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Read M&M Chapters 2 and 11 again. Section leaders will decide how much
of Chapters 12 and 13 to cover formally; they will assign the readings.
Variations on regression: explanatory categorical variables.

Today I will concentrate on the way categorical variables are handled by least
squares. It is traditional to think of problems where the the predictor variables are all
categorical—that is, where each predictor merely indicates the presence or absence
of some effect—as examples ofanalysis of variance, as described in Chapters 12
and 13 of M&M.

You will see that analysis of variance is just a special form of regression. There
are a few small technical points to note, and a few slight differences in interpretation,
but the main ideas are the same. To make the point that categorical variables can be
handled in much the same way as other predictors, I will present an example where a
categorical predictor is added to improve (slightly) an ordinary regression fit. The data,
which I believe had their origin in a 1979 article inConsumer Reports, come packaged
with the Splus statistical program.

The full data set contains a large amount of information about different models
of automobile: length, wheel base, seating room, gear ratios, mileage,. . . , price,
horsepower, and so on.

Somewhat arbitrarily, I chose to look at the relationship between price and
horsepower (variables Price and HP). The categorial variableCountry indicates the
country where the car was manufactured. I extracted from the full data set the subset
corresponding to only four countries. For reasons that you will soon understand, I added
columnslogPrice (the logarithm to base 10 of the price) andlogHP (the logarithm to
base 10 of the horsepower), and four columns that indicate the country in a slightly
more verbose way than the Country column:

MTB > let c26 = (’Country’ = "Germany")
MTB > let c27 = (’Country’ = "Japan")
MTB > let c28 = (’Country’ = "Japan/USA")
MTB > let c29 = (’Country’ = "/USA")
MTB > names c26 ’Germany’ c27 ’Japan’ c28 ’Japan/USA’ c29 ’USA’

Row name HP Price Country logPrice logHP Germany Japan Japan/USA USA
1 Acura Integra 130 11950 Japan 4.07737 2.11394 0 1 0 0
2 Acura Legend 160 24760 Japan 4.39375 2.20412 0 1 0 0
3 Audi 100 130 26900 Germany 4.42975 2.11394 1 0 0 0
4 Audi 80 108 18900 Germany 4.27646 2.03342 1 0 0 0
5 BMW 325i 168 24650 Germany 4.39182 2.22531 1 0 0 0
6 BMW 535i 208 33200 Germany 4.52114 2.31806 1 0 0 0
7 Buick Century 110 13150 USA 4.11893 2.04139 0 0 0 1
8 Buick Electra 165 20225 USA 4.30589 2.21748 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 GEO Metro 55 6695 Japan 3.82575 1.74036 0 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83 Toyota Corolla 102 8748 Japan/USA 3.94191 2.00860 0 0 1 0
84 Toyota Cressida 190 21498 Japan 4.33240 2.27875 0 1 0 0
85 Toyota Supra 200 22860 Japan 4.35908 2.30103 0 1 0 0
86 Toyota Tercel 78 6488 Japan 3.81211 1.89209 0 1 0 0
87 Volkswagen Corrado 158 17900 Germany 4.25285 2.19866 1 0 0 0
88 VolkswagenJetta 100 9995 Germany 3.99978 2.00000 1 0 0 0
89 Volkswagen Vanagon 90 14080 Germany 4.14860 1.95424 1 0 0 0

1. Transformations

How well is the price predicted by the horsepower?
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There is quite a large variation in price, as you can see from the plot of Price versus
HP (the picture in the north-west corner of the next display). Notice the wedge shape
of the region where most of the points fall. The variability in price seems to increase
with price. (Does that phenomenon make sense? Would a customer be more sensitive
to a five hundred dollar price difference in a $7000 car or in a $40,000 car?)

If we merely regressed Price on HP the higher-priced cars would have a dispropor-
tionate control over the fit. Also, a model assuming independentN(0, σ ) errors, with
the sameσ for each car, would clearly be suspect.

The variability becomes more consistent with a fixed-σ model if we plot Price on
a log scale, as in the lower two pictures. The vertical axes in those two pictures are
still labelled with prices, but the vertical position for each point is determined by the
logarithm (to base 10) of the price. Notice that the vertical distance between the $10,000
and $20,000 prices is now the same as the vertical distance between the $20,000 and
$40,000 prices.

Equivalently, I could have usedlogPrice on the vertical axis, but then I would have
had some fiddling to get the tick marks corresponding to easily comprehended prices.
Which would you find easier to interpret: a price of $20,000, or a logPrice of 4.3?

It is often a good idea to work with logarithms of variables whose distributions
spread over a large range (that is, ratio of largest to smallest is much greater than 1).
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The two pictures on the right-hand side show the effect of working with horsepower
on a log scale.

It seemed to me that I would have most luck with a linear fit to the points shown in
the south-east corner. Thus I decided to work with the logarithms (to base 10) of both
Price and HP.

MTB > let c24 = logten(’Price’)
MTB > let c25 = logten(’HP’)
MTB > names c24 ’logPrice’ c25 ’logHP’
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2. Country effects

You should be able to interpret the printed output from a regression of logPrice on
logHP:

MTB > Regress ’logPrice’ 1 ’logHP’;
SUBC> Constant;
SUBC> Brief 2.

Regression Analysis

The regression equation is logPrice = 1.45 + 1.28 logHP

Predictor Coef StDev T P
Constant 1.4520 0.2197 6.61 0.000
logHP 1.2840 0.1040 12.35 0.000

S = 0.1256 R-Sq = 63.7% R-Sq(adj) = 63.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 2.4060 2.4060 152.44 0.000
Residual Error 87 1.3731 0.0158
Total 88 3.7791
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Does the point near the left edge correspond to a car or to an expensive lawn
mower?

Obs logHP logPrice Fit StDev Fit Residual St Resid
42 1.74 3.8258 3.6867 0.0406 0.1391 1.17 X

I have used different plotting symbols to draw your attention to the effects of Country
on the residuals. Doesn’t it seem that the residuals for Germany are consistently higher?
Do German cars cost more than cars of similar horsepower from other countries?
The other variables in the data set might shed some light on the pricing, but I won’t
investigate them in this lecture.
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3. Separate regressions

If we make separate least squares fits for the cars from each country, the German effect
becomes even more apparent:
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Notice that the slopes of the least squares lines are similar for each country, but the
intercepts are somewhat different.

4. Indicators for countries

We can force a least squares fit with the same slopes but (possibly) different intercepts
by modelling the logPricec, j for the j th car in thecth country as

logPricec, j = αi + β logHPc, j + εc, j

The (c, j ) subscripts let us indicate the appropriate country for a particular car.
Alternatively, we can indicate the country by means ofindicator variables

to denote whether a car comes from a specific country, or not. That is, the indicator
Germancontains a 1 in thei th row if the car for that row comes from Germany, a zero
otherwise; and so on. There is some redundancy between the four country indicator
variables, because, for each car, exactly one of the indicators takes the value 1. Maybe
the names for the indicators are a bit klunky, but at least I can remember what they
indicate.

The model with indicators takes the form

logPricei = α + β logHPi

+ γGGermanyi + γJJapani + γJUJapan/USAi + γU USAi + εi ,

where theεi ’s are independentN(0, σ ) variables. I have also written the theoretical
coefficients in a notation that helps me keep track of what each value represents.
You could call the five predictor variablesx1, x2, . . . , x5, and writeβ1, . . . , β5 for the
theoretical coefficients if you wanted the equations to look more like the ones in M&M.
Here is what we get when we add the four indicators in as predictors:
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MTB > Regress ’logPrice’ 5 ’logHP’ ’Germany’ ’Japan’ ’Japan/USA’ ’USA’;
SUBC> Constant;
SUBC> Brief 3.

Regression Analysis

* USA is highly correlated with other X variables
* USA has been removed from the equation

The regression equation is
logPrice = 1.58 + 1.21 logHP + 0.185 Germany + 0.0145 Japan - 0.0415 Japan/USA

Predictor Coef StDev T P
Constant 1.5770 0.2038 7.74 0.000
logHP 1.21451 0.09558 12.71 0.000
Germany 0.18538 0.03983 4.65 0.000
Japan 0.01452 0.02709 0.54 0.594
Japan/US -0.04150 0.04239 -0.98 0.330

S = 0.1121 R-Sq = 72.0

Analysis of Variance

Source DF SS MS F P
Regression 4 2.72274 0.68069 54.13 0.000
Residual Error 84 1.05635 0.01258
Total 88 3.77909

Source DF Seq SS
logHP 1 2.40599
Germany 1 0.29522
Japan 1 0.00949
Japan/US 1 0.01205

What’s going on? Why doesn’t Mintab like my USA indicator? Why can the last
predictor be discarded with impunity? The answer is that we have given Minitab more
parameters to play with than it needed to get a least squares fit. If we added any constant
to the intercept coefficientα, and subtracted the same constant from eachγ , we would
get exactly the same set of theoretical means. In particular, we could chooseγU as the
subtracted constant, thereby ensuring that the coefficient of the USA predictor is zero.
Whatever Minitab wants to do withα, γG, γJ, γJU, γU it can also do withα, γG, γJ, γJU ,
taking γU as zero.
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Did the inclusion of the indicators for countries improve the fit significantly?
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5. Cautions regarding interpretation

In general, whenever Minitab finds that the contribution to the fit from a predictor
variable can be closely approximated by contributions from other predictor variables,
which appear earlier in the list of predictors, it discards the nearly-redundant predictor.

The redundancy makes it a little harder to interpret the individual coefficients.
It is better to treat the four country indicators as a single contribution to the fit—a
contribution with 3 degrees of freedom—beyond what is already given by the intercept
and the logHP terms, without trying to break out the contributions due to each separate
country:

Terms added sequentially (first to last)
Df Sum of Sq Mean Sq F Value Pr(F)

log10(HP) 1 2.405987 2.405987 191.3221 0.00000000000
Country 3 0.316754 0.105585 8.3960 0.00006050361

Residuals 84 1.056349 0.012576

Notice that
0.316754≈ 0.29522+ 0.00949+ 0.01205

The Country Sum of Squares is just the sum of the three Sequential Sums of Squares
from the last table in the previous Minitab display.

The subtleties in the interpretation of the regression output, when there are
redundant predictors, are illustrated by the following two regressions. In each case,
Minitab calculates the same fitted values, and the same estimate forσ , but the estimated
coefficients are different.

Change order of predictors

Enter the predictor variables in a different order, puttingGermanlast. Then Mintab
regards the indicator for German cars as redundant:

MTB > Regress ’logPrice’ 5 ’logHP’ ’Japan’ ’Japan/USA’ ’USA’ ’Germany’;
SUBC> Constant;
SUBC> Brief 2.

Regression Analysis

* Germany is highly correlated with other X variables
* Germany has been removed from the equation

The regression equation is
logPrice = 1.76 + 1.21 logHP - 0.171 Japan - 0.227 Japan/USA - 0.185 USA

Predictor Coef StDev T P
Constant 1.7623 0.2086 8.45 0.000
logHP 1.21451 0.09558 12.71 0.000
Japan -0.17086 0.04108 -4.16 0.000
Japan/US -0.22687 0.05276 -4.30 0.000
USA -0.18538 0.03983 -4.65 0.000

S = 0.1121 R-Sq = 72.0

Analysis of Variance

Source DF SS MS F P
Regression 4 2.72274 0.68069 54.13 0.000
Residual Error 84 1.05635 0.01258
Total 88 3.77909

Source DF Seq SS
logHP 1 2.40599
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Japan 1 0.00200
Japan/US 1 0.04236
USA 1 0.27240

Omit intercept

If we explicitly force Minitab to omit the intercept term, then all four country indicators
are retained:

MTB > Regress ’logPrice’ 5 ’logHP’ ’Germany’ ’Japan’ ’Japan/USA’ ’USA’;
SUBC> NoConstant;
SUBC> Brief 3.

Regression Analysis

The regression equation is
logPrice = 1.21 logHP + 1.76 Germany + 1.59 Japan + 1.54 Japan/USA + 1.58 USA

Predictor Coef StDev T P
Noconstant
logHP 1.21451 0.09558 12.71 0.000
Germany 1.7623 0.2086 8.45 0.000
Japan 1.5915 0.2016 7.89 0.000
Japan/US 1.5355 0.1978 7.76 0.000
USA 1.5770 0.2038 7.74 0.000

S = 0.1121
Analysis of Variance

Source DF SS MS F P
Regression 5 1543.03 308.61 24540.05 0.000
Residual Error 84 1.06 0.01
Total 89 1544.08

Source DF Seq SS
logHP 1 1542.02
Germany 1 0.21
Japan 1 0.03
Japan/US 1 0.01
USA 1 0.75

You might try to figure out the relationship between the various tables and estimates
for the three ways of expressing the model. In particular, try to explain why the fitted
regression lines are the same in each case, even though the coefficients differ:

1.58 +1.21× logHP +0.185×Germany +0.0145× Japan −0.0415× Japan/USA
1.76 +1.21× logHP −0.171× Japan −0.227× Japan/USA−0.185× USA

1.21× logHP +1.76×Germany +1.59× Japan +1.54× Japan/USA +1.58× USA


