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Chapter 14

VC Sets

VCsets::VCsets

Section 14.1 presents a simple concrete example to illustrate the use of the
combinatorial method for deriving bounds on packing numbers.

Section 14.2 defines the concept of a VC-class of subsets D of some set A,
which leads to a polynomial bound for the numbers of subsets of the form
F ∩D for D ∈ D, uniformly over all subsets F of A. The slightly sharper
concept of shatter-dimension is obtained by restricting attention to a
single F . Several Examples illustrate how shatter-dimension can be bounded
and used, with control of packing numbers as the prime application.

Section 14.3 derives the basic polynomial bound using the downshift method.
*Section 14.4 interprets subsets of the discrete unit cube as the vertex sets

of graphs. The shatter dimension gives a surprising upper bound for
the number of edges of the graph. The method of proof again relies on
downshifting.

*Section 14.5 presents Haussler’s refinement of the argument from Sec-
tion 14.2, leading to a sharper bound for packing numbers.

14.1 An introductory example
VCsets::S:VC.intro

For my purposes, the combinatorial argument often referred to as the VC
method—in honor of the important contributions of Vapnik and Chervonenkis
(1971); Vapnik and Červonenkis (1981)—is of use mainly as a step towards
calculation of packing/covering numbers. The method is elegant and leads to
results not easily obtained in other ways. The basic calculations occupy only
a few pages. Nevertheless, the ideas are subtle enough to appear beyond the
comfortable reach of many would-be users. With that fact in mind, I offer a
more concrete preliminary example, in the hope that the combinatorial ideas
might then seem less mysterious.
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§14.1 An introductory example 2

Consider the set H of all closed half-spaces in R2. Let F be a set of n
points in R2. How many distinct subsets can H pick out from F? That is,
how large can the set HF := {F ∩ H : H ∈ H} be? Certainly its size
(= cardinality) can be no larger than 2n because F has only that many
subsets. Even better, a simple argument shows that

|HF | := cardinality of HF ≤ p(n) := 1 + 4n(n− 1).

H0

L0

L1

Indeed, consider a particular nonempty subset F0 of F picked out by a
particular half-space H0. There is no loss of generality in assuming that at
least one point of F0 (call it x0) lies on L0, the boundary of H0: otherwise
we could replace H0 by a smaller H1 whose boundary, L1, runs parallel to L0

through the point x0 of F0 that is closest to L0.
As seen from x0, the other n− 1 points of F all lie on a set L(x0) of at

most n−1 lines through x0. Augment L(x0) by another set L′(x0) of at most
n− 1 lines through x0, one in each angle between two lines from L(x0). The
lines in H(x0) := L(x0)∪L′(x0) define a collection of at most 4(n−1) closed
half-spaces, each with x0 on its boundary. The collection ∪x∈FH(x) accounts
for all possible nonempty subsets of F picked out by closed half-spaces. The
extra 1 takes care of the empty set.

Remark. Apparently (Dudley, 1978, page 921) the bound can be re-
duced to n2 − n + 2, which is sharp in the sense that it is achieved
whenever the n points are in general position, that is, no straight line
runs through more than 2 of the points. Dudley also described several
precursors for the key combinatorial bound (my Theorem <3>). For
my purposes the sharper bound is not needed. Indeed any polynomial
would suffice for the consequences described below.

The slow increase in |HF |, at an O(n2) rate rather than a rapid 2n rate,
has a useful consequence for the packing numbers when H is equipped with
an L1(P ) metric, for some probability measure P on the plane. The L1(P )
distance between two Borel sets B and B′ is defined as P |B−B′| = P (B∆B′),
the measure of the symmetric difference. The two sets are said to be ϵ-
separated (in L1(P )) if P (B∆B′) > ϵ. As in Chapter 10, the packing
number pack(ϵ,H, P )—or pack(ϵ,H,L1(P )) if there is any ambiguity about
the norm being used—is defined as the largest N for which there exists a
collection of N closed half-spaces, each of the

(
N
2

)
pairs > ϵ apart.
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§14.1 An introductory example 3

VCsets::poly.to.packing <1> Example. Here is an argument, due to Dudley (1978, Lemma 7.13), to show
that the packing numbers pack(ϵ,H, P ) are bounded uniformly over P by
a polynomial in 1/ϵ, for 0 < ϵ ≤ 1. The result is surprising because it makes
no regularity assumptions about the probability measure P .

Suppose the half-spaces H1, H2, . . . ,HN are ϵ-separated in L1(P ). By
means of a cunningly chosen F , the polynomial bound on |HF | will lead to an
upper bound for N . The trick is to find a set Fm = {ξ1, . . . , ξm} ⊂ R2, with
m = ⌈2 logN/ϵ⌉, from which each Hα picks out a different subset. Then H

will pick out at least N subsets from Fm, implying that

N ≤ p(m) ≤ 1 + 4

(
1 +

2 logN

ϵ

)(
2 logN

ϵ

)
≤ 9

(
logN

ϵ

)2

.

Bounding the logN by a constant multiple of N1/4 and solving the resulting
inequality for N , we get an upper bound N ≤ O(1/ϵ)4. With a smaller power
in the bound for logN we would bring the power of 1/ϵ arbitrarily close to 2.

Remark. As shown in Example <12>, the bound for the packing
numbers for H can be sharpened to C(ϵ−1 log(1/ϵ))2, with C a univer-
sal constant, at least when 0 < ϵ ≤ 1/2. With a lot more work, even
the log term can be removed—see Section 14.5. At this stage there is
little point in struggling to get the best bound in ϵ. For many appli-
cations, the qualitative consequences of a polynomial bound in 1/ϵ are
the same, no matter what the degree of the polynomial.

How do we find a suitable Fm? We need to place at least one point of Fm

in each of the
(
N
2

)
symmetric differences Hi∆Hj . It might seem we are faced

with a delicate task involving consideration of all possible configurations of
the symmetric differences, but here probability theory comes to the rescue.

As described in the Preface of the wonderful little book by Alon and
Spencer (2000), the probabilistic method can prove existence by artificially
introducing a probability measure into a problem:

In order to prove the existence of a combinatorial structure with
certain properties, we construct an appropriate probability space
and show that a randomly chosen element in this space has
the desired properties with positive probability. This method
was initiated by Paul Erdős, who contributed so much to its
development over the last fifty years, that is seems appropriate
to call it “The Erdős Method.”

Generate Fm as a random sample of size m from P . If m ≥ 2 logN/ϵ,
then there is a strictly positive probability that the sample has the desired
property. Indeed, for fixed α, β with 1 ≤ α < β ≤ 1,

P{Hα and Hβ pick out same points from Fm}
= P{no points of sample in Hα∆Hβ}
= (1− P (Hα∆Hβ))

m

≤ (1− ϵ)m ≤ exp(−mϵ).
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4

Add up
(
N
2

)
such probability bounds to get a conservative estimate,

P{some pair Hα, Hβ pick same subset from Fm} ≤
(
N
2

)
exp(−mϵ).

When m ≥ 2 logN/ϵ the last bound is strictly less than 1, as desired.□

Remark. The argument in the Example implicitly assumed that the ξi’s
sampled from P are all distinct, which need not be true if P has atoms.
Thus |Fm|, the size of Fm, might be smaller than m. To be more pre-
cise I could have written N ≤ p(|Fm|) ≤ p(m) ≤ . . . . The added rigor
is hardly worth the trouble; usually ties cause only notational diffi-
culties. Section 14.2 will avoid the issue altogether by working with
the n-tuple (ξ1, . . . , ξn), which might contain repeats, instead of the
set {ξ1, . . . , ξn}.

Notice how probability theory has been used to prove an existence result,
which gives a bound for a packing number, which will be used to derive
probabilistic consequences—all based ultimately on the existence of the
polynomial bound for |HF |.

14.2 VC-dimension, shatter-dimension
VCsets::S:VCdim

The argument in the previous Section had little to do with the choice of H
as the set of all closed half-spaces in a particular Euclidean space. It would
apply to any collection D of (measurable) subsets of any space A for which
the size of DF := {F ∩D : D ∈ D} is bounded above by a fixed polynomial
in |F |. Unfortunately, for more complicated D’s it can sometimes be difficult
to derive such a polynomial bound directly but it is easier to prove existence
of a finite k such that

|DF | < 2k for every F ⊂ A with |F | ≤ k

Such a D is usually called a VC-class of sets in honor of Vapnik & Červonenkis.
This property is equivalent to the finiteness of the VC-dimension for D,
defined as follows.

VCsets::VCdef <2> Definition. A collection D of subsets of a set A is said to have VC-dimension d
(written vcdim(D) = d) if both the following conditions hold.

(i) There exists at least one subset F0 of X for which

|F0| = d and |{F0 ∩D : D ∈ D}| = 2d.

(ii) |{F ∩D : D ∈ D}| < 2|F | for every finite subset F of A with |F | > d.

Remark. Some authors use the term shatter dimension instead of
VC-dimension. Motivated by the extension of the concept to classes of
functions, and beyond, I feel a better name would be surround di-
mension. In fact that is the term I use in the next Chapter. I chose
the name sdim, which appears in Definition <7>, because the ini-
tial ‘s’ could be interpreted as a reference to both ‘shatter’ and ‘sur-
round’.
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§14.2 VC-dimension, shatter-dimension 5

The key fact about VC-classes is often called the VC Lemma or the
Sauer/Shelah Lemma, although credit should be spread more widely. (See
the Notes in Section 14.7.)

VCsets::shatter.theorem <3> Theorem. If D is VC-class of subsets of some set A with vcdim(D) = d
then, for each finite subset F of A,

|{F ∩D : D ∈ D}| ≤ β(n, d) :=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
where n equals |F |.□

This result is deduced in Section 14.3 from a slightly sharper result that
allows for a more a more subtle dependence (corresponding to Definition <7>)
of the bound on the set F .

Clearly β(n, d) is a polynomial of degree d in n. More precisely, it equals 2n

if n ≤ d and, if n ≥ d,

β(n, d) =
∑d

k=0
n(n− 1) . . . (n− k + 1)/k!

≤
∑d

k=0
(n/d)kdk/k!

≤ (en/d)d because (n/d)k ≤ (n/d)d when n ≥ d ≥ k.\E@ VC.poly.bnd\E@ VC.poly.bnd <4>

The upper bound can be improved slightly:

\E@ VC.poly.bnd2\E@ VC.poly.bnd2 <5> β(n, d) ≤ β1(n, d) := 1.5nd/d! if n ≥ d+ 2,

a result apparently due to Vapnik and Červonenkis—see Dudley (2014, Propo-
sition 4.3). As Dudley noted, the β1 bound is “not far from optimal” because
the

(
n
d

)
contributes an nd/d! as the leading term in the polynomial β(n, d).

Compare with: β1(n, d) ≈ 0.6d−1/2(en/d)d by the stirling approximation
from Section 2.5.

As Vapnik and Chervonenkis (1971, §6) realized, the concept defined by
Definition <2> needs to be sharpened when seeking necessary and sufficient
conditions for uniform laws of large numbers, an improvement closely related
to the symmetrization bounds from Chapter 13.

Suppose ξ1, . . . , ξn are independent random elements of A with ξi ∼ Pi

for some probability measure Pi defined on a suitable sigma-field A on A.
Let me assume away possible measurability difficulties by supposing D is a
countable subset of A. Define independent {0, 1}-valued stochastic processes

Xi(D,ω) := {ξi(ω) ∈ D} for D ∈ D and i ∈ [[n]].

Let Q denote the uniform distribution on the discrete hypercube Cn := {0, 1}n.
Then, as shown in Section 13.5, for each orlicz function we have

\E@ Psi.norm.xx\E@ Psi.norm.xx <6> PΨ

(
sup
D∈D

|
∑

i
Xi(D,ω)− PiD|

)
≤ PωQsΨ

(
2 sup
D∈D

|
∑

i
siXi(D,ω)|

)
.

Draft: 22mar25, Chap 14 ©David Pollard



§14.2 VC-dimension, shatter-dimension 6

The Q integral on the right-hand side of the inequality in <6> can also be
written as QΨ

(
supx∈Xω

|⟨s, x⟩|
)
where Xω denotes the set of all members

of Cn of the form

x(D,ω) :=
(
X1(D,ω), . . . , Xn(D,ω)

)
for some D in D.

Suitable bounds on the ℓ2 packing numbers for Xω lead to an empirical
process maximal inequalities via chaining arguments.

Remark. As Xω is finite and D need not be, there will typically be
many different D’s that contribute the same x(D,ω).

You should also take note of a subtle difference between the set
{Xi(D,ω) : i ∈ [[n]]} and the vector x(D,ω) for fixed ω: even when
the set {ξi(ω) : i ∈ [[n]]} has size < n, each x(D,ω) vector still has
length n but with repeated coordinates.

Corresponding to Definition <2> we have an analogous property for
subsets of Cn. Instead of subsets of a finite F we now deal with subsets J of
the index set [[n]] and the projections they define on Cn by

x[J ] := (xi : i ∈ J) ∈ {0, 1}J for each x := (xi : i ∈ [[n]]) in Cn.

Remark. Here I am borrowing from the most convenient notation
used by the R statistical language. Similarly, if M is an n×N matrix
and I ⊂ [[n]], J ⊂ [[N ]] then M [I, J ] denotes the |I| × |J | subma-
trix (Mi,j : i ∈ I, j ∈ J) and M [−I, J ] denotes the (n − |I|) × |J |
submatrix (Mi,j : i /∈ I, j ∈ J), and so on. If there is no constraint
placed on the rows (or columns) just insert a “·” symbol. For exam-
ple, M [I, · ] is shorthand for the |I|×N matrix M [I, [[N ]] ]. The down-
side of this notation would be the [[[. . . ]]] mess created if I wanted
to maintain my customary convention that (1, 2, 3) is a row vector of
length 3 and [1, 2, 3] is a column vector of length 3. Accordingly, from
now on I’ll happily write things like (1, w) for a column vector whose
first element equals 1 with the remaining coordinates coming from a
vector w.

VCsets::sdim.hypercube <7> Definition. A subset X of the discrete hypercube Cn := {0, 1}n is said to
have shatter-dimension d (written sdim(X) = d) if both the following
conditions hold.

(i) There exists at least one subset J0 of [[n]] for which

|J0| = d and |{x[J0] : x ∈ X}| = 2d.

That is, X shatters J0.

(ii) |{x[J ] : x ∈ X}| < 2|J | for every subset J of [[n]] with |J | > d.□

Remarks.

(i) To show that sdim(X) ≤ d we need only prove that case (ii) holds
for each subset J of [[n]] with |J | = d+ 1.

Draft: 22mar25, Chap 14 ©David Pollard



§14.2 VC-dimension, shatter-dimension 7

(i) If X contains at least 2 members then 1 ≤ sdim(X) ≤ n with sdim(X) = n
iff X = Cn. Philosphically minded readers might ponder how sdim(X)
should be defined if X is a singleton set or is empty; then they might
explain how those two cases are relevant to inequality <6>.

(i) For each finite subset F of A and collection D of subsets of A we could
define XF to be the subset of {0, 1}F consisting of all functions ψD :
F → {0, 1} as D ranges over D, where ψD(a) := {a ∈ D} for a ∈ F .
Then vcdim(D) could be defined as the supremum of sdim(XF ) taken
over all finite subsets F of A. Thus, to prove facts about VC-classes of
sets it usually suffices to prove analogous facts about shatter dimension,

(i) Actually, Definition <7> is just a special case of Definition <2> obtained
by substituting [[n]] for A then identifying X with the indicator functions
of a collection of subsets of [[n]]. In particular, Theorem <3> gives

\E@ sdim.bnd\E@ sdim.bnd <8> |X| ≤ β(n, d) ≤ (en/d)d if sdim(X) = d.

The sdim point of view will become useful in Chapter 15, when we deal
with empirical processes indexed by collections of functions (or sums of
more general independent stochastic processes).

Classical results about VC-dimension—as described, for example, by
Dudley (2014, Chap 4) or Pollard (1984, §II.4)—usually have simpler analogs
for shatter-dimension. The proofs usually require only minor modifications
of the proofs for VC-classes.

VCsets::Dudley.subspace <9> Example. Here is result that corresponds to Dudley (1978, Theorem 7.2).
Suppose X ⊂ Cn and L is a k-dimensional subspace of Rn, with k < n.

Suppose also to each x = (x1, . . . , xn) in X there exists an ℓ = (ℓ1, . . . , ℓn)
in L such that xi = 1 iff ℓi ≥ 0, for i ∈ [[n]]. Then a simple piece of linear
algebra shows that sdim(X) ≤ k. Indeed, suppose J is a subset of [[n]] of
size k + 1. Then LJ := {ℓ[J ] : ℓ ∈ L} is a subspace of dimension at most k
within the (k+1)-dimensional vector space RJ . There must exist a nonzero
vector z in RJ that is orthogonal to LJ , that is,

∑
i∈J ziℓi = 0 for all ℓ in L.

Without loss of generality there is at least one i in J at which zi < 0.
(You might need to replace z by −z.) The equality

0 =
∑

i∈J
ℓizi{zi ≥ 0}+ (−ℓi)(−zi){zi < 0}

ensures there can be no ℓ in L for which ℓi ≥ 0 iff zi ≥ 0, for i ∈ J . From
the assumed relationship between X and L it then follows that there can be
no x in X for which xi = 1 iff zi ≥ 0, for i ∈ J .□

The natural metric for Cn is the hamming distance, defined as

\E@ Hamming.def\E@ Hamming.def <10> H(x, y) :=
∑

i∈[[n]]
{xi ̸= yi} =

∑
i
|xi − yi| for x, y ∈ Cn.

For empirical process purposes it sometimes help to work with a weighted ver-
sion of that metric, with weights coming from some (nonnegative) measure µ
on [[n]]:

Hµ(x, y) :=
∑

i∈[[n]]
{xi ̸= yi}µi =µJ(x, y) =

∑
i
|xi − yi|µi\E@ weighted.Hamm\E@ weighted.Hamm <11>

where J(x, y) := {i ∈ [[n]] : xi ̸= yi}.
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§14.2 VC-dimension, shatter-dimension 8

VCsets::sdim.pack <12> Example. It is a straightforward exercise to extend the argument from
Section 14.1 to a general subset X of Cn := {0, 1}n with sdim(X) = d. This
time I’ll be slightly more careful when controlling a logN term, in order to
obtain a bound on pack(ϵ,X,Hµ) derived by Dudley (1978, Lemma 7.13)
for VC-classes of sets.

Suppose x1, . . . , xN , for some N ≥ 2, are ϵ-separated members of X, that
is, Hµ(xα, xβ) = µJ(xα, xβ) > ϵ for 1 ≤ α < β ≤ N . Consider the projection
into {0, 1}m defined by a vector I = (I1, . . . , Im) of independent observations
on µ. For fixed α < β,

P{xα[I] = xβ[I]} = P{ no Ij ’s land in J(xα, xβ) }
= (1− µJ(xα, xβ))

m ≤ exp(−mϵ)

As before, if m := ⌈2(logN)/ϵ⌉ then

P{xα[I] = xβ[I] for some α < β } ≤
(
N

2

)
exp(−mϵ) < 1,

implying existence of a realization of I for which all the x[I]’s are distinct.
It follows (via <8>) that N1/d ≤ em/d.

It suffices (Why?) to bound N by a function of ϵ only for ϵ sufficiently
small, say, 0 < ϵ ≤ 1/2. With that constraint we have

m ≤ ϵ+ 2 logN

ϵ
<

3d logN1/d

ϵ
because logN ≥ log 2 > 1/2,

so that N1/d ≤ em/d ≤ (3e/ϵ) logN1/d. Equivalently G(N1/d) ≤ w := 3e/ϵ
where G(r) := er/r for r > 0. By an inversion inequality (Problem [3]), it
then follows that N ≤ c0w logw and

pack(ϵ,X,Hµ) ≤ (c0(3e/ϵ) log(3e/ϵ)) for 0 < ϵ ≤ 1/2.

The upper bound comes tantalizingly close to (C/ϵ)sdim(X), which looks
a lot like a packing number for a unit ball in an euclidean space of dimen-
sion sdim(X). With a lot more work such a bound can be established (see
Section 14.5), an aesthetically pleasing but nonessential refinement.□

Remark. For each p ≥ 1, note that (
∑

i |xi − yi|pµi)
1/p

= Hµ(x, y)
1/p.

Thus the bound derived in the Example also leads to ℓp packing num-
bers for X that increase like a power of 1/ϵ for smallish ϵ.

A subset X of Cn can be hard to visualize for n larger than 2 or 3. How-
ever, if |X| equals N then its elements can be identified with the columns of
an n×N binary matrix M , a matrix with elements all belonging to {0, 1}.

Remark. In the rest of the Chapter, I’ll treat the general X ⊂ Cn

and its corresponding n ×N binary matrix M as essentially the same
object. (The only real distinction between the two is that M enumer-
ates X as M [·, 1], . . . ,M [·, N ].) Thus sdim(M) = sdim(X) and the
edge set E, a set of edges {x, y} for X, corresponds to a set of pairs
{j, k} with j and k distinct members of [[N ]].
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VCsets::quadrants <13> Example. Let Q be the set of all closed quadrants with a north-east vertex
in R2, that is, sets of the form {(u, v) ∈ R2 : u ≤ a, v ≤ b} with a, b ∈ R.
You should check that vcdim(Q) = 2. (Hint: If a quadrant Q contains the
northernmost point and the easternmost point of a finite set F , why must Q
contain all of F?) The maximum number of subsets that Q could pick out
from an F of size |F | = 3 is seven. (That maximum is achieved when the
three points lie on straight line running from north-west to south-east.)

Q111

Q110

Q100

Q010

Q000

ξ1

ξ2

ξ3

(0,0,0) (1,0,0)

(0,1,0)
(1,1,0)

(1,1,1)

M =

0 1 0 1 1
0 0 1 1 1
0 0 0 0 1



From the three points ξ1, ξ2, ξ3 of R2 shown in the picture, Q picks out
only five subsets. The corresponding subset X consists of five of the eight
‘vertices’ of the discrete hypercube C3, which are labelled in the picture to
match the columns of the corresponding 3× 5 binary matrix M .

For the moment you should ignore the 12 lines (7 dotted and 5 dark)
that I added to the picture of C3 and its subset X. Later, in Section 14.4,
I’ll reinterpret X as the set of vertices of a graph with 5 edges. That Section
will establish a most surprising relationship between sdim(X) and the largest
possible number of edges, which will play a key role in Section 14.5.□

For the Q in the previous Example there is a polynomial upper bound,
of order O(n2), for the size of |QF | that hold for every F of size n. If we
replace Q by the collection K of all compact convex subsets of R2 then the
sdim(·) situation changes: if F consists of n points spread around a circle
then K picks out all 2n subsets (consider the convex hull of F0 for each
subset F0 of F ). Thus vcdim(K) = ∞. However, if F consists of n points
spread along a single line then K picks out only

(
n+1
2

)
subsets. Less obviously,

for observations ξ1, . . . , ξn from the uniform distribution on the unit square,
sdim(Xω)/n is small with high probability. See Pollard (1984, p 23).

*14.3 Proof of the shatter theorem
VCsets::S:downshift

As explained in the Remarks following Definition <7>, to prove Theorem <3>
it suffices to prove an analogous result for a subset X of Cn := {0, 1}n, namely:
if sdim(X) = d then

\E@ sdim.shatter\E@ sdim.shatter <14> N := the cardinality of X ≤ β(n, d) :=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
.

There are several ways to prove this inequality, or something essentially
equivalent to it. I particularly like the downshift method, which apparently
is a standard combinatorial tool (Frankl, 1987). The method is easiest to
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§14.3 Proof of the shatter theorem 10

understand when expressed using binary matrices, starting from the ma-
trix M0 constructed from the columns of X (as in the third little picture
from Example <13>). That matrix is then transformed by a sequence of
downshift operations into another binary matrix where calculations are
simpler.

VCsets::down <15> Definition. Let M be any n × N binary matrix with distinct columns. A
downshift of the ith row is the result of applying the following operation to M .
For j ∈ [[N ]],

if M [i, j] = 1 change it to a 0 unless
the resulting column would duplicate an existing column of M .
The downshift is said to succeed if it changes the row M [i, ·] in at least one
position.□

The idea is to cycle through the rows, downshifting as we go, creating
new binary matrices M1,M2, . . . until eventually we reach a matrix for which
no more successful downshifts (of any row) are possible. As each successful
downshift reduces the total number of 1’s in the matrix it takes only finitely
many steps to reach that goal.

The procedure is best understood by applying it to a simple M0. To make
it easier to keep track of which downshifts succeed and which are blocked,
I’ll write beside each Mi the matrix M i consisting of the vectors from Cn

that are missing from Mi. (I found this trick helpful when working through
an example on the blackboard.)

VCsets::H2.downshift <16> Example. Start with an M0 consisting of 8 of the 16 vectors in C4.

M0 =


0 1 0 1 0 1 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1

 M0 =


0 0 1 1 0 0 1 1
1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 1
0 0 0 1 0 1 1 1


A downshift of row 1 of M0 changes columns 4 and 6 but column 2 is blocked
by column 1 and column 8 is blocked by column 7. The 0 ’s in the matrix M1

indicate which new columns appear and the 1 ’s in the matrix M1 indicate
the columns that disappear from M0.

M1 =


0 1 0 0 0 0 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1

 M1 =


1 0 1 1 1 0 1 1
1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 1
0 0 0 1 0 1 1 1


Effectively, the downshifting has swapped two columns from M0 with two
columns from M0.

A downshift of the second row of M1 again swaps two columns between M1

and M1. This time column 1 blocks a downshift of column 4 and column 5
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§14.3 Proof of the shatter theorem 11

blocks a downshift of column 7:

M2 =


0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1

 M2 =


1 0 1 1 1 0 1 1
1 1 0 0 1 1 1 1
0 1 1 0 1 0 0 1
0 0 0 1 0 1 1 1


Then downshift the third row of M2:

M3 =


0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1

 M3 =


1 0 1 1 1 0 1 1
1 1 0 0 1 1 1 1
0 1 1 1 1 1 0 1
0 0 0 1 0 1 1 1


Every potential downshift of the fourth row of M3 is blocked. No more

downshifts—for any row of M3—can succeed.
For future reference, note that no column of M3 contains more than

two 1’s.□

Now back to the proof of inequality <14>. First some useful terminology.
If M is an n×N binary matrix with distinct columns and I ⊂ [[n]], say that M
shatters I if M [I, ·] contains all members of {0, 1}I amongst its columns.
Note that if sdim(M) = k then M cannot shatter any I with |I| > k.

In general, the downshifting operation has two important properties:

(i) No new shattered sets of rows can be created by a downshift.

Proof. For notational convenience, suppose that M∗ is created from M
by a downshift of the first row and that M∗ shatters some I. We may
assume 1 ∈ I because if 1 /∈ I we have M [I, ·] = M∗[I, ·], ensuring
that M also shatters I. Again for notational convenience, we may
suppose that I = [[k]].

The assumption about M∗ tells us that for each u in {0, 1}I\{1}
there must exists vectors v0, v1 ∈ {0, 1}[[n]]\I such that x1 := (1, u, v1)
and x0 := (0, u, v0) are both columns of M∗. Downshifting creates no
new 1’s, so x1 must also be a column of M . And for such a column to
have survived the downshift the change must have been blocked by the
presence of x0 amongst the columns of M .□

(ii) If no downshifts can succeed for a binary matrix M then it is hered-
itary. That is, if x is a column of M and if y is obtained from x by
changing some of its 1’s to 0’s then y is also a column of M . Conse-
quently, if x[i] = 1 for each i in I, for some I ⊂ [[n]], then M shatters I.

Proof. For simplicity suppose that y[i] = 0 and x[i] = 1 for each i
in I := [[k]] while y[−I] = x[−I]. A downshift of the first row must
be blocked by the vector x1 = (0, x[−1]) being a column of M . Then
a downshift of the second row must be blocked by the vector x2 =
(0, 0, x[−{1, 2}]) being a column of M . And so on.□
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With these two facts in hand the rest of the argument is straightforward.
Suppose we start with M0 and after a R downshifts end up with an MR (with
all columns distinct) for which no more downshifts can succeed. Suppose
for some j the column {i ∈ [[n]] : MR[i, j] = 1} = I. By property (ii),
the submatrix M [I, ·] must contain all the vectors in {0, 1}I , that is, M
shatters I. And by property (i) we have sdim(MR) ≤ sdim(M0) = d. Taken
together, these facts tell us that |{i ∈ [[n]] :MR[i, j] = 1}| ≤ d for each J . All
the colums of MR must belong to {x ∈ Cn :

∑
i xi ≤ d}, a set of size β(n, d).□

*14.4 Subsets of the discrete hypercube as graphs
VCsets::S:graphs

The results in this Section are included because I find them elegant and
surprising, and also because they provide the main tools for the proof (in
Section 14.5) of the (aesthetically pleasing but nonessential) fact that the
packing numbers for a subset X of Cn := {0, 1}n increase like (1/ϵ)sdim(X).

We can also think of X as the set of vertices for a graph with the set of
edges E (or E(X) if we wish to distinguish between various sets of edges)
defined as all the pairs {x, y} from X for which

\E@ xx.edge.def\E@ xx.edge.def <17> H(x, y) :=
∑

i∈[[n]]
{xi ̸= yi} = 1.

For such an edge, write x
i∼ y if x[i] ̸= y[i]. Define the corresponding subset

of edges by Ei := Ei(X) := {{x, y} ∈ E : x
i∼ y}.

If we are using the n ×N binary matrix M notation to represent X we
should identify vertices with members of [[N ]] and the set of edges E(M)
should consist of pairs {j, k} from [[N ]] for which

\E@ M.edge.def\E@ M.edge.def <18> H(j, k) :=
∑

i∈[[n]]
{M [i, j] ̸=M [i, k]} = 1.

In what follows I’ll treat X and M as the same object, using whichever name
seems most convenient to decribe any particular operation.

There is a most surprising general relationship between the shatter
dimension of X and the number of edges in the corresponding graph.

VCsets::edges <19> Theorem. (Haussler, 1995, Lemma 2) If sdim(M) = d then |E| ≤ Nd edges.

The proof will again make use of downshifting using the following pleasant
fact about the effect of a single downshift operation.

VCsets::edges.downshift <20> Lemma. If a single downshift transforms (M,E) into (M∗,E∗) then |E| ≤ |E∗|.

Proof. For simplicity, consider just the function σ defined by a downshift
of the first row: σM [·, j] := M∗[·, j]. The proof works by constructing a
one-to-one map (also called an injection) S : E\E∗ → E∗\E such that S :
Ei\E∗ → E∗

i \E for each i. That property implies

|E\E∗| =
∑

i∈[[n]]
|Ei\E∗| ≤

∑
i∈[[n]]

|E∗
i \E| = |E∗\E|.
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The argument will involve careful bookkeeping while defining S on each Ei\E∗.
For i = 1 everything is easy, because E1\E∗ = ∅: if x = (1, w) ∈ X and

y = (0, w) ∈ X then y blocks x from changing, so that {x, y} ∈ E∗.
The argument for i = 2 is typical of the remaining cases. Suppose

{x, y} ∈ E2 with x = (a, 1, v) and y = (a, 0, v) for some a ∈ {0, 1} and
some v ∈ {0, 1}[[n]]\{1,2}. If a = 0 then neither x nor y is affected by σ,
implying {x, y} ∈ E∗. Thus we need only consider the case where x =
(1, 1, v) ∈ X and y = (1, 0, v) ∈ X. For such x and y,

(i) If x ̸= σx then σx = w := (0, 1, v) cannot belong to X, for otherwise w
would have blocked the downshift.

(ii) if x = σx then the downshift must have been blocked by w:=(0, 1, v),
which must belong to X. Also w = σw ∈ X∗ because w[1] = 0.

(iii) If y ̸= σy then σy = z := (0, 0, v) cannot belong to X, for otherwise z
would have blocked the downshift.

(iv) if y = σy then the downshift must have been blocked by z:=(0, 0, v),
which must belong to X. Also σz = z because z[1] = 0.

There are now four possibilities to consider.

case 1. If x = σx and y = σy then {x, y} ∈ E∗, so {x, y} /∈ E\E∗

case 2. If x = σx and y ̸= σy = (0, 0, v) /∈ X define S{x, y} = {(0, 1, v), σy}.

case 3. If x ̸= σx = (0, 1, v) /∈ X and y = σy define S{x, y} = {σx, (0, 0, v)}.

case 4. If x ̸= σx = (0, 1, v) and y ̸= σy = (0, 0, v) define S{x, y} = {σx, σy}.

By properties (i) through (iv), in cases 2,3,4 we have S{x, y} ∈ E∗
2\E, as de-

sired. Moreover, in those cases {x, y} can be uniquely recovered from S{x, y}
by changing initial 0’s in the vectors back to 1’s, which ensures that S is
one-to-one.□

Proof (of Theorem <19>). Let M and E be the binary matrix and the
edge set corresponding to X. Apply a sequence of downshifts until arriving
at a matrix M †, with column set X† and edge set E†, for which no more
downshifts can succeed. By repeated appeals to Lemma <20> we know
that |E| ≤ |E†| and, from Section 14.3, that sdim(M †) ≤ sdim(M) = d.
As M † is hereditary, it follows that the number of 1’s in each column of M †

must be ≤ d.
Consider an edge {x, y} from E†. There must be exactly one α for

which x[α] ̸= y[α]. Without loss of generality suppose x[α] = 1 and y[α] = 0,
which means that y is derived from x by changing one of its 1’s to a 0. That
can happen in at most d different ways. Put another way, every edge in E† ap-
pears on the list of pairs obtained by working through the set of N members
of X† and pairing each with one of d other vertices, which gives |E†| ≤ Nd.□
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The final paragraph of the previous Proof effectively bounded the size of E†

by assigning an orientation to each edge: if e = {x, y} and
∑

i x[i] = 1+
∑

i y[i]
we could define head(e) := x and tail(e) = y, giving the edge an orientation
from tail to the head. The bound

∑
i xi ≤ sdim(X†) then gives

indegree(x) := |{e ∈ E† : head(e) = x}| ≤ sdim(X).

The proof in the next Section requires a similar ordering for the original
graph (X,E). The existence of such an ordering can be deduced from The-
orem <20> via the classical “marlem” (=marriage lemma: UGMTP Prob-
lem 10.5). Recall the statement of that result:

If for each s in a finite set S we are given a nonempty subset Ks

of some finite set K and for each subset A of S we have
| ∪s∈A Ks| ≥ |A| then there exists a one-to-one function ψ
mapping S into K with ψ(s) ∈ Ks for each s ∈ S.

VCsets::directedVC <21> Corollary. (Based on Haussler (1995, Lemma 3), who applied a result from
Alon and Tarsi (1992, Lemma 3.1) to orient edges.) Suppose (X,E) is a graph
with sdim(X) ≤ d, as in Theorem <19>. Then there exists an orientation of
the edges for which |

∑
e∈E{head(e) = x}| ≤ d for every x in X.

Proof. Apply marlem with E playing the role of the set S. We want a
map head from E into the set X that allows as many as d edges to map
to the same vertex. As marlem produces a one-to-one map we need K to
contain d copies of each x in X. That can be arranged by defining

K := X× [d] := {(x, j) : x ∈ X, j ∈ [d]}.

Near the end of the argument we can discard the j’s to turn a one-to-one
map ψ : E → K into many-to-one map head for which head(e) = x
iff ψ(e) = (x, j) for some j in [d].

Define

K(e) := {(x0, j) : j ∈ [[d]} ∪ {(y0, j) : j ∈ [[d]} if e0 = {x0, y0} ∈ E.

If A ⊂ E let X0 := ∪A, the set of all members of X that appear as a vertex
of some edge in A, and E0 := {{x, y} : x, y ∈ X0 and H(x, y) = 1}. Then
we have A ⊆ E0 and sdim(X0) ≤ sdim(X) ≤ d, so that |E0| ≤ d|X0| by
Theorem <19>, and ∪e∈AK(e) = X0 × [[d]]. It follows that

|A| ≤ |E0| ≤ d|X0| = | ∪e∈A K(e)|,

as required by marlem to provide the one-to-one map ψ : E → K. If e0 =
{x0, y0} ∈ E then ψ(e) equals either (x0, j) or (y0, j) for some j in [[d]]. Strip
off the j to define head(e) then take tail(e) as the other vertex of e.

Finally, we can argue for any given x in X that an edge e has head(e) = x
iff e = {x, y} for some y ∈ X with H(x, y) = 1 and ψ(e) = (x, j) for
some j in [[d]]. For each such j there can be at most one edge e for which
ψ(e) = (x, j). Thus

∑
e∈E{head(e) = x} ≤ d, as asserted.□
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For future reference, the following table summarizing the correspondences
between the two representations.

X ⊂ {0, 1}n with |X| = N n×N binary matrix M , distinct columns
vertex x ∈ X vertex j ∈ [[N ]] with M [·, j] = x
edge e ∈ E edge e = {j1, j2} with H(M [·, j1], [·, j2]) = 1
edge e ∈ Ei e = {j1, j2} and |M [i, j1]−M [i, j2] = 1

We should also reinterpret head and tail from Corollary <21> as functions
from E into [[N ]] for which

|
∑

e∈E
{head(e) = j}| ≤ sdim(M) for every j in [[N ]].

*14.5 Haussler’s improvement of the packing bound
VCsets::S:HausslerVC

For the case of a weighted hamming distance with uniform weights Haussler
(1995) improved the bound on packing numbers from Example <12> by
using a more subtle randomization argument to remove the log(3e/ϵ) factor.
The rearrangement of Haussler’s argument that are presented in this Section
resulted from discussions I had in 1994 with Aad van der Vaart and Jon
Wellner. For their version of the rearrangement see van der Vaart and Wellner
(1996, §2.6).

VCsets::Haussler.pack <22> Theorem. Let X be a subset of Cn := {0, 1}n with sdim(X) ≤ d and let µ
be the uniform distribution on [[n]]. Then

pack(ϵ,X,Hµ) ≤ Hd(ϵ) := Cd(2e/ϵ)d for 0 < ϵ < 1.

for a universal constant C.□

Remark. The assumption about µ can be removed by means of a sim-
ple approximation trick. See Problem [4].

The proof of the Theorem is easier to understand when written using
binary matrix representations. The following Lemmas covers all the tricky
bits. They both involve an integer m, which will be chosen during the Proof
of the Theorem to optimize a bound.

VCsets::Haussler.lower <23> Lemma. Let M be an n × N binary matrix with distinct columns for
which sdim(M) ≤ d and let J be a random variable that is uniformly dis-
tributed over [[N ]]. Suppose, for some positive ϵ,

\E@ M.sep\E@ M.sep <24>
∑

i∈[[n]]
{M [i, j1] ̸=M [i, j2]} > nϵ for all distinct j1, j2 in [[N ]].

Then for each subset K of [[n]] of size m we have∑
i∈[[n]]\K

Pvar (M [i, J] |M [K, J]) ≥ 1
2nϵ (1− β(m, d)/N) ,

with β(·, n) as in Theorem <3>.□
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VCsets::Haussler.upper <25> Lemma. Let B be an (m+ 1)× L binary matrix with distinct columns for
which sdim(B) ≤ d. If L is a random variable taking values in [[L]] then we
have ∑

i∈[[m+1]]
Pvar (B[i,L] | B[−i,L]) ≤ d.□

Prove the Theorem first, assuming the results from the Lemmas, then
prove those Lemmas.

Proof (of Theorem <22>). For a given ϵ in (0, 1) and N = pack(ϵ,X,Hµ)
let M be a binary matrix of dimension n×N whose columns form an ϵ-packing
set for X and let R :=M [·, J] for a random variable J distributed uniformly
on [[N ]].

From Lemma <23> we get

\E@ Ki.lower\E@ Ki.lower <26>
∑

|K|=m

∑
i∈[[n]]\K

P var(R[i] | R[K]) ≥
(
n

m

)
1
2nϵ

(
1− β(m, d)/N

)
.

Now consider a fixed subset I of [[n]] with size m + 1. The columns of
the submatrix M [I, ·] need not be unique. Let B be the (m+ 1)×L binary
matrix constructed from the set of vectors from {0, 1}I that appear at least
once amongst the columns of M [I, ]. We must have sdim(B) ≤ d because B
is a submatrix of M .

For each ℓ in [[L]] define Aℓ := {j ∈ [[N ]] : M [I, j] = B[·, ℓ] and then
define a probability measure P on [[L]] by P{ℓ} := P{J ∈ Aℓ}. Then let L
be a random variable with distribution P . These choices ensure that the
random vector B[·,L] has the same distribution as R[I]. Consequently, for
each i in I we have

Pvar(B[i,L] | B[I\{i},L] = Pvar(R[i] | R[I\{i}])

Sum over i in I then over all I with |I| = m+ 1, then invoke Lemma <25>
to deduce that

\E@ sum.Ii\E@ sum.Ii <27>
∑

|I|=m+1

∑
i∈I

P var(R[i] | R[K]) ≤
(

n

m+ 1

)
d.

Remark. This inequality assumes that m + 1 > d. Soon we will be
choosing m = ⌈2(d+ 1)/ϵ⌉.

We need can transform <27> into a form comparable to <26> by noting
that each pair (i,K) with |K| = m and i ∈ [[n]]\K corresponds to exactly
one pair (i, I) with |I| = m+ 1 and i ∈ I if we define I = K ∪ {i}. Thus

\E@ Ki.upper\E@ Ki.upper <28>
∑

|K|=m

∑
i∈[[n]]\K

P var(R[i] | RK) ≤
(

n

m+ 1

)
d.

Remark. As a check, note that the double sums in <27> and <28>
both involve (m+ 1)

(
n

m+1

)
= (n−m)

(
n
m

)
terms.
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Together <26> and <28> imply(
n

m

)
1
2nϵ

(
1− β(m, d)/N

)
,≤

(
n

m+ 1

)
d

which rearranges to

N ≤ β(m, d)

(
1− 2(n−m)d

nϵ(m+ 1)

)−1

.

We could try to optimize over m immediately, as Haussler (1995, page 225)
did, to bound N by a function of ϵ, d, and n, then take a supremum over n.
However, it is simpler to note that all the conditions of the Theorem apply
if n is replaced by qn, for some positive integer q, and each x in X is replaced
by the concatenation of q copies of x. (The new vectors are the columns of
the (qn)×N binary matrix obtained by stacking q copies of M .) Letting q
tend to infinity (with m fixed) eliminates n from the bound, leaving

N ≤ β(m, d)

(
1− 2d

ϵ(m+ 1)

)−1

≤ (em/d)d
(
1− 2d

ϵ(m+ 1)

)−1

.

As a function of m, the first factor is increasing and the second is de-
creasing. If we treated m as a continuous variable and ignored the difference
between m and m+1 the minimizing value would be 2(d+1)/ϵ. That suggests
we choose m = ⌈2(d+ 1)/ϵ⌉, which gives the bound

N ≤
(
2e(d+ 1)

ϵd

)d 2(d+ 1)

2(d+ 1)− 2d
≤ (2e/ϵ)d(1 + d−1)d+1.

Remark. For comparison’s sake, note that Haussler got the bound

e(d+ 1) (2e(n+ 1)/(nϵ+ 2d+ 2))
d
.

Proof (of Lemma <23>). As the set K is fixed throughout the argument
I’ll omit it from the notation, even though everything—such as the random
vector R :=M [·, J]—depends on the choice of K.

Define Z to be the set of all vectors in the discrete hypercube {0, 1}K that
appear at least once as a column of M [K, ·]. From the fact that sdim(M [K, ·]) ≤
sdim(M) ≤ d we get |Z| ≤ β(m, d).

For each z in Z define Jz := {j ∈ [[N ]] : M [K, j] = z}, so that we have
{R[K] = z} = {J ∈ Jz}. The distribution, Pz, of J conditional on J ∈ Jz is just
the uniform distribution on Jz. A very well known symmetrization argument
(cf. the variance of a difference of two independent random variables) will
give a simple expression for var(R[i] | R[K] = z). Let P̃z be a copy of Pz.
For each fixed i in [[n]]\K,

var(R[i] | R[K] = z) = PzM [i, j]2 − PzM [i, j] P̃zM [i, j̃]

= 1
2

(
PzM [i, j]2 − 2PzM [i, j] P̃zM [i, j̃] + P̃zM [i, j̃]2

)
= 1

2Pz ⊗ P̃z

(
M [i, j]−M [i, j̃]

)2
= 1

2Pz ⊗ P̃z{M [i, j] ̸=M [i, j̃]}
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because M [i, j]−M [i, j̃] takes only values 0,±1.
Sum over i in [[n]]\K, remembering property <24> and the fact that

that M [K, j] =M [K, j̃] = z when j, j̃ ∈ Jz, to deduce that∑
i/∈K

var(R[i] | R[K] = z) =
∑

i∈[[n]]
1
2Pz ⊗ P̃z{j ̸= j̃}{M [i, j] ̸=M [i, j̃]}

≥ 1
2Pz ⊗ P̃z{j ̸= j̃}nϵ = 1

2nϵ(1− 1/|Jz|).

Finally, average out over Z, remembering that P{J ∈ Jz} = |Jz|/N and∑
z |Jz| = N and |Z| ≤ β(m, d) to conclude that∑

i∈[[n]]\K
Pvar (R[i] | R[K])

=
∑

z∈Z
P{J ∈ Jz}

∑
i
var (R[i] | J ∈ Jz)

≥ 1
2nϵ

∑
z∈Z

(|Jz|/N − 1/N) = 1
2nϵ (1− β(m, d)/N) .□

Proof (of Lemma <25>). To simplify notation define I := [[m+ 1]] and
R := B[·,L]. As in Section 14.4, let E denote the set of edges of B, the set
of pairs {ℓ, ℓ′} from [[L]] for which

∑
i{B[i, ℓ] ̸= B[i, ℓ′]} = 1. And write P

for the distribution of L.
For each i in I define

Zi := {B[−i, ℓ] : ℓ ∈ [[L]]} ⊂ {0, 1}I\{i},

Z
(1)
i := {z ∈ Zi : z = B[−i, λ(z)] for a unique λ(z) in [[L]] },

Z
(2)
i := {z ∈ Zi : ∃λ0(z), λ1(z) ∈ [[L]] for which

B[−i, λα(z)] = z, B[i, λα(z)] = α for α = 0, 1 }.

Each z in Z
(2)
i defines an edge ez := {λ0(z), λ1(z)} in Ei and

{R[−i] = z} =

{
{L = λ(z)} if z ∈ Z

(1)
i

{L ∈ ez} if z ∈ Z
(2)
i

.

If z ∈ Z
(1)
i the conditional distribution of R[i] given R[−i] = z is degenerate

at a single value, which implies var(R[i] | R[−i] = z) = 0.

If z ∈ Z
(2)
i the conditional distribution of R[i] given R[−i] = z is Ber(pz),

where pz := P{λ1(z)}/P (ez), so that

var(R[i] | R[−i] = z) = pz(1− pz) ≤ min(pz, 1− pz).

By Lemma <21>, the edges in E can be oriented by a pair of maps head,tail
from E into [[L]], for which

\E@ B.indegree\E@ B.indegree <29>
∑

e∈E
{head(e) = ℓ} ≤ d for each ℓ in [[L]].

For the edge ez we have min(pz, 1− pz) ≤ P{head(ez)}/P (ez) and

P{R[−i] = z} = P{L ∈ ez} = P (ez).
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Thus, for each i in I,

Pvar (R[i] | R[−i]) =
∑

z∈Zi

P{R[−i] = z} × var(R[i] | R[−i] = z)

≤
∑

z∈Z(2)
i

P{head(ez)} =
∑

e∈Ei

P{L = head(e)}.

Sum out over i to deduce that∑
i∈I

Pvar (R[i] | R[−i]) ≤ P
∑

e∈E
{L = head(e)}.

Inequality <29> ensures that the expression on the right-hand side is ≤ d,
the desired inequality.□

14.6 Problems
VCsets::S:Problems

[1] With points x1, x2, . . . , xn+2 in Rn define yi := xi − xn+2 for 1 ≤ i ≤ n+ 1.VCsets::P:convex.hulls

(i) Use a linear dependence argument to show that there exist constants {αi},
not all zero, for which

∑n+1
i=1 αiyi = 0.

(ii) Define βi := αi for 1 ≤ i ≤ n + 1 and βn+2 := −
∑

i∈[[n+1]] αi. Show that∑
i∈[[n+2]] βi = 0 and

∑
i∈[[n+2]] βixi = 0.

(iii) Define A := {i ∈ [[n+2]] : βi > 0} and B := {i ∈ [[n+2]] : βi < 0}. Show that
c :=

∑
i∈A βi = −

∑
i∈B βi > 0 and w :=

∑
i∈A(βi/c)xi =

∑
i∈B(−βi/c)xi.

Deduce that w ∈ co{xi : i ∈ A} ∩ co{xi : i ∈ B} ̸= ∅.

[2] Let Hd denote the set of all closed half-spaces in Rd. Show that vcdim(Hd) =VCsets::P:halfspaces

d+ 1 by the following arguments.

(i) Show that Hd shatters the set F = {0, e1, . . . , ed}, where ei is the unit
vector with +1 in the ith position. Hint: Consider closed halfspaces of the
form {x : θ · x ≥ r} with θ ∈ {−1,+1}d.

(ii) Suppose F = {xi : i = 0, 1, . . . , d+1} is a set of d+2 distinct points in Rd. If
H picks out a subset FK := {xi : i ∈ K} from F , show that that the convex
hull of FK is a subset of H, which is disjoint from the convex hull of FKc .

(iii) Show that
∑

1≤i≤d+1 αi(xi − x0) = 0 for some constants αi that are not all
zero. Define α0 = −

∑
1≤i≤d+1 αi. Show that∑

0≤i≤d+1
αixi = 0 and

∑
0≤i≤d+1

αi = 0.

Define J = {i ∈ [0 : d + 1] : αi > 0}. Show that the convex hulls of the
subsets FJ = {xi : i ∈ J} and F c

J have a nonempty intersection. Thus Hd

cannot pick out the subset FJ from F .

[3] Example <12> described one way to bound packing numbers using shatterVCsets::P:G.ineq

dimension. The bound relied on an inversion inequality for the function
G(r) = er/r for r > 0: if w ≥ e and G(r) ≤ w then er ≤ c0w logw for
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a universl constant c0. Follow these steps to etablish that inequality with
constant c0 := (1− e−1)−1 ≈ 1.58.

(i) Show that G is convex, with infr>0G(r) = G(1) = 1/e. For a fixed w ≥ e,
let R be the unique value for which R ≥ 1 and G(R) = w. Deduce that
{r > 0 : G(r) ≤ w} ⊂ (0, R].

(ii) Show that

logw = R− log(R) ≥ R
(
1− supr≥1(log r)/r

)
= (1− e−1)R.

(iii) Deduce that er ≤ eR = RG(R) ≤ c0w logw for 0 < r ≤ R.

[4] Suppose M is an n×N binary matrix with distinct columns and sdim(M) ≤ d.VCsets::P:Haussler

For some probability measure θ on [[n]], suppose X is ϵ-separated under the
weighted hamming metric Hθ, for some ϵ in (0, 1). That is,∑

i∈[[n]]
θi|M [i, j]−M [i, j′]| > ϵ for each pair {j, j′} with 1 ≤ j < j′ ≤ N.

Let c be any constant that is > 1. Show that N ≤ Hd(ϵ/c), where Hd is the
function from Theorem <22>. Argue as follows.

(i) For a positive integer L, which can depend on M and θ, define Li := ⌊Lθi⌋
and m :=

∑
i∈[[n]] Li. Show that L can be chosen large enough that θi/c ≤

Li/m ≤ θi for each i.

(ii) Let B be the m×N binary matrix obtained by stacking together Li copies
on M [i, ·] for each i. Show that sdim(B) ≤ d and, for 1 ≤ j < j′ ≤ N ,

m−1
∑

i∈[[m]]

|B[i, j]−B[i, j′]| =
∑
i∈[[n]]

(Li/m)|M [i, j]−M [i, j′]| > ϵ/c.

Deduce that N ≤ Hd(ϵ/c).

14.7 Notes
VCsets::S:Notes

The bound stated in Theorem <3> appeared in the paper by Sauer (1972).
In an online blog (http://leon.bottou.org/news/vapnik-chervonenkis sauer),
Bottou made a case that the credit should go to Vapnik and Červonenkis,
who first published a short summary (Vapnik and Červonenkis, 1968) of their
result and then a longer version (Vapnik and Chervonenkis, 1971). Dudley
(2014, page 211) (see also Dudley 1978, Section 7) noted that the 1971 bound
was a little weaker than the Sauer result.

In his online blog (https://gilkalai.wordpress.com/) for 28 September
2008, Kalai presented another version of the VC Lemma then commented:

It was mentioned (with an algebraic proof by Frankl and Pach)
in Gowers’ blog and also, in another context, in Kowalski’s blog.
Sauer proved it in response to a problem of Erdos. Shelah (with
Perles) proved it as a useful lemma for Shelah’s theory of stable
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models. (At some later time, Benjy Weiss asked Perles about such
a result in the context of ergodic theory and Perles who forgot
that he proved it once proved it again.) Vapnik and Chervonenkis
proved it in the context of statistical learning theory.

Steele (1975, 1978) generalized the result described in Theorem <3>
to matrices whose entries come from a finite alphabet. Haussler and Long
(1995) generalized further.

I learned about the downshift method for proving Theorem <3> from
Michel Talagrand. Ledoux and Talagrand (1991, pp. 411-412) used the
set-theoretic version of the downshift method, attributing it (page 420) to
Frankl (1983). Independently, both Alon (1983) and Frankl (1983) used the
shifting method to prove a result that implies Theorem <3>. Frankl (1995,
page 1298) noted that the shifting technique was introduced by Erdős, Ko,
and Rado (1961).

The results in Sections 14.4 and 14.5 are based on Haussler (1995), who
acknowledged (page 220) Linial for the downshifting method of proof for
Theorem <19>, with the comment that the result had already been proved
by Haussler, Littlestone, and Warmuth (1994). For an illuminating Bayesian
interpretation of the probability method used to prove Theorem <22> see
Haussler (1995, Section 3).
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