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Read M&M §2.6. Read M&M Chapter 4 only if you want to. Probability
and randomness. Conditional probabilites. Bayes’s rule. Random variables.
Means and variances.

In these notes I have included more of the mathematical reasoning than you really
need to know for this course. Sections leaders will tell you which parts, if any, they
want you to understand. Some Sections might use M&M, and ignore these notes
altogether.

1. Probability rules

Probability theory is a systematic method for describing randomness and uncertainty. It
prescribes a set of rules for manipulating and calculating probabilities and expectations.
It has been applied in many areas: gambling, insurance, the study of experimental error,
statistical inference, and more.

I will refer to any situation where outcomes are random as anexperiment, for
the sake of a concise description. Please do not confuse the term with the special case
of designed experiments, as described in Chapter 3 of M&M.

One standard approach to probability theory (but not the only approach) starts from
the concept of asample space, which is an exhaustive list of possible outcomes in
an experiment. Subsets of the list are calledevents. For example, in the very simple
situation where 3 coins are tossed, the sample space might be

S= {hhh, hht, hth, htt, thh, tht, t th, t t t}.
Notice thatS contains nothing that would specify an outcome like “the second coin spun
17 times, was in the air for 3.26 seconds, rolled 23.7 inches when it landed, then ended
with heads facing up”. There is an event corresponding to “the second coin landed
heads”, namely,

{hhh, hht, thh, tht}.
Each element in the sample space corresponds to a uniquely specified outcome.

The choice of a sample space—the detail with which possible outcomes are
described—depends on the sort of events we wish to talk about. The sample space is
constructed to make it easier to think precisely about events. In many cases, you will
find that you don’t actually need an explicitly defined sample space; it often suffices to
manipulate events via a small number of rules (to be specified soon) without explicitly
identifying the events with subsets of a sample space.

If the observed outcome of an experiment lies in the set defining some particular
event, one says that the event has occurred. For example, with the outcome hhh each of
the events{no tails}, {at least one head}, {more heads than tails} occurs, but the event
{even number of heads} does not.

The uncertainty is modelled by aprobability assigned to each event. The
probability of an eventE is denoted byPE. One popular interpretation ofP (but
not the only interpretation) is as a long run frequency:in a very large number (N) of
independent repetitions of the experiment,

(number of timesE occurs)/N ≈ PE.

That is, probabilities are essentially proportions of times that events occur in many
repetitions of whatever experiment was generating the random outcomes.

As many authors have pointed out, there is something slightly fishy about this
interpretation. For example, it is difficult to make precise the meaning of “independent
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repetitions” without resorting to explanations that degenerate into circular discussions
about the meaning of probability and independence. This fact does not seem to trouble
most supporters of the frequency theory. The interpretation is regarded as a justification
for the adoption of a set of mathematical rules, or axioms.

The first four rules are easy to remember if you think of probability as a proportion.
One more rule will be added soon.

Rules for probabilities

(P1) : 0≤ PE ≤ 1 for every eventE.

(P2) : For the empty subset∅ (= the “impossible event”),P∅ = 0,

(P3) : For the whole sample space (= the “certain event”),PS= 1.

(P4) : If an eventE is broken into disjoint piecesE1, E2, . . . thenPE =∑i PEi .

For rule (P4), the eventE could also be called a (disjoint)union of the events
E1, E2, . . ., and written as

E = E1 ∪ E2 ∪ E3 ∪ . . .
or (in M&M notation)

E = E1 or E2 or E3 or . . .

The notationA or B means the event where eitherA or B, or both, occur. The notation
A and B means that bothA and B occur. SometimesA and B is written asA∩ B, or
just AB, the intersection of the two events. ForA and B to be disjoint events, the
intersectionA and B must be the empty subset of the sample space. That is, two events
that are disjoint can never occur together.

<1> Example. Find P{at least two heads} for the tossing of three coins. Use the sample
space from the previous page. If weassumethat each coin is fair and that the outcomes
from the coins don’t affect each other (“independence”), then we must conclude by
symmetry (“equally likely”) that

P{hhh} = P{hht} = . . . = P{t t t}.
By rule P4 these eight probabilities add toPS= 1; they must each equal 1/8. Again by
P4,

P{at least two heads} = P{hhh} + P{hht} + P{hth} + P{thh} = 1/2.

¤
In general, if we have a sample space consisting ofN outcomes, says1, s2, . . . , sN ,

then rules (P3) and (P4) imply

P{s1} + P{s2} + . . .+ P{sN} = 1

In particular, if each of the events{si } is equally likely, then each must have probability
1/N. For that special case, the calculation of probabilities reduces to counting: if an
event A consists ofk outcomes from the sample space thenPA = k/N. Typically
appeals to symmetry lead to sample spaces with equal probability attached to each
outcome.

Probability theory would be very boring if all problems were solved as in
Example<1>: break the event into pieces whose probabilities you know, then add.
Thing become much more interesting when we recognize that the assignment of
probabilities depends upon what we know or have learnt (or assume) about the random
situation. For example, in the last problem we could have written

P{at least two heads| coins fair, “independence,”. . . } = . . .
to indicate that the assignment is conditional on certain information (or assumptions).
The vertical bar is read asgiven; we refer to theprobability of . . .given that. . .
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For fixed conditioning information, theconditional probabilities P{. . . | info}
satisfy rules (P1) through (P4). For example,P

(∅ | info
) = 0, and so on. If the

conditioning information stays fixed throughout the analysis, one usually doesn’t bother
with the “given . . . ”, but if the information changes during the analysis this conditional
probability notation becomes most useful.

The final rule for (conditional) probabilities lets us break occurrence of an event
into a succession of simpler stages, whose conditional probabilities might be easier to
calculate or assign. Often the successive stages correspond to the occurrence of each of
a sequence of events, in which case the notation is often abbreviated to:

P
(
. . . | event A has occurredand previous info

)
or

P
(
. . . | A, previous info

)
or

P
(
. . . | A

)
if the “previous info” is understood.

The comma in the second expression is open to misinterpretation, but its convenience
recommends it.

I must confess to some inconsistency in my use of parentheses and braces. If
the “. . . ” is a description in words, then{. . . } denotes the subset ofS on which the
description is true, andP{. . .} or P{. . . | info} seems the natural way to denote the
probability attached to that subset. However, if the “. . . ” stands for an expression like
A and B, the notationP(A and B) or P

(
A and B | info

)
looks nicer to me. It is hard to

maintain a convention that covers all cases. You should not attribute much significance
to differences in my notation involving a choice between parentheses and braces.

Rule for conditional probability

(P5) : if A and B are events then

P
(
A and B | info

) = P(A | info
)× P(B | A and info

)
.

The frequency interpretation might make it easier for you to appreciate this
rule. Suppose that inN “independent” repetitions (given the same initial conditioning
information)

A occursNA times,

A and B occursNAB times.

Then, for bigN,

P
(
A | info

) ≈ NA/N

P
(
A and B | info

) ≈ NAB/N.

If we ignore those repetitions where A fails to occur then we haveNA repetitions
given the original informationand occurrence ofA, in NAB of which B occurs. Thus
P
(
B | A, info

) ≈ NAB/NA. The rest is multiplication.

<2> Example. M&M (§2.6, Example 2.32) discuss “Simpson’s paradox” by means of an
(artificial, I believe) example using survival rates of patients undergoing surgery at two
hospitals. The “data” come in the form of a three-way cross classification of patients:
by hospital (A or B), condition (good or poor) before operation, and by fate (died or
survived 6 weeks).

good condition

Hospital A Hospital B total
Died 6 8 14

Survived 594 592 1186
total 600 600 1200

poor condition

Hospital A Hospital B total
Died 57 8 65

Survived 1443 192 1635
total 1500 200 1700
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The paradox can also be understood in terms of conditional probabilities, if we
consider the characteristics of a single patient chosen at random from the 2900 individuals
counted in the tables.

The sample space would consist of 2900 items (patient identifiers) each with
probability 1/2900. Consider the events

A = patient entered hospital A

G = patient in good condition before operation

D = patient died

Write B = Ac for the complement of the eventA, that is,

B = Ac = patient entered hospital B

and so on.
Under the assumption that each patient has the same probability (1/2900) of being

chosen, all probabilities and conditional probabilities reduce to proportions. If we
calculate probabilities conditional on some event, then we should take the proportion
only amongst patients included in that event. For example,

PA = 600+ 1500

2900
≈ 0.724 cf. marginal totals for hospital A

P(A | G) = 600

1200
= 0.500 only 1200 in good condition

P(G | A) = 600

600+ 1500
≈ .286

From the point of view of a new patient who is about to choose a hospital at which
to have surgery, the relevant conditional probabilities are

P(D | A and G) = 6

600
= 0.010

P(D | B and G) = 8

600
≈ 0.013

P(D | A and Gc) = 57

1500
≈ 0.038

P(D | B and Gc) = 8

200
= 0.040

Notice that

P(D | A and G) < P(D | B and G)

P(D | A and Gc) < P(D | B and Gc)

No matter whether the new patient is in good or poor condition, it would seem that
hospital A is preferrable—a smaller probability of death for either condition.

The apparent paradox comes if we ignore the information about the condition of
patients before the operation:

P(D | A) = 6+ 57

600+ 1500
= 0.030

P(D | B) = 8+ 8

600+ 200
= 0.020

That is, the overall chances of death were lower for hospital B.
The apparent paradox is resolved when we notice that many more patients who

entered hospital A were in poor condition to begin with. The calculation of conditional
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probabilities exposes the source of the paradox.

P(D | A) = P(D and A)

P(A)
rule (P5)

= P(D and A and G)+ P(D and A and Gc)

P(A)
rule (P4) for numerator

= P(D | A and G)P(A and G)+ P(D | A and Gc)P(A and Gc)

P(A)
rule (P5)

= P(D | A and G)P(G | A)+ P(D | A and Gc)P(Gc | A) rule (P5)(∗)
Compare with the decompositionP(D) = P(D | G)P(G)+ P(D | Gc)P(Gc), or

P(D | info) = P(D | G and info)P(G | info)+ P(D | Gc and info)P(Gc | info),

with the eventA playing the role of the “info”. Plug the values for the conditional
probabilities into (*):

P(D | A) ≈ 0.010× 600

2100
+ 0.038× 1500

2100
Similarly,

P(D | B) ≈ 0.013× 600

800
+ 0.040× 200

800

The calculation forP(D | A) puts more weight (1500/2100) on the poor condition than
the calculation forP(D | B), withweight 200/800.¤

You can safely skip the next example if you are allergic to arithmetic. I include it
merely to make the point that you can solve quite complicated problems by breaking
them into smaller, more manageable pieces, then reassembling the pieces by means of
the rules for probabilities.

<4> Example. What is the probability that a hand of 5 cards contains four of a kind?
Let usassumeeverything fair and aboveboard, so that simple probability calculations

can be carried out by appeals to symmetry. The fairness assumption could be carried
along as part of the conditioning information, but it would just clog up the notation to
no useful purpose.

Start by breaking the event of interest into 13 disjoint pieces:

{four of a kind} = F1 or F2 or . . . or F13

where

F1 = {four aces, plus something else, in some order},
F2 = {four twos, plus something else, in some order},

...

F13 = {four kings, plus something else, in some order}.
By symmetry eachFi has the same probability, which means we can concentrate on just
one of them. By rule P4,

P{four of a kind} = PF1+ PF2+ . . .+ PF13 = 13PF1.

Now breakF1 into simpler pieces,

F1 = F1,1 or F1,2 or . . . or F1,5

whereF1 j = {four aces with jth card not an ace}. Again by disjointness and symmetry,
PF1 = 5PF1,1.

Decompose the eventF1,1 into five “stages”,

F1,1 = N1 and A2 and A3 and A4 and A5,
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whereN1 = {first card is not an ace}, A1 = {first card is an ace}, and so on. To save on
space, I will omit theand , writing N1A2A3A4 instead ofN1 and A2 and A3 and A4,
and so on. By repeated application of rule P5,

PF1,1 = PN1P(A2A3A4A5 | N1)

= PN1P(A2 | N1)P(A3A4A5 | N1A2)

= . . .
= PN1P(A2 | N1)P(A3 | N1A2) . . . P(A5 | N1A2A3A4)

= 48

52
× 4

51
× 3

50
× 2

49
× 1

48
.

Thus

P{four of a kind} = 13× 5× 48

52
× 4

51
× 3

50
× 2

49
× 1

48
≈ .00024.

Can you see any hidden assumptions in this analysis?¤
I wrote out many of the gory details to show you how the rules reduce the

calculation to a sequence of simpler steps. In practice, one would be less explicit, to
keep the audience awake.

The next problem is taken from the delightful little bookFifty Challenging Problems
in Probability by Frederick Mosteller. The book is one of my favourite sources for
elegant examples. One could learn a lot of probability by trying to solve all fifty
problems.

<5> Example.

Three prisoners, A, B, and C, with apparently equally good records have applied
for parole. The parole board has decided to release two of the three, and the
prisoners know this but not which two. A warder friend of prisoner A knows
who are to be released. Prisoner A realizes that it would be unethical to ask
the warder if he, A, is to be released, but thinks of asking for the name of one
prisonerother than himselfwho is to be released. He thinks that before he asks,
his chances of release are 2/3. He thinks that if the warder says “B will be
released,” his own chances have now gone down to 1/2, because either A and B
or B and C are to be released. And so A decides not to reduce his chances by
asking. However, A is mistaken in his calculations. Explain.

It is quite tricky to argue through this problem without introducing any notation,
because of some subtle distinctions that need to be maintained.

The interpretation that I propose requires a sample space with only four items,
which I label suggestively

aB = both A and B to be released, warder must say B

aC = both A and C to be released, warder must say C

Bc = both B and C to be released, warder says B

bC = both B and C to be released, warder says C.

There are three events to be considered

A = {A to be released} = { aB , aC
}

B = {B to be released} = { aB , Bc , bC
}

B∗ = {warder says B to be released} = { aB , Bc
}
.

Apparently prisoner A thinks thatP
(
A | B∗) = 1/2.
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How should we assign probabilities? The words “equally good records” suggest
(compare with Rule P4)

P{A and B to be released}
= P{B and C to be released}
= P{C and A to be released}
= 1/3

That is,
P{ aB } = P{ aC } = P{ Bc } + P{ bC } = 1/3.

What is the split between Bc and bC ? I think the poser of the problem wants us
to give 1/6 to each outcome, although there is nothing in the wording of the problem
requiring that allocation. (Can you think of another plausible allocation that would
change the conclusion?)

With those probabilities we calculate

P(A and B∗) = P{ aB } = 1/3

PB∗ = P{ aB } + P{ Bc } = 1/3+ 1/6= 1/2,

from which we deduce (via rule P5) that

P
(
A | B∗) = P(A and B∗)

PB∗
= 1/3

1/2
= 2/3= PA.

The extra informationB∗ should not change prisoner A’s perception of his probability
of being released.

Notice that

P
(
A | B) = P(A and B)

PB
= 1/3

1/2+ 1/6+ 1/6
= 1/2 6= PA.

Perhaps A was confusingP
(
A | B∗) with P

(
A | B).

The problem is more subtle than you might suspect. Reconsider the conditioning
argument from the point of view of prisoner C, who overhears the conversation between A
and the warder. WithC denoting the event

{C to be released} = { aC , Bc , bC
}
,

he would calculate a conditional probability

P
(
C | B∗) = P{ Bc }

PB∗
= 1/6

1/2
6= PC.

The wardermighthave nominated C as a prisoner to be released. The fact that he didn’t
do so conveys some information to C. Do you see why A and C can infer different
information from the warder’s reply?¤

The last part of the Example, concerning the bad news for prisoner C, is a version
of a famous puzzler that recently caused a storm in a teacup when it was posed in a
newspaper column. If we replace “stay in prison” by “win a prize” then a small variation
on the famous puzzler emerges. The lesson is: Be prepared to defend your assignments
of conditional probabilities.

You might have the impression at this stage that the first step towards the solution
of a probability problem is always a specification of a sample space. In fact one seldom
needs an explicit listing of the sample space; an assignment of (conditional) probabilities
to well chosen events is usually enough to set the probability machine in action. Only
in cases of possible confusion (as in the last Example), or great mathematical precision,
do I find a list of possible outcomes worthwhile to contemplate.

In Example<5> we had a situation where a particular piece of information could be
ignored in the calculation of another conditional probability, namelyP

(
A | B∗

) = P(A).
Such a situation is an instances of a property calledindependence.
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<6> Definition. Call events E and F conditionally independent given a particular piece
of information if

P
(
E | F , information

) = P(E | information
)
.

If the “information” is understood, just call E and F independent.

The apparent asymmetry in the definition can be removed by an appeal to rule P5,
from which we deduce that

P
(
E and F | information

) = P(E | information
)
P
(
F | information

)
for conditionally independent eventsE and F . Except for the conditioning information,
the last quality is the traditional definition of independence. Some authors prefer
that form because it includes various cases involving events with zero (conditional)
probability.

As an example, you might assume that the event{president gets impeached} is
independent of the event{I eat a yoghurt for breakfast tomorrow}, but that it is not
independent of the event{time to next election is less than one year}. Would you judge
it independent of an event like{national newspaper breaks story of sexual shenanigans
on part of some member of a House committee}? What other conditioning information
would you be assuming?

Conditional independence is one of the most important simplifying assumptions used
in probabilistic modeling. It allows one to reduce consideration of complex sequences of
events to an analysis of each event in isolation. But be careful: convenient assumptions
need not even crudely approximate reality. See the famous case ofPeople v. Collins†
for an example where independence is a dubious assumption.

2. Bayes’s rule

The Bayesian argument consists of little more than a routine application of the rules of
probability, with conditioning playing the leading role. I see no reason to memorize the
formula behind the Bayesian calculation, unless you intend to convert to Bayesianism.

<7> Example. The great Sherlock is trying to solve the case of the battered cod. The
fishmonger has been murdered. Sherlock knows that 30% of the murders in town are
usually committed by Freddie the Fish, 50% by the Evil Pilchard, and only 20% by old
Mrs. Smith. He also knows something about the modus operandi of each villain: half
the time Freddie dispatches his victim by a blow to the head with whatever seafood is
handy, and the rest of the time he uses his trusty whale harpoon; Pilchard also uses the
seafood method 10% of the time, but he prefers other techniques (toxic hamburgers,
mad cow virus, and other methods too terrible to describe), which he employs 90% of
the time; Mrs. Smith carries an old fish of some description, which she invariably uses
as her murder weapon, in her handbag.

The fishmonger was found slumped over his counter with a fish-shaped indentation
in his skull. The coroner declares death to have been caused by repeated assault with a
blunt, smelly instrument—most likely a cod. What can the great Sherlock deduce?

Sherlock denotes byF the event that Freddie was the murderer, and denotes byE
andS the other two possibilities. He writesC for the event that the murder is committed
by fishy means (such as cod). Hisprior knowledge he writes down as

P(F) = 0.3, P(E) = 0.5 P(S) = 0.2

† discussed, for example, in “Statistics and Public Policy” by Fairley and Mosteller
(Addison-Wesley 1997) and also in the Freedman, Pisani, Purves, Adhikari text
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His vast knowledge of criminal behaviour he distills into

P(C | F) = 0.5 P(C | E) = 0.1 P(C | S) = 1

As the awed Dr. Watson looks on, Sherlock employs the Calculus of Probability
(on which he has written a small treatise) to calculate hisposterior opinion in the
form of probabilities conditional on the coroner’s verdict.

P(F | C) = P(F and C)

P(C)
He breaks the denominator into a sum of terms

P(C and F)+ P(C and E)+ P(C and S)

like the numerator, and then he invokes rule (P5) for each term, reducing the ratio to

P(C | F)P(F)
P(C | F)P(F)+ P(C | E)P(E)+ P(C | S)P(S)

His object throughout has been the reexpression of the unknown conditional probability
in terms of what already knows.

With a cry of triumph, Sherlock sees that all factors are now within his grasp. A
quick mental calculation yields

P(F | C) = 0.5× 0.3

(0.5× 0.3)+ (0.1× 0.5)+ (1× 0.1)
= 0.500

His mind races as he calculates the posterior probabilities for Pilchard in similar fashion:

P(E | C) = P(C | E)P(E)
P(C | F)P(F)+ P(C | E)P(E)+ P(C | S)P(S)

= 0.1× 0.5

(0.5× 0.3)+ (0.1× 0.5)+ (1× 0.1)
≈ 0.167

With smug satisfaction he notes, just as he had expected, the same denominator as
before.

Knowing that probabilities conditional on any information must still add to
one, Sherlock realizes thatP(S | C) must account for the missing fraction 0.333=
1− 0.500− 0.167.

The suspicion of guilt is wafting more strongly towards Freddie and Mrs. Smith,
and away from Pilchard.¤

Notice the effect of the evidence on theodds ratios:
P(S | C)
P(F | C) =

P(C | S)× P(S)/P(C)
P(C | F)× P(F)/P(C) =

1

0.5
× P(S)
P(F)

Mrs. Smith’s greater propensity for fish battery is reflected in Sherlock’s posterior
judgements about the relative chances of guilt for Smith versus Freddie.

3. Random variables (with discrete distributions)

Events either happen or they don’t. They are a rather all-or-nothing way of saying
something about the outcome of some random experiment.Random variables
give more detailed information about an experiment, in the form of a number that is
determined by the outcome.

For example, suppose an experiment consisted of choosing a simple random sample
of size 51 from the Registrar’s list of all Yale undergraduates for the current academic
year. The median age,M , of the students in the sample would be a random variable,
as would the number of seniors in the sample, or the minimum of the SAT scores of
all students in the sample. The August rainfall would not be a random variable for
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this particular experiment, because there is no meaningful way of attaching a figure for
rainfall to each subset of 51 undergraduates.

Formally, a random variable is just a function that attaches a number to each
outcome listed in the sample space. We typically don’t need to specify the sample space
before we study a random variable. What matters more is the set of values that it can
take and the probabilities with which it takes those values. This information is called
the distribution of the random variable.

<8> Example. From a set of five students—Achilles (aged 19), Bacchus (aged 21), Cleo
(aged 19), Dionysus (aged 21), and Epithelium (aged 18)—I take a simple random
sample of size 2. What is the distribution of the mean age of the students in my sample?
What is the probability of the event{mean age in sample< 20}?

Write X for the mean age in the sample. Write [ab] for the outcome that the
sample consists of Achilles and Bacchus, and so on. (There is no implied ordering in
the sample.)

outcome [ab] [ac] [ad] [ae] [bc] [bd] [be] [cd] [ce] [de]
value of X 20 19 20 18.5 20 21 19.5 20 18.5 19.5

Each of the ten possible outcomes has the same probability, namely 1/10. For this
sampling experiment, the random variableX takes values 18.5, 19, 19.5, 20, and 21,
with the probabilities shown.

x 18.5 19 19.5 20 21

P{X = x} 2/10 1/10 2/10 4/10 1/10

The distribution can also be represented by drawing lines of heightpi at eachxi :

18.5 19 19.5 20 21

The event{X < 20} is a disjoint union of events,

{X = 18.5} ∪ {X = 19} ∪ {X = 19.5},
which has probability

2

10
+ 1

10
+ 2

10
= 1

2
.

Alternatively,
{X < 20} = {[ac], [ae], [be], [ce], [de]}

Each of the five outcomes contributes probability 1/10 toP{X < 20}.
¤

4. Means and variances

If a random variable takes valuesx1, x2, . . . , xk with probabilities p1, p2, . . . , pk, its
mean is defined as the weighted average

µX = p1x1+ p2x2+ . . .+ pkxk

The mean is also called theexpected value or expectation of X, and is denoted
by a symbol likeE(X). As M&M (page 327) note, the term “expected” is slightly
misleading, because one does not necessarily expectX to take the valueµX. Remember
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the old canard about statisticians expecting families to have 2.1 children if you feel
yourself taking your expectations too literally.

You don’t have to calculate the distribution of a random variable to find its mean.
For example, supposeX is defined on a sample spaceS= {s1, s2, . . . , s10}, with values:

X(s1) = X(s2) = 16

X(s3) = X(s4) = X(s5) = X(s6) = 11

X(s7) = 23

X(s8) = X(s9) = X(s10) = 100

Then

µX = 16× P{s1, s2} + 11× P{s3, s4, s5, s6} + 23× P{s7} + 100× P{s8, s9, s10}
= 16× (P{s1} + P{s2})+ 11× (P{s3} + P{s4} + P{s5} + P{s6})
+ 23× P{s7} + 100× (P{s8} + P{s9} + P{s10}) by rule (P4)

=
10∑

i=1

X(si )P{si }

A similar argument works in the general case.
The name “mean” fits with the concept of a mean of a set ofN numbers. If the

value xi occurs exactlyNi times amongst the numbers, fori = 1, 2, . . . , k, then the
meanx̄ of the numbers equals

x̄ = N1x1+ N2x2+ . . .+ Nkxk

N
= p1x1+ p2x2+ . . .+ pkxk

where pi = Ni /N denotes the proportion of the numbers equal toxi . By the same
reasoning, after accounting for mutiplicities, we can write the variance of the set of
numbers as

1

N − 1

∑
i

Ni (xi − x̄)2

If N is very large thenNi /(N − 1) is close topi , and the variance is practically the
same as

∑
i pi (xi − x̄)2.

Analogously, thevariance of a random variableX is defined as

σ 2
X =

∑
i

pi (xi − µX)
2 where pi = P{X = xi },

the sum ranging over all valuesxi that X can take. The variance is often also written as
var(X). The standard deviationσX is the square root of the variance.

If X is a random variable taking valuesx1, . . . , xk with probabilitiesp1, . . . , pk, and
α, β are constants, then the new random variableY = α+βX takes valuesyi = α+βxi

with probabilitiesp1, . . . , pk. The new random variable has mean

µY =
∑

i

pi (α + βxi ) = α
∑

i

pi + β
∑

i

pi xi = α + βµX

and variance

σ 2
Y =

∑
i

pi (yi − µY)
2

=
∑

i

(α + βxi − α − βµX)
2

= β2
∑

i

(xi − µX)
2

= β2σ 2
X
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That is, for constantsα andβ, and a random variableX,

E(α + βX) = α + βE(X)
var(α + βX) = β2var(X)

or in M&M notation:

for constantsα andβ, and a random variableX,

µα+βX = α + βµX

σ 2
α+βX = β2σ 2

X

As a particular case, notice that var(−X) = var(X). Don’t forget, variances cannot be
negative.

5. Mean of a sum of random variables

If X and Y are random variables defined on a sample spaceS = {s1, . . . , sN}, with
X(si ) = xi andY(si ) = yi , then the new random variableZ = X + Y takes the value
zi = xi + yi at si and it has expectation

E(Z) =
∑

i

(xi + yi )P{si } =
∑

i

xiP{si } +
∑

i

yiP{si } = E(X)+ E(Y)

In M&M notation,
µX+Y = µX + µY

A similar formula works for sums of more than two random variables.

<9> Example. Suppose a coin has probabilityp of landing heads on any particular toss.
Let X denote the number of heads obtained fromn tosses. We can writeX as a sum
X1+ X2+ . . .+ Xn, where

Xi =
{

1 if i th toss lands heads
0 if i th toss lands tails

Each takes the value 1 with probabilityp and 0 with probability 1− p, giving a mean
of 1× p+ 0× (1− p) = p. Thus

µX = µX1 + µX2 + . . .+ µXn = np

Sound reasonable?¤

6. Independent random variables

Two random variablesX and Y are said to beindependent if “knowledge of the
value of X takes does not help us to predict the valueY takes”, and vice versa. More
formally, for each possible pair of valuesxi and yj ,

P{Y = yj | X = xi } = P{Y = yj },
that is,

P{Y = yj and X = xi } = P{Y = yj } × P{X = xi } for all xi and yj ,

and in general, events involving onlyX are independent of events involving onlyY:

P{something aboutX and something else aboutY}
= P{something aboutX} × P{something else aboutY}
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This factorization leads to other factorizations for independent random variables:

E(XY) = (EX)(EY) if X andY are independent

or in M&M notation:

µXY = µXµY if X andY are independent

You should skip the rest of this section if you don’t like algebra.

To see why this result should be true, supposeX and Y are defined on a sample
spaceS= {s1, s2, . . .}. Then

E(XY) =
∑

i

X(si )Y(si )P{si }

Collect together all thosesi for which X(si ) = xj and Y(si ) = yk, appealing to rule
(P4), to consolidate the last sum into∑

j,k

xj ykP{X = xj and Y = yk}

Factorize each of the probabilitiesP{X = xj and Y = yk} into P{X = xj } × P{Y = yk},
then recognize the result as(∑

j

xjP{X = xj }
)(∑

k

ykP{Y = yk}
)
,

the product of the two expected values.

7. Variances of sums of independent random variables

Standard errors provide one measure of spread for the disribution of a random variable.
If we add together several random variables the spread in the distribution increases, in
general. For independent summands the increase in the spread is not as much as you
might imagine: it is not just a matter of adding together standard deviations.

The key result is:

(∗) σ 2
X+Y = σ 2

X + σ 2
Y if X andY are independent random variables

If Y = −Z, for another random variableZ, then we get

σ 2
X−Z = σ 2

X + σ 2
−Z = σ 2

X + σ 2
Z if X and Z are independent

Notice the plus sign on the right-hand side: subtracting an independent quantity fromX
cannot decrease the spread in its distribution.

A simlar result holds for sums of more than two random variables:

σ 2
X1+X2+...+Xn

= σ 2
X1
+ σ 2

X2
+ . . .+ σ 2

Xn
for independentX1, X2,. . .

In particular, if eachXi has the same variance,σ 2 then the variance of the sum increases
asnσ 2, and the standard deviation increases as

√
nσ . It is this

√
n rate of growth in the

spread that makes a lot of statistical theory work.

You should skip the rest of this section if you don’t like algebra.

To understand where(∗) comes from, simplify notation by writing̃X for X − µX

and Ỹ for Y − µY. Subtraction of a constant cannot create dependence when none
existed before: ifX andY are independent theñX and Ỹ are independent.

Don’t confuseX̃ and Ỹ
with the x̃i and ỹi from
Lecture 2. Those quan-
tities were also scaled to
have unit variance.
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Note thatEX̃ = EỸ = 0, and var(X) = var(X̃) = E(X̃2), and var(Y) = var(Ỹ) =
E(Ỹ2). Thus

var(X + Y) = E (X + Y − µX − µY)
2

= E (X̃ + Ỹ
)2

= E(X̃2)+ 2E(X̃Ỹ)+ E(Ỹ2)

From Section 6, the middle term factorizes as

(EX̃)(EỸ) = 0× 0= 0

The remaining terms give the sum of the two variances.

8. Continuous distributions

Historically speaking, density functions were first invented only as convenient approxi-
mations for discrete distributions. One could approximate the probability that a random
variable X would take values in the range [a, b] by calculating a corresponding area
under the density function:

P{a ≤ X ≤ b} ≈ area under the density curve between the lines ata andb

The approximation was supposed to hold for all choices ofa andb:

a b

Don’t stare too carefully at the picture, trying to match up areas with sums of
probabilities. It is just a rough sketch. The heights of the little lines are supposed to
represent probabilitiesP{X = xi } for the valuesxi that X can take. The sum of these
probabilities for allxi betweena and b givesP{a ≤ X ≤ b}. The area of the shaded
region represents the approximation to this probability.

If the valuesxi that X can take are very close together, it is a natural step to ignore
the discreteness of the distribution, making a conceptual leap to think of the probability
distribution of X as smeared in a continuous fashion along the line. That is, we could
treat some random variables as havingcontinuous distributions, with probabilities
determined exactly by areas under the graph of a density function. For example, we
could think of human heights as being distributed along a continuous range. Why restrict
ourselves to any particular degree of discreteness?

In the real world, however, dimensions are always measured to some degree of
accuracy determined by the measuring instrument. We could just as logically choose to
think of human heights as having a discrete distribution, concentrating in a gritty fashion
at values strung out, say, 1 mm apart. That is, we have a choice whether to think of
heights as having a continuous distribution or a discrete distribution.

I would advise you to adopt whichever choice is more convenient. If you want
to understand formulae for means and variances, think discrete, perhaps on a very fine
scale. If you wish to use normal approximations, but you don’t want to keep stumbling
over caveats about approximation, just say that the random variable has a continuous
distribution. In Statistics, you can have your cake and eat it too—sometimes.


