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Chapter 7

Subgaussian distributions

Section 7.1 defines the subgaussian family of distributions, providing two
useful examples.

Section 7.2 shows that the subgaussian property is equivalent to several
other distributional properties.

Section 7.3 discusses the hoeffding inequality for sums of independent
bounded random variables.

Section 7.4 shows how the hoeffding inequality can be extended to sums of
martingale differences.

Section 7.5 presents an application of the martingale version of the hoeffding
inequality, although the resulting bound falls far short of what is possible
using other methods.

7.1 Definition of subgaussian

Section 3.3 noted that every random variable X for which PeλX ≤ eσ
2λ2/2,

with σ > 0 and all λ ∈ R, shares with the N(0, σ2) a two-sided exponential
tail bound for r ≥ 0,

<1>
P{X ≥ r} ≤ infλ>0 Peλ(X−r) = exp(−r2/2σ2)

P{X ≤ −r} ≤ infλ≤0 Peλ(X+r) = exp(−r2/2σ2)

As shown by Problems [1] and [2], the constant σ2 might need to be strictly
greater than var(X). To avoid any hint of the convention that σ2 denotes a
variance, I feel it is safer to replace σ by another symbol.

<2> Definition. Say that a random variable X has a subgaussian distribution
with scale factor 0 < τ <∞, denoted by X ∈ subg(τ2), if PeλX ≤ exp(τ2λ2/2)
for all real λ. Write τ(X) for the smallest τ for which such a bound holds.

Remark. Notice that subg(τ2) denotes not a single distribution but
rather a whole family of distributions, hence the ∈ instead of ∼. This
means that it makes no sense to speak of a maximum likelihood es-
timator (mle) for the parameter of subg(τ2) based on independent
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§7.1 Definition of subgaussian 2

observations X1, . . . , Xn, although it does make sense to speak of the
behavior of the mle, τ̂2 = n−1

∑
i(Xi −X)2, derived for the N(0, τ2)

model when the distributional assumption is relaxed to subgaussian-
ity. In the same way, one could examine the behavior of the mle under
other departures from normality, as the Robustniks like to do.

Some authors call the subg(τ2) the centered subgaussian, allow-
ing an extra parameter µ for which PeλX ≤ exp(λµ + λ2τ2/2) for all
real λ when X ∈ subg(µ, τ2). In this case µ must equal PX.

If X has a subg(β2) disribution, inequality <1> gives a pair of tail
bounds,

<3> P{±X ≥ r} ≤ exp

(
− r2

2β2

)
for all r ≥ 0,

In fact (Theorem <6>) existence of such a tail bound for some β > 0 is
equivalent to subgaussianity.

<4> Example. Suppose Y = (Y1, . . . , Yn) has a multivariate normal distribution.
Define M := maxi≤n Yi and σ2 := maxi≤n var(Yi). From Section 6.1 we have
That is, M − PM ∈ subg(σ2), a most surprising and wonderful fact.□

Many useful results that hold for gaussian variables can be extended to
subgaussians. In empirical process theory, conditional subgaussianity plays a
key role in symmetrization arguments (see Chapter 13). The next example
captures the main idea.

<5> Example. Suppose S =
∑

j≤n cjsj , where the cj ’s are constants and the sj ’s
are independent random variables with P{sj = +1} = 1/2 = P{sj = −1}
(so-called rademacher variables). Via the fact that k!2k ≤ (2k)! for each
positive integer k we have

Peλcjsj = 1
2

(
eλcj + e−λcj

)
=

∑∞

k=0
(λcj)

2k/(2k)! ≤ exp(λ2c2j/2)

so that PeλS =
∏

j≤n Peλcjsj ≤ eλ
2τ2/2 with τ2 :=

∑
j≤n c

2
j . That is, the

sum S has a subg(τ2) distribution, so that

P{±S ≥ r} ≤ exp
(
−1

2r
2/

∑
i
c2i

)
for r ≥ 0.

The ± is just my lazy way of indicating that the inequality holds for both S
and −S, that is, it holds for both upper and lower tails.□

More generally, if S is a sum of independent subgaussians X1, . . . , Xn then
the equality PeλS =

∏
j PeλXj shows that X ∈ subg(τ2) for τ2 =

∑
j τ

2(Xj).
For sums of independent variables we need consider only the subgaussianity
of each summand.
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7.2 Characterizations of subgaussianity

The calculations at the end of Section 7.1 show the advantage of defining
subgaussianity using moment generating functions. For other purposes
equivalent definitions, as identified by the following Theorem, are sometimes
more convenient.

<6> Theorem. For each random variable X with expected value 0, the following
assertions are equivalent.

(i) X has a subgaussian disribution (with τ(X) <∞)

(ii) L(X) := supk∈N ∥X∥2k /
√
k is finite

(iii) X ∈ LΨ2 for the orlicz function Ψ2(x) = exp(x2) − 1

(iv) there exists a positive constant β for which

P{|X| ≥ t} ≤ 2 exp
(
−1

2 t
2/β2

)
for all t ≥ 0.

More precisely,

∥X∥Ψ2
/
√

6 ≤ β(X) ≤ τ(X) ≤
√

8L(X)

and L(X) ≤ ∥X∥Ψ2
≤

√
2eL(X), where β(X) denotes the smallest β for

which (iv) holds.

Remarks.

(i) Implicit in the sequences of inequalities is the assertion that finiteness
of one quantity implies finiteness of another quantity.

(ii) It might be more natural use
√

2k instead of
√
k in the definition of L(X).

The choice
√
k ensures that ∥X∥p ≤ L(X)

√
p for all real p ≥ 1:

if k = ⌈p/2⌉ then ∥X∥p ≤ ∥X∥2k and p ≥ k.

Proof. Simplify notation by writing β for β(X) and τ for τ(X). and L
for L(X). Also, assume that X is not a constant, to avoid annoying trivial
cases.

For β ≤ τ :
Use inequality <1>.

For ∥X∥Ψ2
and β:

PΨ2

(
|X|
β
√

6

)
= P

∫ ∞

0
et{|X|2 ≥ 6β2t} dt

=

∫ ∞

0
etP{|X| ≥ β

√
6t} dx

≤ 2

∫ ∞

0
exp (x− 3x) dx = 1.
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For L versus ∥X∥Ψ2
:

This result is mostly an exercise in applying the inequality k/e ≤ (k!)1/k ≤ k.
It does not need PX = 0. First note that PΨ2 (|X|/D) =

∑
k∈N ∥X/D∥2k2k /k!.

If ∞ > D > ∥X∥Ψ2
then the sum is bounded by 1, which implies ∥X∥2k ≤

D(k!)1/2k ≤ D
√
k for each k. Conversely,

PΨ2 (|X|/D) ≤
∑

k∈N
(L

√
k/D)2k(e/k)k = 1 if D =

√
2e L.

For τ ≤ 4L:
Let X ′ be a random variable with the same distribution as X but independent

of X. By the triangle inequality, ∥X −X ′∥2k ≤ 2 ∥X∥2k ≤ 2L
√
k for all k ∈ N.

By independence, PXX
′ = PX ′ = 0. Via Jensen’s inequality for the conditional

expectation operator PX we have

PeλX = Peλ(X−PXX′) ≤ Peλ(X−X′) = 1 +
∑

j∈N
λjP(X −X ′)j/j!

= 1 +
∑

k∈N

λ2kP(X −X ′)2k

(2k)!
symmetry kills odd moments

≤ 1 +
∑

k∈N

(λ2L
√
k )2k

kkk!
= 1 +

∑
k∈N

(4λ2L2)k

k!
= e4L

2λ2
,

and so on. If you worry about the legitimacy of taking P inside
∑

j , note
that ∑

j∈N
P|λj(X −X ′)j |/j! ≤

∑
j∈N

|λ|j(2L
√
j )j/(j/e)j <∞

then appeal to Dominated Convergence.□

Remark. As mentioned in Chapter 3, the name ‘subgaussian’ is often
applied in a loose sense to any tail bound that decreases like exp(−Ct2).
For example, Section 3.7 showed that the upper tail for the Bin(n, p)
is subgaussian in this sense, with even the best constant C−1 = 2np(1−
p)) when p ≥ 1/2.

I tried without much success to extend Theorem <6> to an anal-
ogous result for ‘subgaussianity of a single tail’. Part of the difficulty
was the possibility that the centering constant need not be equal to
the mean. See Problem [1]. Another difficulty was the failure of sym-
metrization when only one tail was required to decrease in a subgaus-
sian way.

Before giving up completely I did have some partial success with
the idea that subgaussian in the upper tail should correspond to sub-
gaussianity of (X − ν)+ for some constant ν. Unfortunately, the fact
that P(X − ν)+ = 0 only when P{X > ν} = 0 got in the way of clean
Taylor expansions near the origin.

7.3 Hoeffding’s inequality for independent summands

In a very famous paper, Hoeffding (1963) proved several exponential tail
bounds for sums of independent random variables. He also extended the
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§7.3 Hoeffding’s inequality for independent summands 5

results to a number of dependent settings (including martingales—see Sec-
tion 7.4). The following result is probably the best known from his paper.

<7> Theorem. (Hoeffding, 1963, Theorem 2) Suppose Sn =
∑

iXi, a sum of
independent random variables with ai ≤ Xi ≤ bi for each i, for constants ai
and bi. Then

Sn − PSn ∈ subg(τ2) for τ2 :=
∑

i c
2
i , where ci := (bi − ai)/2.

Consequently,

<8> P {Sn − PSn ≥ r} ≤ exp
(
−r2/2τ2

)
for each r ≥ 0,

with an analogous inequality for the lower tail.

Proof. First show that Xi−PXi has a subg(c2i ) distribution, for each i. The
simplest approach uses facts about Li(λ) := log PeλXi that were established
in Section 2.3:

•
Li(λ) = Pλ,iXi and

••
Li(λ) = varλ(Xi) := Pλ,i (Xi − Pλ,iXi)

2 ,

where Pλ,i is the probability measure defined by the tilted density eλXi/PeλXi

with respect to P. As Pλ,i{ai ≤ Xi ≤ bi} = 1 it follows that

varλ(Xi) ≤ Pλ,i (Xi − (ai + bi)/2)2 ≤ c2i for every λ.

In particular, for some λ∗ between 0 and λ,

Li(λ) = Li(0) + λ
•
Li(0) + 1

2λ
2
••
Li(λ

∗) ≤ 0 + λPXi + 1
2λ

2c2i .

It then follows that

Peλ(Sn−PSn) =
∏

i≤n
Peλ(Xi−PXi) ≤ eλ

2
∑

i≤n c2i /2,

the deired subgaussian bound.□

Remark. In the paper, Hoeffding first used convexity of the exponen-
tial function to get

<9> eλXi ≤ b−Xi

b− a
eλa +

Xi − a

b− a
eλb.

Then he took expected values:

PeλXi ≤ θie
λai + (1 − θi)e

λbi where θi := (bi − PXi)/(bi − ai)

≤ exp
(
λPXi + c2iλ

2/2
)

by brute force calculus.<10>

The inequality for <10> could also be established by noting that
θie

λai + (1 − θi)e
λbi is the MGF of a random variable W for which

θi = P{W = ai} = 1 − P{W = bi} and PW = θiai + (1 − θi)bi = PXi.
The brute force calculation is essentially equivalent to the represen-
tation of the second derivate of log PeλW as a variance under a tilted
distribution.
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<11> Example. The result from Example <5> is a special case of Theorem <7>
with Xj = cjsj , a random variable that takes values in the interval [−cj , cj ],
with PXj = 0 and var(Xj) = c2j . In a strong sense this case is extreme,
because the distribution of Xj concentrates at the endpoints of the interval.

In general, one quarter of the squared length of the range can be a vast
overestimate of the variance. For example, suppose S ∼ Bin(n, p). Then PS =
np and S−np =

∑
j≤nXj where Xj = ξj−p with ξj ∼ Ber(p). The random

variable Xj takes values in the interval from −p to 1−p, which has length 1.
From Theorem <7>, P{S−np ≥ r} ≤ exp(−2r2/n) for r ≥ 0. The bound for
the lower tail is the same. Compare with the tail bounds from Section 3.7:

P{S ≥ np+ r} ≤ exp

(
− r2

2npq
gn,p(r)

)
for 0 ≤ r ≤ nq<12>

where q = 1 − p and, for r ≥ 0,

gn,p(r) := qψbenn

(
r

np

)
+ pψbenn

(
−r
nq

)
≥ ψbenn

(
q
r

np
+ p

−r
nq

)
by convexity of ψbenn

= ψbenn

(
(q − p)r

npq

)
⪌ 1 if p ⪌ 1/2.

Inequality <12>, which is derived from a minimization with the true
mgf, cannot be worse than the bound from Theorem <7>, which carried
out an analogous minimization that started from an upper bound for the
same mgf. For p equal to 1/2 and r much smaller than n the bound from
Theorem <7> is comparable to the bound given by <12>; for p ̸= 1/2 the
2r2/n is markedly inferior to the r2/(2npq) (particularly so if p > 1/2, which
ensures that gn,p(r) ≥ 1).□

The previous Example highlights a weakness of Theorem <7> when the
distribution of a bounded random variable concentrates most of its probability
a long way from the endpoints of its support. The squared range times 1/4
can then be a very poor substitute for a variance term. Chapter 8 will show
how better control is possible when the actual variances enter a tail bound.

7.4 From independence to martingales

Theorem <7> has a martingale analog, which has proved particularly use-
ful for the development of concentration inequalities. The result is often
attributed to Azuma (1967), even though Hoeffding (1963, page 18) had
already noted that, if Sm = X1 + · · · +Xm for 1 ≤ m ≤ n, then

“. . . , the inequalities of Theorems 1 and 2 remain true if the
assumption that X1, X2, . . . , Xn are independent is replaced by
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§7.4 From independence to martingales 7

the weaker assumption that the sequence S′
m = Sm − ESm,

m = 1, 2, . . . , n, is a martingale, that is,

E(S′
m | S′

1, . . . , S
′
j) = S′

j , 1 ≤ j ≤ m ≤ n, (H2.18)

with probability one. . . . [ (H2.18) ] implies that the conditional
mean of Xm for S′

m−1 fixed is equal to its unconditional mean.
A slight modification of the proofs of Theorems 1 and 2 yields
the stated result.”

He also noted that martingale methods provide stronger maximal inequalities.
(I added the ‘H’ to indicate that (2.18) was Hoeffding’s equation number.)

I am not completely sure about what Hoeffding meant regarding the
martingale analog of his Theorem 2. I suspect it involved writing Sn −
PSn as a sum of random variables X1 + · · · + Xn with zero conditional
means and ai ≤ Xi ≤ bi, applying inequality <9> to each Xi then taking
conditional expectations. In spite of this evidence, the martingale analog
of Hoeffding’s Theorem 2 is often attributed to Azuma in the literature;
‘Hoeffding’s inequality’ usually refers to the result for independent summands
described in Section 7.3.

Remark. Of course, it would be silly to assume 0 ≤ Xi ≤ 1 with a
zero conditional expectation for Xi. Comments following the state-
ment of Hoeffding’s Theorem 1 suggest he was thinking about the
case a ≤ Xi ≤ b when he made the comment about the martingale
modification.

The extension to martingales might appear rather easy. For a martin-
gale {(Si,Fi) : 0 ≤ i ≤ n} we would have S0 = P (Sn | F0) = PSn
if F0 = {∅,Ω}, the trivial sigma-field. We could even replace Si by Si −PSn
and then forget about S0 altogether, working directly with the martin-
gale differences X1, . . . , Xn for which P(Xi | Fi−1) = 0 almost surely and
Si = X1 + · · · + Xi for 1 ≤ i ≤ n. We would also have Fi = σ{X1, . . . , Xi}
with F0 again the trivial sigma-field. We would need an assumption like

<13> P{ai ≤ Xi ≤ bi | Fi−1} =a.s 1,

for possibly random ai and bi that depend only on {Xj : j ≤ i − 1}. One
could then hope that the methods from the Proof of Theorem <7> carry
over to show, for λ ≥ 0, that

<14> P
(
eλXi | Fi−1

)
≤a.s. exp

(
λ2ci(ω)2/2

)
if ci ≥ (bi − ai)/2.

Is the extension really that straightforward?
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§7.4 From independence to martingales 8

A message from the measure theory police:
You can ignore this message, at the slight risk of violating the usual laws of
measure theoretic probability.

With the Kolmogorov-style interpretations of conditional expectations,
assertions <13> and <14> mean

Pg(X1, . . . , Xi−1){ai ≤ Xi ≤ bi} = Pg(X1, . . . , xi−1),<15>

Pg(X1, . . . , Xi−1)e
λXi ≤ Pg(X1, . . . , xi−1)e

λ2c2i /2 for g ≥ 0,<16>

at least for bounded, measurable functions g. The a.s. subscripts in <13>
and <14> reflect the fact that <15> and <16> determine the random vari-
ables P{ai ≤ Xi ≤ bi | Fi−1} and P

(
eλXi | Fi−1

)
only up to almost sure

equivalences. In particular, the second of these conditional expectations could
be changed without warning on a negligible set that depends on λ, a possibility
that bodes ill for any attempt to differentiate with respect to λ.

Equalities <15> and <16> also seem to require ai, bi and ci to be mea-
surable functions of their arguments, X1, . . . , Xi−1. Unfortunately, such an
assumption would create measurability complications for the setting that will
be described in Example <19>.

When delicate measurability issues arise, it is often useful to follow the
example of careful authors—such as two of my mathematical heroes, Doob
and Dudley—and work with an explicit representation for the underlying
probability space (Ω,F,P). In this case, we could choose Ω = R[[n]] with
generic member ω = x = (x[1], . . . , x[n]) and Xi(x) = x[i], the coordinate map.
The probability measure P corresponds to the joint distribution of X1, . . . , Xn

and Fi is the sigma-field generated by x[1], . . . , x[i]. Also with this notation, the
vector (X1, . . . , Xi) could be written as x[1 : i] and the vector (Xi+1, . . . , Xn)
as x[i+ 1 : n].

Remark. Here I am writing x[i] instead of xi because my old eyes
have trouble with multiple levels of subscripts and superscripts. The
shorthand x[I] := (x[i] : i ∈ I) for I ⊂ [[n]] also simplifies the notation.

The great advantage of such a representation is that P can be built up from an
initial distibution P1 for X1 and a set of conditional distributions Pi|x[1:i−1]

for P{Xi ∈ · | X1, . . . , Xi−1). That is, at least for bounded, measurable
functions g : R[[n]] → R, we have

Pg(X1, . . . , Xn) = P
x[1]
1 P

x[2]
2|x[1] . . . P

x[n]
n|x[1:n−1]g(x),

P (g(X1, . . . , Xn) | Fi) =a.s. gi(x[1 : i]) = Qx[i+1:n]
i+1|x[1:i]g(x),

where, symbolically, Qi+1 := P
x[i+1]
i+1|x[1:i] . . . P

x[n]
n|x[1:n−1]. The Pi|x[1:i−1]’s are often

called regular conditional probability distributions (Breiman, 1968,
Section 4.3). Read Pollard (2001, Chap. 5) if this notation worries you.
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§7.4 From independence to martingales 9

Equalities <15> and <16> can now be rewritten as:

Pi|x[1:i−1] concentrates on the interval [ai, bi],

possibly with ai and bi both functions of x[1 : i− 1];

Pi|x[1:i−1]e
λx[i] ≤ exp

(
λ2(bi − ai)

2/8
)
≤ exp

(
λ2c2i /2

)
,<17>

where ci can depend on x[1 : i− 1] and ci ≥ (bi − ai)/2,

without almost sure caveats. The inequality <17> could be proved by either of
the methods described in Section 7.3. Neither equation relies on an assumption
that ai, bi, ci depend on x[1 : i−1] in a measurable way, because the averaging
is carried out separately for each fixed x[1 : i − 1], a small but significant
improvement over the almost sure versions.

End of message.□
If ai and bi are actually constants then the method used to prove Theo-

rem <7> carries over with minimal changes. For martingale differences {Xi}
with truly random ci’s a new complication arises. We now need ci to de-
pend on X1, . . . , Xi−1 in a measurable way. That is, we need ci to be Fi−1-
measurable, so that factors can be pulled out one at a time by successive
conditioning arguments. Start with the Xn contribution:

P
(
eλSn | Fn−1

)
= eλSn−1P

(
eλXn | Fn−1

)
≤ eλSn−1eλ

2c2n/2 a.s. .

The factor exp(λ2c2n/2) would present an obstacle if we now tried to condition
on Fn−2. Such an obstacle can be removed by absorbing the Fn−1-measurabile
factor involving cn into the left-hand side:

P
(
eλSn−λ2c2n/2 | Fn−1

)
≤ eλSn−1 a.s. .

A further conditioning on Fn−2 would then throw out an exp
(
λ2c2n−1/2

)
factor. Of course this new obstacle could also be removed by also absorbing
the cn−1 contribution into the left-hand side. And so on. (This is an old
trick much used in the literature on martingale central limit theorems.) You
should now understand how the proof of the next Theorem works.

<18> Theorem. Let ((Xi,Fi) : i ∈ [[n]]) be a martingale difference sequence, with
P(Xi | Fi−1) =a.s. 0, with F0 the trivial sigma-field {∅,Ω}. Define Si :=∑i

j=1Xj for i ∈ [[n]].

(i) Suppose the conditional distribution of Xi given Fi−1 concentrates on
an interval [ai, bi], with both ai and bi being functions of X1, . . . , Xi−1.

(ii) Let ci be any Fi−1-measurable upper bound for (bi−ai)/2. Define V0 = 0
and Vi :=

∑i
j=1 c

2
j with for i ∈ [[n]].

Then for each positive constant σ2,

P{Sn ≥ r, Vn ≤ σ2} ≤ e−r2/(2σ2) for r ≥ 0.

Consequently, P{Sn ≥ r} ≤ e−λ2(r/σ)2/2 + P{Vn > σ2} for r ≥ 0.□
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§7.4 From independence to martingales 10

Proof. The second inequality comes from adding P{Sn ≥ r, Vn > σ2} to
both sides of the first inequality.

For the main argument define W0 := eλ
2σ2/2 and, for j ∈ [[n]],

Wj := exp
(
λSj + λ2(σ2 − Vj)/2

)
= Wj−1 exp

(
λXj − λ2c2j/2

)
.

Take conditional expectations then invoke inequality <14> to deduce

P (Wj | Fj−1) = Wj−1e
−λ2c2j/2P

(
eλXj | Fj−1

)
≤Wj−1,

which implies PWj ≤ PWj−1. From the pointwise inequality for λ > 0,

{Sn ≥ r, Vn ≤ σ2} ≤ exp
(
λ(Sn − r) + λ2(σ2 − Vn)/2

)
= e−λrWn,

we get

P{Sn ≥ r, Vn ≤ σ2} ≤ e−λrPWn ≤ e−λrPW0 = e−λr+λ2σ2/2 for λ ≥ 0.

The usual subgaussian minimization argument then delivers the asserted tail
bound.□

<19> Example. Suppose ξ = (ξ1, . . . , ξn) is a vector of independent random
quantities, with each ξi taking values in some measurable space (Xi,Ai),
with ξi having distribution Pi. (You will lose no great generality if you
assume Xi = R equipped with its borel sigma-field.) Suppose also that f is
an ⊗iAi-measurable real-valued function on the product space

∏
iXi with

the bounded difference property: for constants ci,

|f(y) − f(w)| ≤ ci if y and w differ only in the ith coordinate.

More succinctly,

<20> |f(y1, . . . , yn)−f(w1, . . . , wn)| ≤
∑

i≤n
ci{yi ̸= wi} for all y, w ∈ X.

Let Fi denote the sigma-field generated by ξ1, . . . , ξi, with F0 the trivial
sigma-field. Define a martingale {(Si,Fi) : 0 ≤ i ≤ n} by Si := P (f(ξ) | Fi)−
Pf(ξ). Note that S0 = 0 because F0 is trivial.

An appeal to Theorem <18> with σ2 =
∑n

i=1 c
2
i will give the subgaussian

bound

<21> P{f(ξ) ≥ r + Pf(ξ)} ≤ exp
(
−r2/2σ2

)
for r ≥ 0.

Remark. Inequality <20> is sometimes referred to as a lipschitz con-
dition (for a weighted hamming distance). Inequality <21> is often
referred to as McDiarmid’s inequality.

To calculate P (f(ξ) | Fi) we have only to average out over the independent
coordinates ξi+1, . . . , ξn, whose joint distribution is Qi+1 = ⊗i<j≤nPj :

P (f(ξ) | Fi) =a.s. fi(ξ1, . . . , ξi) := Qi+1f(ξ1, . . . , ξi, zi+1, . . . , zn),
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§7.4 From independence to martingales 11

where Qi+1 integrates over the z’s.
By construction, f(ξ) − Pf(ξ) = Sn =

∑n
j=1Xj , a sum of martingale

differences Xi := Si−Si−1 for i ∈ [[n]]. The increment can also be written as

Xi = fi(ξ1, . . . , ξi) − fi−1(ξ1, . . . , ξi−1)

= Qif(ξ1, . . . , ξi, zi+1, . . . , zn) − Qi−1f(ξ1, . . . , ξi−1, zi, zi+1, . . . , zn)

= QiPi

[
f(ξ1, . . . , ξi, zi+1, . . . , zn) − f(ξ1, . . . , ξi−1, zi, zj+1, . . . , zn)

]
.

The extra Pi has no effect on the ξi.
Let me first show you a suboptimal way to proceed. We could bound Xi

by arguing that:

|fj(y1, . . . , yj) − fj−1(y1, . . . , yj−1)|
≤ QiPi|f(y1, . . . , yi, zi+1, . . . , zn) − f(y1, . . . , yi−1, zi, zi+1, . . . , zn)|
≤ QiPici = ci via <20>.

The thing to notice is that Pi integrates out the zi but ignores the yi. This
inequality suggests choosing ai = −ci and bi = ci, which would contribute
an extra, unwanted factor of 1/4 in the exponent of <21>, as pointed out
by McDiarmid (1989, page 159, after Lemma 4.1).

McDiarmid took a better approach, based on a very clever insight. First
note that fi inherits a bounded difference property from f :

|fi(y1, . . . , yi) − fi(w1, . . . , wi)|
≤ Qi|f(y1, . . . , yi, zi+1, . . . , zn) − f(w1, . . . , wi, zi+1, . . . , zn)|

≤
∑

j≤i
cj{yj ̸= wj} via <20>.

Then note that ai ≤ Xi ≤ bi where

ai = infy∈Xi
fi(ξ1, . . . , ξj−1, y) − fi−1(ξ1, . . . , ξi−1),

bi = supw∈Xi
fi(ξ1, . . . , ξi−1, w) − fi−1(ξ1, . . . , ξi−1).

Clearly the fj−1 term has no effect on the length of the interval [ai, bi]:

0 ≤ bi − ai = supw∈Xi
fj(ξ1, . . . , ξj−1, w) − infy∈Xi

fj(ξ1, . . . , ξi−1, y)

= supw,y∈Xi
|fj(ξ1, . . . , ξi−1, w) − fj(ξ1, . . . , ξi−1, y)|,

which is ≤ ci by the bounded difference inequality for fi. And so on.
If you worry about the effect of a taking a supremum over a possibly

uncountably infinite set Xi you should note the lack of any measurabilty
assumptions about ai and bi in Theorem <18>; it is only ci that needs to
be Fi−1-measurable. You might also want to read the police message.□

Remark. McDiarmid (1989, page 168, proof of (6.10)) was obviously
aware of the measurability issues. I am not quite sure exactly what
he meant by ess inf[Xk | Fk−1], but it is clearly intended to avoid a
non-measurable supremum. McDiarmid is a careful author.
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At this point you are probably expecting to see a triumphal procession of
applications of Theorems <7> and <18> to problems in combinatorics and
graph theory. I will give only two examples. The first (bin packing) is quite
straightforward. I include it here because it was one of the first examples
that convinced me concentration is a general topic worth careful study. The
second example, which will appear in in Section 7.5, will emphasize the
limitations of these methods. For more uplifting applications I would advise
you to look at the beautiful books by Steele (1997) and Alon and Spencer
(2000), or to read McDiarmid (1989, 1998), or even just google “Hoeffding”,
“Azuma”, “bounded difference”, or “McDiarmid inequality”. Be warned that
your googling might also dredge up results that are discussed in Chapter 8.
See Boucheron, Lugosi, and Massart (2013, Chap 6), especially the Notes
to the chapter, for some of the generalizations of the method of bounded
differences.

<22> Example. Suppose objects of independent random sizes ξ1, . . . , ξn, each with
distribution P concentrated on [0, 1], are packed into bins of capacity 1. No
objects may be split and the contents of no bin is allowed to exceed capacity.
Define f(ξ1, . . . , ξn) to be the smallest number of bins needed to contain all
the objects.

The function f has the bounded difference property on [0, 1]n, with
ci = 1 for each i. To see why, suppose vectors y and z differ only in the ith
coordinate. Every packing for y can then be converted to a packing for z
with one more bin by discarding yi and putting zi into a new bin. It follows
that f(z) ≤ 1 + f(y). Reverse the roles of y and z to get the companion
inequality f(y) ≤ 1 + f(z).

Notice that the resulting subgaussian tail bound makes no use of special
properties of P such as its variance. For a more refined analysis see Sec-
tion 17.2, which will use a brilliant idea of Talagrand to bring a variance
term into the tail bound.□

7.5 A cautionary example

The following example was mentioned by Kim and Vu (2000) and Vu (2002)
as motivation for developing a more general inequality (see Section 8.6) that
is analogous to a bennett inequality for martingales.

<23> Example. (random graphs) Consider a graph with vertex set [[n]] whose
edges are a subset of the set E of all |E| :=

(
n
2

)
pairs of distinct vertices. Two

edges are said to be adjacent if they share an endpoint. Three distinct edges
form a triangle if together they contain only three vertices: that is, the edges
are {i, j}, {j, k}, and {k, i} for distinct vertices i, j, k. Write T for the set of
all triangles, subsets of E of size 3 that involve exactly 3 vertices. The set T

has size
(
n
3

)
.

The random graph Gn(p), which oftens carries the names of Erdös and
Rényi, chooses its edges by means of a set of independent random vari-
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ables {ξe : e ∈ E}, with each ξe distributed Ber(p). That is, Gn(p) includes e
when ξe = 1, an event with probability p.

Remark. Actually Erdös and Rényi (1960) took the number of edges
to be a nonrandom number N . They considered the graph Γn,N whose
edge set is a sample of size N selected without replacement from E.
As explained by Janson,  Luczak, and Ruciński (2000, Section 1.4),
the random graph Gn(p) behaves asymptotically very like Γn,N with
N =

(
n
2

)
p.

The number of triangles in Gn(p) equals

f(ξ) :=
∑

{e1,e2,e3}∈T
ξe1ξe2ξe3 .

The expected number of triangles is θ := Pf(ξ) =
(
n
3

)
p3.

To fit this example into the bounded difference setting of Example <19>
we need to enumerate E as a sequence (ej : 1 ≤ j ≤ |E|). I don’t know
of any particularly clever method for enumerating that can improve the
concentration bound for f(ξ).

A change in a single ye can have a big effect on f(y). For example, if
ye = 1 for all e ∈ E and just one ye is changed to zero then n − 2 triangles
disappear. The constants corresponding to the ci’s in inequality <20> must
all be equal to n− 2. The two-sided analog of inequality <21> gives

<24> P{|f(ξ) − Pf(ξ)| ≥ r} ≤ 2 exp

(
− r2

2|E|(n− 2)2

)
for r ≥ 0.

We would need an r = rn with rn/n
2 → ∞ to send the tail bound to zero

as n→ ∞.
Better bounds are available. For example, arguments based on the Chen-

Stein method show that f(ξ) is approximately Pθ = Poisson(θ) distributed.
More precisely, as shown by Barbour, Holst, and Janson (1992, Section 5.1),

supA |P{f(ξ) ∈ A} − PθA| = O(np2) if np→ ∞.

In particular, the choice A = {i ∈ N0 : |j − θ| > r} and the Poisson tail
bound from Section 3.5,

PθA ≤ 2 exp

(
− r

2

2θ
ψbenn(r/θ)

)
= 2 exp(−θh(r/θ)),

gives

P{|f(ξ) − θ| > snθ
1/2} → 0

if, for example, sn → ∞ and sn/θ
1/2 → 0 and np2 → 0.

Remark. The appeal to Chen-Stein has the drawback that it imposes
the extraneous requirement that f(ξ) have an approximate Poisson
distribution. My only point in invoking Chen-Stein is to make sure
you realize that <24> is very crude. It is possible to have concentra-
tion without an approximate Poisson distribution.
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Why has inequality <21> fallen so far short of the Chen-Stein result?
The blame lies with the pessimistic choice ci = n− 2 forced by the unlikely
configuration y with ye = 1 all e ∈ E. It is much more likely that a possible
edge, say e = {1, 2}, is involved in only about np2 potential triangles: the
expected number of vertices k ≥ 3 for which ξ{1,k} = 1 = ξ{2,k} is equal
to (n−2)p2. A change in ξe probably changes f(ξ) by an amount of order np2.
If by some modification of the argument we could reduce the effective ci to
a term of order np2 then the exponent in the bound <24> would be greatly
improved. Roughly speaking, this is the idea behind the Kim-Vu method,
which will be discussed in Section 8.6. To be continued.□

7.6 Problems

[1] Suppose X is a random variable whose moment generating function MX(λ)
is finite in a neighborhood of the origin. Suppose also that there exist con-
stants ν and τ > 0 for which MX(λ) ≤ exp(νλ + 1

2τ
2λ2) for all λ ≥ 0, but

not necessarily for all real λ.

(i) Show that P{X ≥ ν + τt} ≤ e−t2/2 for all t ≥ 0.

(ii) Use the Taylor expansions for λ near zero,

MX(λ) = 1 + λPX + o(λ),

exp(νλ+ 1
2σ

2λ2) = 1 + λν + o(λ),

Peλ(X−ν) = 1 + λ(PX − ν) + 1
2λ

2P(X − ν)2 + o(λ2),

exp(12σ
2λ2) = 1 + 1

2(τ2)λ2 + o(λ2),

to deduce that PX ≤ ν and var(X) ≤ P(X−ν)2 ≤ τ2. As Problem [2] shows,
τ2 might need to be strictly larger than the variance.

(iii) If MX(λ) ≤ exp(νλ+ 1
2τ

2λ2) for all real λ, show that PX = ν.

[2] Theorem <6> suggests that ∥X∥2 might be comparable to β(X) if X has
a subgaussian distribution. It is easy to deduce from inequality <3> that
∥X∥2 ≤ 2β(X). Show that there is no companion inequality in the other
direction by considering the bounded, symmetric random variable X for
which P{X = ±M} = δ and P{X = 0} = 1 − 2δ. If 2δ = M show that
PX2 = 1 but

log
(
1 + λ2/2! + (λ4M2)/4!

)
≤ log PeXλ ≤ τ2λ2/2 for all real λ

would force τ2 ≥ 2 log
(
3/2 +M2/24

)
.

[3] Show that a random variable X that has either of the following two properties
is subgaussian.

(i) For some positive constants c1, c2, and c3,

P{|X| ≥ x} ≤ c1 exp(−c2x2) for all |x| ≥ c3.
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(ii) For some positive constants c1, c2, and c3,

PeλX ≤ c1 exp(c2λ
2) for all |λ| ≥ c3

[4] Suppose P{X = −1/2} = 2/3 and P{X = 1} = 1/3. Show that X ∈ subg(1).
Also show that PX = 0 and PX2 = 1/2 < 1. You might also find it informative
to compare the higher order moments of X with the correponding moments
of the N(0, 1).

[5] Suppose {Xn} is a sequence of random variables for which

P exp(λXn) ≤ exp(τ2λ2/2) for all n and all real λ,

where τ is a fixed positive constant. If Xn → X almost surely, show that
PeλX ≤ exp(τ2λ2/2) for all real λ.

7.7 Notes

The essentials of the characterizations for subgaussians in Theorem <6> come
from Kahane (1968, Exercise 6.10). He did not cite any source. Kahane (1960,
pages 4-5) proved similar results. For that paper, it is not clear to me whether
Kahane was merely reminding readers of well known facts or whether he was
introducing subgaussianity as a new concept.

Apparently Azuma (1967) was unaware of Hoeffding’s paper, although he
did cite a 1966 paper of Chow, which in turn cited a 1963 paper of Kahane
for the properties of “semi-gaussian” random variables.

The proof of Theorem <18> borrows ideas from Freedman (1975).
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