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Read M&M §7.1 and §7.2, ignoring starred parts. Reread M&M §3.2. The
effects of estimated variances on normal approximations. t-distributions.
Comparison of two means: pooling of estimates of variances, or paired
observations.

In Lecture 6, when discussing comparison of two Binomial proportions, I was
content to estimate unknown variances when calculating statistics that were to be treated
as approximately normally distributed. You might have worried about the effect of
variability of the estimate. W. S. Gosset (“Student”) considered a similar problem in a
very famous 1908 paper, where the role of Student’s t-distribution was first recognized.

Gosset discovered that the effect of estimated variances could be described exactly
in a simplified problem wheren independent observationsX1, . . . , Xn are taken from
a normal distribution,N(µ, σ ). The sample mean,X = (X1 + . . . + Xn)/n has a
N(µ, σ/

√
n) distribution. The random variable

Z = X − µ

σ/
√

n

has a standard normal distribution. If we estimateσ 2 by the sample variance,s2 =∑
i (Xi − X)2/(n − 1), then the resulting statistic,

T = X − µ

s/
√

n

no longer has a normal distribution. It has at-distribution on n − 1 degrees of
freedom.

Remark. I have writtenT , instead of thet used by M&M page 505. I find it
causes confusion thatt refers to both the name of the statistic and the name of its
distribution.

As you will soon see, the estimation of the variance has the effect of spreading
out the distribution a little beyond what it would be ifσ were used. The effect is more
pronounced at small sample sizes. With largern, the difference between the normal
and the t-distribution is really not very important. It is much more important that you
understand the logic behind the interpretation ofZ than the mostly small modifications
needed for the t-distribution.

1. How different is the t distribution from the normal?

In each of the following nine pictures I have plotted the quantiles of various t-distributions
(with degrees of freedom as noted on the vertical axis) against the corresponding quantiles
of the standard normal distribution along the horizontal axis. The plots are the population
analogs of the normal (probability or quantile—whichever name you prefer) plots from
M&M Chapter 1. Indeed, you could think of these pictures as normal plots for immense
sample sizes from the t-distributions.

The upward curve at the right-hand end and the downward curve at the left-hand
end tell us that the extreme quantiles for the t-distributions lie further from zero than the
corresponding standard normal quantiles. The tails of the t-distributions decrease more
slowly than the tails of the normal distribution (compare with M&M page 506). The
t-distributions are more spread out than the normal.

The spreading effect is huge for 1 degree of freedom, as shown by the first plot
in the first row, but you should not be too alarmed. It is, after all, a rather dubious
proposition that one can get a reasonable measure of spread from only two observations
on a normal distribution.
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With 8 degrees of freedom (a sample size of 9) the extra spread is noticeable only
for normal quantiles beyond 2. That is, the differences only start to stand out when we
consider the extreme 2.5% of the tail probability in either direction.

The plots in the last row are practically straight lines. You are pretty safe (unless
you are interested in the extreme tails) in ignoring the difference between the standard
normal and the t-distribution when the degrees of freedom are even moderately large.

The small differences between normal and t-distributions are perhaps easier to see
in the next figure.
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Quantiles for the t-distribution, plotted against degrees of freedom. Corresponding standard
normal values shown as tickmarks on the right margin.
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The top curve plots the quantileqn(.975), that is value for which

P{T ≤ qn(.975)} = 0.975 whenT has a t-distibution withn degrees of freedom,

againstn. The middle curve shows the correspondingqn(0.95) values, and the bottom
curve theqn(0.90) values. The three small marks at the right-hand edge of the picture
give the corresponding values for the standard normal distribution. For example, the top
mark sits at 1.96, because only 2.5% of the normal distribution lies further than 1.96
standard deviations out in the right tail.

Notice how close the values for the t-distributions are to the values for the normal,
with even only 4 or five degrees of freedom.

Remark. You might wonder why the curves in the previous figure are shown
as continuous lines, and not just as a series of points for degrees of freedom
n = 1, 2, 3, . . .. The answer is that the t-distribution can be defined for non-integer
values ofn. You should ignore this Remark unless you start pondering the formula
displayed near the top of M&M page 549. The approximation requires fractional
degrees of freedom.

<1> Example. From a sample ofn independent observations on theN(µ, σ ) distribution,
with known σ , the interval X ± 1.96σ/

√
n has probability 0.95 of containing the

unknownµ; it is a 95% confidence interval.
If σ is unknown, it can estimated by the sample standard deviations. The 95%

confidence interval has almost the same form as before,X ±Cs/
√

n, where the unknown
standard deviationσ is replaced by the estimated standard deviation, and the constant
1.96 is replaced by a larger constantC, which depends on the sample size. For example,
from Minitab (or from Table D at the back of M&M),C = 12.71 if n − 1 = 1, or
C = 2.23 wheren − 1 = 10. If n is large,C ≈ 1.96. The values ofC correspond to
the top curve in the figure showing tail probabilities for the t-distribution.¤

2. How important is the t distribution?

In their book “Data Analysis and Regression”, two highly eminent statisticians, Frederick
Mosteller and John Tukey, pointed out that the “value of Student’s work lay not in a
great numerical change” but rather in

• recognition that one could, if appropriate assumptions held, make allowances for
the “uncertainties” of small samples, not only in Student’s original problem but in
others as well;

• provision of numerical assessment of how small the necessary numerical adjustments
of confidence points were in Student’s problem and. . . how they depended on the
extremeness of the probabilities involved;

• presentation of tables that could be used. . . to assess the uncertainty associated
with even very small samples.

They also noted some drawbacks, such as
• it made it too easy to neglect the proviso “if appropriate assumptions held”;
• it overemphasized the “exactness” of Student’s solution for his idealized problem;
• it helped to divert attention of theoretical statisticians to the development of “exact”

ways of treating other problems.

(Quotes taken from pages 5 and 6 of the book.) Mosteller and Tukey also noted one more
specific disadvantage, as well as making a number of other more general observations
about the true value of Student’s work.

In short, the use of t-distributions, in place of normal approximations, is not as
crucial as you might be led to believe from a reading of some text books. The big
differences between the exact t-distribution and the normal approximation arise only
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for quite small sample sizes. Moreover the derivation of the appealing exactness of the
t-distribution holds only in the idealized setting of perfect normality.

In situations where normality of the data is just an approximation, and where sample
sizes are not extremely small, I feel it is unwise to fuss about the supposed precision of
t-distributions.

3. Matched pairs

In his famous paper, Gosset illustrated the use of his discovery by reference to a set of
data on the number of hours of additional sleep gained by patients when treated with
the dextro- and laevo- forms (optical isomers) of the drug hyoscyamine hydrobromide.

patient dextro laevo difference
1 0.7 1.9 1.2
2 -1.6 0.8 2.4
3 -0.2 1.1 1.3
4 -1.2 0.1 1.3
5 -0.1 -0.1 0
6 3.4 4.4 1
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0 4.6 4.6
10 2 3.4 1.4

For each patient, one would expect some dependence between the reponses to the
two isomers. It would be unwise to treat the dextro- and laevo- values for a single patient
as independent. However, randomization lets us act as if the differences in the effects
correspond to 10 independent observations,X1, . . . , X10, on someN(µ, σ ) distribution.
( I have not checked the original source of the data, so I do not know whether the order
in which the treatments was applied was randomized, as it should have been.) If there
were no real difference between the effects of the two isomers we would haveµ = 0.
In that case,X would have aN(0, σ 2/10) distribution, andT = X/

√
s2/10 would have

a t-distribution on 9 degrees of freedom.
The observed differences have sample mean equal to 1.58 and sample standard

deviation equal to 1.23. The observed value ofT equals

1.58/(1.23/
√

10) ≈ 4.06

Under the hypothesis thatµ = 0, there is a probability of about 0.0028 of obtaining a
value for |T | that is equal to 4.06 or larger. It is implausible that the differences in the
effect are just random fluctuations. The laevo- isomer does seem to produce more sleep.

Remark. One of the observed differences, 4.6, is much larger than the others.
The value of 0 for the dextro- isomer with patient 9 also seems a little suspicious.
Without knowing more about the data set, I would be wary about discarding the values
for patient 9. I would point out, however, that without patient 9, the sample mean
drops to 1.24 and the sample standard error drops to 0.66. The single large value
made the differences have a much larger spread. The value ofT increases to 5.66,
pushing the p-value (for a t-distribution on 8 degrees of freedom) down to 0.0005.

4. Comparison of two sample means

Suppose we have two independent sets of observations,X1, . . . , Xm from a N(µX, σX),
andY1, . . . , Yn from a N(µY, σY). How should we test the hypothesis thatµX = µY?
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The two sample means are independent, withX distributedN(µX, σX/
√

m) andY
distributedN(µY, σY/

√
n). The differenceX − Y is distributedN(µ, τ), with

µ = µX − µY and τ 2 = σ 2
X

m
+ σ 2

Y

n

If σX andσy were known, we could compare(X − Y)/τ with a standard normal,
to test whetherµX = µY.

If the variances were unknown, we could estimateτ 2 by

τ̂ 2 = s2
X

m
+ s2

Y

n
.

The statisticT = (X − Y)/τ̂ would have approximately a standard normal distribution
if µX = µY. In general, it does not have exactly a t-distribution, even under the exact
normality assumption. M&M pages 540–550 describe various ways to refine the normal
approximation—things like using a t-distribution with a conservatively low choice
of degrees of freedom, or using a t-distribution with estimated degrees of freedom.
For reasonable sample sizes I tend to ignore such refinements. For example, I would
have gone with the normal approximation in Example 7.16; I find the discussion of
t-distributions in that example rather irrelevant (not to mention the unfortunate typo in
the last line).

Pooling

If we know, or are prepared to assume, thatσX = σY = σ 2 then it is possible to recover
an exact t-distribution forT under the null hypothesisµX = µY, if we use apooled
estimator for the varianceσ 2,

σ̂ 2
pooled= (m − 1)s2

X + (n − 1)s2
Y

m + n − 2
,

and

τ̂ 2
pooled= σ̂ 2

pooled×
(

1

m
+ 1

n

)
instead of̂τ 2. If µX = µY, then

(X − Y)/τ̂pooled

has a t-distribution onm + n − 2 degrees of freedom.
Read M&M 550–554 for more about the risks of pooling.

5. Summary

For testing hypotheses about means of normal distributions (or for setting confidence
intervals), we have often to estimate unknown variances. With precisely normal data, the
effect of estimation can be precisely determined in some situations. The consequence
for those situations is that we have to adjust various constants, replacing values from the
standard normal distribution by values from a t-distribution, with an appropriate number
of degrees of freedom. When sample sizes are not very small, the adjustments tend to
be small.

You should use the procedures based on t-distributions, in programs like Minitab,
when appropriate. But you should not get carried away with thought that you are
carrying out “exact inferences”—assumptions of normality are usually just convenient
approximations.


