

)
≤ PDn by inequality <26>

≤ PD0 = 1.

That is, P exp(λTn) ≤ exp
(

1
2λ

2V∆(λb)
)
, the same as the bound for P exp(λS)

in the proof of Theorem <6>. The minimization of P exp (λTn − λt) follows
the argument in that proof.�

The expanded version of inequality asserted by the previous Theorem
implies

\E@ mg.upper\E@ mg.upper <27> P{Sn ≥ t} ≤ exp

(
− t2

2V
ψBenn

(
bt

V

))
+ P{maxj≤nMj > b or Vn > V}.

If, in addition to the assumptions of the Theorem we actually have two-sided
control over the increments, |Xj | ≤ Mj , then we get a two-sided bound
covering both tails,

\E@ mg.two-sided\E@ mg.two-sided <28> P{|Sn| ≥ t} ≤ 2 exp

(
− t2

2V
ψBenn

(
bt

V

))
+P{maxj≤nMj > b or Vn > V}.

See Section 7.6 for a surprising application of this two-sided bound, with
the final probability bounded by∑

j≤n
P{Mj > b}+ P{maxjMj ≤ b and Vn > V}.

*7.6 Concentration of random polynomials
Subexp::S:KimVu

The main ideas for the following material come from the papers by Kim
and Vu (2000) and Vu (2002). My Theorem <32> is a minor variation on
Theorem 4.1 of Vu (2002). See the Notes for an explanation of the liberties
I am taking in referring to the “Kim-Vu method”.
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§7.6 Concentration of random polynomials 18

Their method deals with random variables expressible as polynomials f(ξ)
in independent random variables ξ = (ξ1, . . . , ξn), each taking values in [0, 1].
For example, we might have f(x) = 3x2

1x
5
2 +2x3

1x
3
2x3x4 +7x3

1x
5
4x5x9 +6x8

8x
9
9

for n = 9. The degree of f is defined to be the largest of the degrees of its
terms, 17 = max(2 + 5, 3 + 3 + 1 + 1, 3 + 5 + 1 + 1, 8 + 9) for the example
just given. At the cost of an extra factor of 2 we may assume that all the
coefficients in the polynomial are nonnegative.

To simplify notation, I will again identify the ξi’s with the coordinate
maps on [0, 1]n equipped with a product measure P = ⊗i≤nPi.

In general, the polynomials will be written in the form

\E@ f.rep\E@ f.rep <29> f(x) =
∑

a∈A
wax

a for x ∈ [0, 1]n

where A is a finite subset of Zn+, the set of all n-tuples of nonnegative integers,
and for a = (a1, . . . , an)

xa =
∏

i≤n
xaii with the convention that x0

i = 1.

Note that the degree of f equals maxa∈A{wa > 0}
∑

j≤n aj .
The challenge is to find useful exponential tail bounds for |f(ξ)−Pf(ξ)|.

The polynomials do satisfy a bounded difference conditions but, as explained
in Section 6.5, the squared ranges are too crude as upper bounds for the
variances. Instead, a recursive appeal to Theorem <20> will give a better
result that involves two scaling quantities, E0(f) and E1(f). Their defini-
tions, which involve some subtlety, greatly puzzled me when I first looked
at the Kim-Vu and Vu papers. Only after I had extracted the main ideas in
the proof did I understand the motivation for the following definition.

Subexp::ee.def <30> Definition. For each nonempty subset H of the index set [[n]] := {1, 2, . . . , n}
and x ∈ [0, 1]n define

DHx
a =

{
0 if there exists an i ∈ H for which ai = 0

xa
′

where a′i = 0 for i ∈ H and a′i = ai otherwise
.

If H = {j} is a singleton write Dj instead of D{j}. For a polynomial f
as in <29> define DHf =

∑
a∈AwaDHx

a and E1(f) = maxH 6=∅ PDHf and
E0(f) = max (Pf(ξ),E1(f)).�

Remark. The effect of Dj is similar to the effect of the partial
derivatives ∂r/∂xrj , except for the introduction of some extra constants.
If aj = 0 then both Dj and ∂/∂xj would kill the whole xξa term.
If aj = r > 0 then both Dj and ∂r/∂xrj would neatly remove the x

aj
j

factor, at least from the ath term. I find it much cleaner to work
with DH rather than with partial derivatives, as Vu (2002) did.
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Subexp::partial.g.eg <31> Example. For g(x) = 3x2
1x

5
2 + 2x3

1x
3
2x3x4 + 7x3

1x
5
4x5x9 + 6x8

8x
9
9,

DHg(x) = 3 + 2x3x4 + 0 + 0 if H = {1, 2}
DHg(x) = 0 + 2x3

1x4 + 0 + 0 if H = {2, 3}

whereas ∂2∂5g(x)/∂x2
1∂x

5
2 = 720+0+0+0 and ∂2∂3g(x)/∂x2

1∂x
3
2 = 360ξ2

2 +
72x1ξ3x3. It is not possible to achieve the effect of D{1,2} (or even D1) with

partial derivatives.�

Subexp::KV-thm <32> Theorem. For every kth degree polynomial f (with nonnegative coefficients),

\E@ KV.ineq\E@ KV.ineq <33> P{|f(ξ)− Pf(ξ)| ≥ Cktk
√

E0(f)E1(f) } ≤ Cn,ke−h(t) for all t > 0,

where the constants are defined recursively by Cn,k = 2 + (n + 1)Cn,k−1

with Cn,1 = 2 and Ck = 2k(1 + Ck−1) with C1 = 1.�

Remark. The original Kim-Vu and Vu proofs gave tail bounds involving
factors exp(−t/4) for t > 0. For my version of their results the t/4 is
replaced by

h(t) := (1 + t) log(1 + t)− t = 1
2 t

2ψBenn(t),

which fits better with appeals to Bennett inequalities. I do not regard
the extra log factor as a particulary significant improvement.

The recursion for Cn,k implies Cn,k(λ) ≤ 4(n + 1)k−1. The
appearance of such powers of n in the final bound is an inevitable
consequence of the appeal to a union bound for maxjMj in <36>.

The proof of the Theorem, which appears at the end of the Section, will
involve a recursive argument (in the form of an induction on k), starting
from the usual representation via a sum of martingale differences,

Sn = f(ξ)−Pf(ξ) = X1 + · · ·+Xn where Xj = Pjf(ξ)−Pj−1f(ξ).

The Pj conditional expectation is obtaining by integrating over the variables
ξj+1, . . . , ξn. To avoid an excess of subscripted superscripts I will use a
notation (borrowed from R),

xa[I] =
∏

i∈I
xaii for I ⊂ [[n]],

with abbreviations a[< j] for the special case where I = {i ∈ [[n]] : i < j},
and so on. If I = ∅ interpret ξa[I] to be identically equal to 1. Thus

Pjf(ξ) =
∑

a∈A
waξ

a[≤j]Pξa[>j]
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so that

\E@ Xj.rep\E@ Xj.rep <34> Xj =
∑

a∈A
waξ

a[<j]
(
ξ
aj
j − Pξ

aj
j

)
Pξa[>j].

If aj = 0 then ξ
aj
j = 1 and jth factor becomes zero. If aj > 0 then the jth

factor takes values in [−1,+1], which leads to the predictable upper bound

\E@ Mj.def\E@ Mj.def <35> |Xj | ≤Mj :=
∑

a∈A
wa{aj > 0}ξa[<j]Pξa[>j].

Very conveniently, the bound Mj = Mj(ξ1, . . . , ξj−1) is a polynomial of
degree at most k − 1 because it contains contributions from those a ∈ A
for which aj > 0 but with the ξ

aj
j factor excluded. Also note that PMj =

PDjf(ξ) ≤ E1(f), the first clue to the reason for the definition of E1.
The Bennett-like bound from Section 7.5 for positive constants b and V,

and Vn :=
∑

j≤n Pj−1X
2
j ,

P{|Sn| ≥ t} ≤ 2 exp

(
− t2

2V
ψBenn

(
bt

V

))
\E@ recursive\E@ recursive <36>

+
∑

j≤n
P{Mj > b}+ P{maxjMj ≤ b and Vn > V},

now points the way to a proof by induction on k. Unfortunately, the squaring
of the Xj leads to polynomial of degree greater than k for Vn. However, Vn
can be bounded by a polynomial of degree at most k − 1 by using the fact
that

Pj−1X
2
j ≤ bPj−1|Xj | on the set {Mj ≤ b}.

Here I was sorely tempted use the upper bound Mj for |Xj |. For subtle
reasons, such a simplification would create difficulties later in the proof. It
is better to use the inequality

Pj−1|Xj | ≤
∑

a∈A
wa{aj > 0}ξa[<j]Pj−1|ξ

aj
j − Pξ

aj
j |Pξ

a[>j]

≤
∑

a∈A
wa{aj > 0}ξa[<j](2Pξ

aj
j )Pξa[>j],

which leads to the bound

\E@ Un.def\E@ Un.def <37> Vn ≤ 2bUn where Un :=
∑

j≤n

∑
a∈A

wa{aj > 0}ξa[<j]Pξa[≥j].

The random variable Un = Un(ξ) is a polynomial of degree at most k−1 in ξ.
The sum over A in the definition of Un differs only slightly from the sum
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for Mj but the difference will be important in the proof of Lemma <42>,
which will show that E0(Un) ≤ kE0(f).

The inequality <36> is now replaced by

P{|Sn| ≥ t} ≤ 2 exp

(
− t2

2V
ψBenn

(
bt

V

))
\E@ recursiveU\E@ recursiveU <38>

+
∑

j≤n
P{Mj > b}+ P{2bUn > V},

which is nicely poised for an inductive appeal to the Theorem for polyno-
mials of degree at most k− 1. At least conceptually, those appeals generate
remainder terms involving polynomials of degree at most k − 2. And so
on. In essence we have to deal with a sequence of polynomials of decreasing
degree obtained by eliminating one term at a time from each product ξa.
The E0 and E1 are defined in way that controls all of these polynomials.

In my opinion, it is better to understand some simple cases before jump-
ing into the proof of Theorem <32>. If you are too eager to bother with
examples you could skip straight to Lemma <42>, which will explain the
cleverness in Definition <30>, before presenting the (short) proof of the
Theorem. However, you will then have to flip back to Example <39> for
the k = 1 starting point for the induction.

Subexp::k1 <39> Example. Calculate the Ej(f) for the simplest case where f has degree 1,
that is, f(ξ) = w0 +

∑
i≤nwiξi with 0 ≤ wi for all i.

The constant w0 has no effect on f(ξ) − Pf(ξ), so it might be cleaner
to set w0 equal to 0. However, repeated appeals to inequality <38> might
conceivably lead to a polynomial of degree one for which there is a nonzero
constant term w0, so it is better to retain the w0.

If H ⊂ [[n]] has size 2 or more then DH kills all the terms in f . If
H = {j} then DHf = wj . It follows that E1(f) = b := max1≤j≤nwj
and E0(f) = max(b,Pf(ξ)), which leads to the scale factor

γ2 := E0(f)E1(f) = max
(
b2, bPf(ξ)

)
.

Theorem <32> asserts

P{|f(ξ)− Pf(ξ)| ≥ tγ} ≤ 2e−h(t) for t > 0.

Compare with the two-sided version of the Bennett inequality for indepen-
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dent summands, f(ξ)− w0 =
∑

j≥1wjξj . First note that

Vn =
∑

j≥1
P(wjξi)

2

≤
∑

j≥1
bwjPξj because w2

j ≤ bwj and ξ2
j ≤ ξj

≤ bPf(ξ) ≤ γ2

so that Theorem <6> with maxj |wjξj | ≤ b gives

P{|f(ξ)− Pf(ξ)| ≥ tγ} ≤ 2 exp

(
− t

2γ2

2γ2
ψBenn(tγb/γ2)

)
≤ 2 exp

(
− t

2

2
ψBenn(t)

)
= 2 exp(−h(t)),

the second inequality coming from the fact that b/γ ≤ 1 and ψBenn is mono-
tone decreasing. That is, Theorem <32> for k = 1 follows directly from the
Bennett inequality for independent summands.�

Subexp::ER.triangles2 <40> Example. For your convenience, I repeat the introduction to the Exam-
ple from Section 6.5, which pointed out the deficiencies of the bounded-
differences McDiarmid inequality in establishing a concentration bound for
the number of triangles in an Erdős-Rényi random graph.

Suppose the edges of a graph with vertex set [[n]] := {i ∈ N : i ≤ n} whose
edges are a subset of the set E of all |E| :=

(n
2

)
pairs of distinct vertices. Two

edges are said to be adjacent if they share an endpoint. Three distinct edges form
a triangle if together they contain only three vertices: that is, the edges are {i, j},
{j, k}, and {k, i} for distinct vertices i, j, k. Write T for the set of all triangles,
subsets of E of size 3 that involve exactly 3 vertices. The set T has size

(n
3

)
.

The Erdös-Rényi random graph Gn(p) chooses its edges by means of a set of
independent random variables {ξe : e ∈ E}, with each ξe distributed Ber(p). That
is, Gn(p) includes e when ξe = 1, an event with probability p.

The number of triangles in Gn(p) equals f(ξ) where

f(y) :=
∑

{e1,e2,e3}∈T
ye1ye2ye3 for y ∈ {0, 1}E.

The expected number of triangles is θ := Pf(ξ) =
(n
3

)
p3.

Remember that the set E was enumerated in an arbitrary fashion as a se-
quence (ej : 1 ≤ j ≤ |E|).

The Chen-Stein method had suggested that, under the extraneous as-
sumption that np2 is small, for each ε > 0 there should be some s > 0 for
which

\E@ triangle.conc\E@ triangle.conc <41> P{|f(ξ)− θ| > s
√
θ } < ε.

Let us see how close we can get to such an inequality using Theorem <32>.
Calculate.
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(i) If H = {ei} for some edge ei then DH kills all triangles except for those
that have ei as one of their edges. As explained back in Section 6.5,
there are n−2 such triangles, corresponding to the choices of the third
vertex for the triangle. Thus DHf(x) is a sum of the form

∑
xejxek

over all n − 2 pairs of edges for which {ei, ej , ek} ∈ T. It follows
that PDHf = (n − 2)p2, the magic quantity identified in the post
mortem for the previous attempt at Erdös-Rényi.

(ii) If H = {ei, ej} then only triangles containing both ei and ej can
survive DH . If these two edges do not share a common vertex there
are no such triangles; otherwise, there is a single triangle containing
both edges. It follows that PDHf(ξ) is either 0 or p.

(iii) If H = {ei, ej , ek} then DHf is 1 if H ∈ T and 0 otherwise.

(iv) If |H| ≥ 4 then DHf = 0.

It follows that

E1(f) = max
(
(n− 2)p2, p, 1

)
and E0(f) = max (θ,E1(f)) .

To simplify the discussion, suppose np = R for an R large enough that θ
is the largest of the quantities

θ ≈ R3/6, (n− 2)p2 ≈ R2/n, p = R/n, 1.

In that case, E0(f) = θ and E1(f) = (n− 2)p2 and

γ :=
√
E0(f)E1(f) ≈ const ×

√
θ ×max(1,

√
np2 )

and the bound from Theorem <32> simplifies to

P{|f(ξ)− θ| > c1t
3
√
θ max(1,

√
np2 )} ≤ c2n

2e−h(t)

for constants c1 and c2. This inequality is remarkably close to the de-
sired <41> with c1t

3 playing the role of s. The extra n2 on the right-
hand side means that we need t large enough that h(t) ≈ t log(t) kills off
a 2 log n term. The presence of the

√
np2 factor suggests that the require-

ment that np2 is small, which came from the Chen-Stein argument in Sec-
tion 6.5, might not be as extraneous as I suspected.

Maybe one of other Theorems in the Vu (2002) paper could get us even
closer to the desired <41>. I have not checked.�
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Now I am ready to attack the proof of Theorem <32>. The main diffi-
culty comes with the choice of the constants b and V in the first step, which
involves some knowledge of the E0 and E1 constants for the Mj ’s and Un.

Subexp::ee.transfer <42> Lemma. For Mj as in <35> and Un as in <37>,

(i) E0(Mj) ≤ E1(f) for each j,

(ii) E0(Un) ≤ kE0(f).

Proof. Start with the inequality for the expected value ofMj(ξ1, . . . , ξj−1) =∑
a∈Awa{aj > 0}ξa[<j]Pξa[>j], which illustrates the general pattern of the

arguments. By independence of the ξi’s,

PMj =
∑

a∈A
wa{aj > 0}Pξa[<j]ξa[>j].

When aj > 0 the product ξa[<j]ξa[>j] equals Djξ
a. When aj = 0 the ath

term makes no contribution to Mj . Thus PMj ≤ PDjf(ξ) ≤ E1(f). The
final inequality comes from the fact that {j} is one of H’s over which the
max for E0(f) is taken.

Similarly, for a nonempty subset H of [[n]] = {i ∈ N : i ≤ n}

DHMj =
∑

a∈A
wa{aj > 0}

(
DHξ

a[<j]
)
Pξa[>j].

If H is not a subset of [[j − 1]] = {i ∈ N : i < j} then DHξ
a[<j] = 0 by

definition. If aj > 0 and H ⊂ [[j − 1]] then

P
(
DHξ

a[<j]
)
Pξa[>j] = P

(
DHξ

a[<j]
)
ξa[>j] = PDH∪{j}ξ

a.

Thus

PDHMj ≤
∑

a∈A
wa{aj > 0}PDH∪{j}ξ

a ≤ PDH∪{j}f(ξ) ≤ E1(f).

The argument for Un :=
∑

j≤n
∑

a∈Awa{aj > 0}ξa[<j]Pξa[≥j] is similar.
Again start with the expected value. Again by independence,

PUn =
∑
j≤n

∑
a∈A

wa{aj > 0}Pξa[<j]ξa[≥j] =
∑
j≤n

∑
a∈A

wa{aj > 0}Pξa.

Notice how this time we have no Dj inside the sum. Interchange the order
of summation and then note that∑

j≤n
{aj > 0} ≤

∑
j≤n

aj ≤ k
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to deduce that PUn ≤ kPf(ξ).
Similarly, for a nonempty subset H of [[n]],

PDHUn =
∑

j≤n

∑
a∈A

wa{aj > 0}P
(
DHξ

a[<j]
)
ξa[≥j]

=
∑

j≤n

∑
a∈A

wa{aj > 0}P
(
DHξ

a[<j]
)
ξa[≥j]

≤ P
∑

j≤n

∑
a∈A

wa{aj > 0}DHξ
a

≤ kP
∑

a∈A
waDHξ

a = kPDHf(ξ) ≤ E1(f).

For fixed j, the ath summand is again zero if either aj = 0 or H is not a
subset of [[j − 1]].�

The Lemma sheds some light on the cunning choices made for Defini-
tion <30>. If we were to bound the contribution P{Mj > b} to <38>
by the analogous inequality for Sn replaced by Mj then we would have to
deal with some new M ′k polynomials derived from the martingale decompo-
sition of the function Mj . Using the Lemma, we could bound the E0(M ′k)
terms by E1(Mj), which is smaller than E1(f). For that idea to work we
need E1(f) to control polynomials obtained by knocking out two of the co-
ordinates from ξ. That is, we need E1(f) to control contributions from DHf
for an H of size 2. And so on. The story is similar for Un. Definition <30>
ensures that we have control over all the polynomials obtained by knocking
out more and more coordinates of ξ. When we get down to a single remain-
ing coordinate then Example <39> takes over. That is why I like to think
of the whole proof for the Theorem as a recursive argument moving down a
tree with nodes represented by subsets of [[n]], with a polynomial attached
to each node. The tree is rooted at [[n]], with leaves corresponding to the
singleton subsets.

Proof (of Theorem <32>). The result for degree k equal to 1 was cov-
ered in Example <39>: for a polynomial g of degree 1,

P
{
|g(ξ)− Pg(ξ)| ≥ t

√
E0(g)E1(g)

}
≤ 2e−h(t).

The assertion of the Theorem is true with C1 = 1 and Cn,1 = 2.
In what follows we may always assume that t ≥ 1 because the up-

per bound will always be bigger than the decreasing function 2e−h(t) and
2e−h(1) ≈ 1.4.
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For the inductive step, assume the result holds for degree up to k − 1.
From <38> with t replaced by r = Ckt

k
√

E0(f)E1(f) we have

P
{
|f(ξ)− Pf(ξ)| ≥ Cktk

√
E0(f)E1(f)

}
\E@ recursive.r\E@ recursive.r <43>

≤ 2 exp

(
− r

2

2V
ψBenn

(
br

V

))
+
∑

j≤n
P{Mj > b}+ P{2bUn > V}.

To reap an inductive benefit we need

b ≥ PMj + Ck−1t
k−1
√

E0(Mj)E1(Mj) for each j,\E@ b.Mj\E@ b.Mj <44>

V/(2b) ≥ PUn + Ck−1t
k−1
√
E0(Un)E1(Un) .\E@ vv/b\E@ vv/b <45>

Of course this is the point at which Lemma <42> comes to the rescue.
Assuming t ≥ 1, the right-hand side of <44> is bounded above by

E1(f) + Ck−1t
k−1E1(f) ≤ (1 + Ck−1)tk−1E1(f)

and the right-hand side of <44> is bounded above by

kE0(f) + Ck−1t
k−1kE0(f) ≤ k(1 + Ck−1)tk−1E0(f).

If we choose Ck = 2k(1 + Ck−1) and

b = Ckt
k−1E1(f)

V = 2bk(1 + Ck−1)tk−1E0(f) = C2
kt

2k−2E0(f)E1(f)

then

r2/V =
C2
kt

2kE0(f)E1(f)

C2
kt

2k−2E0(f)E1(f)
= t2,

br/V =
Ckt

k−1E1(f)Ckt
k
√
E0(f)E1(f)

C2
kt

2k−2E0(f)E1(f)
= t
√
E1(f)/E0(f) ≤ t.

By virtue of the monotonicity of ψBenn and the inductive hypothesis, the
right-hand side of <43> is then bounded above by

2 exp
(
−1

2 t
2ψBenn(t)

)
+Cn,k−1(n+ 1)e−h(t) = (2 + Cn,k−1(n+ 1)) e−h(t).

The choice Cn,k = 2 + Cn,k−1(n+ 1) then leaves the bound asserted by the
Theorem for the probability on the left-hand side of <43>�
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7.7 Problems
Subexp::S:Problems

Remember that f(t) := et − 1− t = Ψ1(t)− t and Ψα(x) = ex
α − 1 for

α ≥ 1 are Young functions, with corresponding Orlicz norms ‖·‖f
and ‖·‖Ψα. Also remember Stirling’s formula,

k! =
√

2πk (k/e)kerk where (1 + 12k)−1 < rk < (12k)−1

and its weak analog: (k/e) ≤ k! ≤ kk.

[1] Here is an outline of the key step in the original proof for Theorem <6>Subexp::P:Bennett.original

given by Bennett (1962, page 42). The main task was to bound the MGF
for a random variable W with PW = 0, var(W ) = σ2, and W ≤ b with
probability one. Bennett showed that

\E@ max.mgf\E@ max.mgf <46> PeλW ≤ b2

b2 + σ2
e−λσ

2/b +
σ2

b2 + σ2
eλb for λ > 0.

With some brute-force Calculus this inequality can be used to derive an
upper bound similar to my inequality <5>. See Hoeffding (1963, page 23)
or Pollard (1984, page 194) for condensed accounts of the gruesome details.

b−r 0 b

Eλ

Qλ

bound from
 Section 1

Bennett’s ingenious idea (for which he acknowledged the help of a referee)
was to construct, for a fixed λ > 0, a quadratic Qλ(x) = αx2 + βx+ γ such
that

\E@ Qlam\E@ Qlam <47> Qλ(x) ≥ Eλ(x) for x ≤ b, with equality only at x = −σ2/b and x = b.

Here and subsequently, Eλ(x) = eλx, considered as a function of x for a
fixed λ. The following steps show you how to find the Qλ that satisfies <47>
and then how that inequality implies <46>.

(i) Let P denote the distribution that puts probability θ at b− r and probabil-
ity 1− θ at b. Show that P has expected value 0 and variance σ2 if

r = (b2 + σ2)/b and b− r = −σ2/b and θ = b2/(b2 + σ2).
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Remark. Note that the right-hand side of <46> equals Peλx. This P
is extremal amongst those distributions on (−∞, b] with expected
value 0 and variance σ2.

(ii) Write Eλ(x) for eλx and x0 for b − r, with r as in the definion of P . Find
α, β, γ as functions of λ for which

Eλ(x0) = Qλ(x0) = α
(
b2 − 2br + r2

)
+ β(b− r) + γ,

E′λ(x0) = Q′λ(x0) = 2α(b− r) + β,

Eλ(b) = Qλ(b) = αb2 + βb+ γ.

Hint: Define

e2(y) := Eλ(x0 + y)− Eλ(x0)− yE′λ(x0)

q2(y) := Qλ(x0 + y)− Qλ(x0)− yQ′λ(x0).

Use the fact that e2(r) = q2(r) = αr2, to show that

α = e2(r)/r2, β = E′λ(x0)− 2αx0, γ = eλb − αb2 − βb.

(iii) Use the two integral representations (cf. Section 2.2)

e2(y) = y2

∫ 1

0
(1− s)E′′λ(x0 + sy) ds,

q2(y) = y2

∫ 1

0
(1− s)2αds,

to show that

Qλ(x0 + y)− Eλ(x0 + y) = q2(y)− e2(y)

= y2R(y) where R(y) =

∫ 1

0
(1− s)

(
2α− E′′λ(x0 + sy)

)
ds.

Use the fact that E′′λ is strictly increasing to deduce that the function R(y)
is strictly decreasing.

(iv) From the equality Eλ(b) = Qλ(b) show that 0 = r2R(r). Then deduce
that R(y) > 0 for y < r, implying Qλ(x) ≥ Eλ(x) for x ≤ b, with equality
only at x = x0 and x = b.

(v) Finally, argue that

PeλW ≤ PQλ(W ) = αPW 2 + βPW + γ

= ασ2 + β.0 + γ

= PQλ(x) = Peλx.
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[2] Facts about LΨ1(P):Subexp::P:Psi1

(i) If X ∈ LΨ1(P) with γ1 := ‖X‖Ψ1
> 0, show that

P{|X| ≥ γ1t} ≤ P exp ((|X| − γ1t)/γ1) ≤ 2 exp (−t) for t ≥ 0.

Conversely, if P{|X| ≥ β1t} ≤ 2 exp(−t) for all t ≥ 0 and some β1 > 0, show
that

PΨ1(|X|/3β1) = P∞0 {|X| ≥ 3β1t} dt ≤
∫ ∞

0
2e−2tdt = 1.

Deduce that γ1 ≤ 3β1.

(ii) Again, if ∞ > γ1 := ‖X‖Ψ1
> 0, deduce from

1 ≥ PΨ1(|X|/γ1) =
∑

k∈N
P|X/γ1|k/k!

that ‖X‖k ≤ γ1(k!)1/k ≤ γ1k for each k ∈ N. That is,

L1(X) := supk∈N ‖X‖k /k ≤ ‖X‖Ψ1
.

Conversely, suppose L1 = L1(X) <∞. Show that

PΦ1(|X|/c) ≤
∑

k∈N
P(L1k/c)

k/k! ≤
∑

k∈N
(L1e/c)

k = 1 if c = 2L1/e.

Deduce that ‖X‖Ψ1
/(2e) ≤ L1(X) ≤ ‖X‖Ψ1

.

(iii) Suppose ‖X‖k ≤ L1k for all k ∈ N, with L1 a finite constant. For all real λ
with |λ| ≤ 1/(L1e) show that

PeλX ≤ 1 + λPX +
∑

k≥2

(|λ|L1k)k

k!
≤ exp

(
λPX +

(|λ|L1e)
2

1− |λ|L1e

)
.

Deduce that ±(X −PX)/(L1e) ∈ subGamma(1). Conversely, suppose Y is
a random variable for which ±Y ∈ subGamma(1). Show that

1+
∑
k∈N

λ2kPY 2k = 1
2

(
PeλY + Pe−λY

)
≤ exp

(
λ2/2

1− λ

)
for 0 ≤ λ < 1.

Deduce that ‖Y ‖2k2k ≤ 2ke1/4(2k)! for k ∈ N, implying supp≥1 ‖Y ‖p /p ≤ 5.2.

[3] Deducing LΨα facts from LΨ1 facts:Subexp::P:Psi1.Psi.alpha

(i) For each α > 1 show that X ∈ LΨα(P) if and only if |X|α ∈ LΨ1(P). Define
γα := ‖X‖Ψα . For such an X show that γαα = ‖ |X|α‖Ψ1

.
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(ii) Deduce from Problem [2] that

P{|X| ≥ γαt} = P{|X|α ≥ (γαt)
α} ≤ 2 exp(−tα) for t ≥ 0.

Conversely, if there is a constant β > 0 for which P{|X| ≥ βt} ≤ 2 exp(−tα)
for all t ≥ 0 deduce that γα ≤ 31/αβ.

[4] (cf. van der Vaart and Wellner, 1996, Section 2.2.2) Suppose X is a randomSubexp::P:Bernstein.equivalences

variable for which there exists a positive constant B such that P|X|k ≤
1
2vB

k−2k! for k = 3, 4, . . . , with equality at k = 2. (That is, X satisfies a
little more than the Bernstein moment condition, <11> from Section 7.3.)
Define Y = X/B and α = v/B2, so that P|Y |k ≤ 1

2αk! with equality
at k = 2.

(i) From the inequality α = PY 2 ≤
(
P|Y |4

)1/2 ≤ (12α)1/2 deduce that α ≤ 12.

(ii) From the inequality

Pf(|Y |/λ) = P
(
eλY − 1− λY

)
≤ αλ2/2

1− λ
for 0 ≤ λ < 1

deduce that ‖X‖f /B = ‖Y ‖f ≤ γ :=
(
1 +
√

1 + 2α
)
/2 ≤ 3. Hint: γ is the

positive root of the equation c2 − c = α/2.

(iii) Suppose W is a random variable for which ‖W/B‖f ≤ 3. Define v = 9B2.
Show that P|W |k ≤ 1

2vB
k−2k! for k ≥ 2.

[5] Suppose X1, . . . , Xn are independent random variables in Lf, with γi :=Subexp::P:fnorm.Bernstein

‖Xi‖f > 0. Define B = maxi γi and V = 2
∑

i γ
2
i and W =

∑
i(Xi − PXi).

(i) From the inequality Pf(|Xi|/γi) ≤ 1 deduce that P|X|k ≤ γki k! for k ≥ 2 so
that

Peλ(Xi−PXi) ≤ exp
(∑

k≥2
λkγki

)
≤ exp

(
λ2γ2

i

1−Bλ

)
for 0 ≤ λB < 1.

(ii) Deduce that ±W/B ∈ subGamma(α) where α = V/B2.

(iii) Deduce that

P{|W | ≥ t} ≤ 2 exp

(
− t2

4
∑

i γ
2
i + 2tmaxi γi)

)
for t ≥ 0.

[6] This problem handles the diagonal term that was omitted from Theorem<14>.Subexp::P:diag.HW

Suppose a = (a1, . . . , an) ∈ Rn andX1, . . . , Xn are independent subgaussians
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for which max τ(Xi) ≤ 1. Define Yi = X2
i − PX2

i and W =
∑

i≤n aiYi. As

usual, |a|2 :=
√∑

i≤n a
2
i and |a|∞ = maxi≤n |ai|.

(i) Use the inequality supk∈N ‖Xi‖2k /
√
k := L(Xi) ≤

√
6 τ(Xi) from Sec-

tion 6.2 to show that

P|Yi|k = ‖Yi‖kk ≤
(
2
∥∥X2

i

∥∥
k

)k
= 2kPX2k

i ≤ 2k
(√

6k
)2k

= (12k)k.

(ii) For 0 ≤ 12e|a|∞λ < 1 show that

PeλaiYi = 1 + λaiPYi +
∑

k≥2

|ai|kλk(12k)k

k!

≤ 1 +
∑

k≥2
(12e|ai|λ)k ≤ exp

(
(12eλ)2a2

i

1− 12e|a|∞λ

)
,

so that logPeλW/d ≤ αλ2/2(1 − λ) for 0 ≤ λ < 1, where d := 12e|a|∞ and
α := 2|a|22/|a|2∞. That is, W/d ∈ subGamma(α), in the sense of Section 3.6.

(iii) Deduce that

P{S ≥ t} ≤ exp

(
−t2/d2

2(α+ t/d)

)
= exp

(
−t2

576|a|22 + 12e|a|∞t

)
for t ≥ 0.

[7] If Q(λ) = D1λ
2 − λt for positive constants D1, D2, and t, show thatSubexp::P:constrained.min

min0≤λ≤D2 Q(λ) ≤ max
(
−t2/(4D1),−tD2/2

)
.

Remark. Vershynin (2018) consistently wrote his Berstein-like tail
bounds as maxima of two terms, because he reduced the MGF
calculations to this constrained minimization problem rather than
following the subGamma route.

(i) Show that the global minimum of Q(λ) is −t2/(4D1), which is achieved at
λ1 = t/(2D1). If D2 ≥ λ1 then the constrained minimum equals the global
minimum, otherwise it equals Q(D2).

(ii) Show that Q(λ) ≤ −tλ/2 for 0 ≤ λ ≤ λ1. Deduce that Q(D2) ≤ −tD2/2 if
D2 < λ1.
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7.8 Notes
Subexp::S:Notes

The Bennett inequality for independent summands comes from Bennett
(1962), although with a different proof, which I outlined in Problem [1] be-
cause I suspect his ingenious argument might be useful for other constrained
optimization problems.

Section 7.3 on the Bernstein inequality is based on the exposition by Us-
pensky (1937, pages 204–206), who followed the account in Bernstein’s 1927
“Theory of Probability” (in Russian), which Elena Khusainova kindly trans-
lated for me. As already noted, my treatment was also heavily influenced
by Bennett (1962), Boucheron, Lugosi, and Massart (2013, Sections 2.4,
2.7), Vershynin (2018, Section 2.8), and van der Vaart and Wellner (1996,
page 103).

A weaker version of Theorem <14> was proved by Hanson and Wright
(1971). They assumed symmetry of the matrix A and symmetry around
zero for the distributions of the Xi’s. They commented: “We would very
much like to remove the restriction that the distributions of the X’s be
symmetric. Unfortunately, our proof depends heavily on this symmetry.”
Interestingly, that method involved a bounding of moment quantities for
the Xi’s by analogous moment quantities for the N(0, 1), leading to a bound
on the MGF for the centered quadratic form by an analogous MGF for a
quadratic form in standard normals. From that point on, their proof was
similar to the proof of Theorem <14>.

Rudelson and Vershynin (2013) cited Bourgain (1999, page 55) for the
clever decoupling idea with the δi’s. Bourgain jumped straight to the de-
coupling bound, “we use a standard decoupling trick”, without much expla-
nation. Vershynin (2018, Chapter 6) (which I highly recommend) instead
cited Bourgain and Tzafriri (1987, page 149), whose proof was prefaced by
the comment:

The proof of Theorem 1.6 requires the use of a variant of the
so-called decoupling principle.

This principle can be found in literature, mostly for symmet-
ric matrices. For sake of completeness, we give here a proof of
the version needed below.

A slightly cruder form of Example <15> was the key to an analysis (Nolan
and Pollard, 1987) of U-processes, stochastic processes whose increments are
U-statistics. We used a symmetrization trick (compare with Chapter 15) to
control U-statistics by quadratic forms in independent Rademachers. Of
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course we did not use the subGamma approach. Instead we effectively used
a constrained optimization analogous to the one in Problem [7].

The extension of Bennett’s inequality to sums of martingale differences
with increments that are bounded in absolute value by 1 is largely due to
Freedman (1975). The relaxation to predictable upper bounds is implicit
in Sections 3.3 and 3.4 of the paper of Vu (2002), although he did not
express it via stopping times. He did not appeal to Bennett’s inequality,
but instead derived the necessary exponential bounds by direct arguments.
Something similar to inequality <33> appeared in the Kim and Vu (2000)
paper, but only for Xi’s taking values in {0, 1}. Vu (2002) developed more
elaborate versions of the inequality. Most of my discussion in Section 7.6 is
a translation of Vu’s paper into the framework of Bennett’s inequality.
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