
A User’s Guide to Measure Theoretic Probability
Errata and comments

Chapter 2.

page 25, line -3: Upper limit on sum should be 2× 4n

page 34, line -10: case of a probability measure

page 35, line 20–23: A student pointed out that I should also assume f
is A-measurable to cover the case where the sigma-field is not µ-complete
in the sense of Definition <27>. If the set where convergence fails is A-
measurable, the function f could redefined as zero on that negligible set.
See the discussion in the following paragraph.

page 43: The whole of Section 2.11 has been changed, with λ-cones being
replaced by what I call λ-spaces: vector spaces of bounded real functions
that contain the constant functions and that are stable under increasing
pointwise limits when the limit function is bounded. The replacement is
attached to the end of this list.

page 46, line 2 of Problem [3]: A bit silly to define A as a sigma-field then
ask you to prove it is a sigma-field. Better: Define A = {T−1B : b ∈ B}.

page 47, line 3 of Problem[12]: µB = inf{µG : . . .

page 50, line 4 of Problem [24]: XI should be Xi

page 51, line 3 of Problem [26]: to ensure µ|f |Bc < ε.

Chapter 3.

page 56, line 14: When I teach this material I usually derive the Radon-
Nikodym Theorem directly from Lemma <5>. The proof is essentially the
same as the proof of the Lebesgue decomposition.

page 56, line -8: Note that µg21 cannot be zero because νg1 6= 0.

page 61, line 15: The upper bound in inequality <10> should be 2H(P,Q).

page 72, line 6: Don’t need E countable. Compare with Example <2.5>.
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page 73, line 17: The assertion in part (i) of Problem [12] should be

(µ1 − µ2)+B = sup
π

∑
A∈π

((µ1 − µ2)AB)+

page 73, line -2: Better hint: first show that (q −Kp)(X0 − f) ≥ 0.

Chapter 4.

page 82, line 7 and -12: Theorem <1> not <2>. I now think it is better to
prove that Theorem by a direct λ-space argument rather than the way it is
done on page 82.

page 92, line 14: from Section 2.9

page 96, line -14: Actually the proof wouldn’t fail because {τ = i} is always
intersected with {|Si| > ε1 + ε2}.

page 101, line 4: be a consistent.

page 102, line 1: It was misleading to derive Daniell/Kolmogorov from The-
orem <49>. That approach obscures the role played by compactness.

page 105, line 17: I forget to mention that the Pi and Qi are probability
measures for Problem [18].

page 106, line 21: I forgot to mention that the Xi’s are assumed to be identi-
cally distributed in Problem [26]. Without that assumption, the appearance
of X1 in part (iii) would be pure nonsense.

page 109, line 14: There is a lot more known about Problem [14] than I was
aware of when writing UGMTP. See for example, the note “The relation
between the distance of random variables and their distributions” at the
web site http://www.renyi.hu/∼major/probability.html or the two volumes
on “Mass Transportation Problems” by Rachev and Rüschendorf (Springer
1998).

page 114, line -9: conditional

Chapter 5.

page 123, line 22: An embarrassing typo here and elsewhere for Kolmogorov’s
name.
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page 124, line 17: Compare with Problem [3.3].

page 124, line -9: should be γn ≤ γn+1

page 125, line 1: α(t) missing before h2(t)

page 125, line 7: α(T ) missing before h2(T )

page 125, line -2: The first P should be a Q.

page 125, line -1: B-measurable

page 126, line -7: Ω not X

page 132, line 14: Part (iii) should define the conditional density as

px(y) :=
∑

i
βip1i(x)p2i(y)/p(x) on {x : p(x) > 0}

page 132, line -2: hence {X > t} is G-measurable

page 133, line 6: bound P{|Si| > ε, τ = i} by βP{|SN | > αε, τ = i}.

Chapter 6.

page 139, line 12: should be the “natural filtration”

page 139, line -4: might not be well defined for unbounded Z; better to stick
with bounded, nonnegative Z and justify passage to the limit in particular
cases

page 145, line -7: Kolmogorov maximal inequality

page 149, line -13: on N0

page 151, line 10: almost surely on DC

page 162, line -15: Tricky problem. Hint: Show that τ is G-measurable,
where G = σ (Xi : i ∈ N) with Xi = Zτ∧i.

Chapter 7.

page 170, line -10: Too cute. I should have stuck with the usual definition
of ‖·‖BL and put up with the extra factors of 2.
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page 171, line 29: I would now use bounded, Lipshitz functions with the
outer expectations.

page 175, line 1: Many font problems in the diagram. A ≥ is missing before
the PG in row two and before the Pg in row three. A ≤ is missing before
the PF in row two and before the Pf in row three. In rows four and six
the X should be an X.

page 186, line 19: subnets not subsets

page 187, line -3: ∆(Pn, P )→ 0

page 188, line 9: Y× Z not Y⊗ Z

page 189, line -10: Let {ξi : i ∈ N0}

page 189, line -8: The assertion of Problem [17] is false. Compare with
P{Xn = ψ−1(n2)} = 1/n = 1− P{Xn = 0}.

Chapter 9.

page 218, line -1: replace ∆ by D

page 220, line 6: In the first printing, some parts of the pictures on this and
the next page became invisible.

Chapter 10.

page 239, line -16: and we can find

page 245, line 2: reworking Yurinskii’s

page 246, line 4: into the constant C0

page 247, line -4: the N(0, σ2Ik) density

Chapter 12.

page 276, line -14: the indicator functions give the wrong value when the
xi’s are all < 0. It was intended that the max should run over the set
{i : 1 ≤ i ≤ n, i 6= j}.

page 276, line -8: xj 7→ f(L− S)
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Appendix D.
See Carter and Pollard (2004, Ann. Statistics) for a cleaner version.

Appendix E.

page 334, line 5: The Theorem as stated is wrong. See the attached correc-
tions from a Stochastic Calculus course that I taught.

page 337, line 11: F̃Bs ⊆ σ(N ∪ FBs ) ⊆ σ(N ∪ FBt )

David Pollard
18 March 2013

5



Replacement for old Section *2.11

2.11 Generating classes of functions

Theorem <38> is often used as the starting point for proving facts about
measurable functions. One first invokes the Theorem to establish a property
for sets in a sigma-field, then one extends by taking limits of simple functions
to M+ and beyond, using Monotone Convergence and linearity arguments.
Sometimes it is simpler to invoke an analog of the λ-system property for
classes of functions.

<2.43> Definition. Let H be a set of bounded, real-valued functions on a set X.
Call H a λ-space if:

(i) H is a vector space

(ii) each constant function belongs to H;

(iii) if {hn} is an increasing sequence of functions in H whose pointwise
limit h is bounded then h ∈ H.

The sigma-field properties of λ-spaces are slightly harder to establish than
their λ-system analogs, but the reward of more streamlined proofs will make
the extra, one-time effort worthwhile. First we need an analog of the fact
that a λ-system that is stable under finite intersections is also a sigma-field.

Remember that σ(H) is the smallest σ-field on X for which each h in H is
σ(H)\B(R)-measurable. It is the σ-field generated by the collection of sets
{h ∈ B} with h ∈ H and B ∈ B(R). It is also generated by

EH := { {h < c} : h ∈ H, c ∈ R}.

<2.44> Lemma. If a λ-space H is stable under the formation of pointwise prod-
ucts of pairs of functions then it consists of all bounded, σ(H)-measurable
functions.

Proof By definition, every function in H is σ(H)-measurable. The proof
that every bounded, σ(H)-measurable function belongs to H will follow from
the following four facts:

(a) H is stable under uniform limits

(b) if h1 and h2 are in H then so are h1 ∨ h2 and h1 ∧ h2
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(c) the collection of sets A0 := {A ∈ A : A ∈ H} is a σ-field

(d) EH ⊆ A0 and hence σ(H) = σ(EH) ⊆ A0

For suppose g is a bounded, σ(H)-measurable function. With no loss of
generality (or by means of some linear rescaling) we may assume that 0 ≤
g ≤ 1. For each real c, the (indicator function of the) σ(H)-measurable set
{g ≥ c} belongs to H, by virtue of (d) and (c). The vector space property of
H ensures that the simple function gn := 2−n

∑2n

i=1{g ≥ i/2n} also belongs
to H. Stability of H under uniform limits then implies that g ∈ H.

Proof of (a).
Suppose hn → h uniformly, with hn ∈ H. Write δn for 2−n. With no loss of
generality we may suppose hn + δn ≥ h ≥ hn − δn for all n. Notice that

hn + 3δn = hn + δn + δn−1 ≥ h+ δn−1 ≥ hn−1.

the functions gn := hn + 3(δ1 + · · ·+ δn) all belong to H, and gn ↑ h+ 3. It
follows that h+ 3 ∈ H, and hence, h ∈ H.

Proof of (b).
It is enough if we show that h+ ∈ H for each h in H, because h1 ∨ h2 =
h1 + (h2 − h1)+ and −

(
h1 ∧ h2

)
= (−h1) ∨ (−h2). Suppose c ≤ h ≤ d, for

constants c and d. First note that, for every polynomial p(y) = a0+a1y · · ·+
amy

m, we have
p(h) = a0 + a1h+ · · ·+ amh

m ∈ H,

because the constant function a0 and each of the powers hk belong to the
vector space H. By a minor extension of the Weierstrass approximation
result from Problem [25], the continuous function y 7→ y+ can be uniformly
approximated by a polynomial on the interval [c, d]. That is, there exists a
sequence of polynomials pn such that supc≤y≤d |pn(y)− y+| → 0 as n→∞.
In particular, h+ is a uniform limit of pn(h), so that h+ ∈ H by virtue of (a).

Proof of (c).
The fact that 1 ∈ H and the stability of H under monotone limits, differ-
ences, and finite products implies that A0 is a λ-system of sets that is stable
under finite intersections, that is, A0 is a σ-field.

Proof of (d).
Suppose h ∈ H and c ∈ R. By (b), the function

h0 :=
(
1 + h− c

)+ ∧ 1

David Pollard
18 March 2013

7



belongs to H. Notice that 0 ≤ h0 ≤ 1 and {h0 = 1} = {h ≥ c}. As a
monotone increasing limit of functions 1−hn0 from H, the (indicator function
of the) set {h < c} also belongs to H.

�

<2.45> Theorem. Let G be a set of functions from a λ-space H. If G is stable under
the formation of pointwise products of pairs of functions then H contains all
bounded, σ(G)-measurable functions.

Proof Let H0 be the smallest λ-space containing G. By Lemma <2.44>,
it is enough to show that H0 is stable under pairwise products.

Argue as in Theorem <38> for λ-systems of sets. An almost routine cal-
culation shows that H1 := {h ∈ H0 : hg ∈ H0 for all g in G } is a λ-space
containing G. The only subtlety lies in showing that H1 is stable under
monotone increasing limits. If hn ∈ H1 and hn ↑ h and g ≥ 0, then ghn ↑ gh.
At points where g is strictly negative, the sequence ghn would not be in-
creasing. However, we can find a constant C large enough that g + C ≥ 0
everywhere, and hence gh belongs to H0 as a monotone inceasing limit of H0

functions hng + Chn − Ch. It follows that H1 = H0. That is, h0g ∈ H0 for
all h0 ∈ H0 and g ∈ G.

Similarly, H2 := {h ∈ H0 : h0h ∈ H0 for all h0 in H0 } is a λ-space. By the
result for H1 we have H2 ⊇ G, and hence H2 = H0. That is, H0 is stable
under products.

�

<2.46> Exercise. Let µ be a finite measure on B(Rk). Write C0 for the vector space
of all continuous real functions on Rk with compact support. Suppose f
belongs to L1(µ). Show that for each ε > 0 there exists a g in C0 such
that µ|f − g| < ε. That is, show that C0 is dense in L1(µ) under its L1

norm.
�

Solution: Define H as the collection of all bounded functions in L1(µ)
that can be approximated arbitrarily closely (in L1(µ) norm) by functions
from C0. Check that H is a λ-space. Trivially it contains C0. The sigma-
field σ(C0) coincides with the Borel sigma-field. Why? The class H consists
of all bounded, nonnegative Borel measurable functions.

See Problem [26] for the extension of the approximation result to infinite
measures.
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