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Chapter 10

Measurability woes

Woes::Woes
Section 10.1 introduces three ways to overcome measurabilty difficulties that

beset stochastic processes with uncountable index sets.
Section 10.2 explains how to replace supremum and infimum of uncountable

families of random variables by weaker concepts—the essential supremum
and infimum—that restore measurabilty at the cost of a few almost sure
qualifiers.

Section 10.3 explains hows outer measure and outer integrals are related
to essential suprema.

Section 10.4 describes how to make negligible modifications to each member
of an uncountable set of random variables, with each random variable
being changed on its own negligible set, to produce a version with better
sample path properties.

10.1 The difficulty
Woes::S:intro

Measurability issues have for a long time complicated the handling of stochas-
tic processes X = {Xt : t ∈ T}—sets of random variables all defined on
the same probability space (Ω,F,P)—with very large index sets T . If T is
countable, the typical operations—sums, limits, products, suprema—do not
take us outside the set of all (F-measurable) random variables. If T is un-
countable, questions of measurability demand more attention. For example,
supt∈T Xt(ω) need not be F-measurable.

Probabilists have developed several strategies for dealing with the diffi-
culties raised by uncountable T :

(i) Replace each Xt by a new random variable X̃t, also defined on Ω,
for which P{ω : Xt(ω) ̸= X̃t(ω)} = 0 for each t ∈ T . Choose the
new variables so that each sample path X̃(ω, ·) is controlled (in some
sense) by its behavior on a fixed, countable subset S of T . This concept
was made a central part of stochastic process theory by Doob (1953,
Section II.2). See Section 10.4.
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(ii) Particularly for questions of convergence in distribution of sequences
of stochastic processes, work with outer integrals and measurable cover
functions. Such approaches became increasingly important in the study
of general empirical processes. See Sections 10.3 and Chapter 11.

(iii) Use the properties of analytic sets to establish measurability for quan-
tities like supt∈T Xt(ω) if (ω, t) 7→ X(ω, t) is product measurable and T
can be identified with an analytic subset of a compact metric space. For
the meaning of “analytic” see Dellacherie and Meyer (1978, Chapter III,
no. 1 through 14). See also Dudley (2014, Chapter 5) and Pollard (1984,
Appendix C).

I have nothing much to say about strategy (iii), except that it lies math-
ematically deeper than the other two and that it is essential for a real un-
derstanding of stochastic calculus at the level of rigor of the Métivier (1982)
book.

For specific problems, I have often found that measurability issues can be
handled by ad hoc approximation arguments using countable subsets of the
index set. Nevertheless, it is reassuring to know that the general strategies
are available.

10.2 Essential supremum and infimum
Woes::S:essential

The key to Doob’s construction is a method for reducing an uncountable
collection of random variables down to a countable subcollection, at the cost
of a host of negligible sets.

For a fixed probability space (Ω,F,P) write M for the set of all F\B(R)-
measurable maps from Ω into R := [−∞,+∞].

Woes::ess.sup <1> Theorem. For each subset H = {ht : t ∈ T} of M, with T uncountably infi-
nite, there exists a countable subset S∞ of T such that H(ω) := supt∈S∞ ht(ω)
belongs to M and

(i) P{H ≥ h} = 1 for each h ∈ H

(ii) if G is another member of M for which P{G ≥ h} = 1 for each h ∈ H

then P{G ≥ H} = 1.

Remark. The defining properties for H could also be written as:

ht ≤a.s. H for each t in T ;

H ≤a.s. H1 if H1 ∈ M and ht ≤a.s. H1 for each t in T .

As you can see, the “ess” in esssup is just shorthand for lots of “al-
most sure” caveats.

Proof. The defining properties (i) and (ii) are unaffected by a monotone,
one-to-one, increasing transformation such as arctan. Thus there is no loss of
generality in assuming existence of a finite constant c for which supt∈T |ht| ≤ c.
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Write S for the collection of all countable subsets of T . For each S in S
define HS(ω) := supt∈S ht(ω). The boundedness assumption ensures that
the constant τ := sup{PHS : S ∈ S} is also finite. It is easy to show that the
supremum is achieved. Choose a sequence {Sn} in S for which PHSn > τ−n−1.
The set S∞ := ∪nSn is countable; it belongs to S. Define H := HS∞ . Then
τ ≥ PH > τ − n−1 for every n.

For (i): if σ ∈ T then the set S(σ) := S∞ ∪ {σ} belongs to S, so that

PH = τ ≥ PHS(σ) = Pmax (hσ, H) = Phσ{hσ > H}+ PH{hσ ≤ H},

implying 0 ≥ P(hσ −H){hσ > H} and hence P{hσ > H} = 0.
For (ii): from G ≥ ht almost surely for each t in T and the countability

of S∞ it follows that G ≥ supt∈S∞ ht = H almost surely.□

Remark. The set S∞ in the Theorem is not unique, but property (ii)
ensures that HS∞ is unique up to an almost sure equivalence amongst
the functions HS with S ∈ S for which HS ≥ ht ae[P], for each t in T .

As I need to be very careful about negligible sets in this Chapter, I’ll
avoid the usually benign practice of treating an equivalence class of functions
as a single function by defining

\E@ esssup.def\E@ esssup.def <2> ess supH := {hS : S ∈ S and hS ≥ ht ae[P], for each t in T},

where (as in the Proof) S denotes the collection of all countable subsets of T
and hS(ω) := supt∈S ht(ω). Here ess sup stands for essential supremum.

Similarly, with GS(ω) denoting the pointwise infimum of {ht(ω) : t ∈ S},
the essential infimum of H is defined as

\E@ essinf.def\E@ essinf.def <3> ess infH := {GS : S ∈ S and GS ≤ ht ae[P] for each t in T}.

Results about ess inf follow directly from Theorem <1>, applied to H⊖ :=
{−ht : t ∈ T}, because GS ∈ ess infH⊖ if and only if −GS ∈ ess supH.

10.3 Outer integrals and measurable cover functions
Woes::S:mbleCover

The outer measure of a subset A of Ω is defined as

P∗A := inf{PB : B ∈ FA} where FA := {B ∈ F : A ⊆ B}.

The infimum is achieved by each member A∗ of ess inf FA, that is, P∗A = PA∗.
Every such A∗ is called a measurable cover for A. It is unique up to almost
sure equivalence.

Similarly, if h is a (possibly non-measurable) function from Ω into R,
its measurable cover is (almost surely) defined as any function h∗ from the
equivalence class

ess infMh where Mh := {f ∈ M : f(ω) ≥ h(ω) for all ω ∈ Ω}.

Again the measurable cover is unique only up to almost sure equivalence. It
is (almost surely) characterized by:
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(i) h∗(ω) ≥ h(ω) for all ω ∈ Ω;

(ii) if g is a measurable function for which g(ω) ≥ h(ω) for all ω then
g ≥ h∗ almost surely.

By analogy with the equality P∗A = PA∗, you might be expecting that
the outer integral could be defined by

\E@ outer.PP\E@ outer.PP <4> P∗h :
?
= inf{Pf : f ∈ ess infMh and Pf is well defined}.

Unfortunately, this definition does not work in complete generality because
there is no guarantee that Pf is well-defined (in the sense that at least one
of Pf+ and Pf− is finite) for enough members of Mh. See van der Vaart and
Wellner (1996, Problem 2 in Section 1.2) for an example of how bad it can
be. This difficulty undoubtedly underlies the very sneaky definition of upper
integral given by Dudley (2014, page 136). Fortunately, if |h| is bounded—the
only case that I’ll need—then the difficulty disappears. In this Chapter, you
can safely ignore the ‘?’ in <4>.

The story is similar for inner integrals, P∗h = −P∗(−h), and the lower
analog of measurable covers, h∗ = −(−h)∗.

Even though measurable covers are used in some parts of the literature, I’ll
be mostly avoiding them in this Chapter. The next Example is included just
to make the point that arguments involving them tend to be straightforward
(but perhaps a little tedious) once the desired properties are reduced to
pointwise assertions about measurable sets and measurable functions.

Woes::indic.mc <5> Example. For each real r show that {h∗ > r} = {h > r}∗ ae[P]. (Compare
with Dudley, 2014, Lemma 3.8.)

Define A := {ω : h(ω) > r}, which need not be F-measurable, and D :=
{ω : h∗(ω) > r}. Because h∗ is a member of MA we have A ≤ D pointwise.
We need to show that if A ≤ B ∈ F then B ≥ D∗ ae[P].

By definition of h∗, if g is F-measurable and g(ω) ≥ h(ω) pointwise then
g(ω) ≥ h∗(ω) ae[P]. Consider the measurable function defined by

g(ω) := h∗(ω){ω ∈ B}+ (r ∧ h∗(ω)){ω ∈ Bc}.

We have g ≥ h pointwise: if ω ∈ Bc then ω ∈ Ac = {h ≤ r}, otherwise ω ∈ B.
Consequently, g(ω) ≥ h∗(ω) for ω ∈ Nc, where N is P-negligible. If ω ∈ DNc

then g(ω) ≥ h∗(ω) > r, which forces ω ∈ B. It follows that D∗ ≤ B ae[P].□

10.4 Separable versions
Woes::S:separable

The measurability difficulties afflicting a stochastic process whose index set T
is uncountable can often be handled by taking limits along a countable dense
subset of T if the process is separable, in the following sense.

Woes::sep <6> Definition. Let S be a countable, dense subset of a metric space T . Say
that a process X = {Xt : t ∈ T} is doob-separable, with approximating
set S, if for each ω in Ω and each t in T there exists a sequence {sn : n ∈ N}
(which might depend on ω) in S for which sn → t and X(ω, sn) → X(ω, t).
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Remark. As noted in Section 9.1, the word ‘separable’ is heavily over-
worked, particularly so when the conversation also involves topological
spaces that are separable in the sense of possessing a countable, dense
subset. To avoid ambiguity, I attached the name of its inventor.

Not every process is doob-separable: the classic example is the stochastic
process X(ω, t) = 1 if t = ω, and zero otherwise, when T = Ω = [0, 1].

For many probabilistic purposes, two random variables that differ only
on a negligble set are essentially the same. Indeed, many random variables
are only defined up to some sort of almost sure equivalence and, in isolation,
there is usually no good reason to prefer one choice from the almost sure
equivalence class over another. However, for stochastic processes, whenever
we need good behavior for the sample paths, t 7→ X(ω, t) for each fixed ω,
the selection from an equivalence class becomes much more important.

Woes::version <7> Definition. Say that a stochastic process X̃ = {X̃t : t ∈ T} is a version of
X = {Xt : t ∈ T} if they are both defined on the same probability space and
P{ω : Xt(ω) ̸= X̃t(ω)} = 0 for each t in T .

Remark. For each t there exists a P-negligible set Nt for which Xt(ω) =

X̃t(ω) if ω /∈ Nt. If T is countable, the set N := ∪tNt is also P-
negligible; all differences between X and X̃ appear only within a sin-
gle negligible set N. If T is uncountable, ∪tNt need not be measur-
able, let alone negligible.

Under mild toplogical assumptions, a stochastic process X will have a
version X̃ that is doob-separable. For the traditional case where each Xt is
an F-measurable map into the real line it is usually necessary to allow X̃t to
take values in R := [−∞,+∞]. For X processes taking values in Rk the X̃

process should be allowed to take values in R
k
. Both cases are covered just

by assuming that X takes values in some compact metric space E, whose
metric I denote by d to avoid confusion with the metric d on T .

Woes::sep.version <8> Theorem. Suppose: (Ω,F,P) is a complete probability space; (T, d) is a
separable metric space; and (E, d) is a compact metric space. Suppose also
that {Xt : t ∈ T} is an E-valued stochastic process, that is, each Xt is an
F\B(E)-measurable map from Ω into E. Then there exists a version X̃ of X
that is doob-separable.

Remark. Remember that completeness requires: if N ⊆ F ∈ F and
PF = 0 then N ∈ F. Similarly, if X is an F\B(E)-measurable map
from Ω into E and N is a P-negligible subset of Ω then a new map
X̃(ω) := X(ω){ω ∈ Nc} + f(ω){ω ∈ N} is F\B(E)-measurable,
no matter how badly behaved f might be as a map from Ω into E,
because

X̃−1(D) = {ω ∈ Nc}X−1(D) + {ω ∈ N}f−1(D) for D ⊆ E.

Proof. The approximating subset S of T will be built up by countably many
essential supremum arguments.
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Let A be any countable, d-dense subset of E and T∞ be any countable,
d-dense subset of T . Write G for the countable collection of open balls with
center in T∞ and rational radius. It is important that, for each t ∈ T and
each ϵ > 0, there is a B in G with t ∈ B and diam(B) < ϵ.

For each a in E and each B in G, let S(a,B) be any countable, dense
subset of B for which

infs∈S(a,B) d(a,Xs(ω)) ∈ ess inf{d(a,Xt(ω)) : t ∈ B}.

By definition of the essential infimum, for each t in B, there exists a P-
negligible set Nt,a,B such that, for each ϵ > 0 and each ω ∈ Nc

t,a,B, there is
an s in S(a,B) with

\E@ essinfB\E@ essinfB <9> d(a,Xs(ω)) < d(a,Xt(ω)) + ϵ.

Of course s depends on ω and ϵ. The union S := ∪{S(a,B) : a ∈ A,B ∈ G}
is a countable, dense subset of T ; it will be the approximating set.

For the new version X̃, start by defining X̃(ω, s) = X(ω, s) for all
s ∈ S and all ω ∈ Ω. Consider any t in T\S. Define a new P-negligible set
Nt := ∪{Nt,a,B : a ∈ A, t ∈ B ∈ G}. I claim:

for each ω in Nc
t there is a sequence {sn(ω)} in S with

sn(ω) → t and X(ω, sn(ω)) → X(ω, t).\E@ challenge\E@ challenge <10>

Indeed, for n ∈ N and ω in Nc
t there is an an in A with d(an, Xt(ω)) < n−1

and a Bn in G for which t ∈ Bn and diam(Bn) < n−1. By <9> there is an sn
in S(an, Bn) for which

d(an, Xsn(ω)) < d(an, Xt(ω)) + n−1 < 2n−1,

implying d(Xsn(ω), Xt(ω))) < 3n−1.
If ω ∈ Nt, let {σn} be any sequence in S that converges to t. Define the

value X̃t(ω) to be any cluster point of the sequence X(ω, σn) in the compact
metric space E. The F-measurability of X̃t is ensured by the completeness
of the underlying probability space.□

In one special case, which applies to all the processes considered in
Chapter 9, we can dispense with all the ess inf trickery. Suppose the process
X = {Xt : t ∈ T} is continuous in probability. That is, for each t in T and
each ϵ > 0, we have P{d(Xtn , Xt) > ϵ} → 0 if tn → t. Let S be any countable,
dense subset of T and let {sn} be any sequence in S that converges to t. A
well known result (see Pollard, 2001, Problem 14 on page 48, for example)
asserts that there is a subsequence {sn(k) : k ∈ N} for which Xsn(k)

converges
almost surely to Xt, which (apart from the subsequencing) is essentially
requirement <10>. Thus for each countable, dense subset S of T there exists
a doob-separable version of X with S as the approximating set.
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10.5 Problems
Woes::S:problems

[1] Suppose h is a bounded real function on Ω and (Ω,F,P) is complete. ShowWoes::P:bdd.mble

that h is F-measurable if and only if P∗h = P∗h.

10.6 Notes
Woes::S:Notes

For measurable covers (Section 10.3) I mostly followed Dudley (2014, Sec-
tion 3.2). Section 5.3 of that wonderful book shows how to apply the heavy
machinery related to the theory of analytic sets to attack the measurability
problems caused by uncountable index sets.

Doob (1953, Section II.2) described the virtues of working with separable
versions. See the Notes on page 625 of that book for the history of the
concept. I learned about the extension to processes taking values in compact
metric spaces from Meyer (1966, Chapter IV.2).

Separable versions can also be constructed in great generality by means
of liftings, maps from the set of equivalance classes L∞(Ω,F,P) into the set
of measurable functions that preserve the interesting operations (linearity,
products, maximima). For a deep discussion, using liftings, of measurability
difficulties for empirical processes see Talagrand (1987, 1988).
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