
Chapter 10

Representations and couplings

SECTION 1 illustrates the usefulness of coupling, by means of three simple examples.
SECTION 2 describes how sequences of random elements of separable metric spaces that

converge in distribution can be represented by sequences that converge almost surely.
SECTION *3 establishes Strassen’s Theorem, which translates the Prohorov distance

between two probability measures into a coupling.
SECTION *4 establishes Yurinskii’s coupling for sums of independent random vectors to

normally distributed random vectors.
SECTION 5 describes a deceptively simple example (Tusnády’s Lemma) of a quantile

coupling, between a symmetric Binomial distribution and its corresponding normal
approximation.

SECTION 6 uses the Tusnády Lemma to couple the Haar coefficients for the expansions of
an empirical process and a generalized Brownian Bridge.

SECTION 7 derives one of most striking results of modern probability theory, the KMT
coupling of the uniform empirial process with the Brownian Bridge process.

1. What is coupling?

A coupling of two probability measures, P and Q, consists of a probability space
(�, F, P) supporting two random elements X and Y , such that X has distribution P
and Y has distribution Q. Sometimes interesting relationships between P and Q
can be coded in some simple way into the joint distribution for X and Y . Three
examples should make the concept clearer.

<1> Example. Let Pα denote the Bin(n, α) distribution. As α gets larger, the distri-
bution should “concentrate on bigger values.” More precisely, for each fixed x , the
tail probability Pα[x, n] should be an increasing function of α. A coupling argument
will give an easy proof.

Consider a β larger than α. Suppose we construct a pair of random variables,
Xα with distribution Pα and Xβ with distribution Pβ , such that Xα ≤ Xβ almost
surely. Then we will have {Xα ≥ x} ≤ {Xβ ≥ x} almost surely, from which we
would recover the desired inequality, Pα[x, n] ≤ Pβ[x, n], by taking expectations
with respect to P.

How might we construct the coupling? Binomials count successes in inde-
pendent trials. Couple the trials and we couple the counts. Build the trials from
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independent random variables Ui , each uniformly distributed on (0, 1). That is,
define Xα := ∑

i≤n{Ui ≤ α} and Xβ := ∑
i≤n{Ui ≤ β}. In fact, the construction

couples all Pγ , for 0 ≤ γ ≤ 1, simultaneously.�
<2> Example. Let P denote the Bin(n, α) distribution and Q denote the approximating

Poisson(nα) distribution. A coupling argument will establish a total variation bound,
supA |P A − Q A| ≤ nα2, an elegant means for expressing the Poisson approximation
to the Binomial.

Start with the simplest case, where n equals 1. Find a probability measure P
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concentrated on {0, 1} × N0 with marginal distributions P := Bin(1, α) and
Q := Poisson(α). The strategy is simple: put as much mass as
we can on the diagonal, (0, 0) ∪ (1, 1), then spread the remaining
mass as needed to get the desired marginals. The atoms on the
diagonal are constrained by the inequalities

P(0, 0) ≤ min (P{0}, Q{0})) = min
(
1 − α, e−α

)
,

P(1, 1) ≤ min (P{1}, Q{1})) = min
(
α, αe−α

)
.

To maximize, choose P(0, 0) := 1 − α and P(1, 1) := αe−α. The
rest is arithmetic. We need P(1, 0) := e−α − 1 + α to attain the

marginal probability Q{0}, and P(0, k) := 0, for k = 1, 2, . . ., to attain the marginal
P{0} = 1 − α. The choices P(1, k) := Q{k}, for k = 2, 3, . . ., are then forced. The
total off-diagonal mass equals α − αe−α ≤ α2.

For the general case, take P to be the n-fold product of measures of the
type constructed for n = 1. That is, construct n independent random vectors
(X1, Y1), . . . , (Xn, Yn) with each Xi distributed Bin(1, α), each Yi distributed
Poisson(α), and P{Xi �= Yi } ≤ α2. The sums X := ∑

i Xi and Y := ∑
i Yi then have

the desired Binomial and Poisson distributions, and P{X �= Y } ≤ ∑
i P{Xi �= Yi } ≤

nα2. The total variation bound follows from the inequality

|P{X ∈ A} − P{Y ∈ A}| = |P{X ∈ A, X �= Y } − P{Y ∈ A, X �= Y }| ≤ P{X �= Y },
for every subset A of integers.�

The first Example is an instance of a general method for coupling probability
measures on the real line by means of quantile functions. Suppose P has distri-
bution function F and Q has distribution function G, with corresponding quantile
functions qF and qG . Remember from Section 2.9 that, for each 0 < u < 1,

u ≤ F(x) if and only if qF (u) ≤ x .

In particular, if U is uniformly distributed on (0, 1) then

P{qF (U ) ≤ x} = P{U ≤ F(x)} = F(x),

so that X := qF (U ) must have distribution P . We couple P with Q by using the
same U to define the random variable Y := qG(U ) with distribution Q.

A slight variation on the quantile coupling is available when G is one-to-one
with range covering the whole of (0, 1). In that case, qG is a true inverse function
for G, and U = G(Y ). The random variable X := qF G(Y ) is then an increasing
function of Y , a useful property. Section 5 will describe a spectacularly successful
example of a quantile coupling expressed in this form.
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<3> Example. Suppose {Pn} is a sequence of probability measures on the real line,
for which Pn � P . Write Fn and F for the corresponding distribution functions, and
qn and q for the quantile functions. From Section 7.1 we know that Fn(x) → F(x)

at each x for which P{x} = 0, which implies (Problem [1]) that qn(u) → q(u) at
Lebesgue almost all u in (0, 1). If we use a single U , distributed uniformly on (0, 1),
to construct the variables Xn := qn(U ) and X := q(U ), then we have Xn → X almost
surely. That is we have represented the weakly convergent sequence of measures by
an almost surely convergent sequence of random variables.

Remark. It might happen that the measures {Pn} are the distributions of some
other sequence of random variables, {Yn}. Then, necessarily, Yn � P; but the
construction does not assert that Yn converges almost surely. Indeed, we might even
have the Yn defined on different probability spaces, which would completely rule out
any possible thought of almost sure convergence. The construction ensures that each
Xn has marginal distribution Pn , the same as Yn , but the joint distribution of the Xn’s
has nothing to do with the joint distribution of the Yn’s (which is only well defined
if the Yn all live on the same probability space). Indeed, that is the whole point of
the construction: we have artificially manufactured the joint distribution for the Xn’s
in order that they converge, not just in the distributional sense, but also in the almost
sure sense.

The representation lets us prove facts about weak convergence by means of the
tools for almost sure convergence. For example, in the problems to Chapter 7, you
were asked to show that �(P, Q) := sup{|P
 − Q
| : ‖
‖BL ≤ 1} defines a metric
for weak convergence on the set of all Borel probability measures on a separable
metric space. (Refer to Section 7.1 for the definition of the bounded Lipschitz
norm.) If �(Pn, P) → 0 then Pn f → P f for each f with ‖ f ‖BL < ∞, that is,
Pn � P . Conversely, if Pn � P and can we find Xn with distribution Pn and X
with distribution P for which Xn → X almost surely (see Section 2 for the general
case), then

�(Pn, P) ≤ sup
‖
‖BL≤1

P|
(Xn) − 
(X)| ≤ P
(
1 ∧ |Xn − X |) → 0.

In effect, the general constructions of the representing variables subsume the specific
calculations used in Chapter 7 to approximate {
 : ‖
‖BL ≤ 1} by a finite collection
of functions.�

2. Almost sure representations

The representation from Example <3> has extensions to more general spaces. The
result for separable metric spaces gives the flavor of the result without getting us
caught up in too many measure theoretic details.

<4> Theorem. For probability measures on the Borel sigma field of a separable metric
space X, if Pn � P then there exist random elements Xn , with distributions Pn , and
X , with distribution P , for which Xn → X almost surely.

The main step in the proof involves construction of a joint distribution for Xn

and X . To avoid a profusion of subscripts, it is best to isolate this part of the
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construction into a separate lemma. Once again, a single uniformly distributed U
(that is, with distribution equal to Lebesgue measure m on B(0, 1)) will eventually
provide the thread that ties together the various couplings into a single sequence
converging almost surely. The construction builds the joint distribution via a
probability kernel, K from (0, 1) × X into X.

Recall, from Section 4.3, that such a kernel consists of a family of probability
measures {Ku,x (·) : u ∈ (0, 1), x ∈ X} with (u, x) �→ Ku,x B measurable for each
fixed B in B(X). We define a measure on the product sigma-field of (0, 1) × X × X

by
(m ⊗ P ⊗ K )u,x,y f (u, x, y) := mu

(
Px K y

u,x f (u, x, y)
)
.

Less formally: we independently generate an observation u from the uniform
distribution m and an observation x from P , then we generate a y from the
corresponding Ku,x . The expression in parentheses on the right-hand side also
defines a probability distribution, (P ⊗ K )u , on X × X,

(P ⊗ K )x,y
u f (x, y) := Px K y

u,x f (x, y) for each fixed u.

In fact, {(P ⊗ K )u : u ∈ (0, 1)} is a probability kernel from (0, 1) to X × X. Notice
also that the marginal distribution mu Px Ku,x for y is a m ⊗ P average of the Ku,x

probability measures on B(X). As an exercise in generating class methods, you
might check all the measurability properties needed to make these assertions precise.

<5> Lemma. Let P and Q be probability measures on the Borel sigma-field B(X).
Suppose there is a partition of X into disjoint Borel sets B0, B1, . . . , Bm , and a
positive constant ε, for which Q Bα ≥ (1 − ε)P Bα for each α. Then there exists a
probability kernel K from (0, 1) × X to X for which Q = mu Px Ku,x and for which
(P ⊗ K )u concentrates on ∪α (Bα × Bα) whenever u ≤ 1 − ε.

Proof. Rewrite the assumption as Q Bα = δα + (1 − ε)P Bα, where the nonnegative
numbers δα must sum to ε because

∑
α Q Bα = ∑

α P Bα = 1. Write Q(· | Bα) for
the conditional distribution, which can be taken as an arbitrary probability measure
on Bα if Q Bα = 0. Partition the interval (1 − ε, 1) into disjoint subintervals Jα with
mJα = δα. Define

Ku,x (·) =
∑

α

({u ∈ Jα} + {u ≤ 1 − ε, x ∈ Bα}) Q(· | Bα).

When u ≤ 1 − ε the recipe is: generate y from Q(· | Bα) when x ∈ Bα, which
ensures that x and y then belong to the same Bα. Integrate over u and x to find the
marginal probability that y lands in a Borel set A:

mu Px Ku,x A =
∑

α

(
δα + (1 − ε)P Bα

)
Q(A | Bα) =

∑
α
(Q Bα)Q(A | Bα) = Q A,

as asserted.�
Remark. Notice that the kernel K does nothing clever when u ∈ Jα . If we
were hoping for a result closer to the quantile coupling of Example <3>, we might
instead try to select y from a Bβ that is close to x , in some sense. Such refined
behavior would require a more detailed knowledge of the partition.

Proof of Theorem <4>. The idea is simple. For each n we will construct an
appropriate probability kernel K (n)

u,x from (0, 1) × X to X, via an appeal to the
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Lemma, with Q equal to the corresponding Pn and ε depending on n. We then
independently generate Xn(ω) from K (n)

u,x , for each n, with u an observation from m

independent of an observation X (ω) := x from P .
The inequality required by the Lemma would follow from convergence in

distribution if each Bα were a P-continuity set (that is, if each boundary ∂ Bα had
zero P measure—see Section 7.1), for then we would have Pn Bα → P Bα as n → ∞.
Problem [4] shows how to construct such a partition π := {B0, B1, . . . , Bm} for an
arbitrarily small ε > 0, with two additional properties,

(i) P B0 ≤ ε

(ii) diameter(Bα) ≤ ε for each α ≥ 1.

We shall need a a whole family of such partitions, πk := {Bα,k : α = 0, 1, . . . , mk},
corresponding to values εk := 2−k for each k ∈ N.

To each k there exists an nk for which Pn B ≥ (1 − εk)P B for all B in πk ,
when n ≥ nk . With no loss of generality we may assume that 1 < n1 < n2 < . . .,
which ensures that for each n greater than n1 there exists a unique k := k(n) for
which nk ≤ n < nk+1. Write K (n)

u,x for the probability kernel defined by Lemma <5>

for Q := Pn with ε := εk(n), and πk(n) as the partition. Define P as the probability
measure m ⊗ P ⊗ (⊗n∈NK (n)

u,x

)
on the product sigma-field of � := (0, 1) × X × XN.

The generic point of � is a sequence ω := (u, x, y1, y2, . . .). Define X (ω) := x and
Xn(ω) := yn .

Why does Xn converge P-almost surely to X? First note that
∑

k P B0,k < ∞.
Borel-Cantelli therefore ensures that, for almost all x and every u in (0, 1), there
exists a k0 = k0(u, x) for which u ≤ 1 − εk and x /∈ B0,k for all k ≥ k0. For such
(u, x) and k ≥ k0 we have (x, yn) ∈ ∪α≥1 Bα,k × Bα,k for nk ≤ n < nk+1, by the
concentration property of the kernels. That is, both X (ω) and Xn(ω) fall within the
same Bα,k with α ≥ 1, a set with diameter less than εk . Think your way through that
convoluted assertion and you will realize we have shown something even stronger
than almost sure convergence.�

<6> Example. Suppose Pn � P as probability measures on the Borel sigma-field of
a separable metric space, and suppose that {Tn} is a sequence of measurable maps
into another metric space Y. If P-almost all x have the property that Tn(xn) → T (x)

for every sequence {xn} converging to x , then the sequence of image measures
also converges in distribution, Tn Pn � T P , as probability measures on the Borel
sigma-field of Y. The proof is easy is we represent {Pn} by the sequence {Xn}, as
in the Theorem. For each 
 in BL(Y), we have 
(Tn(Xn(ω))) → 
(T (X (ω))) for
P-almost all ω. Thus

(Tn Pn)
 = P
(Tn(Xn)) → P
(T (X)) = (T P)
,

by Dominated Convergence.�
I noted in Example <3> that if Yn has distribution Pn , and if each Yn is

defined on a different probability space (�n, Fn, Pn), then the convergence in
distribution Yn � P cannot possibly imply almost sure convergence for Yn .
Nevertheless, using an argument similar to the proof of Theorem <4>, Dudley (1985)
obtained something almost as good as almost sure convergence.
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He built a single probability space (�, F, P)

(Ωn,Fn,Pn)

(Ω,F,P)

X

Pn�P

X
ψn

Yn

ω

supporting measurable maps ψn , into �n , and X ,
into X, with distributions Pn = ψn (P) and P = X (P),
for which Yn(ψn(ω)) → X (ω) for P almost all ω.
In effect, the ψn maps pull Yn back to �, where the
notions of pointwise and almost sure convergence
make sense.

Actually, Dudley established a more delicate
result, for Yn that need not be measurable as maps
into X, a generalization needed to accommodate
an application in the theory of abstract empirical

processes. See Pollard (1990, Section 9) for a discussion of some of the conceptual
and technical difficulties—such as the meaning of convergence in distribution for
maps that don’t have distributions in the usual sense—that are resolved by Dudley’s
construction. See Kim & Pollard (1990, Section 2) for an example of the subtle
advantages of Dudley’s form of the representation theorem.

*3. Strassen’s Theorem

Once again let (X, d) be a separable metric space equipped with its Borel sigma-
field B(X). For each subset A of X, and each ε ≥ 0, define Aε to be the closed set
{x ∈ X : d(x, A) ≤ ε}. The Prohorov distance between any P and Q from the set P

of all probability measures on B(X) is defined as

ρ(P, Q) := inf{ε > 0 : P B ≤ Q Bε + ε for all B in B(X)}.
Despite the apparent lack of symmetry in the definition, ρ is a metric (Problem [3])
on P.

Remark. Separability of X is convenient, but not essential when dealing with
the Prohorov metric. For example, it implies that B(X×X) = B(X)⊗B(X), which
ensures that d(X, X ′) is measurable for each pair of random elements X and X ′; and
if Xn → X almost surely then P{d(Xn, X) > ε} → 0 for each ε > 0.

If ρ(Pn, P) → 0 then, for each closed F we have Pn F ≤ P Fε + ε eventually,
and hence lim supn Pn F ≤ P F , implying that Pn � P . Theorem <4> makes it easy
to prove the converse. If Xn has distribution Pn and X has distribution P , and if
Xn → X almost surely, then for each ε > 0 there is an nε such that

P{d(Xn, X) > ε} < ε for n ≥ nε .

For every Borel set B, when n ≥ nε we have

<7> Pn B ≤ P{Xn ∈ B, d(Xn, X) ≤ ε} + P{d(Xn, X) > ε} ≤ P{X ∈ Bε} + ε = P Bε + ε.

Thus ρ is actually a metric for weak convergence of probability measures.
The Prohorov metric also has an elegant (and useful, as will be shown by

Section 4) coupling interpretation, due to Strassen (1965). I will present a slightly
restricted version of the result, by placing a tightness assumption on the probabilities,
in order to simplify the statement of the Theorem. (Actually, the proof will establish
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a stronger result; the tightness will be used only at the very end, to tidy up.)
Also, the role of ε is slightly easier to understand if we replace it by two separate
constants.

<8> Theorem. Let P and Q be tight probability measures on the Borel sigma field B of
a separable metric space X. Let ε and ε′ be positive constants. There exists random
elements X and Y of X with distributions P and Q such that P{d(X, Y ) > ε} ≤ ε′ if
and only if P B ≤ Q Bε + ε′ for all Borel sets B.

The argument for deducing the family of inequalities from existence of the
coupling is virtually the same as <7>. For the other, more interesting direction, I
follow an elegant idea of Dudley (1976, Lecture 18). By approximation arguments
he reduced to the case where both P and Q concentrate on a finite set of atoms,
and then existence of the coupling followed by an appeal to the classical Marriage
Lemma (Problem [5]). I modify his argument to eliminate a few steps, by making
an appeal to the following generalization (proved in Problem [6]) of that Lemma.

<9> Lemma. Let ν be a finite measure on a finite set S and µ be a finite measure on
a sigma-field B on a set T . Suppose {Rα : α ∈ S} is a collection of measurable sets
with the domination property that ν(A) ≤ µ (∪α∈A Rα) for all A ⊆ S. Then there
exists a probability kernel K from S to T with Kα concentrated on Rα for each α

and
∑

α∈S ν{a}Kα ≤ µ.

Proof of Theorem <8>. The measure P will live on X × X, with X and Y as
the coordinate maps. It will be the limit of a weakly convergent subsequence of a
uniformly tight family {Pδ : δ > 0}, obtained by an appeal to the Prohorov/Le Cam
theorem from Section 7.5.

Construct Pδ via a “discretization” of P , which brings the problem within the
ambit of Lemma <9>. For a small, positive δ, which will eventually be sent to
zero, partition X into finitely many disjoint, Borel sets B0, B1, . . . , Bm with P B0 < δ

and diameter(Bα) < δ for α ≥ 1. (Compare with the construction in Problem [4].)
Define a probability measure ν, concentrated on the finite set S := {0, 1, . . . , m}, by
ν{α} := P Bα for α = 0, . . . , m. Augment X by a point ∞. Extend Q to a measure
µ on T := X ∪ {∞} by placing mass ε′ at ∞. Define Rα as Bε

α ∪ {∞}. With these
definitions, the measures ν and µ satisfy the requirements of Lemma <9>: for each
subset A of S,

ν(A) = P (∪α∈A Bα) ≤ Q (∪α∈A Bα)ε + ε′ = Q
(∪α∈A Bε

α

) + µ{∞} = µ (∪α∈A Rα) .

The Lemma ensures existence of a probability kernel K , from S to T , with
Kα Bε

α + Kα{∞} = Kα Rα = 1 for each α and
∑

α ν{α}Kα A ≤ µA for every Borel
subset A of T . In particular,

∑
α ν{α}Kα B ≤ Q B for all B ∈ B. The nonnegative

measure Q − ∑
α ν{α}Kα

∣∣
X

on B has total mass

τ := 1 − ∑
α ν{α}KαX = ∑

α ν{α}Kα{∞} ≤ µ{∞} = ε′.

Write this measure as τ Q0, with Q0 a probability measure on B. (If τ = 0, choose
Q0 arbitrarily.) We then have Qh = τ Q0h + ∑

α ν{α}Kαh for all h ∈ M+(X).
Define a probability measure Pδ on B ⊗ B by

Pδ f := Px
(∑m

α=0
{x ∈ Bα} (Kα + Kα{∞}Q0)

y f (x, y)
)

for f ∈ M+(X × X).
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Remark. In effect, I have converted K to a probability kernel L from X to
X, by setting Lx equal to Kα|X + Kα{∞}Q0 when x ∈ Bα . The definition of Pδ is
equivalent to Pδ := P ⊗ L , in the sense of Section 4.4.

The measure Pδ has marginals P and Q because, for g and h in M+(X),

P
x,y
δ g(x) = Px

(∑
α
{x ∈ Bα} (

KαX + Kα{∞}) g(x)
)

= Pg,

P
x,y
δ h(y) =

∑
α

P{x ∈ Bα} (
Kαh + Kα{∞}Q0h

) =
∑

α
ν{α}Kαh + τ Q0h.

It concentrates most of its mass on the set D := ∪m
α=1

(
Bα × Bε

α

)
,

Pδ D ≥
∑m

α=1
Px

({x ∈ Bα}K y
α {(x, y) ∈ D})

=
∑m

α=1
Px

({x ∈ Bα}K y
α {y ∈ Bε

α})
=

∑m

α=1
ν{α}KαX = 1 − τ − (P B0) (K0X) .

When (x, y) belongs to D, we have x ∈ Bα and d(y, Bα) ≤ ε for some Bα with
diameter(Bα) < δ, and hence d(x, y) ≤ δ + ε. Thus Pδ assigns measure at least
1 − ε′ − δ to the closed set Fδ+ε := {(x, y) ∈ X × X : d(x, y) ≤ δ + ε}.

The tightness of both P and Q will let us eliminate δ, by passing to the limit
along a subsequence. For each η > 0 there exists a compact set Cη for which
PCc

η < η and QCc
η < η. The probability measure Pδ, which has marginals P and Q,

puts mass at most 2η outside the compact set Cη × Cη. The family {Pδ : δ > 0} is
uniformly tight, in the sense explained in Section 7.5. As shown in that Section,
there is a sequence {δi } tending to zero for which Pδi � P, with P a probability
measure on B⊗B. It is a very easy exercise to check that P has marginals P and Q.
For each fixed t > ε, the weak convergence implies

PFt ≥ lim supi Pδi Ft ≥ lim supi Pδi Fε+δi ≥ 1 − ε′.

Let t decrease to ε to complete the proof.�

*4. The Yurinskii coupling

The multivariate central limit theorem gives conditions under which a sum S of
independent random vectors ξ1, . . . , ξn has an approximate normal distribution.
Theorem <4> would translate the corresponding distributional convergence into a
coupling between the standardized sum and a random vector with the appropriate nor-
mal distribution. When the random vectors have finite third moments, Theorem <8>

improves the result by giving a rate of convergence (albeit in probability).

<10> Theorem. Let ξ1, . . . , ξn be independent random k-vectors with Pξi = 0 for each i
and β := ∑

i P|ξi |3 finite. Let S := ξ1 + . . . + ξn . For each δ > 0 there exists a
random vector T with a N (0, var(S)) distribution such that

P{|S − T | > 3δ} ≤ C0 B

(
1 + | log(1/B)|

k

)
where B := βkδ−3,

for some universal constant C0.
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Remark. The result stated by Yurinskii (1977) took a slightly different form.
I have followed Le Cam (1988, Theorem 1) in reworking the Yurinskii’s methods.
Both those authors developed bounds on the Prohorov distance, by making an
explicit choice for δ. The Le Cam preprint is particularly helpful in its discussion of
heuristics behind how one balances the effect of various parameters to get a good
bound.

Proof. The existence of the asserted coupling (for a suitably rich probability space)
will follow via Theorem <8> if we can show for each Borel subset A of R

k that

<11> P{S ∈ A} ≤ P{T ∈ A3δ} + error,

with the error equal to the upper bound stated in the Theorem. By choosing a
smooth (bounded derivatives up to third order) function f that approximates the
indicator function of A, in the sense that f ≈ 1 on A and f ≈ 0 outside A3δ, we will
be able to deduce inequality <11> from the multivariate form of Lindeberg’s method
(Section 7.3), which gives a third moment bound for a difference in expectations,

<12> |P f (S) − P f (T )| ≤ C
(
P|ξ1|3 + . . . + P|ξk |3

)
= Cβ.

More precisely, if the constant Cf is such that

<13>
∣∣ f (x + y) − f (x) − y′ ḟ (x) − 1

2 y′ f̈ (x)y
∣∣ ≤ Cf |y|3 for all x and y,

then we may take C = (
9 + 8P|N (0, 1)|3) Cf ≤ 15Cf .

For a fixed Borel set A, Lemma <18> at the end of the Section will show
how to construct a smooth function f for which approximation <13> holds with
Cf = (σ 2δ)−1 and for which, if δ > σ

√
k,

<14> (1 − ε){x ∈ A} ≤ f (x) ≤ ε + (1 − ε){x ∈ A3δ} where




ε :=
(

1 + α

eα

)k/2

,

1 + α := δ2

kσ 2
.

The Lindeberg bound <12>, with Cβ = 15β/(σ 2δ) = 15B(1 + α), then gives

P{S ∈ A} ≤ (1 − ε)−1
P f (S)

≤ (1 − ε)−1 (
P f (T ) + 15B(1 + α)

)
≤ P{T ∈ A3δ} + ε′ where ε′ := ε + 15B(1 + α)

(1 − ε)
.<15>

We need to choose α, as a function of k and B, to make ε′ small.
Clearly the bound <15> is useful only when ε is small, in which case the

(1 − ε) factor in the denominator contributes only an extra contant factor to the
final bound. We should concentrate on the numerator. Similarly, the assertion of
the Theorem is trivial if B is not small. Provided we make sure C0 ≥ e, we may
assume B ≤ e−1, that is, log(1/B) ≥ 1.

To get within a factor 2 of minimizing a sum of two nonnegative functions,
one increasing and the other decreasing, it suffices to equate the two contributions.
This fact suggests we choose α to make

α −
(

1 − 2
k

)
log(1 + α) ≈ 2

k
log(1/B) + O(k−1).
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If B is small then α will be large, which would make log(1 + α) small compared
with α. If we make α slightly larger than 2k−1 log(1/B) we should get close to
equality. Actually, we can afford to have α a larger multiple of log(1/B), because
extra multiplicative factors will just be absorbed into constant C0. With these
thoughts, it seems to me I cannot do much better than choose

α := 3
(

1 + 2
k

log(1/B)

)
,

which at least has the virtue of giving a clean bound:

log ε ≤ k

2

(
log(1 + α) − 2α

3

)
− kα

6
≤ − log(1/B) ≤ −1.

and hence

ε′ = ε + 15B(1 + α)

(1 − ε)
≤ 90

1 − e−1
B

(
1 + log(1/B)

k

)
when B ≤ e−1.

The proof is complete, except for the construction of the smooth function f
satisfying <14>.�

Before moving on to the construction of f , let us see what we can do with the
coupling from the Theorem in the case of identically distributed random vectors.
For convenience of notation write Yk(x) for the function C0x (1 + | log(1/x)|/k).

<16> Example. Let ξ1, ξ2, . . . be independent, identically distributed random k-vectors
with Pξ1 = 0, var(ξ1) := V , and µ3 := P|ξ1|3 < ∞. Write Sn for ξ1 + . . . ξn .
The central limit theorem asserts that Sn/

√
n � N (0, V ). Theorem <10>, asserts

existence of a sequence of random vectors Wn , each distributed N (0, V ) for which

P

{∣∣∣∣ Sn√
n

− Wn

∣∣∣∣ ≥ 3δ

}
≤ Yk

(
knµ3

(δ
√

n)3

)
.

For fixed k, we can make the right-hand side as small as we please by choosing δ

as a large enough enough multiple of n−1/6. Thus, with finite third moments,∣∣∣∣ Sn√
n

− Wn

∣∣∣∣ = Op(n
−1/6) via the Yurinskii coupling.

For k = 1, this coupling is not the best possible. For example, under an assumption
of finite third moments, a theorem of Major (1976) gives a sequence of independent
random variables Y1, Y2, . . ., each distributed N (0, V ), for which∣∣∣∣ Sn√

n
− Y1 + . . . + Yn√

n

∣∣∣∣ = op(n
−1/6) almost surely.

Major’s result has the correct joint distributions for the approximating normals, as
n changes, as well as providing a slightly better rate.�

<17> Example. Yurinskii’s coupling (and its refinements: see, for example, the
discussion near Lemma 2.12 of Dudley & Philipp 1983) is better suited to situations
where the dimension k can change with n.

Consider the case of a sequence of independent, identially distributed stochastic
processes {Xi (t) : t ∈ T }. Suppose PX1(t) = 0 and |X1(t)| ≤ 1 for every t . Under
suitable regularity conditions on the sample paths, we might try to show that the
standardized partial sum processes, Zn(t) := (X1(t) + . . . + Xn(t))/

√
n, behave like a
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centered Gaussian process {Z(t) : t ∈ T }, with the same covariance structure as X1.
We might even try to couple the processes in such a way that supt |Zn(t) − Z(t)| is
small in some probabilistic sense.

The obvious first step towards establishing a coupling of the processes is to
consider behavior on large finite subsets T (k) := {t1, . . . , tk} of T , where k is allowed
to increase with n. The question becomes: How rapidly can k tend to infinity?

For fixed k, write ξi for the random k-vector with components Xi (tj ), for
j = 1, . . . , k. We seek to couple (ξ1 + . . . + ξn)/

√
n with a random vector Wn ,

distributed like {Z(tj ) : j = 1, . . . , k}. The bound is almost the same as in
Example <16>, except for the fact that the third moment now has a dependence
on k,

P|ξ1|3 = k3/2
P

(
1
k

k∑
j=1

X1(tj )
2

)3/2

≤ k3/2
P

(
1
k

k∑
j=1

|X1(tj )|3
)

≤ k3/2.

Via the general fact that maxj |xj | ≤
(∑

j x2
j

)1/2
, the coupling bound becomes

P

{
max

j≤k

∣∣Zn(tj ) − Wn, j

∣∣ ≥ 3δ

}
≤ P

{∣∣∣∣ξ1 + . . . + ξn√
n

− Wn

∣∣∣∣ ≥ 3δ

}

≤ Yk

(
nk5/2

(δ
√

n)3

)
→ 0 if k = o

(
n1/5

)
and δ → 0 slowly enough.

That is, maxj≤k

∣∣Zn(tj ) − Wn, j

∣∣ = op(1) if k increases more slowly than n1/5.�

Smoothing of indicator functions

There are at least two methods for construction of a smooth approximation f to a
set A. The first uses only the metric:

f (x) = (1 − d(x, A)/δ)+ .

For an interval in one dimension, the approximation has the effect of replacing the
discontinuity at the boundary points by linear functions with slope 1/δ. The second
method treats the indicator function of the set as an element of an L1 space, and
constructs the approximation by means of convolution smoothing,

f (x) = mw
({w ∈ A}φσ (w − x)

)
,

where φσ denotes the N (), σ 2 Ik) density and m denotes Lebesgue measure on B(Rk).
(Any smooth density with rapidly decreasing tails would suffice.) A combination of
the two methods of smoothing will give the best bound:
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<18> Lemma. Let A be a Borel subset of R
k . let Z have a N (0, Ik) distribution. For

positive constants δ and σ define

g(x) :=
(

1 − d(x, Aδ)

δ

)+
and f (x) := Pg(x + σ Z) = mw (g(w)φσ (w − x)) .

Then f satisfies <13> with C := (σ 2δ)−1, and approximation <14> holds.

Proof. The function f inherits some smoothness from g and some from the
convolving standard normal density φσ , which has derivatives

∂

∂z
φσ (z) = − z

σ 2
φσ (z) and

∂2

∂z2
φσ (z) =

(
zz′

σ 4
− Ik

σ 2

)
φσ (z).

For fixed x and y, the function h(t) := f (x + t y), for 0 ≤ t ≤ 1, has second
derivative

ḧ(t) = mw

(
g(w)

(
(y′(w − x − t y))2

σ 4
− |y|2

σ 2

)
φσ (w − x − t y)

)

= σ−2
P

(
g(x + t y + σ Z)

(
(y′ Z)2 − |y|2

))
.

The Lipschitz property |g(x + t y + σ Z) − g(x + σ Z)| ≤ t |y|/δ then implies

|ḧ(t) − ḧ(0)| ≤ t |y|
σ 2δ

P

(
(y′ Z)2 + |y|2

)
≤ 2|y|3

σ 2δ
.

The asserted inequality <13> then follows from a Taylor expansion,

|h(1) − h(0) − ḣ(0) − 1
2 ḧ(0)| = 1

2

∣∣ḧ(t∗) − ḧ(0)
∣∣ where t∗ ∈ (0, 1).

For approximation <14>, first note that Aδ ≤ g ≤ A2δ and 0 ≤ f ≤ 1
everywhere. Also P{|Z | > δ/σ } ≤ ε, from Problem [7]. Thus

f (x) ≥ Pg(x + σ Z){|σ Z | ≤ δ} = P{|Z | ≤ δ/σ } ≥ 1 − ε if x ∈ A,

and

f (x) = Pg(x + σ Z){|σ Z | ≤ δ} + Pg(x + σ Z){|σ Z | > δ} ≤ ε if x /∈ A3δ.

A

Aδ

A3δ

A f

g

�

5. Quantile coupling of Binomial with normal

As noted in Section 1, if η is distributed N (0, 1), with distribution function �,
and if q denotes the Bin(n, 1/2) quantile function, then the random variable
X := q(�(η)) has exactly a Bin(n, 1/2) distribution. In a sense made precise by
the following Lemma, X is very close to the random variable Y := n/2 + η

√
n/4,

which has a N (n/2, n/4) distribution. The coupling of the Bin(n, 1/2) with its
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approximating N (n/2, n/4) has been the starting point for a growing collection of
striking approximation results, inspired by the publication of the fundamental paper
of Komlós, Major & Tusnády (1975).

<19> Tusnády’s Lemma. For each positive integer n there exists a deterministic, in-
creasing function τ(n, ·) such that the random variable X := τ(n, η) has a Bin(n, 1/2)

distribution whenever η has a N (0, 1) distribution. The random variable X satisfies
the inequalities

|X − Y | ≤ 1 + η2

8
and

∣∣∣X − n

2

∣∣∣ ≤ 1 +
√

n|η|
2

,

where Y := n

2
+ η

√
n

4
, which has a N

(n

2
,

n

4

)
distribution.

At first glance it is easy to underestimate the delicacy of these two inequalities.
Both X and Y have mean n/2 and standard deviation of order

√
n. It would be no

challenge to construct a coupling for which |X − Y | is of order
√

n; the Lemma
gives a coupling for which |X − Y | is bounded by a quantity whose distribution does
not even change with n.

The original proof (Tusnády 1977) of the Lemma is challenging. Appendix D
contains an alternative derivation of similar inequalities. To simplify the argument,
I have made no effort to derive the best constants for the bound. In fact, the precise
constants appearing in the Lemma will have no importance for us. It will be enough
for us to have a universal constant C0 for which there exists couplings such that

<20> |X − Y | ≤ C0

(
1 + η2

)
and

∣∣∣X − n

2

∣∣∣ ≤ C0
√

n (1 + |η|) ,

a weaker bound that follows easily from the inequalities in Appendix D.

6. Haar coupling—the Hungarian construction

Let x1, . . . , xn be n independent observations from the uniform distribution P
on (0, 1]. The empirical measure Pn is defined as the discrete distribution that puts
mass 1/n at each of x1, . . . , xn . That is, Pn f := ∑n

i=1 f (xi )/n, for each function f
on (0, 1]. Notice that n Pn D has a Bin(n, P D) distribution for each Borel set D. The
standardized measure νn := √

n (Pn − P) is called the uniform empirical process.
For each square integrable function f ,

νn f = n−1/2
∑n

i=1
( f (xi ) − P f )� N (0, σ 2

f ) where σ 2
f = P f 2 − (P f )2.

More generally, for each finite set of square integrable functions f1, . . . , fk , the
random vector (νn f1, . . . , νn fk) has a limiting multivariate normal distribution
with zero means and covariances P( fi f j ) − (P fi )(P fj ). These finite dimensional
distributions identify a Gaussian process that is closely related to the isonormal
process {G( f ) : f ∈ L2(P)} from Section 9.3.

Recall that G is a centered Gaussian process, defined on some probability space
(�, F, P), with cov (G( f ), G(g)) = 〈 f, g〉 = P( f g), the L2(P) inner product. The
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Haar basis, � = {1} ∪ {ψi,k : 0 ≤ i < 2k, k ∈ N0}, for L2(P) consists of rescaled
differences of indicator functions of intervals Ji,k := J (i, k) := (i2−k, (i + 1)2−k],

ψi,k := 2k/2 (
J2i,k+1 − J2i+1,k+1

) = 2k/2 (
2J2i,k+1 − Ji,k

)
for 0 ≤ i < 2k .

Remark. For our current purposes, it is better to replace L2(P) by L2(P), the
space of square-integrable real functions whose P-equivalence classes define L2(P).
It will not matter that each G( f ) is defined only up to a P-equivalence. We need
to work with the individual functions to have Pn f well defined. It need not be true
that Pn f = Pn g when f and g differ only on a P-negligible set.

Each function in L2(P) has a series expansion,

f = (P f ) +
∑∞

k=0

∑
i
ψi,k〈 f, ψi,k〉,

which converges in the L2(P) sense. The random variables �η := G(1) and
ηi,k := G(ψi,k) are independent, each with a N (0, 1) distribution, and

G( f ) = (P f )�η +
∑∞

k=0

∑
i
ηi,k〈 f, ψi,k〉,

with convergence in the L2(P) sense. If we center each function f to have
zero expectation, we obtain a new Gaussian process, ν( f ) := G( f − P f ) =
G( f ) − (P f )G(1), indexed by L2(P), whose covariances identify it as the limit
process for νn . Notice that ν(ψi,k) = G(ψi,k) = ηi,k almost surely, because Pψi,k = 0.
Thus we also have a series representation for ν,

<21> ν( f ) = G( f ) − (P f )�η =
∑∞

k=0

∑
i
ηi,k〈 f, ψi,k〉 =

∑∞
k=0

∑
i
ν(ψi,k)〈 f, ψi,k〉.

At least in a heuristic sense, we could attempt a similar series expansion of the
empirical process,

<22> νn( f )
?=

∑∞
k=0

∑
i
νn(ψi,k)〈 f, ψi,k〉.

Remark. Don’t worry about the niceties of convergence: when the heuristics
are past I will be truncating the series at some finite k.

The expansion suggests a way of coupling the process νn and ν, namely, find a
probability space on which νn(ψi,k) ≈ ν(ψi,k) = ηi,k for a large subset of the basis
functions. Such a coupling would have several advantages. First, the peculiarities
of each function f would be isolated in the behavior of the coefficients 〈 f, ψi,k〉.
Subject to control of those coefficients, we could derive simultaneous couplings for
many different f ’s. Second, because the ψi,k functions are rescaled differences of
indicator functions of intervals, the νn(ψi,k) are rescaled differences of Binomial
counts. Tusnády’s Lemma offers an excellent means for building Binomials from
standard normals. With some rescaling, we can then build versions of the νn(ψi,k)

from the ηi,k .
The secret to success is a recursive argument, corresponding to the nesting

of the Ji,k intervals. Write node(i, k) for (i + 1/2)/2k , the midpoint of Ji,k . Regard
node(2i, k + 1) and node(2i + 1, k + 1) as the children of node(i, k), corresponding
to the decomposition of Ji,k into the disjoint union of the two subintervals J2i,k+1

and J2i+1,k+1. The parent of node(i, k) is node(�i/2 , k − 1).
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For each integer i with 0 ≤ i < 2k there is a path back through the tree,

path(i, k) := {(i0, 0), (i1, 1), . . . , (ik, k)} where i0 = 0 and ik = i ,

for which J (ik, k) ⊂ J (ik−1, k − 1) ⊂ . . . ⊂ J (0, 0) = (0, 1]. That is, the path traces
through all the ancestors (parent, grandparent, . . . ) back to the root of the tree.

0 1node(0,0) = 1/2

(0,1) (1,1)

(0,2) (2,2)(1,2) (3,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

J1,1

(((

(

(

(

(

(

] ]]

]

]

]

]

]J0,0

J0,1

J2,2J0,2 J3,2J1,2

J0,3 J1,3 J2,3 J3,3 J4,3 J5,3 J6,3 J7,3(] (] ( ]( ]( ]( ](]

The recursive argument constructs successively refined approximations to Pn

by assigning the numbers of observations Xi,k amongst x1, x2, . . . , xn that land in
each interval Ji,k . Notice that, conditional on Xi,k = N , the two offspring counts
must sum to N , with X2i,k+1 having a conditional Bin(N , 1/2) distribution. Via
Lemma <19> define

X0,1 := τ(n, η0,0) =: n − X1,1,

X0,2 := τ(X0,1, η0,1) =: X0,1 − X1,2, X2,2 := τ(X1,1, η1,1) =: X1,1 − X3,2,

and so on. That is, recursively divide the count Xi,k at each node(i, k) between
the two children of the node, using the normal variable ηi,k to determine the
Bin(Xi,k, 1/2) count assigned to the child at node(2i, k + 1). The joint distribution
for the Xi,k variables is the same as the joint distribution for the empirical counts
n Pn Ji,k , because we have used the correct conditional distributions.

If we continued the process forever then, at least conceptually, we would
identify the locations of the n observations, without labelling. Each point would
be determined by a nested sequence of intervals. To avoid difficulties related to
pointwise convergence of the Haar expansion, we need to stop at some finite level,
say the mth, after which we could independently distribute the Xi,m observations (if
any) within Ji,m .

The recursive construction works well because Tusnády’s Lemma, even in its
weakened form <20>, provides us with a quadratic bound in the normal variables
for the difference between νn(ψi,k) and the corresponding ηi,k .

<23> Lemma. There exists a universal constant C such that, for each k and 0 ≤ ik < 2k ,

|νn(ψi,k) − ηi,k | ≤ C√
n

∑k

j=0
2 j/2

(
1 + η2

i j , j

)
,

where {(i j , j) : j = 0, 1, . . . , k} is a path from the root down to node(ik, k).

Proof. Abbreviate J (i j , j) to Jj , and ηi j , j to ηj , and so on, for j = 0, 1, . . . , k.
Notice that the random variable Pn Jj has expected value P Jj = 2− j , and a small
variance, so we might hope that all of the random variables �j := 2 j Pn Jj should be
close to 1. Of course �0 ≡ 1.
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Consider the effect of the split of Jj into its two subintervals, J ′ := J (2i j , j +1)

and J ′′ := J (2i j + 1, j + 1). Write N for n Pn Jj and X for n Pn J ′, so that
�j = 2 j N/n and �′ := 2 j+1 Pn J ′ = 2 j+1 X/n and �′′ := 2 j+1 Pn J ′′ = 2�j − �′.
From inequality <20>, we have X = N/2 + √

Nηj/2 + R, where

<24> |R| ≤ C0(1 + η2
j ) and |X − N/2| ≤ C0

√
N

(
1 + |ηj |

)
.

By construction,

Pn J ′ = X

n
= N + √

Nηj + 2R

2n
= 1

2

(
Pn Jj +

√
�j

n2 j
ηj + 2R

n

)
,

and hence

νnψj =
√

n2 j Pn
(
2J ′ − Jj

) = √
�jηj + 2

√
2 j

n
R.

From the first inequality in <24>,

<25> |νnψj − ηj | ≤
∣∣∣(√

�j − 1
)

ηj

∣∣∣ + 2C0

√
2 j

n

(
1 + η2

j

)
.

From the second inequality in <24>,

|�′′ − �j | = |�′ − �j | = 2 j+1

n
|X − N/2| ≤ C0

√
2 j+2

n

√
�j

(
1 + |ηj |

)
.

Invoke the inequality |√a − √
b| ≤ |a − b|/√b, for positive a and b, to deduce that

|√�j+1 − √
�j | ≤ max

(
|
√

�′ − √
�j |, |

√
�′′ − √

�j |
)

≤ 2C02 j/2 (
1 + |ηj |

)
/
√

n.

From <25> with j = k, and the inequality from the previous line, deduce that
√

n|νnψk − ηk | ≤ 2C02k/2
(

1 + η2
k

)
+ √

n|ηk |
∑k−1

j=0
|√�j+1 − √

�j |

≤ 2C02k/2
(

1 + η2
k

)
+ 2C0

∑k−1

j=0
2 j/2 (|ηk | + |ηkηj |

)
.

Bound |ηk | + |ηkηj | by 1 + η2
k + 1

2η2
k + 1

2η2
j , then collect terms involving η2

k , to
complete the proof.�

7. The Komlós-Major-Tusnády coupling

The coupling method suggested by expansions <21> and <22> works particularly
well when restricted to the set of indicator functions of intervals, ft (x) = {0 < x ≤ t},
for 0 < t ≤ 1. For that case, the limit process {ν(0, t] : 0 ≤ t ≤ 1}, which can
be chosen to have continuous sample paths, is called the Brownian Bridge, or
tied-down Brownian motion, often written as {B◦(t) : 0 ≤ t ≤ 1}.

<26> Theorem. (KMT coupling) There exists a Brownian Bridge {B◦(t) : 0 ≤ t ≤ 1}
with continuous sample paths, and a uniform empirical process νn , for which

P

{
sup

0≤t≤1
|νn(0, t] − B◦(t)| ≥ C1

x + log n√
n

}
≤ C0 exp (−x) for all x ≥ 0,

with constants C1 and C0 that depend on neither n nor x .
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Remark. Notice that the exponent on the right-hand side is somewhat arbitrary;
we could change it to any other positive multiple of −x by changing the constant C1

on the left-hand side. By the same reasoning, it would suffice to get a bound like
C2 exp(−c2x) + C3 exp(−c3x) + C4 exp(−c4x) for various positive constants Ci and
ci , for then we could recover the cleaner looking version by adjusting C1 and C0. In
my opinion, the exact constants are unimportant; the form of the inequality is what
counts. Similarly, it would suffice to consider only values of x bounded away from
zero, such as x ≥ c0, because the asserted inequality is trivial for x < c0 if C0 ≥ ec0 .

It is easier to adjust constants at the end of an argument, to get a clean-looking
inequality. When reading proofs in the literature, I sometimes find it frustrating to
struggle with a collection of exquisitely defined constants at the start of a proof,
eventually to discover that the author has merely been aiming for a tidy final bound.

Proof. We will build νn from B◦, allocating counts down to intervals of length 2−m ,
as described in Section 6. It will then remain only to control the behavior of
both processes over small intervals. Let T (m) denote the set of grid points
{i/2m : i = 0, 1, . . . , 2m} in [0, 1]. For each t in T (m), both series <21> and <22>

terminate after k = m, because [0, t] is orthogonal to each ψi,k for k > m. That
is, using the Hungarian construction we can determine Pn Ji,m for each i , and then
calculate

νn(0, t] =
∑m

k=0

∑
i
νn(ψi,k)〈 ft , ψi,k〉 for t in T (m),

which we need to show is close to

B◦(t) := ν(0, t] =
∑m

k=0

∑
i
ηi,k〈 ft , ψi,k〉 for t in T (m).

Notice that B◦(0) = B◦(1) = 0 = νn(0, 0] = νn(0, 1]. We need only consider t in
T (m)\{0, 1}. For each k, at most one coefficient 〈 ft , ψi,k〉 is nonzero, corresponding
to the interval for which t ∈ Ji,k , and it is bounded in absolute value by 2−k/2. The
corresponding nodes determine a path (0, 0), . . . , (i j , j), . . . , (im, m) down to the
mth level. The difference between the processes at t is controlled by the quadratic
function,

Sm(t) :=
∑m

j=0
η2

i j , j where t ∈ J (i j , j) for each j ,

of the normal variables at the nodes of this path:
√

n|νn(0, t] − B◦(t)| ≤
∑m

k=0

√
n|νn(ψik ,k) − ηik ,k |2−k/2

≤
∑
j,k

{0 ≤ j ≤ k ≤ m}C2( j−k)/2
(

1 + η2
i j , j

)
by Lemma <23>

≤ 4C
∑m

j=0

(
1 + η2

i j , j

)
summing the geometric series

= 4C
(
m + 1 + Sm(t)

)
.<27>

As t ranges over T (m), or even over the whole of (0, 1), the path defining
Sm(t) ranges over the set of all 2m paths from the root down to the mth level.
We bound the maximum difference between the two processes if we bound the
maximum of Sm(t). The maximum grows roughly linearly with m, the same rate as
the contribution from a single t . More precisely

<28> P{maxt Sm(t) ≥ 5m + x} ≤ 2 exp(−x/4) for each x ≥ 0.
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I postpone the proof of this result, in order not to break the flow of the main
argument.

Remark. The constants 5 and 4 are not magical. They could be replaced by
any other pair of constants for which P exp

(
(N (0, 1)2 − c1)/c2

) ≤ 1/2.

From inequalities <27> and <28> we have

P

{
max

t∈T (m)
|νn(0, t] − B◦(t)| ≥ 4C

1 + x + 6m√
n

}
≤ P

{
max

t
Sm(t) ≥ x + 5m

}
≤ exp (−x/4) .<29>

Provided we choose m smaller than a constant multiple of x + log n, this term will
cause us no trouble.

We now have the easy task of extrapolating from the grid T (m) to the whole
of (0, 1). We can make 2−m exceedingly small by choosing m close to a large
enough multiple of x + log n. In fact, when x ≥ 2, the choice of m such that

<30> 2n2ex > 2m ≥ n2ex

will suffice. As an exercise, you might want to play around with other m and the
various constants to get a neater statement for the Theorem.

We can afford to work with very crude estimates. For each s in (0, 1) write ts
for the point of T (m) for which ts ≤ s < ts + 2−m . Notice that

|νn(0, s] − νn(0, ts]| ≤ # points in (ts, s]/
√

n + √
n2−m .

The supremum over s is larger than 3/
√

n only when at least one Ji,m interval, for
0 ≤ i < 2m contains 2 or more observations, an event with probability less than

2m

(
n

2

)
(2−m)2 ≤ n22−m ≤ e−x for m as in <30>.

Similarly,

sups |B◦(s) − B◦(ts)| ≤ sups |G[0, s] − G[0, ts]| + sups |(s − ts)�η|
≤ max

0≤i<2m
sup

s∈Ji,m

|G[0, s] − G[0, i/2m]| + 2−m |�η|

from which it follows that

P

{
sup

s
|B◦(s) − B◦(ts)| ≥ 2x√

n

}
≤ 2m

P

{
sup

0≤s≤2−m

|B(s)| ≥ x√
n

}
+P

{
|N (0, 1)| ≥ 2m x√

n

}

where B is a Brownian motion. The second term on the right-hand side is less than
exp

(−4m x2/2n
)
. By the reflection principle for Brownian motion (Section 9.5), the

first term equals

2m
P

{
|B(2−m)| ≥ x√

n

}
= 2m+1

P

{
|N (0, 1)| ≥ 2m/2x√

n

}
≤ 2m+1 exp

(
−2m x2

2n

)
.

For x ≥ 2 and m as in <30>, the sum of the two contributions from the Brownian
Bridge is much smaller than e−x .

From <29>, and the inequality

|νn(0, s] − B◦(s)| ≤ |νn(0, s] − νn(0, ts]| + |νn(0, ts] − B◦(ts)| + |B◦(ts) − B◦(s)|,
together with the bounds from the previous paragraph, you should be able to
complete the argument.�
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Proof of inequality <28>. Write Rm for maxt Sm(t). Think of the binary tree of
depth m as two binary trees of depth m − 1 rooted at node(0, 1) and node(1, 1), to
see that that Rm has the same distribution as η2

0,0 + max(T, T ′), where T and T ′ both
have the same distribution as Rm−1, and η0,0, T , and T ′ are independent. Write Dk

for P exp((Rk − 5k)/4). Notice that

e−5/4 D0 = P exp
(

1
4η2

0,0 − 5
4

)
=

√
2 exp(−5/4) < 1/2.

For m ≥ 1, independence lets us bound Dm by

P exp
(

1
4η2

0,0 − 5
4

)
P

( 1
4 max

(
T − 5(m − 1), T ′ − 5(m − 1)

))
< 1

2

(
P exp

( 1
4 T − 5

4 (m − 1)
) + P exp

( 1
4 T ′ − 5

4 (m − 1)
)) = Dm−1.

By induction, P exp (Rm − 5m)/4 = Dm ≤ D0 = √
2. Thus

P{Rm ≥ 5m + x} ≤ P exp
(
(Rm − 5m)/4

)
exp(−x/4) ≤

√
2 exp(−x/4),

as asserted.�
By means of the quantile transformation, Theorem <26> extends immediately

to a bound for the empirical distribution function Fn generated from a sample
ξ1, . . . , ξn from a probability measure on the real line with distribution function F .
Again writing qF for the quantile function, and recalling that we can generate the
sample as ξi = qF (xi ), we have

nFn(t) =
∑

i≤n
{ξi ≤ t} =

∑
i≤n

{qF (xi ) ≤ t} =
∑

i≤n
{xi ≤ F(t)},

which implies
√

n (Fn(t) − F(t)) = νn
(
0, F(t)

]
. Notice that F(t) ranges over a

subset of [0, 1] as t ranges over R; and when F has no discontinuities, the range
covers all of (0, 1). Theorem <26> therefore implies

<31> P

{
sup

t
|√n (Fn(t) − F(t)) − B◦(F(t))| ≥ C1

x + log n√
n

}
≤ C0e−x for x ≥ 0.

Put another way, we have an almost sure representation Fn(t) = F(t) +
n−1/2 B◦(F(t)) + Rn(t), where, for example, supt |Rn(t)| = Op

(
n−1 log n

)
.

Remark. From a given Brownian Bridge B◦ and a given n we have constructed
a sample x1, . . . , xn from the uniform distribution. From the same B◦, we could
also generate a sample x ′

1, . . . , x ′
n, x ′

n+1 of size n + 1. However, it is not true that
xi = x ′

i for i ≤ n; it is not true that x1, . . . , xn, x ′
n+1 are mutually independent. If we

wished to have the samples relate properly to each other we would have to change
the Brownian Bridge with n. There is a version of KMT called the Kiefer coupling,
which gets the correct joint distributions between the samples at the cost of a weaker
error bound. See Csörgő & Révész (1981, Chapter 4) for further explanation.

Inequality <31> lets us deduce results about the empirical distribution func-
tion Fn from analogous results about the Brownian Bridge. For example, it implies
supt

√
n|Fn(t) − F(t)| � supt |B◦(F(t))|. If F has no discontinuities, the limit

distribution is the same as that of sups |B◦(s)|. That is, we have an instant deriva-
tion of the Kolmogorov-Smirov theorem. The Csörgő & Révész book describes
other consequences that make much better use of all the hard work that went into
establishing the KMT inequality.
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8. Problems

[1] Suppose F and Fn , for n ∈ N are distribution functions on the real line for which
Fn(x) → F(x) for each x in a dense subset D of the real line. Show that the
corresponding quantile functions Qn converge pointwise to Q at all except (at worst)
a countable subset of points in (0, 1). Hint: Prove convergence at each continuity
point u0 of Q. Given points x ′, x ′′ in D with x ′ < x0 = Q(u0) < x ′′, find δ > 0 such
that x ′ < Q(u0 − δ) and Q(u0 + δ) ≤ x ′′. Deduce that

Fn(x ′) < F(x ′) + δ < u0 ≤ F(x ′′) − δ ≤ Fn(x ′′) eventually,

in which case x ′ < Qn(u0) ≤ x ′′.

[2] Let P and Q be two probability measures defined on the same sigma-field A of a
set X. The total variation distance v = v(P, Q) is defined as supA∈A |P A − Q A|.

(i) Suppose X are Y are random elements of X, defined on the same probability
space (�, F, P), with distributions P and Q. Show that P

∗{X �= Y } ≥ v(P, Q).
Hint: Choose a measurable set D ⊇ {X �= Y } with PD = P

∗{X �= Y }. Note that
P{X ∈ A} − P{Y ∈ A} = P{X ∈ A} ∩ D − P{Y ∈ A} ∩ D.

(ii) Suppose the diagonal � := {(x, y) ∈ X × X : x = y} is product measurable.
Recall from Section 3.3 that v = 1−(P ∧ Q)(X) = (P − Q)+(X) = (Q − P)+(X).
Define a probability measure P = 1

v
(P − Q)+ ⊗ (Q − P)+ + λ, where λ is the

image of P ∧Q under the map x �→ (x, x). Let X and Y be the coordinate maps.
Show that X has distribution P and Y has distribution Q, and P{X �= Y } = v.

[3] Show that the Prohorov distance is a metric. Hint: For the triangle inequality,
use the inclusion (Bε)ε

′ ⊆ Bε+ε′
. For symmetry, consider ρ(P, Q) < δ < ε. Put

Dc = Bε . Prove that Dδ ⊆ Bc, then deduce that 1 − P Bε ≤ Q Dδ + δ ≤ 1 − Q B + δ.

[4] Let P be a Borel probability measure concentrated on the closure of a countable
subset S = {xi : i ∈ N} of a metric space X. For fixed ε > 0, follow these
steps to show that there exist a partition of X into finitely many P-continuity sets
C0, C1, . . . , Cm such that PC0 < ε and diameter(Ci ) < ε for i ≥ 1.

(i) For each x in X, show that there are at most countably many closed balls B
centered at x with P(∂ B) > 0.

(ii) For each xi in S, find a ball Bi centered at xi with radius between ε/4 and ε/2
and P(∂ Bi ) = 0.

(iii) Show that ∪i∈N Bi contains the closure of S. Hint: Each point of the closure
lies within ε/4 of at least one xi .

(iv) Show that P
(∪i≤m Bi

)
> 1 − ε when m is large enough.

(v) Show that the sets Ci := Bi\ ∪1≤ j<i Bj and C0 := (∪i≤m Bi
)c have the desired

properties.

[5] (Ye Olde Marriage Lemma) Suppose S is a finite set of princesses. Suppose
each princess, σ , has a list, K (σ ), of frogs desirable for marriage. For each
collection A ⊆ S, the combined list of frogs equals K (A) = ⋃{K (σ ) : σ ∈ A}. If
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each princess is to find a frog on her list to marry, then clearly the “Desirable Frog
Condition” (DFC), #K (A) ≥ #A, for each A ⊆ S, must be satisfied. Show that DFC
is also sufficient for happy princesses: under the DFC there exists a one-to-one
map π from S into K (S) such that π(σ) ∈ K (σ ) for every σ in S. Hint: Translate
the following mathematical fairy tale into an inductive argument.

(i) Once upon a time there was a princess σ0 who proposed to marry a frog τ0

from her list. That would have left a collection S\{τ0} of princesses with lists
K (σ )\{τ0} to choose from. If the analog of the DFC had held for those lists,
an induction hypothesis would have made everyone happy.

(ii) Unfortunately, a collection A0 ⊆ S\{σ0} of princesses protested, on the grounds
that #K(A0)\{τ0} < #A0; clearly not enough frogs to go around. They pointed
out that the DFC held with equality for A0, and that their happiness could be
assured only if they had exclusive access to the frogs in K (A0).

(iii) Everyone agreed with the assertion of the A0. They got their exclusive access,
and, by induction, lived happily ever after.

(iv) The other princesses then got worried. Each collection B in S\A0 asked,
“#K (B)\K (A0) ≥ #B?” They were reassured, “Don’t worry. Originally
#K (B ∪ A0) ≥ #B + #A0, and we all know that #K (A0) = #A0, so of course

#K (B)\K (A0) = #K (B ∪ A0) − #K (A0) ≥ #B.

You too can live happily ever after, by induction.” And they did.

[6] Prove Lemma <9> by carrying out on the following steps. Write RA for ∪α∈A Rα.
Argue by induction on the size of S. With no loss of generality, suppose S =
{1, 2, . . . , m}. Check the case m = 1. Work from the inductive hypothesis that the
result is true for #S < m.

(i) Suppose there exists a proper subset A0 of S for which ν A0 = µRA0 . Define
R′

α = Rα\RA0 for α /∈ A0. Show that ν A ≤ µR′
A for all A ⊆ S\A0. Construct

K by invoking the inductive hypothesis separately for A0 and S\A0. (Compare
with part (iv) of Problem [5].)

Now suppose ν A < µRA for all proper subsets A of S. Write Lα for the probability
distribution µ(· | Rα), which concentrates on Rα.

(ii) Show that µ ≥ ν{1}L1. Hint: Show µB ≥ ν{1}µ(B R1)/µR1 for all B ⊆ R1.

Write ε1 for the unit mass at 1. Let θ0 be the largest value in [0, ν{1}] for which
(µ − θ0L1)RA ≥ (ν − θ0ε1)A for every A ⊆ S.

(iii) If θ0 = ν{1}, use the inductive hypothesis to find a probability kernel from
S\{1} into T for which (µ − ν{1}L1) ≥ ∑

α≥2 ν{α}Kα. Define K1 = L1.

(iv) If θ0 < ν{1}, show that there exists an A0 ⊆ S for which (µ − θ L1)RA0 <

(ν − θε1)A0 when ν{1} ≥ θ > θ0. Deduce that A0 must be a proper subset
of S for which (µ − θ0L1)RA0 = (ν − θ0ε1)A0. Invoke part (i) to find a
probability kernel M for which µ − θ0L1 ≥ (ν{1} − θ0)M1 + ∑

α≥2 ν{α}Mα.
Define K1 := (θ0/ν{1})L1 + (1 − θ0/ν{1})M1.
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[7] Establish the bound P{|N (0, Ik)| >
√

kx } ≤ (
xe1−x

)k/2
, for x > 1, as needed (with√

kx = δ/σ ) for the proof of Lemma <18>. Hint: Show that

P{|N (0, Ik)|2 > kx} ≤ exp(−tkx)(1 − 2t)−k/2 for 0 < t < 1/2

which is minimized at t = 1
2 (1 − x−1).

[8] Let Fm and Gn be empirical distribution functions, constructed from independent
samples (of sizes m and n) from the same distribution function F on the real line.
Show that√

mn

m + n
supt |Fm(t) − Gn(t)|� supt |B◦(F(t))| as min(m, n) → ∞.

Hint: Use <31>. Show that αB◦
1(s) + β B◦

1(s) is a Brownian Bridge if α2 + β2 = 1
and B◦

1, B◦
1 are independent Brownian Bridges.

9. Notes

In increasing degrees of generality, representations as in Theorem <4> are due to
Skorohod (1956), Dudley (1968), Wichura (1970), and Dudley (1985).

Prohorov (1956) defined his metric for probability measures on complete,
separable metric spaces. Theorem <8> is due to Strassen (1965). I adapted the
proof from Dudley (1976, Section 18), who used the Marriage Lemma (Problem [5])
to prove existence of the desired coupling in a special discrete case. Lemma <9>

is a continuous analog of the Marriage Lemma, slightly extending the method of
Pollard (1984, Lemma IV.24).

The discussion in Section 4 is adapted from an exposition of Yurinskii (1977)’s
method by Le Cam (1988). I think the slightly weaker bound stated by Yurinskii
may be the result of his choosing a slightly different tail bound for |N (0, Ik)|, with
a correspondingly different choice for the smoothing parameter.

The idea for Example <17> comes from the construction used by Dudley &
Philipp (1983) to build strong approximations for sums of independent random
processes taking values in a Banach space. Massart (1989) refined the coupling
technique, as applied to empiricial processes, using a Hungarian coupling in place
of the Yurinskii coupling.

The proof of the KMT approximation in the original paper (Komlós et al. 1975)
was based on the analog of the first inequality in <20>, for |X − n/2| smaller than a
tiny multiple of n. The proof of the elegant refinement in Lemma <19> appeared in
a 1977 dissertation of Tusnády, in Hungarian. I have seen an annotated extract from
the dissertation (courtesy of Sándor Csörgő). Csörgő & Révész (1981, page 133)
remarked that Tusnády’s proof is “elementary” but not “simple”. I agree. Bretagnolle
& Massart (1989, Appendix) published another proof, an exquisitely delicate exercise
in elementary calculus and careful handling of Stirling’s approximation. The method
used in Appendix D resulted from a collaboration between Andrew Carter and me.

Lemma <23> repackages a construction from Komlós et al. (1975) that has
been refined by several authors, most notably Bretagnolle & Massart (1989),
Massart (1989), and Koltchinskii (1994).
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