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Read M&M Chapter 9. Chi square approximations and tests, with two-way
tables as an example.

1. Counts and cross-classification

Many data sets come in the form of counts of individual cases classified into one
of a finite set of disjoint categories; the data consist of the numbers of observations
falling into each category. For example, persons may be classified as male or female;
summonses may be classified as undeliverable or not; cups of coffee may be classified
as small, medium or large (or as regular, grande, and humungo); expensive consumer
items may be classified as deluxe, super-deluxe, and really good.

Sometimes the classification is determined by two (or more) factors. For example,
individuals may be classified as either male or female, and as either dead, unhealthy,
or healthy. Such data are often presented in the form of a two-way table (for two
classifying factors), or as a set of two-way tables (for three classifying factors). Counts
for greater numbers of classifying factors are more conveniently displayed in other ways.

For example, the following table shows (a subset of) some Census Bureau estimates
of population:

year state county R/S/E under5 5–9 10–14 15–19 20–24 25–29 30–34 . . .
90 09 000 1 91295 81828 75729 84252 100951 116271 123865 . . .
90 09 000 2 86206 77762 72284 79673 97065 114231 123980 . . .
90 09 000 3 11392 9623 9078 8888 10035 10037 8576 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90 09 001 1 21532 18342 17529 19034 21306 25717 28196 . . .
90 09 001 2 20022 17499 16982 18102 21222 25899 28665 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91 09 000 1 91301 83866 77055 79237 96535 110792 123593 . . .
91 09 000 2 86500 79553 73700 74619 93187 108942 123560 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94 09 015 11 377 309 266 223 226 204 193 . . .
94 09 015 12 336 300 256 210 231 226 227 . . .

The first column indicates the year (90 = 1990), the second column gives a state code
(09 = CT), the third column gives a code for county (000 = whole of CT, 009 = New
Haven County), the fouth column gives a “Race/Sex/Ethnicity Indicator” (1 = White
Non-Hispanic Male, 2 = White Non-Hispanic Female, etc), and the remaining columns
give estimated counts for various age ranges (Under 5 years, 5 to 9 years,. . . ). The data
represent a five-way (or is it seven-way?) cross-classification.

Sometimes we have probabilistic models for how individuals end up in one of the
categories, and we are interested in checking how well the observed counts conform to
the theoretical model. Sometimes we try to build probabiltiy models to ‘explain’ the
distribution of counts across the categories.

2. Summonses to towns

When Judicial Information Systems (JIS) compiles the master list of potential jurors it is
supposed to select fixed proportions from each town: the Connecticut General Statutes
require that the numbers taken from each town in the judicial district be in proportion to
the total population of the town, as determined by the 1990 Census.

At one stage during my analysis of the JIS data (the records of the summonses
actually mailed), I developed serious doubts about whether JIS was actually following the
statute. I was able to check one aspect of JIS procedure by comparing the proportions
in their summary files for each court year with the Census figures. Knowing that
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summonses were drawn from the master file in the order of a randomly allocated juror
ID number, I reasoned that the proportions in the summary file should have reflected the
proportions in the master file.

Even after taking the sampling variability into account, I was not expecting to find
close agreement between summary file proportions and Census proportions, because:

(i) I was not allowed to see a small proportion of the juror records, for confidentiallity
reasons

(ii) The address in the summary file did not always reflect the original address to
which a summons was sent. JIS policy was unclear regarding the procedure
taken when a change of address was needed, but it was clear that some addresses
were being overwritten by updated information. In particular, a small proportion
of potential jurors (4537 out of 88984, for 1992-93) were excused because they
no longer lived in the judicial district.

The following table shows the story for the court year 1992-93, after exclusion
of summonses with an address ouside the judicial district.† Note: the table is not a
cross-classification on two factors.

pop90 pct90 observed expected obs. − exp. chi
AVON 13937 1.6 1311 1365.8 −54.8 −1.5

BERLIN 16787 1.9 1690 1645.1 44.9 1.1
BLOOMFIELD 19483 2.3 1930 1909.3 20.7 0.5

BRISTOL 60640 7 5999 5942.5 56.5 0.7
BURLINGTON 7026 0.8 707 688.5 18.5 0.7

CANTON 8268 1 787 810.2 −23.2 −0.8
EAST GRANBY 4302 0.5 427 421.6 5.4 0.3

EAST HARTFORD 50452 5.9 4946 4944.1 1.9 0
EAST WINDSOR 10081 1.2 986 987.9 −1.9 −0.1

ENFIELD 45532 5.3 4319 4462 −143 −2.1
FARMINGTON 20608 2.4 2044 2019.5 24.5 0.5

GLASTONBURY 27901 3.2 2731 2734.2 −3.2 −0.1
GRANBY 9369 1.1 942 918.1 23.9 0.8

HARTFORD 139739 16.2 13537 13693.9 −156.9 −1.3
MANCHESTER 51618 6 5078 5058.4 19.6 0.3

MARLBOROUGH 5535 0.6 535 542.4 −7.4 −0.3
NEW BRITAIN 75491 8.8 7406 7397.8 8.2 0.1
NEWINGTON 29208 3.4 2880 2862.3 17.7 0.3
PLAINVILLE 17392 2 1742 1704.3 37.7 0.9
PLYMOUTH 11822 1.4 1150 1158.5 −8.5 −0.2

ROCKY HILL 16554 1.9 1630 1622.2 7.8 0.2
SIMSBURY 22023 2.6 2093 2158.2 −65.2 −1.4

SOUTH WINDSOR 22090 2.6 2215 2164.7 50.3 1.1
SOUTHINGTON 38518 4.5 3653 3774.6 −121.6 −2

SUFFIELD 11427 1.3 1109 1119.8 −10.8 −0.3
WEST HARTFORD 60110 7 6099 5890.5 208.5 2.7
WETHERSFIELD 25651 3 2519 2513.7 5.3 0.1

WINDSOR 27817 3.2 2809 2726 83 1.6
WINDSOR LOCKS 12358 1.4 1173 1211 −38 −1.1

total 861739 100 84447 84447.1 0 X2 = 32.2, p-value = 0.27

The first column gives the population of each town, according to the 1990 Census.
The second column expresses the population as a percentage of the total population for
the whole judicial district. The third column (headed “observed”) gives the number of
summonses that were mailed to each town, according to the JIS records. Don’t try just
yet to figure out what the other columns mean.

† By excluding the 4537 from the comparison, I am tacitly modelling address changes
to have the same effect on each town.
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Consider what happened for the City of Hartford. According to the Census, the
City made up a fractionp = 139739/861739≈ 16.2% of the total population of the
judicial district. About 16.2% of the persons named on the master list should have come
from Hartford. In a sample of sizen = 84447 drawn from the master list, the mean
number of Hartford adresses would have beennp ≈ 13693.9, the value given in the
column headed “expected”. (I write the values with one figure after the decimal point so
that you do not confuse the values with any actually observed count.) This mean value is
not too far from the the observed number from Hartford, 13537. Of course there would
have been some difference due to sampling variability. As a rough approximation we
could treat the observed number as an observation from a Bin(n, p) distribution, treating
the selection of each name from the master like the toss of a coin that lands heads with
probability p ≈ 16.2%. The standard deviation for the Binomial is

√
np(1− p). To be

on the conservative side, and allow JIS the benefit of more potential variability around
the mean value, I will treat the observed countX as approximatelyN(np,

√
np). That

is,
observed count− expected count√

expected count

should be roughly like an observation from a standard normal distribution (or perhaps
from a normal distribution with a slightly smaller variance).‡

The value for Hartford in the column headed “chi” equals

13537− 13693.9√
13693.9

≈ −1.3

It would not be too suprising to see a standard normal taking such a value. (How likely
is it that |Z| ≥ 1.3 if Z has a standard normal distribution?) The figure for Hartford
appears consistent with the model (proportions as prescribed by the statute).

Similar reasoning applies to each of the other towns. The values in the “chi”
column should behave roughly like standard normals, if the proportions in the master
file were as directed by statute. What do you think? Do they look reasonable?

It is traditional to assess the overall fit of the model by calculating thePearson
chi-square statisticX2 = the sum of the squares of the chi values. The reason for the
name is that the statistic should behave roughly like a random variable with a chi-squre
distribution if the model is correct.

In general, thechi-square distribution on k degrees of freedom is defined
as the distribution of the sum of squares ofk independent standard normal random
variables. M&M (page 630) denote the distribution byχ2(k).

The chi values are not quite independent, because they are derived from the
differences between observed counts and expected values under a model that forces the
sum of all the differences to be zero. Once we know 28 of the chi values we can figure
out the value of the 29th by simple algebra. We lose onedegree of freedom due to
the constraint. It can be shown that the statisticX2 is approximately distributed not
like the sum of squares of 29 independent standard normals, but rather like the sum of
squares of 28= 29− 1 such variables. If the model is correct, the statisticsX2 should
have approximately aχ2(28) distribution.

As noted near the bottom right-hand corner of the table,X2 actually takes the value
32.2. If a random variableT has aχ2(28) distribution,P{T ≥ 32.2} ≈ 0.27. We would
see a value as large as, or larger than, the observedX2 with about a 27% probability.
That is, we have a p-value of about 0.27. The observed value ofX2 is not so unusual.

‡ Actually, even the Binomial overestimates the variability in a single count for a simple
random sample. I wanted to use the larger standard deviation

√
np to fit with the definition

used for the chi-square statistic. In effect, the increase from
√

np(1− p) to
√

np compen-
sates for a dependence between towns in the chi values. Also, there are other ways to argue
for the larger standard deviation.
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The observed counts are in reasonable agreement with the proportions that would be
expected from the statute.

3. Sourcelists versus disqualification status

For the period covered by the challenge, the names for the master lists were drawn from
two sources: the voter lists for each town, and the DMV lists of licensed drivers. For
each record in the summary file, JIS attached a code indicating whether the person was
on the DMV list alone, the voter list alone, or on both lists.

The possible effect of the different sourcelists is an important issue, particularly in
view of recent moves to require JIS to use more sourcelists.

One way to compare the quality of the different sourcelists is to look at outcomes
that might suggest poor address quality. The first of the following four tables (the one
labelled [counts]) shows a cross-classification of 1993-94 summonses, according to the
sourcelist and according to various types of outcome:

undel = initial summons returned by Post Office as undeliverable
undel2 = follow-up mailing returned by Post Office as undeliverable
NS = did not show up at court house
other = all other possibilities for a summons

[counts] undel undel2 NS other total
DMV 5546 583 1901 37612 45642
voter 2974 294 785 8670 12723
both 552 55 252 8599 9458
total 9072 932 2938 54881 67823

[table %] undel undel2 NS other total
DMV 8.2 0.9 2.8 55.5 67.4
voter 4.4 0.4 1.2 12.8 18.8
both 0.8 0.1 0.4 12.7 14
total 13.4 1.4 4.4 81 100

[row %] undel undel2 NS other total
DMV 12.2 1.3 4.2 82.4 100
voter 23.4 2.3 6.2 68.1 100
both 5.8 0.6 2.7 90.9 100

[col %] undel undel2 NS other
DMV 61.1 62.6 64.7 68.5
voter 32.8 31.5 26.7 15.8
both 6.1 5.9 8.6 15.7
total 100 100 100 100

The bottom left table expresses counts as percentages of the total. You could
regard the percentages in the body of the table as estimates of probabilities of events
Si ∩ Dj , whereS1, S2, and S3 denotes the event that the person was listed on DMV,
voter, or both sourcelists, andD1 through D4 correspond to the four outcomes. The
marginal percentages estimate the probabilities of eventsSi or Dj . For example, the
event {name only on DMV listand summons undeliverable} is estimated as having
probability 0.082. The event{name only on DMV list} is estimated as having probability
0.674. The event{summons undeliverable} is estimated as having probability 0.134.†

The two tables on the right express the counts as row- and column-percentages,
which have an interpretation as estimates of conditional probabilities.

If the two classifications were independent, we would have factorizations

P(Si and Dj ) = P(Si )× P(Dj ) for eachi and j

The fractions in the body of the [table%] table should then be close to the products of
the marginal percentages. For example, the “voterand undel” cell should contain a
value close to 18.8%× 13.4%≈ 2.52%. It actually contains the value 4.4%. Similarly,
we could calculate the expected counts that would appear in the body of the count table,
by multiplying products of marginal percentages by the total, 67823. That would give a

† The interpretation of the percentages is complicated by the fact that JIS worked with
only a sample from each voter list. The actual overlap between the two sourcelists was
much larger than suggested by the figures for ‘both’.
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table of ‘estimated counts’, under the model (‘no association’) that the row and column
factors were acting independently:

[expected] undel undel2 NS other total
DMV 6105.1 627.2 1977.1 36932.6 45642
voter 1701.8 174.8 551.1 10295.2 12723
both 1265.1 130 409.7 7653.2 9458
total 9072 932 2938 54881 67823

Notice that the [counts] table and the [expected] table have the same marginal
totals. The differences between corresponding entries in the tables would be attributed
to random noise, under the model. If we rescale, dividing each difference by the square
root of the value in the [expected] table, we get the [chi] table, whose entries should be
(roughly) standard normals under the model of no association.

[chi] undel undel2 NS other
DMV -7.2 -1.8 -1.7 3.5
voter 30.8 9 10 -16
both -20 -6.6 -7.8 10.8 X2 = 2080.5

Clearly the no-association model is not doing a good job at predicting the observed
counts. Can you see any pattern in these standardized differences (which I am calling
chi values)?

The statisticX2 is defined as the sum of the squares of the chi values. Under
the independence model, it should behave roughly like an observation on a chi-square
distribution, with(3− 1)× (4− 1) = 6 degrees of freedom. The p-value for 2080.5 is
so close to zero that it is not worth displaying.

In general, under the no-association model applied to a two-way table withr
rows andc columns, theX2 should have an approximate chi-square distrbution on
rc − (r + c − 1) = (r − 1) × (c − 1) degrees of freedom. The matching up of the
marginal totals between the table of observed counts and the table of expected counts
placesr + c− 1 constraints on the chi values.

It is not surprising that there is some association between the sourcelist and
outcome. For example, only citizens can be on the voter list, and only noncitizens are
able to claim the noncitizenship disqualification, which is one of the outcomes included
in the ‘other’ category.

We could try to eliminate the obvious forms of dependence between sourcelist and

[chi] undel undel2 NS
DMV -1.1 0.2 1.8
voter 2.5 0.1 -4.5
both -2 -0.9 4.1

outcome by restricting attention to only those summonses that were “problematic”. That
is, set aside the summonses in the ‘other’ category.
Under the no-association model, calculate expected
counts, subtract them from observed counts, then
divide by the square root of the expected counts

to get a new table of standardized differences (chi values). The observed value of 52.3
X2 is again far too large to have come from an approximateχ2(4) distribution, but the
no-association model appears to be a much better explanation than before.‡

As a final offering, I restrict attention to just those summonses that were in one

[chi] undel undel2
DMV -0.2 0.5
voter 0.2 -0.6
both 0.1 -0.2

of the two undeliverable categories. The no-association
model gives a table of fairly small standardized differences
(chi values), with a sum of squaresX2 equal to 0.7. A
random variableT with a χ2(2) distribution has about

a 70% chance of exceeding 0.7. It appears that a model of no-association between
sourcelist and type of undeliverability problem is consistent with the observed counts.

‡ Chi-square tests with large numbers of counts can detect very small departures—which
may not be of great practical significance—from reasonable models.


