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Chapter 13

Symmetrization

Symmetrization::Symmetrization
Section 13.1 presents a collection of examples, some classical and some of

more recent provenance, that introduces several of the key ideas behind
the symmetrization method.

*Section 13.2 contains a technical interlude regarding the precise meaning
of the probability jargon “independent copy”.

Section 13.3 abstracts the argument from one of the Examples in Section 13.1
to establish a general method for proving maximal inequalities for tail
probabilities

Section 13.4 explains why empirical processes (my main motivating appli-
cation) should be thought of as sums of independent stochastic processes.

Section 13.5 describes a symmetrization method for bounding the expected
value for the supremum of an empirical processes, introducing the idea
of controlling a centered sum of processes Xi(t) − PXi(t) by a sum of
processes siXi(t) with si a random ±1-valued sign variable.

Section 13.6 describes a useful way to symmetrize an empirical process,
which reduces subsequent analyis to a two-step procedure, the first involving
a very simple process indexed by a subset of a euclidean space.

Section 13.7 extends the ideas from Section 13.5 to derive maximal tail
probability bounds for empirical processes.

Section 13.8 shows how to strengthen the results from Section 13.7 to obtain
oscillation control for empirical processes.

*Section 13.9 describes an application of symmetrization methods to problem
involving a collection of U-statistics.

13.1 Symmetry?
Symmetrization::S:examples

In general, the word ‘symmetrize’ refers to some operation that replaces an
object by a more symmetric object. For example, a classical method due to
Steiner (Billingsley, 1968, §19) can be used to prove an isoperimetric inequality
for measurable subsets of Rk, by using a succession of transformations that
bring the set ever closer to a ball.
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§13.1 Symmetry? 2

A different sort of symmetrization has long been a useful probability tool.
For example, as you saw for the Pisier-Maurey method in Section 6.3, if X
and Y are independent random vectors, each distributed N(0, In), and f is
a lipschitz function, then

Peλ(f(X)−Pf(X)) ≤ Peλ(f(X)−f(Y )) for all real λ.

The distribution of f(X)− f(Y ) is symmetric around the origin. However,
symmetry was not the main reason for making the transformation; it was
merely a step that put the problem into a form that was easier to analyze
by means of a path argument.

In fact many arguments traditionally referred to as ‘symmetrizations’
do not depend on symmetry for their effectiveness. They actually involve a
more general idea. Suppose, for example we wish to bound PW for a random
variable W defined on a probability space (Ω,F,P). We can sometimes argue
as follows:

randomize: Inject more randomness into the problem, to create a new
random variable W ∗ for which PW ≤ PW ∗.

condition: Condition on some quantity Y to decompose the analyis into two
or more steps: if Y has distribution Q then PW ∗ = QyP(W ∗ | Y = y).
The aim is to choose Y so that the conditional expectation is easier to
handle than the original problem.

Remark. Sometimes the new W ∗ is created on a slightly larger proba-
bility space, perhaps by a product space construction. Where possible,
I prefer to construct the underlying (Ω,F,P) by an explicit product
space construction with the hope that the conditioning simplifies to a
fubini argument.

The following Examples illustrate how these ideas can solve some nontrivial
problems. Even if you are not interested in these particular applications,
I urge you to at least take note of how the same ideas seem to pop up in
apparently unrelated problems.

The first Example does not involve any randomize step because the
problem already comes in a form amenable to analysis. However the analysis
does preview an idea that appears in many randomize arguments.

Symmetrization::e-cramer <1> Example. A famous result of Cramér (1936) asserts that a sum X + Y of
independent random variables can have a normal distribution only if each
of X and Y also has a normal distribution (possibly degenerate). As a first
step in the proof, one needs to show that X has tails that decrease rapidly.

With no loss of generality, assume that Y has a zero median, that is,

P{Y ≥ 0} ≥ 1/2 and P{Y ≤ 0} ≥ 1/2.

Also assume, for simplicity, that X + Y has a N(0, 1) distribution. Then,
for t ≥ 0,

exp(−t2/2) ≥ P{X + Y ≥ t} ≥ P{X ≥ t, Y ≥ 0}
≥ 1/2P{X ≥ t} by independence.
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§13.1 Symmetry? 3

A similar argument gives a similar bound for the lower tail. If you read the
previous display in reverse order it will look like an instance of randomize.

See ugmtp(§8.8) for an explanation of how this tail bound leads to
Cramér’s result.□

Remark. Cramér proved his result in response to a conjecture by Paul
Lévy, asserting (roughly speaking) that a sum of independent random
variables is approximately normally distributed if and only each sum-
mand either contributes a very small amount to the sum or (if not
small) is itself approximately normally distributed. See Problem [1]
for a result along these lines. See Le Cam (1986, §2) for a most enter-
taining account of the history.

In the statistical theory of experimental design, randomization is actually
a key ingredient in the statistical interpretation and not just a device for
bounding one expected value by another. Nevertheless, it does point the way
for the use of a randomize step in other fields.

Symmetrization::e-pairwise <2> Example. Fisher (1935, §§13–21) discussed in detail the analysis of an
experiment on plant growth made by Charles Darwin. The data consisted
of observed heights for 15 pairs of plants, one self-fertilized the other cross-
fertilized, each pair being grown under conditions that Darwin had tried
to make as similar as possible. Nevertheless, there were probably small
differences between those conditions.

Fisher criticized Darwin’s procedure because he had not randomly assigned
(“as by tossing a coin”) the locations where each member of the pair had
been planted. He commented (§20):

Randomisation properly carried out, in which each pair of plants
are assigned their positions independently at random, ensures
that the estimates of error will take proper care of all such causes
of different growth rates, and relieves the experimenter from the
anxiety of considering and estimating the innumerable causes
by which his data may be disturbed. The one flaw in Darwin’s
procedure was the absence of randomisation.

He also asserted (§21) that

. . . the physical act of randomisation, which, as has been shown,
is necessary for the validity of any test of significance, affords the
means, in respect of any particular body of data, of examining
the wider hypothesis in which no normality of distribution is
implied.

In other words, the randomization turns some systematic effects into ran-
dom noise, so that the probabilistic analysis leads to conclusions similar to
those obtained under a model with normal errors. He gave no theoretical
justification for that claim.

Draft: 19feb25, Chap 13 ©David Pollard



§13.1 Symmetry? 4

Subsequently, several authors tried to justify Fisher’s assertions. The
analysis is often referred to as the “method of paired comparisons”. Sup-
pose Di denotes the difference in heights (cross- minus self-) within the ith
pair, for i ∈ [[n]] with n = 15. The typical statistical model treats the Di’s as
independent N(µ, σ2) random variables, with µ representing the hypothetical
mean difference between treatments. A formal test of the null hypothesis
µ = 0 would compare the observed value

T :=

∑
iDi/

√
n(∑

i(Di −D)2/(n− 1)
)1/2

with the percentiles of a standard t-distribution on n−1 degrees of freedom.
If there were literally no difference between the treatments, the magnitude

yi = |Di| would be determined by the locations within pots, and the sign would
be determined by the randomization. We would then be in the situation where
the observations had the same distribution as s1y1, . . . , snyn for independent
random variables for which P{si = +1} = 1/2 = P{si = −1}. Any statistical
test based on T could just as easily be based on the one-to-one transformation

S =

√
nT√

n− 1 + T 2
=

∑
i siyi√∑

i y
2
i

=
∑

i
siwi where wi := yi/(

∑
i
y2i )

1/2.

By construction,
∑

iw
2
i = 1. If the normality assumption held, S would have

a symmmetric distribution with S2 distributed beta(1/2, (n−1)/2). Normal
approximation for T is essentially equivalent to beta approximation to the
distribution of S2 conditional on the {wi} weights.

As one measure of similarity between the distributions one can compare
the moments of S2 with the corresponding moments of a beta distribution.
For a most informative account of this idea, see the discussion paper by Box
and Andersen (1955). In the tradition of the Royal Statistic Society, the
discussion was suitably brutal.□

In Section 4.3 you saw how a result of Isaac Newton implies log-concavity
of the Poisson-Binomial distribution. The next Example shows how the same
fact can be established by a coupling argument involving randomize and
condition. Notice the similarity to method of paired comparisons in the
previous Example.

Symmetrization::e-PoisBin <3> Example. Suppose S = X1+· · ·+Xn for independent Xi’s with Xi ∼ Ber(pi)
and 0 < pi < 1. Section 4.5 showed that the distribution of S is log-concave
(and hence unimodal):

\E@ log.concave\E@ log.concave <4> (P{S = k})2 > P{S = k − 1}P{S = k + 1} for k = 0, 1, . . . , n.

The randomize/condition method will give another simple proof of this
result.
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§13.1 Symmetry? 5

For the randomize step make an “independent copy” of the Xi’s. That
is, create Yi ∼ Ber(pi) such that X1, . . . , Xn, Y1, . . . , Yn are mutually inde-
pendent. Define T = Y1 + · · · + Yn. By independence, inequality <4> is
equivalent to

P{S = k, T = k} > P{S = k − 1, T = k + 1} for k = 0, 1, . . . , n.\E@ ST.lc\E@ ST.lc <5>

The path to <5> will be greatly simplified by conditioning on the random
variables Wi := Xi+Yi. The triples (Xi, Yi,Wi) for i = 1, . . . , n are independent
with Wi ∼ Bin(2, pi) and

P{Xi = Yi = 1 | Wi = 2} = 1 = P{Xi = Yi = 0 | Wi = 0},
P{Xi = 1, Yi = 0 | Wi = 1} = 1/2 = P{Xi = 0, Yi = 1 | Wi = 1}.

For each w in {0, 1, 2}n write Pw for the conditional probability mea-
sure P(· | W = w). It will suffice if we can show

\E@ condit.ST.lc\E@ condit.ST.lc <6> Pw{S = k, T = k} ≥ Pw{S = k − 1, T = k + 1} for each w,

with strict inequality for at least one w. To that end, for a given w define
nα :=

∑
i≤n{wi = α} for α ∈ {0, 1, 2} and define Zw =

∑
i≤nXi{wi = 1}.

Under Pw the Zw has a Bin(n1, 1/2) distribution and we have S = n2 +Zw

and T = n2 + (n1 − Zw).
For the quantity on the right-hand side of <6> to be nonzero we must

have 2k = 2n2 + n1 and n1 > 0, which forces n1 = 2ℓ for some positive
integer ℓ. The desired inequality becomes

Pw{Zw = ℓ} ≥ Pw{Zw = ℓ− 1} with > for at least one ℓ.

The strict inequality holds for each ℓ in N because the Bin(2ℓ, 1/2) distri-
bution has a unique mode at ℓ.□

Conditional symmetry has long been a standard tool in the study of
empirical distribution functions.

Symmetrization::e-gnedenko <7> Example. Suppose Fn is the empirical distribution function based on a
sample x1, . . . , xn from a distribution function F on the real line, and Gn

is the empirical distribution function based on a sample y1, . . . , yn from a
distribution function G. For a one-sided test of the null hypothesis that
F = G one could use the smirnov statistic

S+
n = maxx∈R (Fn(x)−Gn(x)) .

At least when F has no jumps—which rules out ties in the observations—
the exact distribution of S+

n can be calculated by means of a conditioning
argument (Gnedenko, 1968, Section 68). Write z1 ≤ · · · ≤ z2n for the ordered
values of the combined sample of xi’s and yi’s. Calculate the conditional
probability

pk(z) := Pz{Fn(x)−Gn(x) ≥ k/n for some x}.
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§13.1 Symmetry? 6

Given z = (z1, . . . , z2n), the step function Fn −Gn has jumps of size 1/n at
each zi, with n jumps up and n jumps down. The sample path starts from
(z1, 0) and ends at (z2n, 0). All

(
2n
n

)
orderings of jumps are equally likely;

the conditional distribution of the xi sample given z puts equal weight on
each subset of size n. To calculate pk we have merely to count how many
orderings will give a path that reaches the level k/n. Write τ = τ(z) for the
first i on such a path for which Fn(zi)−Gn(zi) = k/n.

k/n

z1 z2n

2k/n

τ

A reflection of the path segment from τ to z2n about the horizontal line
through (zτ , k/n) defines a one-one correspondence between paths that reach
k/n and the set of all step functions from (z1, 0) to (z2n, 2k/n) with jumps
of size ±1/n at the zi. There are exactly

(
2n
n−k

)
such step functions, one for

each choice of the n− k positions of the −1/n jumps. That is,

pk(z) =

(
2n

n− k

)/(
2n

n

)
for every z.

The conditional probability does not depend on the configuration of the zi’s.
When we average out over the distribution of z, whatever it might be, we
get the same ratio for the unconditional probability,

P{Fn(x)−Gn(x) ≥ k/n for some x} =

(
2n

n− k

)/(
2n

n

)
for k = 0, 1, . . . , n.

The analogous one-sample problem, involving Fn−F instead of Fn−Gn,
does not lend itself to such a simple combinatorial analysis. However, as
you will see in Example <8>, it is possible to use the two-sample process to
derive bounds for Fn − F .□

The combinatorial idea in the previous Example has a much more powerful
analog in the modern theory for more general empirical measures.

Symmetrization::e-VC71 <8> Example. In an exceedingly famous paper, VC71=Vapnik and Chervo-
nenkis (1971) described a method for establishing an analog of the classical
glivenko-cantelli theorem. What follows is a rewrite of their argument
using the currently fashionable notation, with a small constraint to avoid
the sorts of measurability difficulties discussed in Chapter 9, an issue that
was often ignored in the early years of empirical process theory.

Suppose (A,A, P ) is a probability space and ξ1, ξ2, . . . are indepen-
dent random elements of A, each with distribution P . Define the empir-
ical measure Pn = Pn,ω on S by putting mass n−1 at each of the points
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§13.1 Symmetry? 7

ξ1(ω), . . . , ξn(ω). By the strong law of large numbers, for each A in A,

PnA := n−1
∑

1
{ξi(ω) ∈ A} → PA almost surely as n → ∞.

VC71 were able to extend this result to a convergence assertion holding
uniformly over a subcollection D of A. To avoid measurability difficulties it
helps to assume that D is countable: D = {Dj : j ∈ N}. Define

W (ω) := supD∈D |Pn,ωD − PD|.

VC71 used a symmetrization argument to bound P{W > ϵ}.
For the randomize step, define a second empirical measure P̃n = P̃n,ω,

putting mass n−1 at each of the points ξn+1(ω), . . . , ξ2n(ω). Define P ◦
n,ω :=

Pn,ω − P̃n,ω. The random measures Pn and P̃n are mutually independent. A
simple argument will show that, for all n large enough,

\E@ VC.symm\E@ VC.symm <9> P{W > ϵ} ≤ 2P{W ◦ > ϵ/2} where W ◦(ω) := supD∈D |P ◦
n,ωD|.

It is just a matter of keeping track of the first Dj that makes W bigger
than ϵ. Define

τ(ω) := inf{j ∈ N : |Pn,ωDj − PDj | > ϵ},

with the usual convention that τ(ω) = ∞ when W (ω) ≤ ϵ. The event
{W > ϵ} is a disjoint union of the events {τ = j} for j ∈ N. For each such j,
the event {τ = j} is independent of the event Bj := {ω : |P̃n,ωDj−PDj | ≤ ϵ/2}
and on the intersection {τ = j}Bj we have |P ◦

n,ωDj | > ϵ/2. By the chebyshev
inequality,

PBc
j ≤ (1/4n)/(ϵ/2)2 < 1/2 when n > 2/ϵ2.

For such an n we have

P{W > ϵ} =
∑

j∈N
P{τ = j} ≤

∑
j∈N

P{τ = j}2PBj

≤ 2
∑

j∈N
P{τ = j, |Pn,ωDj − PDj | > ϵ}Bj by independence

≤ 2
∑

j∈N
P{τ = j}{|P ◦

n,ωDj | > ϵ/2}

≤ 2P{supj |P ◦
nDj | > ϵ/2}

∑
j∈N

P{τ = j}

≤ 2P{W ◦ > ϵ/2}.

The process Pn − P̃n is easier to analyze than Pn − P because it has
simple conditional distributions. The VC71 method effectively conditions
on Pn + P̃n, in the sense that we treat the locations of the observations in
the double sample as given but without their identification as members of
the Pn or the P̃n sample. That is, we work with the conditional distribution
under which each of the

(
2n
n

)
subsets of {ξi : i ∈ [[2n]]} is equally likely to

correspond to {ξ1, . . . , ξn}.
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§13.1 Symmetry? 8

After conditioning, the analysis reduces to a combinatorial problem
involving sampling from an urn containing n red balls and n black balls.

The key VC71 insight was similar in spirit to the simplification for the
classical case described in Example <7>. For a given ω, if Dj and Dk are
two members of D for which

patternj := {i ∈ [[2n]] : ξi(ω) ∈ Dj} = {i ∈ [[2n]] : ξi(ω) ∈ Dk} =: patternk.

then we must have P ◦
n,ωDj = P ◦

n,ωDk for every possible partition into two
subsets of size n. When we are taking the supremum over all members of D
we need not consider both Dj and Dk. Indeed,

supD∈D |P ◦
n,ωD| = supD∈Dω

|P ◦
n,ωD|

for any Dω that picks out all possible patterns from {ξi(ω) : i ∈ [[2n]]} . (The
subset Dω is allowed to depend on ω, of course.)

VC71 had noticed the possibility that, for some D, it is possible that
there might always exist a Dω whose size is bounded by p(n), for a fixed
polynomial p. (They cited the classical case of intervals (−∞, a] on the real
line as an example.) In such a situation, when combined with an exponential
tail bound for the hypergeometric distribution, inequality <9> leads to a
most satisfactory upper bound for P{W > ϵ}.□

Remark. Admittedly the distribution of each P ◦
nA in the previous Ex-

ample is symmetric—which is the reason for the name symmetrization—
but that is not the whole reason for the method’s success. For ex-
ample, Devroye (1982) was able to sharpen the VC inequalities by

constructing P̃n from an independent sample of size n2, so that the
variability of Pn − P̃n was only slightly greater than the variability
of Pn − P . For that construction the distribution of Pnf − P̃nf is no
longer symmetric, but it is still more tractable than the distribution
of Pnf − Pf . Massart (1986) took the idea even further by taking the
second sample to be of size mn, where m was a parameter that could
be optimized over.

Symmetrization::e-VC81 <10> Example. VC81=Vapnik and Červonenkis (1981) extended their result
for sets to the analogous results for uniformly bounded collections of A-
measurable functions, {ft(a) : t ∈ T} for a ∈ A. The following discussion
translates some of their arguments into my notation.

Again they considered samples of observations ξ1, . . . , ξn from a fixed
probability measure P on A. They assumed 0 ≤ ft(a) ≤ 1 for each t. For
each realization (ξi(ω) : i ∈ [[n]]), each t defines a point in the unit cube:

zt,ω := (ft(ξi(ω)) : i ∈ [[n]]) ∈ Cn := [0, 1]n.

Thus Aω,n := {zt,ω : t ∈ T} can be thought of as a random subset of Cn.

Remark. Here I regard [0, 1]n as shorthand for [0, 1][[n]], the set of all
functions from [[n]] into [0, 1]. See Section 1.2 for an explanation of
why [0, 1][[n]] is better notationally.
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They equipped the cube with its ℓ∞ metric, ρ(x, y) := maxi≤n |xi − yi|. By
using a symmetrization argument similar to the one for VC71 they showed
that supt |Pnf − Pf | → 0 in probability iff P log2 cover(ϵ,Aω,n, ρ)/n → 0
for each ϵ > 0. See Pollard (1984, §II.5) for an exposition of a slight variant
of the VC81 result.□

*13.2 Stochastic processes as random objects
Symmetrization::S:stoch-proc

Readers of this Section might regard the first part of the discussion as little
more than a storm in a tea cup, a triviality easy dispatched by a well-known
probability trick. However, an analogous difficulty in empirical process theory
did lead to a host of arcane definitions and regularity assumptions that greatly
complicated a lot of the early literature.

The main issue is: What does it mean to have an independent copy of a
stochastic process?

Consider first the much simpler case of a single random variable X defined
on a probability space (Ω,F,P), which means that X is an F\B(R)-measurable
function from Ω into the real line, that is, {ω ∈ Ω : X(ω) ∈ B} ∈ F for
each B in B(R). The distribution of X is the probability measure P on B(R)
for which P{X ∈ B} = PB for each B in B(R). (Also known as the image
measure.)

An “independent copy” X̃ of X should be a new random variable X̃ with
distribution P such that X and X̃ are independent random variables. For
independence to have a meaning the two random variable should be defined on
the same probability space. And therein lies the first conceptual difficulty:
it might not be possible to construct such an object on Ω. For example,
if Ω = {a, b, c, } (a set of three points) with P{a} = 1/2 and P{b} = P{c} = 1/4
then the random variable defined by X(a) = 0 and X(b) = X(c) = 1 has
distribution P for which P{0} = P{1} = 1/2. There is no way to define
a new random variable X̃ on Ω that has distribution P and is independent
of X.

A card-carrying probabilist would not be deterred by the small counterex-
ample in the previous paragraph. The underlying probability space is not the
real object of interest: it is the joint distribution of X and X̃ that matters.
The real objective is to find random variables defined on some probability
space such that

P{ω ∈ Ω : X(ω) ∈ B1, X̃(ω) ∈ B2} = P (B1)P (B2) for all B1, B2 ∈ B(R).

The most obvious solution takes Ω to equal R2 (equipped with sigma-field
B(R2), (which coincides with the product sigma-field B(R) ⊗ B(R)) and
equips it with the product measure P = P ⊗ P on B(R2). Then for the
typical point ω = (x, y) define X(ω) = x and X̃(ω) = y.

You might want to consult ugmtp(§§2.9,4.4) if you are not familiar with
ideas in the previous paragraph. In particular, note the distribution of a
random object is just another name for an image measure.
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§13.2 Stochastic processes as random objects 10

Now consider a stochastic process X = {Xt : t ∈ T} defined on a
probability space (Ω,F,P). That is, for each t in T we have an F\B(R)-
measurable map from Ω into R. If we want to mimic the product-measure
construction then we first need to define the distribution of X. To that end,
think of X as a map from Ω into RT , the set of all real-valued functions on T ,
a point of view that fits with the idea of the sample path X(·, ω) being a
real-valued function on T .

Remark. If T is a finite set, enumerated as {t1, . . . , tn}, one might
identify RT with Rn. However that would create a slight ambiguity
if T were enumerated in a different way. It is much cleaner to regard
an element of RT as a map from T into R than as a map from [[n]]
into R. See Section 1.2 for an explanation for why I regard the dis-
tinction to be important.

The function space RT comes equipped with a product sigma-field C, the
smallest sigma-field on RT containing all the sets

{x ∈ RT : x(t) ∈ B} for each fixed t ∈ T and B ∈ B(R).

The map ω 7→ X(·, ω) is F\C-measurable because {ω ∈ Ω : X(t, ω) ∈ B} ∈ F

for each t in T and each B in B(R). The distribution of the process could be
defined as the image of P under this map, the probability measure P on C

for which P{ω ∈ Ω : X(·, ω) ∈ C} = P (C) for each C in C. The measure P is
uniquely determined by its finite-dimension projections, the finite-dimensional
distributions for the process.

Unfortunately, for an uncountably infinite T the sigma-field C is not large
enough to contain all the sets of interest. For example, for an uncountable
metric space T the set {x ∈ RT : x is a continous function} does not belong
to C, which was one of the reasons for all that delicate manoeuvring in
Chapter 9, including the construction of those doob-separable versions of
processes. Fortunately, for a countably infinite or finite T these difficulties
do not arise.

Remark. In short, for countable T you needn’t worry about the sub-
tleties discussed in Chapter 9. For uncountable T , if you cannot re-
duce the analysis to behavior on a countable, dense subset of T then
you will need to develop some heavy-duty measure theory skills be-
fore attempting to understand material such as the section on Souslin
properties in Dudley (2014, §5.3). I highly recommend Billingsley
(1968, §36) and Dudley (2014, Chap. 5) for careful discussions related
to these issues.

For counatble T , if we are interested in just a single X process we could
choose Ω = RT with P a probability measure living on the product sigma-
field C. Each ω in Ω is then just a real-valued function on T and Xt(ω) is
the value of the function ω at t.
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§13.2 Stochastic processes as random objects 11

Remark. That is, X(·, ω) = ω. If you find this confusing, compare
with the method for constructing a random variable U with the unif(0, 1)
distribution: define U(ω) = ω for the probability space (Ω,F,P) with
Ω := (0, 1) and F = B(0, 1), and P equal to lebesgue measure on F.

To manufacture an independent copy X̃ of X we could work with the
product space RT × RT equipped with its product sigma-field C⊗ C. Under
the product measure P ⊗P the coordinate maps X and X̃ are independent,
each with distribution P , and their joint distribution equals P ⊗ P .

Similarly, to manufacture independent processes X1, . . . , Xn indexed
by T , with the distribution of Xi equal to a given Pi defined on the product
sigma-field C on RT , take Ω = (RT )[[n]] equipped with its product measure P =
⊗i∈[[n]]Pi on the product sigma-field C ⊗ C ⊗ · · · ⊗ C. Each ω can then be

thought of in various ways: as a single function from [[n]] into RT ; or as a
single function from T into Rn (which I regard as shorthand for R[[n]]); or as
a single real function on T × [[n]]. For the third point of view we have the
mind-boggling definition Xi(t, ω) = ω(t, i). Think about it.

If we treat P1⊗P2 as a single probability measure P living on Ω = RT ×RT

we can end up with some awkward notational difficulties. For example,
if µ(t) = PX(t, ω) = PX̃(t, ω) and Ψ is an orlicz function, we might argue
that

PΨ(supt |X(t, ω)− µ(t)|) = PΨ
(
supt |X(t, ω)− PX̃(t, ω)|

)
?
≤ PΨ

(
supt |X(t, ω)− X̃(t, ω)|

)
,

by reasoning that the PX̃(t, ω) acts only on the last n coordiniates of ω,
whereas the X(t, ω) depends only on the first n coordinates of ω. It should
be possible to pull that P past the X(t, ω), then outside the Ψ(sup | . . . |)
while invoking a jensen inequality. Some authors adorn that P (or the more
traditional E) with some subscript to suggest that it should be treated as
an expectation conditional on the value of X(·, ω), which raises the issue of
why we should condition when X(·, ω) is independent of X̃(·, ω).

It is much cleaner to think of RT × RT as a product Ω× Ω̃, with typical
element (ω, ω̃), equipped with a product measure P ⊗ P̃ for two copies P
and P̃ of P . The previous display then becomes

PΨ(supt |X(t, ω)− µ(t)|) = PωΨ
(
supt |X(t, ω)− P̃ω̃X̃(t, ω̃)|

)
≤ PωP̃ω̃Ψ

(
supt |X(t, ω)− X̃(t, ω̃)|

)
.

The argument for pulling P̃ω̃ past the X(t, ω), then outside the Ψ(sup | . . . |)
now makes more sense. An appeal to fubini is usually cleaner than a hand-
waving conditioning argument.
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13.3 A generic tail bound by symmetrization
Symmetrization::S:tail-generic

The symmetrization idea described in Example <8> also works in a more
general setting. The following Theorem records, for future reference, a generic
method for obtaining maximal inequalities in the form of tail bounds.

Symmetrization::tail.generic <11> Theorem. Let {Vt(ω) : t ∈ T} and {Ṽt : t ∈ T} be independent stochastic
processes with T countable. Let α, R1, and R2 be positive constants.

(i) If αP{Ṽt ≤ R2} ≥ 1 for each fixed t in T then

P{supt∈T Vt > R1 +R2} ≤ αP{supt∈T (Vt − Ṽt) > R1}.

(ii) If αP{|Ṽt| ≤ R2} ≥ 1 for each t in T then

P{supt |Vt| > R1 +R2} ≤ αP{supt |Vt − Ṽt| > R1}.

Proof. For asssertion (i) enumerate the index set as T = {tj : j ∈ N}, as
in Example <8>, and define τ(ω) := inf{j ∈ N : V (tj , ω) > R1 +R2}, with
inf ∅ = +∞ as before. The events {τ = j} and {Ṽ (tj) ≤ R2} are independent

and on their intersection we have V (tj , ω)− Ṽ (tj , ω) > R1. Thus

P{supt∈T Vt > R1 +R2} = P{τ < ∞} =
∑

j∈N
P{τ = j}

≤
∑

j∈N
P{τ = j}αP{Ṽ (tj) ≤ R2}

≤ α
∑

j
P{τ = j, V (tj)− Ṽ (tj) > R1} by independence

≤ α
∑

j
P{τ = j} ∩ {supt∈T (Vt − Ṽt) > R1}

≤ αP{supt∈T (Vt − Ṽt) > R1} by
∑

j{τ(ω) = j} ≤ 1 for each ω.

The argument for assertion (ii) is almost the same except that we should
define τ(ω) := inf{j ∈ N : |V (tj , ω)| > R1 + R2} and use the inequality

|Vt| − |Ṽt| ≤ |Vt − Ṽt|.□

Remark. Assertion (ii) of the Theorem is also valid if Vt takes values
in some Rk, or even if it takes values in some general normed linear
space (provided you take care of a few measurability issues).

13.4 Empirical processes
Symmetrization::S:empirical

My interest in symmetrization began when I first tried to understand the
argument used by Vapnik and Chervonenkis (1971). Their results would
now be called generalized glivenko-cantelli theorems (named after work
from the 1930s) or uniform strong laws of large numbers—GC theorems and
USLLNs for short.

Dudley (1978) extended the Vapnik-Chervonenkis approach to establish a
“functional CLT” (as they were once called) for a suitably standardized form
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§13.4 Empirical processes 13

of the empirical measure Pn that puts mass 1/n at each member of a sample
ξ1, . . . , ξn from a probability measure P on (A,A). He established a uniform
limit theorem for the empirical process νn :=

√
n(Pn − P ), regarded as a

stochastic process indexed by a collection of sets. Dudley (1981) extended
those results collections of functions, F ⊂ L2(A,A, P ). The νn could then be
thought of as a stochastic process indexed by F:

\E@ Dudley.emp\E@ Dudley.emp <12> νn(f) := n−1/2
∑

i≤n

(
f(ξi)− Pf

)
for f ∈ F.

Dudley (1984, §10.2), and later Dudley (2014, Chap 5), paid particularly
careful attention to measurability issues. Proof of the functional CLT required
convergence of finite-dimensional distributions plus oscillation control of the
sample paths.

Empirical process ideas soon became popular as tools for analyzing
asymptotic problems in Statistics. For example, the ideas could be applied
to a regression problem with observations yi = ⟨xi, θ0⟩+ui, for i ∈ [[n]], with
observed vectors xi in some euclidean space, an unknown θ0, and unobserved
errors ui. They also worked for an even more complicated problem with
censored observations and θ̂ chosen to minimize

∑
i≤n |y

+
i − ⟨xi, θ⟩+|. See

Pollard (1990, §11). In such a setting oscillation control presented a difficult
challenge for classical methods but could be handled easily by an empirical
process analysis with F replaced by a set of functions {fi(·, θ) : i ∈ [[n]], θ ∈ Θ}
and a normalization different from the

√
n for Dudley’s theorems.

The customary n−1/2 standardization also turned out to be irrelevant for
a problem analyzed by Kim and Pollard (1990), which involved a centered
(to zero expected value) version of a process of the form

n−1/3
∑

i≤n
f
(
ξi(ω), θ0 + tn−1/3

)
,

for a collection of functions {f(·, θ) : θ ∈ Θ} indexed by a subset Θ of some
euclidean space.

Such examples persuaded me to follow the leads of Alexander (1987) and
BLM = Boucheron, Lugosi, and Massart (2013, Chap 11) in focussing on gen-
eral sums of independent processes Xi := {Xi(t, ω) : t ∈ T} for i ∈ [[n]]. That
is, any standardization (such as an n−1/2 factor) is absorbed into the defini-
tion of the Xi process. For example, Xi(t, ω) := n−1/3f

(
ξi(ω), θ0 + tn−1/3

)
for the Kim & Pollard problem; and for Dudley’s functional CLT (for func-
tions) we would have Xi(t, ω) := n−1/2f (ξi(ω), t) where {f(·, t) : t ∈ T} is a
(countable) collection of measurable maps into A.

Following BLM I’ll also use the name “empirical process” for any (cen-
tered) sum

∑
iXi(t, ω) of independent stochastic processes, despite the fact

that there need be no underlying “empirical measure” Pn constructed from
observed (a.k.a. “empirical”) data. When I feel the need for an explicit Pn

I’ll add the qualifier “traditional”. Despite the risk of confusion, the gener-
aliztion seems worthwhile because the methods described in the following
Sections were mostly developed for the traditional theory and they still apply
in traditional settings.
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To avoid measurability difficulties we could impose some extra condition
such as doob-separability. To sidestep the issue I’ll mostly just assume
that the index set T is countable.

Typically one chooses the standardization to control
∑

i var(Xi(t)) for
each t, with some sort of central limit effect in mind, which then has the side
effect of making each individual Xi(t) small in some probabilistic sense.

Remark. If {ξn,i : i ∈ [[n]], n ∈ N} is a triangular array of random
variables, independent within each row and satisfying the mild regu-
larity assumption that maxi P{|ξn,i| > ϵ} → 0 for each ϵ > 0, then
classical theory (see Petrov, 1975, §IV.4 and Le Cam, 1986) tells us
that

∑
i ξn,i ⇝ N(0, 1) iff for each ϵ > 0 we have:

(a) P{maxi |ξn,i| > ϵ} → 0 as n → ∞.

(b)
∑
i P (ξn,i{|ξn,i| ≤ ϵ}) → 0.

(c)
∑
i var (ξn,i{|ξn,i| ≤ ϵ}) → 1.

As Alexander (1987, §II) noted, the limit theory takes a slightly simpler
form (at least if the processes are centered to have zero expected values) if
the envelope functions

\E@ envelope\E@ envelope <13> Ei(ω) := supt∈T |Xi(t, ω)|

satsifies something like a lindeberg condition. In my setting, such a condition
corresponds to an assumption that maxiEi is small in some probabilistic
sense.

Symmetrization::truncation <14> Example. Consider the simplest (and most studied) case where ξ1, ξ2, . . .
are independent observations from some distribution P on a set A and F =
{ft : t ∈ T} is a collection of measurable functions on A for which F (·) :=
supt∈T |ft(·)| belongs to L2(P ). The empirical process

νn(t, ω) := n−1/2
∑

i≤n
(ft(ξi(ω))− Pft)

corresponds to Xi(t, ω) = n−1/2ft(ξi(ω)), with envelope Ei ≤ n−1/2F (ξi(ω)).
In that case

P{maxi≤nEi > η} ≤ nP{F > n1/2η} ≤ PF 2{F > n1/2η}/η2,

which tends to zero for each fixed η > 0 as n → ∞.□

13.5 Expected supremum of an empirical process
Symmetrization::S:expected-emp

Let me start with the cleanest example to show how symmetrization can
transform an empirical process problem into a form involving a simpler
process with subgaussian increments indexed by a subset of a euclidean
space. The analysis extends the symmetrization/conditioning ideas discussed
in Examples <8> and <10>.
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§13.5 Expected supremum of an empirical process 15

Under mild assumptions, we can bound expected deviations from a mean
by an expected value for a symmetrized process:

P supt∈T

∣∣∣S(t, ω)− PS(t)
∣∣∣ ≤ 2PωQs supt∈T

∣∣∣∑
i
siXi(t, ω)

∣∣∣,
with Q a probability measure on {−1,+1}[[n]]. The next Theorem gives a
much more useful inequality whose proof is only slightly more involved than
the proof of the previous inequality (although you might find it easier to
assume Ψ(r) = r on a first pass through the Proof).

Symmetrization::expected.symm <15> Theorem. Suppose

(i) S(t, ω) :=
∑n

i=1Xi(t, ω) where {Xi(t, ω) : i ∈ [[n]], t ∈ T} is a collection
of independent stochastic processes with T countable.

(ii) Xi(t) ∈ LΨ(P), for each i in [[n]] and each t in T , for a given orlicz
function Ψ.

Then

\E@ orlicz\E@ orlicz <16> PΨ
(
supt

∣∣∣S(t, ω)− PS(t)
∣∣∣) ≤ PωQsΨ

(
2 supt

∣∣∣∑
i
siXi(t, ω)

∣∣∣)
for every probability measure Q on Bn := {−1,+1}[[n]].

Remarks.

(i) Actually I’ll always take Q to be the uniform distribution on Bn, but
maybe someone will one day come up with a clever trick involving
a different Q. For example, if i is replaced by a double indexing i, j,
perhaps it would be helpful to have Q invariant under a fancier group of
transformations of the index set.

(ii) If you worry about integrability issues in the following proof you could
initially replace T by a finite set. The general case for countable T would
then follow by taking a supremum over an increasing sequence of finite
subsets of T .

Proof. Make an independent copy {X̃i(t, ω̃) : i ∈ [[n]], t ∈ T} on a new

probability space (Ω̃, F̃, P̃). Note that PS(t) =
∑

i P̃X̃i(t, ω̃). Because Ψ is
an increasing function we have

(⋆) := PωΨ
(
supt∈T

∣∣∣∑
i
Xi(t, ω)− P̃ω̃X̃i(t, ω̃)

∣∣∣)
≤ Pω suptΨ

(
P̃ω̃

∣∣∣∑
i
Xi(t, ω)− X̃i(t, ω̃)

∣∣∣)
≤ PωP̃ω̃ suptΨ

(∣∣∣∑
i
Xi(t, ω)− X̃i(t, ω̃)

∣∣∣) ,\E@ PP.symm\E@ PP.symm <17>

the final inequality coming from the jensen inequality and the fact that
supt P̃(. . . ) ≤ P̃ supt(. . . ).

The final bound would be unchanged if we swapped some Xi with the
corresponding X̃i. For example, under P ⊗ P̃ the joint distribution of

X1, X2, X3, . . . , Xn−1, Xn, X̃1, X̃2, X̃3 . . . , X̃n−1, X̃n
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§13.5 Expected supremum of an empirical process 16

is the same as the joint distribution of

X1, X̃2, X̃3, . . . , X̃n−1, Xn, X̃1, X2, X3, . . . , Xn−1, X̃n.

Equivalently, in <17> we can just replace X2 − X̃2 by −(X2 − X̃2), and
X3 − X̃3 by −(X3 − X̃3), and so on. In general we have

(⋆) ≤ PωP̃ω̃ supt∈T Ψ
(∣∣∣∑

i
si

(
Xi(t, ω)− X̃i(t, ω̃)

) ∣∣∣)
for every choice of s := (s1, . . . , sn) from Bn. Integrate with respect to Q to
get

(⋆) ≤ QsPωP̃ω̃ supt∈T Ψ
(∣∣∣∑

i
si

(
Xi(t, ω)− X̃i(t, ω̃)

) ∣∣∣)
≤ PP̃QΨ

(
supt

∣∣∣∑
i
siXi(t, ω)

∣∣∣+ supt

∣∣∣∑
i
siX̃i(t, ω̃)

∣∣∣) .

Invoke the convexity inequality Ψ(A+B) ≤ 1
2Ψ(2A) + 1

2Ψ(2B) to split the

upper bound into a sum of two terms then discard unnecessary P and P̃ to
end up with the asserted inequality.□

Remark. The split into two equal contributions from the Xi and X̃i

processes is not essential; it just makes for a neater-looking bound.

The simplest choice for Q in the previous Theorem is the uniform distri-
bution over Bn, in which case the coordinates s1, . . . , sn become independent
random variables with Q{si = +1} = 1/2 = Q{si = −1}. The random
variable siXi(t, ω) has a symmetric distribution under P⊗Q. From now on,
with Q uniform on Bn, I’ll refer to s1, . . . , sn as sign variables.

Remark. In the literature, the si’s are often called rademacher
variables, presumably because of a perceived similarity to a particular
orthonormal basis used by Rademacher (1922). However Talagrand
(2021) preferred the name “Bernoulli random variables”. Unfortu-
nately his terminology clashes with my use of Ber(p) for the distribu-
tion that puts mass p at 1 and mass 1− p at 0.

Theorem <15> is useful because it lets us break the analysis of the empir-
ical process into two steps, the first involving only the randomness provided
by s under the probabilty measure Q. For each fixed ω, the upper bound
in <16> involves the {Xi} processes only through the set of n-dimensional
vectors x(t, ω) := (Xi(t, ω) : i ∈ [[n]]):

\E@ S.circ.T\E@ S.circ.T <18> S◦(t, ω, s) :=
∑

i
siXi(t, ω) = ⟨x(t, ω), s⟩,

where ⟨·, ·⟩ denotes the usual inner ℓ2 inner product. As t runs over T
the x(t, ω) vectors trace out a subset Xω := {x(t, ω) : t ∈ T} of Rn (which
I regard as shorthand for R[[n]]). The upper bound in <16> could also be
rewritten as PωQsΨ

(
2 supx∈Xω

|⟨x, s⟩|
)
.
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At the risk of overloading the notation, define

\E@ S.circ.RRn\E@ S.circ.RRn <19> S◦(x) := S◦(x, s) := ⟨x, s⟩ for a general x in Rn.

Under the uniform distribution Q on Bn, the results from Section 7.1 show
that

QeS
◦(x) ≤ eλ

2
∑

i x
2
i /2 for each λ ∈ R and each x ∈ Rn.

That is, the distribution is subgaussian: S◦(x) ∈ subg(|x|22) for each fixed x,

where |x|2 :=
(∑

i x
2
i

)1/2
denotes the usual euclidean norm. More generally,

for each pair x, y in Rn the increment is subgaussian under Q:

\E@ S.circ.xx\E@ S.circ.xx <20> S◦(x)−S◦(y) = S◦(x−y) ∈ subg(ρ(x, y)2) where ρ(x, y) := |x− y|2

Using the orlicz norm characterization of subgaussianity from Section 7.2
we also have

\E@ Psi2.rho\E@ Psi2.rho <21> ∥S◦(x)− S◦(y)∥Ψ2,Q ≤ K0ρ(x, y) where Ψ2(r) := exp(r2)− 1,

for K0 a universal constant (smaller than
√
6).

Remark. I have written ∥. . . ∥Ψ2,Q
instead of ∥. . . ∥Ψ2

as a reminder

that the calculation takes place in Lψ2(Q) with ω held fixed.

We might reasonably hope to control the process {S◦(x) : x ∈ Xω} for fixed ω
using the methods described in Chapters 10 and 11, leaving a function of ω
that can be bounded more easily (we also hope) than the expression on the
left-hand side of <26>.

For example, suppose Xω has ρ-diameter D(ω) and, for simplicity, as-
sume 0 ∈ Xω. With δi := D(ω)/2i for i = 0, 1, . . . suppose we have a
{δi}-packing framework, in the sense described in Section 10.4, rooted at 0.
Then the chaining argument from Section 10.5 gives

∥∥supx∈Xω
|S◦(x)|

∥∥
Ψ2,Q

≤ J(ω) := C

∫ D(ω)

0
Ψ−1

2

(
pack(r,Xω, ρ)

)
dr,\E@ J.def\E@ J.def <22>

where C is a universal constant. As shown in Section 7.2, if the upper bound
in <22> is finite then it implies a host of weaker (but more easily inter-
preted) inequalities for S◦ as an element of Lp(Q): for each p ≥ 1 there is a
constant Cp for which

\E@ Scirc-llp\E@ Scirc-llp <23>
∥∥supx∈Xω

|S◦(x)|
∥∥
p,Q ≤ CpJ(ω),

from which we get

P supt |S(t, ω)− µ(t)|p ≤ C ′
p P (CpJ(ω))

p

for some new constant C ′
p. Of course the inequality is useful only if J belongs

to Lp(P). See Pollard (1989) and Kim and Pollard (1990), where very similar
bounds were applied to derive limit theorems for statistical models.
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13.6 Symmetrization of independent processes
Symmetrization::S:symm-emp

The sign variables {si} first entered the Proof of Theorem <15> as a de-
terministic way to interchange an Xi with its independent copy X̃i. Then
they magically became random variables when I integrated out with respect
to Q. I prefer to treat them as random variables right from the start of the
argument, as a method for creating two independent copies of the {Xi}
process,

The new construction might remind you of the paired comparison method
described in Example <2>. The raw materials are now the independent
processes {Xi(t, ω) : i ∈ [[n]], t ∈ T}, defined on (Ω,F,P), and their independent

copies {X̃i(t, ω̃) : i ∈ [[n]], t ∈ T}, defined on (Ω̃, F̃, P̃), together with a
vector of independent sign variables s = (s1, . . . , sn), the coordinate maps
on Bn := {−1,+1}[[n]] under its uniform distribution Q. As before, Xi

and X̃i have distribution Pi. We can also think of these random objects
as living on the space Υ := Ω × Ω̃ × Bn, equipped with the probability
measure M := P ⊗ P̃ ⊗ Q, by defining(

Yi(t), Ỹi(t)
)
:=

(
Yi(t, ω, ω̃, s), Ỹi(t, ω, ω̃, s)

)
:= {si = +1}

(
Xi(t, ω), X̃i(t, ω̃)

)
+ {si = −1}

(
X̃i(t, ω̃), Xi(t, ω)

)
for each i in [[n]]. The processes Yi and Ỹi both have distribution Pi and
all 2n processes Y1, . . . , Yn, Ỹ1, . . . , Ỹn are independent.

Remark. Put more poetically, for each i we generate two independent
observations from Pi then we toss a fair coin (the si variable) to de-
cide which one of the pair we call the Yi process and which one we
call the Ỹi process.

If you do not find the poetic explanation convincing regarding the
joint distribution of the {Yi} and {Ỹi} processes you could argue more
formally by first showing that

PωP̃ω̃f1(Y1)g1(Ỹ1) . . . fn(Yn)gn(Ỹn) = (P1f1)(P1g1) . . . (Pnfn)(Pngn)

for each fixed value of s, for all choices of the bounded C-measurable
functions f1, g1, . . . , fn, gn on RT .

Under M, the processes

\E@ two.sums\E@ two.sums <24> S(t, ω, ω̃, s) :=
∑

i
Yi(t, ω, ω̃, s) and S̃(t, ω, ω̃s) :=

∑
i
Ỹi(t, ω, ω̃, s)

are also independent, with each having the same distribution as the pro-
cess S(t, ω) :=

∑
iXi(t, ω) under P. That is, S and S̃ are independent copies

of S for which

\E@ sum.symm\E@ sum.symm <25> S(t)− S̃(t) =
∑

i
si

(
Xi(t, ω)− X̃i(t, ω)

)
.
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In place of the argument from Section 13.5 we now have:

PΨ
(
supt∈T

∣∣∣S(t, ω)− µ(t)
∣∣∣) where µ(t) := PS(t) = P̃S̃(t)

≤ Mω,ω̃,sΨ
(
supt |S(t, ω, ω̃, s)− S̃(t, ω, ω̃, s)|

)
≤ PωQsΨ

(
2 supt

∣∣∣∑
i
siXi(t, ω)

∣∣∣) ,\E@ orlicz2\E@ orlicz2 <26>

the final simplification again coming from the convexity inequality Ψ(A+B) ≤
1
2Ψ(2A) + 1

2Ψ(2B).

13.7 Maximal tail bounds for an empirical process
Symmetrization::S:tail-emp

From now on Q will always denote the uniform distribution on Bn :=
{−1,+1}[[n]], so that the coordinates s1, . . . , sn become independent sign
variables.

The symmetrization method from the previous Section also simplifies the
derivation, via Theorem <11>, of a maximal inequality for tail probabilities.

Symmetrization::tail.symm <27> Theorem. Suppose S(t, ω) :=
∑n

i=1Xi(t, ω) for independent processes
{Xi(t, ω) : i ∈ [[n]], t ∈ T} with T countable. Define µ(t) := PS(t)
and S◦(t, ω, s) :=

∑
i siXi(t, ω). Suppose α,R1, R2 are positive constants.

(i) If αP{S(t, ω)− µ(t) ≤ R2} ≥ 1 for each t ∈ T then

P{supt : S(t, ω)−µ(t) > R1+R2} ≤ 2αPωQs{supt : S◦(t, ω, s) > R1/2}.

(ii) If αP{|S(t, ω)− µ(t)| ≤ R2} ≥ 1 for each t then

P{supt |S(t, ω)−µ(t)| > R1+R2} ≤ 2αPωQs{supt |S◦(t, ω, s)| > R1/2}.

Proof. Using the method from Section 13.6, construct independent copies S, S̃
(under M := P ⊗ P̃ ⊗ Q) of the S process. Invoke Theorem <11> with

Vt = S(t)− µ(t) and Ṽt = S̃(t)− µ(t) to bound the left-hand side in (i) by

(⋆) := αM{supt∈T S(t)− S̃(t) > R1}

= αM{supt
∑

i
si

(
Xi(t, ω)− X̃i(t, ω)

)
> R1}.

Note that

supt
∑

i
si

(
Xi(t)− X̃i(t)

)
≤ supt

∑
i
siXi(t) + supt

∑
i
(−si)X̃i(t).

If the quantity on the left-hand side of the previous inequality is > R1 then
at least one of the two supt’s on the right-hand side must be > R1/2. Both
contributions have the same distribution because −s has the same distribution
as s under Q. Thus (⋆) is smaller than 2αM{supt

∑
i siXi(t) > R1/2}, as

asserted.
The argument for (ii) is similar.□
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As explained in Section 13.5, under Q we can we can think of S◦ as a
process indexed by a random subset Xω = {x(t, ω) : t ∈ T}. If we want to
control the upper bound in part (ii) of the Theorem by means of a chaining
argument, as in in Sections 10.5 or 11.5, then we need to control

\E@ diam.T\E@ diam.T <28> D(ω) := diam(Xω) = sup{|x− y|2 : x, y ∈ Xω}.

Moreover, Problem [2] shows there is no avoiding this task because there is
a positive universal constant c0 for which Q{supx∈Xω

|⟨x, s⟩| ≥ D(ω)/4} ≥ c0.
We can also think of S◦ as a process indexed by T , that is, S◦(t, ω, s) :=

⟨s, x(t, ω)⟩, with subgaussian increments controlled by a random (semi-)metric
on T :

S◦(t1, ω, s)− S◦(t2, ω, s) ∈subg(ρω(t1, t2)2) under Q,

where ρω(t1, t2) := |x(t1, ω)− x(t2, ω)|2.\E@ rho.om\E@ rho.om <29>

We then have D(ω) = sup{ρω(t1, t2) : t1, t2 ∈ T}, which suggests that D(ω)
should be closely related to the diameter of T under the non-random metric
(or semi-metric)

d(t1, t2) :=

√
P
∑

i

(
Xi(t1, ω)−Xi(t2, ω)

)2
=

√
Pρω(t1, t2)2 .\E@ metric.def\E@ metric.def <30>

Remark. This d, or something very like it, was the default choice of
metric for the index set in much of the early empirical process lit-
erature inspired by Dudley’s 1978 paper. If you have in mind some
other metric d0 on T then you’ll need to add some condition showing
that d0 controls the d from <30>.

Another symmetrization argument, slightly different from the one used for
Theorem <27>, will justify this intuition. It symmetrizes norms using a
simple inequality that seems to have acquired the name square root trick:
for A = (a1, . . . , an) and B = (b1, . . . , bn) in Rn,

\E@ srt\E@ srt <31>
∣∣ |A|2 − |B|2

∣∣ = ∣∣ |A|22 − |B|22
∣∣

|A|2 + |B|2
≤

|
∑

i a
2
i − b2i |√∑

i a
2
i + b2i

.

The following Theorem captures the main idea.

Remark. For chaining purposes it will suffice to find conditions under
which ρω(t1, t2) is bounded, with high probability, by a constant mul-
tiple of d(t1, t2). That is, we want a bound that works for all (t1, t2)
in T × T . I could write the following Theorem as an inequality involv-
ing T×T but that would just complicate the notation. Instead, I trust
you will have no difficulty in Section 13.8 when substituting a general
empirical process indexed by a countable T ×T for a general empirical
process indexed by a countable T .
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Symmetrization::symm.norm <32> Theorem. Let {Xi(t) : t ∈ T, i ∈ [[n]]} be independent processes with T
countable and envelope functions Ei(ω) := supt∈T |Xi(t, ω)|. Suppose

P
∑

i
Xi(t, ω)

2 ≤ δ2 for each t in T .

Then for each R > 0 and θ > 0 and m ∈ N there is constant C = CR such
that

P{supt∈T
∑

i
Xi(t)

2 > C2δ2} ≤ PΩc
env + PΩc

cov + 2m exp
(
−1

2(Rδ/θ)2
)

\E@ Del.om\E@ Del.om <33>

where

Ωenv := {ω : maxiEi(ω) ≤ θ} and Ωcov := {ω ∈ Ωenv : cover(δ, T, ρω) ≤ m}.

with ρω as in <29>.

Remark. We could choose C = 2 +
√
8 + 2R, which is a bit less

than 7 for R = 1. To make the integral appearing on the right-hand
side of <22> small requires more stringent assumptions on covering
numbers than those needed to make PΩccov + 2m exp

(
−(Rδ)2/(2θ2)

)
small. The price we pay is the intrusion of the constant C in <33>.

Proof. Define Ui(t, ω) := Xi(t, ω){Ei ≤ θ} and u(t, ω) :=
(
Ui(t, ω) : i ∈ [[n]]

)
so that

\E@ X2.U2\E@ X2.U2 <34> P{supt
∑

i
Xi(t)

2 > C2δ2} ≤ PΩc
env + P{supt |u(t, ω)|2 > Cδ}.

For each s in Bn split the vector u(t, ω) into the sum of two n-vectors,
u⊕(t) := u⊕(t, ω, s) and u⊖(t) := u⊖(t, ω, s), defined by:(

u⊕i (t), u
⊖
i (t)

)
:= {si = +1}

(
Ui(t, ω), 0

)
+ {si = −1}

(
0, Ui(t, ω)

)
with corresponding ℓ2 norms Vt := |u⊕(t, ω, s)|2 and Ṽt := |u⊕(t, ω, s)|2. We
then have two representations:∑

i
Ui(t, ω)

2 := |u(t, ω)|22 = Vt(ω, s)
2 + Ṽt(ω, s)

2,∑
i
siUi(t, ω)

2 = Vt(ω, s)
2 − Ṽt(ω, s)

2.

The first of these two equalities gives |u(t, ω)|2 ≤ Vt(ω, s) + Ṽt(ω, s) for all ω
and s, which implies

\E@ u.norm\E@ u.norm <35> P{supt |u(t, ω)|2 > Cδ} ≤ QP{supt Vt + Ṽt > Cδ}.

Under M := P ⊗ Q, with Q the uniform distribution on Bn, the processes
{Vt : t ∈ T} and {Ṽt : t ∈ T} have the same distribution, so that

\E@ V+tV\E@ V+tV <36> M{supt Vt + Ṽt > Cδ} ≤ 2M{supt Vt > Cδ/2}.
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Under P, with s held fixed, the {Vt : t ∈ T} and {Ṽt : t ∈ T} processes are
independent and

P{Ṽt(ω, s) > δ
√
2} ≤ PṼ 2

t /(2δ
2) ≤ P|x(t, ω)|22/(2δ2) ≤ 1/2,

so an appeal to Theorem <11> with C1 := C/2−
√
2 gives

P{supt Vt(ω, s) > Cδ/2} ≤ 2P{supt Vt − Ṽt > C1δ} for each fixed s.

Integrate both sides of this inequality with respect to Q to deduce that

M{supt Vt > Cδ/2} ≤ 2M{supt∈T
(
Vt − Ṽt

)
> C1δ}.\E@ V.symm.MM\E@ V.symm.MM <37>

The trick now is to approximate each Vt by a Vs (and Ṽt by Ṽs) for
some s in a δ-covering set T (δ, ω) for T under ρω. Of course we may as-
sume |T (δ, ω)| ≤ cover(δ, T, ρω). By definition, there is a map σ : T → T (δ, ω)
for which ρω(t, σ(t)) ≤ δ. By the triangle inequality for ℓ2 norms,

|Vt − Vσ(t)|+ |Ṽt − Ṽσ(t)| ≤ |u⊕t − u⊕σ(t)|2 + |u⊖t − u⊖σ(t)|2
≤ 2|ut − uσ(t)|2 ≤ 2ρω(t, σ(t)) ≤ 2δ.

Consequently,

Vt − Ṽt −
(
Vσ(t) − Ṽσ(t)

)
≤ |Vt − Vσ(t)|+ |Ṽt − Ṽσ(t)| ≤ 2δ,

implying supt∈T
(
Vt − Ṽt

)
≤ maxs∈T (δ,ω)

(
Vs − Ṽs

)
+ 2δ and

Q{supt∈T Vt − Ṽt > C1δ} ≤ Q{maxt′∈T (δ,ω)

(
Vt′ − Ṽt′

)
> Rδ}\E@ QQ.sup.Vdiff\E@ QQ.sup.Vdiff <38>

if C1 := R+ 2.
Now focus on a single t in T (δ, ω). Inequality <31> with A = u⊕(t, ω, s)

and B = u⊖(t, ω, s) gives

|Vt − Ṽt| ≤
|V 2

t − Ṽ 2
t |

Vt + Ṽt

=
|
∑

i siUi(t, ω)
2|

|u(t, ω)|2
.

By the subgaussian exponential bound from Section 7.1 we have

Q{Vt − Ṽt > Rδ} ≤ Q{|
∑

i
siUi(t, ω)

2| > Rδ|u(t, ω)|2}

≤ 2 exp
(
−1

2R
2δ2|u(s, ω)|22/

∑
i
Ui(t, ω)

4
)

The indicator function {Ei ≤ θ} in the definition of Ui in the first line of the
proof ensures that

∑
i Ui(t, ω)

4 ≤ θ2|u(t, ω)|22. A simple union bound then
gives

Q{maxt∈T (δ,ω)

(
Vt − Ṽt

)
> Rδ} ≤ 2m exp

(
−(Rδ)2/(2θ2)

)
if ω ∈ Ωcov.□
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13.8 Oscillation control for an empirical process
Symmetrization::S:osc-emp

As you will learn in Chapter 16, the conditions for convergence in distribution
of a sequence of stochastic process to a limit process with continuous paths
are: convergence of the finite dimensional distributions; and uniform oscillation
control far enough out in the sequence. This Section describes a technique
for deriving inequalities that can handle that oscillation requirement for
empirical processes,

\E@ nu.def\E@ nu.def <39> ν(t, ω) := S(t, ω)−PS(t) :=
∑

i∈[[n]]

(
Xi(t, ω)−PXi(t)

)
for t ∈ T ,

Oscillation control, or something closely related, also plays a central role in
statistical problems where estimators are defined by some sort of optimization
involving a process {Mt : t ∈ T}, with T interpreted as the index set for a
family of statistical models. Often the process M is constructed from a sum
of independent stochastic processes indexed by T and the analysis involves an
estimator t̂ that, by some preliminary “consistency” argument, is known to lie
in a small neighborhood of t0 with high probability under the model defined
by t0. A slightly weaker form of oscillation control then justifies replacement
of M(t̂ ) by M(t0) plus a small error. See Pollard (1990, §§11-14) for several
non-trivial examples.

The simple additive form of the ν(t, ω) process in <39> leads to an
analogous representation for the increments of ν as the values of a new
empirical process, ∆ν, with a larger index set: for (s, t) ∈ T × T ,

∆Xi(s, t, ω) := Xi(s, ω)−Xi(t, ω) for i ∈ [[n]],

∆ν(s, t, ω) := ν(s, ω)− ν(t, ω) =
∑

i

(
∆Xi(s, t, ω)− P∆Xi(s, t)

)
\E@ emp.increment\E@ emp.increment <40>

∆ν◦(s, t, ω, s) :=
∑

i∈[[n]]
si∆Xi(s, t, ω).

If W is a subset of T × T and αP{|∆ν(s, t)| ≤ η} ≥ 1 for all (s, t) ∈ W

and some positive constant α, then Theorem <27> part (ii) gives

P{ sup
(s,t)∈W

|∆ν(s, t, ω)| > 2η} ≤ 2αPωQs{ sup
(s,t)∈W

|∆ν◦(s, t, ω, s)| > η}\E@ diff.Rad.symm\E@ diff.Rad.symm <41>

for the uniform distribution Q on Bn. With a view to oscillation control under
the metric d from <30>, the hope is that, for given positive η and ϵ, there
exists a δ that makes the expression on the right-hand side of <41> smaller
than ϵ when

\E@ ww.del\E@ ww.del <42> W := {(s, t) ∈ T × T : d(s, t) < δ}.

For each fixed ω, the ∆ν◦ process again has subgaussian increments
under Q. Using the general inequality (a+ b)2 ≤ 2a2 + 2b2 for non-negative
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a, b we get (via inequality <21>)

∥∆ν(s1, t1)−∆ν(s2, t2)∥2Ψ2,Q ≤ K2
0

∑
i

(
∆Xi(s1, t1)−∆Xi(s2, t2)

)2

≤ 2K2
0

(∑
i

(
Xi(s1)−Xi(s2)

)2
+
∑

i

(
Xi(t1)−Xi(t2)

)2
)

= 2c20
(
ρω(s1, s2)

2 + ρω(t1, t2)
2
)
.

Hence, for another universal constant K1,

∥∆ν(s1, t1)−∆ν(s2, t2)∥Ψ2,Q ≤ c1ρ
(2)
ω

(
(s1, t1), (s2, t2)

)
\E@ nu.TT.incr\E@ nu.TT.incr <43>

where ρ
(2)
ω ((s1, t1), (s2, t2)) := ρω(s1, s2) + ρω(t1, t2).

The ρ
(2)
ω is a (semi-)metric on T × T .

For simplicity of exposition let me assume that the packing/covering
methods from Section 10.5 suffice to control the final Q probability. A simple
triangle inequality argument shows that

cover(2r, T × T, ρ(2)ω ) ≤ cover(r, T, ρω)
2 for each r > 0.\E@ TxT\E@ TxT <44>

We could use a chaining tree rooted at some (t0, t0) with link lengths bounded

by δi := D(ω)/2i, for D(ω) := diam(W, ρ
(2)
ω ), to get

Q{supW |∆ν◦(s, t)| > C0J(ω)} ≤ C1D(ω),

where J(ω) :=

∫ D(ω)

0
Ψ−1

2

(
cover(r,W, ρ(2)ω )

)
dr

≤ C2

∫ D(ω)

0
Ψ−1

2

(
cover(r, T, ρω)

)
dr, .\E@ covering.bnd\E@ covering.bnd <45>

for universal constants C0, C1, C2. Here I used covering rather than packing
in order to take advantage of <44> for the upper bound on J .

Remark. Of course both D(ω) and J(ω) depend on both the pro-
cesses {Xi} and δ. We need to stay aware of this dependence if we
plan to apply <45> to a whole sequence of such processes with the
hope of a obtaining a uniform bound. You should scrutinize my argu-
ments in Example <48> with this caution in mind.

Chapters 14 and 15 will describe some very useful combinatorial tech-
niques, extending the ideas touched on in Examples <8> and <10>, for
deriving bounds on covering numbers related to independent {Xi}-processes.
In principle, covering bounds could also be replaced by the fancier partition
methods from Chapter 11.

The strategy now becomes: find some way to control cover(r, T, ρω)
then invoke Theorem <32> with T replaced by W and Xi(t, ω) replaced
by Xi(s, t, ω) to make both D(ω) and J(ω) from <45> suitably small, then
average out over ω.
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To see how these ideas play out in practice, let me apply them in the
traditional setting where: ξ1, . . . , ξn is a sample from the unif(0, 1) distri-
bution; the empirical probability measure Pn puts mass n−1 at each ξi(ω);
and the traditional empirical process is defined for t ∈ T := [0, 1] as

νn(t, ω) := n−1/2
∑

i≤n

(
{ξi(ω) ≤ t} − t

)
= n1/2 (Pn[0, t]− t)\E@ trad.emp.proc\E@ trad.emp.proc <46>

=
∑

i

(
Xi(t, ω)− PXi(t)

)
for Xi(t, ω) := n−1/2{ξi(ω) ≤ t}.

The index set T is equipped with the metric from <30>, which simplifies
to d(s, t) :=

√
|s− t| . Doob (1949) had argued heuristically that, for asymp-

totic purposes as n → ∞, the process νn behaves likes a brownian bridge.
For one particular functional (= a function on the sample paths of νn),
Donsker (1952) made the heuristics rigorous by means of an approximation
argument that served to control oscillations of the sample paths. He also
noted (citing his doctoral dissertation) that his general method could be
applied to a large class of functionals, thereby establishing what would now
be called the very first donsker theorem for an empirical process.

The key oscillation condition for Donsker’s theorem is: for each η > 0
and ϵ > 0 there exists a δ > 0 for which

\E@ asymp.osc\E@ asymp.osc <47> P{supd(s,t)<δ |νn(s, ω)− νn(t, ω)| > η} < ϵ for all n large enough.

The next Example shows how this result follows from inequality <45> and
Theorem <32>.

Symmetrization::trad.Donsker <48> Example. For the traditional empirical process <46> we have

ρω(s, t) =

√
n−1

∑
i
|{ξi(ω) ≤ s} − {ξi(ω) ≤ t}|2 for s, t ∈ T

=
√
Pn(s, t] if 0 ≤ s ≤ t ≤ 1.

Thus, for s < t we have ρω(s, t) ≤ r iff ≤ nr2 of the ξi(ω)’s lie in (s, t].
An elementary argument will bound the ρω-covering numbers. For a

fixed ω, rearrange ξ1(ω), . . . , ξn(ω) into an increasing sequence x1 < x2 <
· · · < xn. As every point of T lies at ρω distance zero from some member
of {0, x1, . . . , xn} we have cover(r, T, ρω) ≤ n + 1 ≤ 2/r2 if nr2 < 1. If
1 ≤ nr2 ≤ n, define positive integers k := ⌊nr2⌋ and ℓ = ⌊n/k⌋. Then we
have

1 ≤ k ≤ nr2 < 2k and 1 ≤ ℓ ≤ n/k < 2/r2.

Every t in T lies within a distance r from the set {xk, x2k, . . . , xℓk}. For
example, we have ρω(t, xk) ≤ r if 0 ≤ t ≤ x2k because

Pn(t, xk] ≤ k/n if 0 ≤ t < xk,

Pn(xk, t] ≤ k/n if xk < t ≤ x2k.

It follows that cover(r, T, ρω) ≤ 2/r2 for each r in (0, 1].
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The integrand Ψ−1
2

(
cover(r, T, ρω)

)
in <45> is certainly smaller than

some integrable function κ(r) that does not depend on n. There exists a δ0 > 0

for which
∫ δ0
0 κ(r) dr < ϵ/2. We only need to show that the diameter D(ω)

can be made uniformly small over a set of ω’s with high probability by
choosing a small enough δ. I claim this task can be carried out successfully
by an appeal to Theorem <32> with T replaced by the W in <42> and Xi

replaced by ∆Xi, with

θ = n−1/2, R = 1, m = ⌈2/δ2⌉,

and n large enough that 2 exp
(
log(1 + 2/δ2)− nδ2/2

)
is suitably small. Or

something like that.□

*13.9 U-processes
Symmetrization::S:Uproc

The methods described in the previous Sections by no means exhaust the
symmetrization idea. This final Section briefly describes one more application
that was popular at one time.

Suppose (A,A, P ) is a probability space and ξ1, . . . , ξn are independent
random elements of A, each with distribution P . Let f be a symmetric
function in L2(A × A,A ⊗ A, P ⊗ P ). Write N for

(
n
2

)
. Then the random

variable

Un(f) := N−1
∑

1≤i<j≤n

f(ξi, ξj) = (2N)−1
∑

i∈[[n]],j∈[[n]]

{i ̸= j}f(ξi, ξj)

is called a U-statistic.
The asymptotic behavior of Un(f), as n goes to ∞, has been studied in

detail. Hoeffding (1946) developed much of the basic theory. In particular,
he proved a central limit theorem by means of a projection argument.

The notation is cleaner if we define

f(a, P ) := P bf(a, b), f(P, b) := P af(a, b), f(P, P ) := P aP bf(a, b).

Then, for i ̸= j, we have P(f(ξi, ξj) | ξj = b) = f(P, b) and Pf(ξi, ξj) = f(P, P ).
Write K for the set of all functions in L2(P ⊗ P ) of the form κ(a, b) =

g(a) + h(b) with g, h ∈ L2(P ) and let K0 denote the set of those κ in K for
which Pg = Ph = 0.

Problem [6] shows (ignoring issues with almost sure equivalences) that
K and K0 are closed subspaces of L2(P ⊗ P ) and f has an orthogonal
decomposition

f(a, b)− f(P, P ) = f(a, P )− f(P, P ) + f(P, b)− f(P, P ) + F (a, b),

with f(·, P )− f(P, P )+ f(P, ·)− f(P, P ) ∈ K0 and F (·, ·) ∈ K⊥. Thus f −F
is the projection of f − F (P, P ) onto K and F is the projection onto K⊥.
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It simplifies notation even more if we assume that f has been centered
to have zero P ⊗ P integral: f(P, P ) = 0. In that case we have

\E@ project0\E@ project0 <49> f(a, b) = F (a, b) + f(a, P ) + f(P, b)

and

\E@ F.orthog\E@ F.orthog <50> P aF (a, b)f(a, P ) = P bF (a, b)f(P, b) = 0 = P bP cF (a, b)F (a, c),

from which it follows that

∥f∥22 = P ⊗ PF (a, b)2 + 2σ2 where σ2 := Pf(a, P )2.

Corresponding to <49> we have a decomposition of the U-statistic:

Un(f) = Un(F ) + (2N)−1
∑

[[n]]2
{i ̸= j}

(
f(ξi, P ) + f(P, ξj)

)
= Un(F ) + 2n−1/2Zn(f) where Zn(f) : n

−1/2
∑

i
f(ξi, P ).\E@ Un.decomp\E@ Un.decomp <51>

The usual CLT for identically distributed summands tells us that

Zn(f)⇝ N(0, σ2) as n → ∞, for σ2 := Pf(a, P )2.

Also <50> controls the contribution from F :

PUn(F )2 = (2N)−2
∑

[[n]]4
{i ̸= j}{k ̸= ℓ}PF (ξi, ξj)F (ξk, ξℓ)

= (2N)−2
∑

[[n]]2
{i ̸= j}PF (ξi, ξj)

2 ≤ (4N)−1 ∥f∥22 .

Thus |Un(F )| is of order Op(n
−1).

If σ2 > 0 the contribution from Zn controls the behavior of Un(f), leaving
us with

n1/2Un(f) = Zn(f) +Op(n
−1/2)⇝ N(0, 4σ2).

If σ2 = 0 then P{a ∈ A : f(a, P ) ̸= 0} = 0, so that f(a, b) = F (a, b)
and Un(f) = Un(F ) almost surely. In that case the function f is deemed
“degenerate”. The asymptotics become more challenging: nUn(f) converges
in distribution to a strange infinite weighted sum of random variables η2i − 1
for independent standard normal variables η1, η2, . . . . See Serfling (1980,
§5.5), van der Vaart (1998, §12.3), and de la Peña and Giné (1999, §4.2) for
details.

So how does symmetrization get into the story? It helps when we need
a maximal inequality for a whole family {Un(f) : f ∈ F} of U-statistics—a
U-process

Remark. The following analysis is based on Nolan and Pollard (1987,
1988), who were motivated by a problem involving cross-validation of
a kernel density estimator.
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In general, the process {Zn(f) : f ∈ F} from <51> can be handled by
empirical process methods, at least if we assume F is countable. When F
contains more than one member the remainder terms, corresponding to
the Un(F )’s, can no longer be dispatched by a simple variance calculation.
Instead we need to control P supf∈F |Un(Ff )| where

Ff (a, b) := f(a, b)− f(a, P )− f(P, b) + f(P, P ),

the subscript f being a reminder of the dependence of the new F ’s on f .

Remark. The following argument also works when bounding PΨ
(
supf∈F |Un(Ff )|

)
for an orlicz function Ψ.

An analog of the symmetrization method from Section 13.6 again simplifie
the problem. Construct independent copies of the ξi’s using a double sample
x1, . . . xn, x̃1, . . . , x̃n from P and sign variables s1, . . . , sn:

\E@ xi.txi\E@ xi.txi <52> (ξi, ξ̃i) = {si = +1}(xi, x̃i) + {si = −1}(x̃i, xi) for each i.

Again think of the xi’s as defined on some (Ω,F,P) and the x̃i’s as defined on

some (Ω̃, F̃, P̃). Under M := P⊗ P̃⊗Q the random objects ξ1, . . . , ξn, ξ̃1, . . . , ξ̃n
have the same joint distribution, P 2n, as x1, . . . , xn, x̃1, . . . , x̃n.

For the U-process constructed from x1, . . . , xn, degeneracy of Ff gives
Ff (·, P ) = 0 = Ff (P, ·) = Ff (P, P ) for each f . Thus

NUn(Ff ) =
∑

i<j

[
Ff (xi, xj)− Ff (xi, P )− Ff (P, xj) + Ff (P, P )

]
=

∑
i<j

[
Ff (xi, xj)− P̃Ff (xi, x̃j)− P̃Ff (x̃i, xj) + P̃Ff (x̃i, x̃j)

]
implying

P supf∈F |Un(Ff )| = P supf |P̃
∑

i<j
Di,j | ≤ PP̃ supf |

∑
i<j

Di,j |

where

Di,j := Di,j(f, x, x̃) := Ff (xi, xj)− Ff (xi, x̃j)− Ff (x̃i, xj) + Ff (x̃i, x̃j).

The same inequality holds if xi is replaced by ξi and x̃i by ξ̃:

\E@ xi.txi.deg\E@ xi.txi.deg <53> P supf∈F |Un(Ff )| ≤ M supf
∣∣∑

i<j
Di,j(f, ξ, ξ̃)

∣∣.
Substitute from equality <52> to transform back to a function of x, x̃, s:

si sj Di,j(ξ, ξ̃)

+1 +1 Ff (xi, xj)− Ff (xi, x̃j)− Ff (x̃i, xj) + Ff (x̃i, x̃j)
+1 −1 Ff (xi, x̃j)− Ff (xi, xj)− Ff (x̃i, x̃j) + Ff (x̃i, xj)
−1 +1 Ff (x̃i, xj)− Ff (x̃i, x̃j)− Ff (xi, xj) + Ff (xi, x̃j)
−1 −1 Ff (x̃i, x̃j)− Ff (x̃i, xj)− Ff (xi, x̃j) + Ff (xi, xj)
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Notice that Di,j(f, ξ, ξ̃) = sisjDi,j(f, x, x̃). The changes in sign correspond
to the values of sisj . Inequality <53> can be written as

P supf∈F |Un(Ff )| ≤ PP̃Q supf
∣∣∑

i<j
sisjDi,j(f, x, x̃)

∣∣.
Compare with Theorem <15>. Instead of the linear functions of the si’s for
the integral with respect to Q, as in that Theorem, we now have quadratics
in the si’s.

If we had been working with a maximal tail probability inequality we
could bound the Q contribution by chaining with the subGamma inequalities
from Section 8.4 controlling the increments of the

∑
i,j sisjDi,j(f, x, x̃) process.

With expected values we could appeal to the results from Section 11.5 using
the ∥. . . ∥Ψ1,Q to control the increments, with Ψ1(r) := er−1, as in Problem [5].

13.10 Problems
Symmetrization::S:problems

[1] Suppose {Xn} and {Yn} are sequences of random variables for which Xn isSymmetrization::P:Levy.clt

independent of Yn and Xn + Yn ⇝ N(0, 1).

(i) Show that there is a sequence of real numbers {an} for which the sequence
{Xn+an} is tight, that is, for each ϵ > 0 there exists a constant Kϵ for which

lim supP{Xn + an /∈ [−Kϵ,Kϵ]} < ϵ

Hint: Let an be a median of Yn, that is P{Yn ≥ an} ≥ 1/2 and P{Yn ≤ an} ≥
1/2. Show that

P{Xn+an > K} ≤ 2P{Xn−an > K,Yn−an ≤ 0} ≤ 2P{Xn+Yn ≥ K} → Φ̄(K).

Argue similarly for the lower tail.

(ii) Let N1 ⊂ N be a subsequence (Billingsley, 1968, §29) along which Xn+an con-
verges in distribution to some X. Show that Yn−an converges in distribution
to some Y along the same subsequence. Hint: Peit(Xn+an)Peit(Yn−an) → e−t2/2

along N1.

(iii) Use Example <1> to deduce that X has a normal distribution, possibly
degenerate.

[2] Suppose W :=
∑

i siai for a fixed vector a = (a1, . . . , an) in Rn and inde-Symmetrization::P:Rad.min
pendent sign variables s1, . . . , sn. Argue as follows to prove that there exists
a universal constant c0 > 0 (depending neither on a nor on n) for which
Q{|W | ≥ |a|2/2} ≥ c0 for each a in Rn.

(i) Show that QW 2 = |a|22 and QW 4 =
∑

i a
4
i + 6

∑
1≤i<j≤n a

2
i a

2
j ≤ 3|a|42.

(ii) Without loss of generality suppose |a|2 = 1. Show that√
(QW 4)Q{|W | ≥ 1/2} ≥ QW 2{|W | ≥ 1/2} = QW 2−QW 2{W 2 < 1/4} ≥ 3/4,

which rearranges to Q{|W | ≥ 1/2} ≥ (3/4)2/3.
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(iii) Suppose X is a bounded subset of Rn with ℓ2 diameter R. Deduce from part (i)
that Q{supx∈X |⟨x, s⟩| ≥ R/4} ≥ c0 Hint: If x1, x2 ∈ X and Wj := ⟨xj , s⟩ for
j = 1, 2, show that max(|W1|, |W2|) ≥ |W1 −W2|/2.

[3] As in Theorem <27>, suppose X1, . . . , Xn are independent stochastic pro-Symmetrization::P:max.M

cesses, each indexed by a countable set T = {tj : j ∈ N}, but now also assume
that PXi(t) = 0 for i ∈ [[n]] and t ∈ T . Define Si(t, ω) :=

∑
j≤iXj(t, ω) and

Mi(ω) := supt |Si(t, ω)| for i ∈ [[n]]. For some positive constants η and α
suppose αP{|Sn(tj)− Si(tj)| ≤ η} ≥ 1 for each i ∈ [[n]] and j ∈ N. Argue as
follows to show that

P{maxi supt |Xi(t)| > 4η} < 2αP{maxt |Sn(t)| > η}.

(i) Define θ(ω) := inf{i ∈ [[n]] : Mi(ω) > 2η} and, for each i in [[n]], define
τi(ω) := inf{j ∈ N : |Si(tj , ω)| > η}, with inf ∅ = +∞. Show that
P{maxiMi > 2η} is less than

αP
∑

i∈[[n]],j∈N
{θ = i, τi = j}{|Si(tj)| > 2η}{|Sn(tj)− Si(tj)| ≤ η}

≤ αP{maxt |Sn(t)| > η}

(ii) Define S0(t, ω) = 0. Show that supt |Xi(t)| ≤ Mi +Mi−1 for each i.

[4] (Giné and Zinn, 1984) Suppose {Xi(t, ω) : i ∈ [[n]], t ∈ T} is a collectionSymmetrization::P:GineZinn

of independent stochastic processes with T countable and Ψ is an orlicz
function. Define µi(t) := PXi(t). Starting from inequality <16> show that

PΨ

(
sup
t

∣∣∣∑
i
Xi(t, ω)− µi(t)

∣∣∣) ≤ PωγgnΨ

(
2 sup

t

∣∣∣∑
i
giXi(t, ω)

∣∣∣/κ))
where γn := N(0, In) and κ := γn|gi| =

√
2/π. Hint: Start with a fac-

tor γn|gi|/κ inside the sum. Note that si|gi| ∼ N(0, 1) under Q ⊗ γn.

Remark. This trick gains us very little if we just use the subgaussian
tail bound for the increments of the process W := {⟨g, x⟩ : x ∈ Xω}.
Giné and Zinn (Prop 3.4) did reap some benefits by assuming nice
limiting properties for a sequence of empical processes then invoking a
gaussian comparison inequality.

Talagrand (2021, p. 176) has pointed out that the subgaussian
process S◦ := {⟨s, x⟩ : x ∈ Xω} has “better tails” than W . It
helps greatly to apply some truncations to the x’s before gaussify-
ing. More precisely, it pays to apply the chaining method described in
Section 11.7 to the truncated S◦ process.

[5] Let B = (bi,j) be an n×n symmetric (real) matrix with zeros on its diagonalSymmetrization::P:Rad2.orlicz
and s = (s1, . . . , sn) be a vector of independent sign variables under the
uniform distribution Q on {−1,+1}[[n]]. Define W := s′Bs =

∑
i,j sisjbibj .

Show that there exists a universal constant C for which ∥W∥Ψ1,Q ≤ C ∥B∥
F
,

where ∥B∥
F
:= (

∑
i,j b

2
i,j)

1/2 and Ψ1(r) := er − 1, by the following steps.
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(i) With γn := N(0, In) and κ = γn|gi|, as in the previous Problem, show that

Qe|W |/C = Q exp
(∣∣∑

i,j
(γn|gi|/κ)si(γn|gj |/κ)sjbi,j/C

∣∣)
≤ γn exp

(∣∣∑
i,j

gigjbi,j/C1

∣∣) where C1 := Cκ2

≤ γn exp
(
g′Bg/C1

)
+ γn exp

(
−g′Bg/C1

)
.

(ii) Let B have spectral representation B = LΘL′, with L orthogonal and
Θ := diag(θ1, . . . , θn). (The columns of L are the eigenvectors corresponding
to the eigenvalues {θi}.) Show that∑

i
θi = traceB = 0 and

∑
i
θ2i = trace(B′B) = ∥B∥2

F
.

(iii) Show that, provided max |2θi/C1| ≤ 1/2,

γn exp
(
g′Bg/C1

)
= γn exp

(
g′Θg/C1

)
=

∏
i
γn exp(θig

2
i /C1)

= exp
(
−1

2

∑
i
log(1− 2θi/C1)

)
≤ exp

(
1
2

∑
i
2θi/C1 + 4θ2i /C

2
1

)
= exp

(
2 ∥B∥2

F
/C2

1

)
.

(iv) Take a peek at Section 5.1 then choose C1 as a suitable multiple of ∥B∥
F
to

complete the argument. Note: ∥−B∥
F
= ∥B∥

F
.

[6] Use the notation from Section 13.9. Let f be a function in L2(P ⊗ P )Symmetrization::P:Ustat

with P ⊗Pf = 0. (You could also work with f(a, b)−f(P, P ) for a general f
in L2(P ⊗P ).) Write ∥. . . ∥2 for both the L2(P ⊗P ) and L2(P ) seminorms.

(i) Show that K is a closed subspace of L2(P ⊗ P ), in the sense that if κn ∈ K

and ∥κn − f∥2 → 0 as n → ∞ then there exist functions g, h in L2(P )
such that f(a, b) − g(a) − h(b) = 0 a.e.[P ⊗ P ]. Hint: Suppose κn(a, b) =
cn + gn(a) + hn(b) with cn ∈ R and Pgn = Phn = 0. Show that

P ⊗P |κn(a, b)− κm(a, b)|2 = (cn − cm)2 +P (gn − gm)2 +P (hn − hm)2.

Deduce that there exist c, g, h for which cn → c and ∥gn − g∥2 → 0
and ∥hn − h∥2 → 0, implying P ⊗ P |f(a, b)− c− g(a)− h(b)|2 = 0.

(ii) Define F (a, b) := f(a, b) − f(a, P ) − f(P, b). Show that P aF (a, b) =
0 = P bF (a, b). Deduce that P ⊗ PF (a, b)κ(a, b) = 0 for all κ in K and
P bP cF (a, b)F (a, c) = 0 for all a.

(iii) Deduce from the previous part that

4N2PUn(F )2 =
∑

[[n]]2
{i ̸= j}PF (ξi, ξj)

2

(iv) Define σ2 := var(f(ξi, P ) = Pf(a, P )2. Show that

Pf(ξi, P )f(P, ξj) =

{
0 if i ̸= j
σ2 if i = j.

Draft: 19feb25, Chap 13 ©David Pollard



32

13.11 Notes
Symmetrization::S:notes

Judging by the many results I have seen attributed to Paul Lévy, he deserves
a lot of the credit for the use of symmetrization ideas in probability theory.
See, for example, the discussions of Lévy’s work by Le Cam (1972, p. xvii)
and Loève (1973, p. 4). Unfortunately I do not know the work well enough
to give precise citations.

There is a story behind the symmetrization method described in Sec-
tion 13.6. When I first tried to understand the VC71 technique (as described
in my Example <8>) I got stuck in their section 4, where they stated an
exponential bound for tails of a hypergeometric distribution, with the
comment “This estimate can be derived by a simple but long computation
and so we omit the proof”. (Unfortunately, at that time I didn’t know about
the standard inequalities described in Chapter 3.) After working through the
Dudley (1978) paper I became aware that exponential tail bounds were avail-
able for sums of bounded, independent random variables, which prompted me
(Pollard, 1981) to replace the VC sampling method by a sort of probability
sampling. That change replaced the hypergeometric tails by binomial
tails, for which a bernstein inequality gave an exponential bound. Subse-
quently (Pollard, 1982) I realized that this idea could be taken further, which
led me to the method described in Section 13.6. Some of my friends then
informed me that I had reinvented “Rademacher” variables, which were well
known in the banach-space literature (cf. Marcus and Pisier, 1981, page 3
and Kahane, 1968, §1.7). Also I learned that Koltchinskii (1981, Lemma 2)
had come up with the same symmetrization idea. The obvious similarity to
the paired-comparsion method from Example <2> only dawned on me many
years later.

The original idea for the square root trick, for traditional empirical
processes indexed by collections of sets, came from Le Cam (1983, §3). Giné
and Zinn (1984, Lemma 5.2) extended the idea to traditional empirical
processes indexed by uniformly bounded collections of functions. (Alexander,
1987, §VII) realized that the result could be extended to unbounded processes
by means of a truncation of the envelope variables.

The theory of U-processes, touched on in Section 13.9, now seems to
be subsumed into a general area know as “decoupling”, which the most
informative de la Peña and Giné (1999) book covers in great detail.
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LeCam1972Levy Le Cam, L. (1972). Paul lévy. In L. Le Cam, J. Neyman, and E. L. Scott
(Eds.), Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability, Volume III, Berkeley, pp. xiv–xx. University of
California Press.

LeCam1983Lehmann Le Cam, L. (1983). A remark on empirical measures. In Bickel, Doksum,
and Hodges (Eds.), A festschrift for Erich Lehmann in honor of his sixty-
fifth birthday, pp. 305–327. Wadsworth. Available online from https:

//www.stat.berkeley.edu/users/rice/LeCam/papers/.

LeCam1986statsci Le Cam, L. (1986). The central limit theorem around 1935. Statistical
Science 1, 78–96.
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