
Statistics 101–106 Lecture 10 (10 November 98) c©David Pollard Page 1

Read M&M Chapter 11 (skip part on logistic regression, pages 730–731).
Read M&M pages 681–686, for ANOVA tables. Multiple regression.

1. Least squares with more than one predictor
The displayed data are borrowed from Chapter 14

height (inch) weight (lb.) distance (cm)
42.8 40.0 37.0
63.5 93.5 49.5
37.5 35.5 34.5
39.5 30.0 36.0
45.5 52.0 43.0
38.5 17.0 28.0
43.0 38.5 37.0
22.5 8.5 20.0
37.0 33.0 33.5
23.5 9.5 30.5
33.0 21.0 38.5
58.0 79.0 47.0

of the text Mathematical Statistics and Data
Analysisby John A. Rice (Duxbury 1995). They
show the heights (in inches) and weights (in
pounds) of twelve children, with the length
(distance, in centimeter) of a path to the child’s
heart as response variable. As explained by Rice,
the third variable was collected using an invasive
procedure, which involved insertion of a catheter
into a major vein or artery in the femoral region,
with distances determined when the tip was
seen (by means of a fluoroscope) to reach the

pulmonary artery. The aim of the experiment was to see whether the distance could be
estimate using only the child’s height and weight. If it could, then doctors might be
better able to estimate the length of the catheter needed for other children.

A Minitab MatrixPlot shows that the distance is well associated with both height
and weight:
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Following M&M notation, write y for the vector of distances,x1 for the vector of
heights, andx2 for the vector of weights. An extra subscripti , will denote the child
(i = 1, . . . , n with n = 12). The least squares procedure chooses constantsb0, b1, b2 to
minimize

n∑
i =1

(yi − b0 − b1xi 1 − b2xi 2)
2

The formal interpretation of the output from a least squares fit assumes a model
with normal errors: for some unknown constantsβ0, β1, β2, and an unknownσ > 0,

yi = β0 + β1xi 1 + β2xi 2 + εi

where theεi ’s are independentN(0, σ ) random variables, conditional onx1 andx2.
The least squares coefficients definefitted values andresiduals much as before:

ŷi = b0 + b1xi 1 + b2xi 2 and ei = yi − ŷi
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If the model is correct, the residuals are independent of the fitted values.† Patterns
in the plot of residuals versus fitted values sometimes suggest violations of the model.
Some statisticians prefer first to standardize the residuals, dividing them by their
estimated standard deviations, before plotting them against the fitted values. For the
catheter data, the plots show a slightly curved pattern:
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Mintab flags the residual for child 8 as unusually small (negative):

Unusual Observations
Obs height distance Fit StDev Fit Residual St Resid

8 22.5 20.00 27.05 2.48 -7.05 -2.30R

R denotes an observation with a large standardized residual

Perhaps child 8 is a newborn infant.

2. Coefficients and fitted values

As in the case of a single predictor (Lecture 9), the least squares procedure determines
coefficients and fitted values as linear combinations of the observedyi ’s, with the
multipliers depending only on the predictor variables (the heights and weights). It is not
necessary to calculate these multipliers explicitly, but they do help explain the behavior
of the various quantities associated with the fit.

Here are the multipliers that I calculated for the fitted values:

† Because of the way least squares works, there can be nolinear association between
residuals and fitted values; the sample correlation between them must be zero. However, a
zerolinear associationdoes not rule out other, non-linear relationships. Independence is a
much stronger assertion.
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y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

fit1 0.11 0.08 0.06 0.12 0.07 0.18 0.12 0.01 0.07 0.02 0.08 0.09
fit2 0.08 0.51 0.08 -0.01 0.20 -0.15 0.06 -0.09 0.06 -0.08 -0.05 0.39
fit3 0.06 0.08 0.11 0.05 0.09 -0.02 0.05 0.16 0.10 0.15 0.09 0.07
fit4 0.12 -0.01 0.05 0.15 0.05 0.28 0.14 0.01 0.06 0.02 0.11 0.03
fit5 0.07 0.20 0.09 0.05 0.12 -0.02 0.06 0.07 0.08 0.06 0.05 0.16
fit6 0.18 -0.15 -0.02 0.28 -0.02 0.61 0.24 -0.13 0.03 -0.10 0.14 -0.05
fit7 0.12 0.06 0.05 0.14 0.06 0.24 0.13 -0.02 0.06 -0.01 0.09 0.08
fit8 0.01 -0.09 0.16 0.01 0.07 -0.13 -0.02 0.39 0.15 0.37 0.14 -0.06
fit9 0.07 0.06 0.10 0.06 0.08 0.03 0.06 0.15 0.10 0.14 0.09 0.06
fit10 0.02 -0.08 0.15 0.02 0.06 -0.10 -0.01 0.37 0.14 0.34 0.14 -0.06
fit11 0.08 -0.05 0.09 0.11 0.05 0.14 0.09 0.14 0.09 0.14 0.12 -0.01
fit12 0.09 0.39 0.07 0.03 0.16 -0.05 0.08 -0.06 0.06 -0.06 -0.01 0.31

For example,

ŷ6 = 0.18y1 − 0.15y2 − 0.02y3 + 0.28y4 − 0.02y5 + 0.61y6

+ 0.24y7 − 0.13y8 + 0.03y9 − 0.10y10 + 0.14y11 − 0.05y12

Notice the coefficient ofy6. The value ofy6 has quite a lot of influence on the fitted
value ŷ6. In general it is worth taking special note of the numbers down the diagonal
of the table of multipliers, which are calledinfluence values. Values close to 1
flag observations that have a lot of influence over the corresponding fitted values. An
observation with infuence 1 is guaranteed to have a zero residual; plots of residuals
would provide no clue to bad behavior for such ayi .

In the next picture, the area of the the circle round each (height,weight) data
point is proportional to the influence value for that point. Larger circles indicate points
that have more influence on the fit. The dotted lines indicate the contours of the
function b0 + bi x1 + b2x2; they indicate fitted values for the various height and weight
combinations. The arrows indicate residuals from fitted values. The heads of the arrows
correspond to the observed distances. For example, the arrow for child 8 reaches from
the point height = 22.5 inches, weight = 8.5 pounds to the value that corresponds to
distance = 20.0 cm on the dotted grid.
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3. Normal distributions

Once again, the crucial consequence of the linearity in theyi ’s under the assumed
model is that

ŷi has aN(β0 + β1xi 1 + β2xi 2, Ci σ) distribution

bj has aN(βj , Kj σ) distribution,



Statistics 101–106 Lecture 10 (10 November 98) c©David Pollard Page 4

where theCi and Kj constants are determined by the height and weight variables. The
residuals behave somewhat like theεi ’s, except for the fact that the fitting procedure
imposes three linear constraints. The standard deviationσ is estimated by the quantity

S =
√∑

i e2
i

n − 3
with n = 12 for the catheter data

(M&M write s instead ofS.) The next display shows where these values contribute to
the Minitab output.

The regression equation is: distance= 21.0 + 0.196 height+ 0.191 weight
Predictor Coef StDev T P
Constant 21.008= b0 8.751= K0S 2.40 = b0/(K0S) 0.040= P{|t9| ≥ 2.40}

height 0.1964= b1 0.3606= K1S 0.54 = b1/(K1S) 0.599= P{|t9| ≥ 0.54}
weight 0.1908= b2 0.1652= K2S 1.16 = b2/(K2S) 0.278= P{|t9| ≥ 1.16}

S = 3.943 R-Sq = 80.5% R-Sq(adj) = 76.2

Be careful with the interpretation of the p-values. They can be used to test
hypotheses of the formβj = 0 within the context of the full model. For example, the
value T = 1.16 in the weight row would be an observation from a t-distribution with
9 degrees of freedom ifyi = β0 + β1xi 1 + εi , with the εi ’s independentN(0, σ )’s.
In effect, the p-value is speaking to the question of whether,after the distances have
been adjusted for heights, there is still a weight effect. A large value for|T | (which
would give a small value forP) would suggest that the weight term is accounting for a
systematic effect beyond what is accounted for by the heights.

The p-value of 0.278 suggests that the weight term is doing little more than soaking
up noise effects, once the distances are adjusted for heights.

Similarly, the p-value 0.599 suggests that the height term contributes little to the fit
after the distances are adjusted for weights.

It would be a blunder to conclude that neither height nor weight is helpful for
predicting distance. The t-statistic for each predictor is calculated assuming that the
other predictor is already included in the fit.

4. Least squares one step at a time
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Conceptually, and mathematically, regression of distance on height and weight is
equivalent to a two step procedure:
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(i) Regress both distance and weight on height, obtaining two sets of residuals, resid.dist
and resid.weight, say.

(ii) Regress resid.distance on resid.weight.

The residuals from step (ii) are the same as the residuals that would be obtained
from regressing distance on both height and weight simultaneously.

5. Interpretation of the Analysis of Variance

If we fit the predictors in the order “weight then height” rather than “height then weight”
we get the same coefficients, the same residuals, and the same t-statistics. Minitab
also produces tables giving an “analysis of variance”. The main table decomposes the
“variability” in the yi ’s, as measured by

∑
i (yi − y)2, into a regression sum of squares∑

i (ŷi − y)2 plus
∑

i e2
i , the variablity that is left after the height and weight effects

are taken out. The regression sum of squares represents the variability in the fitted
values, which is due to both a noise effect and to the variabilty in the theoretical means
β0 + β1xi 1 + β2xi 2.

If β1 = β2 = 0, the regression sum of squares would be derived from pure
noise terms with no systematic parts due to differences in the theoretical means, in
much the same way that the t-statistics represent noise when thebj have zero expected
values. With no systematic contribution, the regression sum of squares would be
distributed asσ 2 times aχ2(2) random variable. We estimateσ 2 by S2. The ratio
(regression sum of squares/2)/S2 would have anF-distribution if β1 = β2 = 0. The
p-value in the last column gives the probability that a random variable with such an
F-distribution would be larger than the observed 18.62. A small p-value inclines us to
doubt that the regression sum of squares was generated from pure noise, which leads us
to reject the hypothesis thatβ1 = β2 = 0.

Mintab will also break the regression sum of squares into two components, one due
to the height contribution to the variability in the distances, the other due to the weight
contribution. Notice that order matters. Notice also that

578.82 ≈ 558.06+ 20.75 = 574.21+ 4.61

The small discrepancy is due to round-off error.

Analysis of Variance (for taking out the height effect before the weight effect)

Source DF SS MS F P
Regression 2 578.82 = ∑

i (ŷi − y)2 289.41 = 578.82/2 18.62 = 289.41/15.55 0.001
Residual Error 9 139.91 = ∑

i e2
i 15.55 = 139.91/9 = S2

Total 11 718.73 = ∑
i (yi − y)2

Source DF Seq SS
height 1 558.06
weight 1 20.75

Analysis of Variance (for taking out the weight effect before the height effect)

Source DF SS MS F P
Regression 2 578.82 289.41 18.62 0.001

Residual Error 9 139.91 15.55
Total 11 718.73

Source DF Seq SS
weight 1 574.21
height 1 4.61


