Appendix C Convexity

SECTION 1 defines convex sets and functions.

- SECTION 2 shows that convex functions defined on subintervals of the real line have leftand right-hand derivatives everywhere.
- SECTION 3 shows that convex functions on the real line can be recovered as integrals of their one-sided derivatives.

SECTION 4 shows that convex subsets of Euclidean spaces have nonempty relative interiors. SECTION 5 derives various facts about separation of convex sets by linear functions.

1. Convex sets and functions

A subset C of a vector space is said to be convex if it contains all the line segments joining pairs of its points, that is,

 $\alpha x_1 + (1 - \alpha) x_2 \in C$ for all $x_1, x_2 \in C$ and all $0 < \alpha < 1$.

A real-valued function f defined on a convex subset C (of a vector space \mathcal{V}) is said to be convex if

 $f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$ for all $x_1, x_2 \in C$ and $0 < \alpha < 1$.

Equivalently, the *epigraph* of the function,

$$epi(f) := \{(x, t) \in C \times \mathbb{R} : t \ge f(x)\},\$$

is a convex subset of $C \times \mathbb{R}$. Some authors (such as Rockafellar 1970) define f(x) to equal $+\infty$ for $x \in \mathcal{V} \setminus C$, so that the function is convex on the whole of \mathcal{V} , and epi(f) is a convex subset of $\mathcal{V} \times \mathbb{R}$.

This Appendix will establish several facts about convex functions and sets, mostly for Euclidean spaces. In particular, the facts include the following results as special cases.

- (i) For a convex function f defined at least on an open interval of the real line (possibly the whole real line), there exists a countable collection of linear functions for which $f(x) = \sup_{i \in \mathbb{N}} (\alpha_i + \beta_i x)$ on that interval.
- (ii) If a real-valued function f has an increasing, real-valued right-hand derivative at each point of an open interval, then f is convex on that interval. In particular, if f is twice differentiable, with $f'' \ge 0$, then f is convex.