Appendix F

Disintegration of measures

SECTION 1 decomposes a measure on a product space into a product of a marginal measure with a kernel.

SECTION 2 specializes the decomposition to the case of a measure concentrated on the graph of a function, establishing existence of a disintegration in the sense of Chapter 5.

1. Representation of measures on product spaces

Recall from Chapter 4 how we built a measure $\mu \otimes \Lambda$, out of a sigma-finite measure μ on $(\mathcal{X}, \mathcal{A})$ and a sigma-finite kernel $\Lambda := \{\lambda_t : t \in \mathcal{T}\}$, from $(\mathcal{T}, \mathcal{B})$ to $(\mathcal{X}, \mathcal{A})$, via an iterated integral,

$$(\mu \otimes \Lambda) f := \mu^t \lambda_t^x f(x, t)$$
 for f in $\mathcal{M}^+(\mathfrak{X} \times \mathfrak{T}, \mathcal{A} \otimes \mathcal{B})$.

This Section treats the inverse problem: Given a measure μ on \mathcal{B} and a measure Γ on $\mathcal{A} \otimes \mathcal{B}$, when does there exist a kernel Λ for which $\Gamma = \mu \otimes \Lambda$? Such representations are closely related to the problem of constructing conditional distributions, as you saw in Chapter 5.

- <1> Theorem. Let Γ be a sigma-finite measure on the product sigma-field $A \otimes B$ of a product space $X \times T$, and μ be a sigma-finite measure on B. Suppose:
 - (i) X is a metric space and A is its Borel sigma-field;
 - (ii) the T-marginal of Γ is absolutely continuous with respect to μ ;
 - (iii) $\Gamma = \sum_{i \in \mathbb{N}} \Gamma_i$, where each Γ_i is a finite measure concentrating on a set $\mathfrak{X}_i \times \mathfrak{T}$ with \mathfrak{X}_i compact.

Then there exists a kernel Λ from $(\mathfrak{T}, \mathfrak{B})$ to $(\mathfrak{X}, \mathcal{A})$ for which $\Gamma = \mu \otimes \Lambda$. The kernel is unique up to a μ -equivalence.

REMARK. The uniqueness assertion means that, if $\widetilde{\Lambda} := \{\widetilde{\lambda}_t : t \in \mathcal{T}\}$ is another kernel for which $\Gamma = \mu \otimes \widetilde{\Lambda}$, then $\lambda_t = \widetilde{\lambda}_t$, as measures on \mathcal{A} , for μ almost all t.

Heuristics

Suppose for the moment that Γ has a representation as $\mu \otimes \Lambda$, for some kernel Λ . If we could characterize the kernel Λ in terms of Γ and μ alone, then we could try to construct Λ for a general Γ by reinterpreting the characterization as a definition.