Solutions to Pollard sheet 10

The regression equation is **distance = 21.0 + 0.196 height + 0.191 weight** S = 3.943 R-Sq = 80.5%

			-			
Source		DF	SS	MS	F	P
Regression		2	578.82	289.41	18.62	0.001
Residual	Error	9	139.91	15.55		
Total		11	718.73			
Source	DF	Se	eq SS			
height	1	55	58.06			
weight	1	2	20.75			

Note that $1 - R^2$ = Residual Error / Total = 139.91/718.73

i. The regression	equ	ation is distance	a = 12.1	+ 0.597 hei	.ght
S = 4.008		R-Sq = 77.6%			
Source	DF	SS	MS	F	P
Regression	1	558.06	558.06	34.73	0.000
Residual Error	10	160.67	16.07		
Total	11	718.73			

Note that $1 - R^2$ = Residual Error / Total = 160.67/718.73

ii. The :	regressio	n eq	uation is weight	= - 46.6	+ 2.10 he	ight
S :	= 7.549		R-Sq = 92.4%			
Source		DF	SS	MS	F	P
Regressi	on	1	6899.2	6899.2	121.06	0.000
Residual	Error	10	569.9	57.0		
Total		11	7469.1			

iii. The regression	equation is f :	= - 0.00 +	0.191 g	
S = 3.740	R-Sq = 12.9%			
Source DF	SS	MS	F	E
Regression 1	20.75	20.75	1.48	0.251
Residual Error 10	139.91	13.99		
Total 11	160.67			

Note that $1 - R^2$ = Residual Error / Total = 139.91/160.67

iv. The regression line in (iii) must pass through the point with coordinates \overline{g} and \overline{f} . Both means are zero, because the sum of the residuals from a regression (with an intercept term) is zero. The least squares line in (iii) must have a zero intercept.

v. Look at them, or perhaps plot them against each other and observe the straight line.

```
vi. Parts (i), (ii), and (iii) give
```

```
distance = 12.1 + 0.597 height + f
weight = - 46.6 + 2.10 height + g
f = 0.191 g + e
```

Thus

```
distance = 12.1 + 0.597 height + (0.191 g + e)
= 12.1 + 0.597 height + 0.191 (weight + 46.6 - 2.10 height) + e
= (12.1 + 0.191 × 46.6)
+ (0.597 - 0.191 × 2.10 )height
+ 0.191 weight + e
```

Compare with the fit with both predictors,

distance = 21.0 + 0.196 height + 0.191 weight + e

Note that

12.1 + 0.191 × 46.6 = 21.0 0.597 - 0.191 × 2.10 = 0.196

vii. From the regression with two predictors,

 $1 - R^2$ = Residual Error / Total = 139.91/718.73

From (i)

 $1 - R^2$ = Residual Error / Total = 160.67/718.73 From (iii) $1 - R^2$ = Residual Error / Total = 139.91/160.67

Clearly, to get the $1 - R^2$ for the two predictors we take the product of the $1 - R^2$ for parts (i) and (iii). That makes sense because the Residual Error for part (i) becomes the Total (sum of squares) for part (iii); the column of residuals **f** plays the role of the y's for part (iii).

viii. The decomposition of the regression sum of squares

Source	DF	Seq SS
height	1	558.06
weight	1	20.75

for the two predictors corresponds to the fact that the Regression (sum of squares) in part (i) is the component of the variability in distance "accounted for" by the height, leaving the residual sum of squares 160.67, and that the Regression (sum of squares) in part (iii) is the component of this 160.67 that is subsequently "accounted for" by the weight.