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Read M&M §10.1 and §10.2 up to page 686. Inference for simple linear
regression: normal theory. Fighting your way through computer output.

In Lecture 3 the method of least squares was treated purely as a mathematical
method for fitting straight lines to scatterplots. The statistical analysis of the fit makes
assumptions about the probabilistic mechanism by which the data in a scatterplot are
generated. When the assumptions are satisfied, probability theory can make assertions
about the behaviour of various quantities associated with the fit.

In real situations we seldom know when the theoretical model is completely
satisfied, but we nevertheless often invoke the statistical theory, based on idealized
assumptions, as a guide.

1. An artificial example

The standard theoretical model for a scatterplot with points(xi , yi ), for i = 1, 2, . . . ,n,
places no assumptions on how thexi ’s are generated, but, conditional on thexi ’s it
assumes

yi = α + βxi + εi for i = 1, . . . ,n,

whereα andβ are (unknown) constants, and theεi ’s are independent random errors, each
N(0, σ ) distributed for some (unknown) standard deviationσ . Equivalently, conditional
on thosexi ’s, the yi ’s are assumed to be independent, withN(α + βxi , σ ) distributions.

The least squares procedure finds valuesa andb to minimize∑
i

(yi − a− bxi )
2

The coefficients a and b depend on both thexi ’s and theyi ’s; they are random
variables. You could think ofa andb as estimates for the unknown true coefficentsα

andβ, and think of thefitted values

ŷi = a+ bxi

as estimates of the mean valuesα + βxi . Conceptually, the data are modelled as a
combinationsignal + noise, where

signali = α + βxi and noisei = εi for i = 1, . . . ,n

The least squares procedure decomposes the observed data asfit + residual, where

ŷi = fittedi and ei = yi − ŷi = residuali

The residuals are the part of the data that remains after removal of a guess at the true
signal. We are hoping that the fitted values give a good estimate of the signal, with the
residuals capturing some features of the noise.

As an illustration, I artifically generated some data, withα = 3, β = 2, and
σ = 0.5, andn = 8. The least squares fit hada ≈ 2.81 andb ≈ 2.41. The next table
summarizes the data and the least squares fit.

x α + βx ε y fitted residual
0.08 3.16 −0.38 2.78 3.01 −0.23
0.13 3.26 −0.05 3.2 3.12 0.08
0.32 3.65 0 3.65 3.59 0.05
0.4 3.81 −0.24 3.56 3.79 −0.22
0.41 3.82 0.47 4.3 3.8 0.49
0.5 3.99 −0.21 3.78 4.01 −0.23
0.69 4.37 0.47 4.85 4.47 0.38
0.83 4.65 −0.18 4.48 4.8 −0.33

In the plot, the dotted sloping line shows the true mean (the liney = α + βx),
and the dotted vertical lines represent theεi errors. The solid sloping line shows the



Statistics 101–106 Lecture 9 (3 November 98) c©David Pollard Page 2

least squares fit (the liney = a+ bx) and the solid vertical lines represent the residuals,
slightly offset horizontally, for clarity. Notice how the residuals are similar to the errors,
but not quite the same.
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Minitab output (slightly edited):

The regression equation isy = 2.81+ 2.41x

Predictor Coef StDev T P
Constant 2.8115 0.2377 11.83 0.000

x 2.4111 0.4926 4.89 0.003

S = 0.3307 R-Sq = 80.0% R-Sq(adj) = 76.6%

Analysis of Variance
Source DF SS MS F P

Regression 1 2.6200 2.6200 23.96 0.003
Residual Error 6 0.6562 0.1094

Total 7 3.2762

How much of the probability theory and the detail behind the least squares procedure
do you need to understand in order to interpret the output correctly?

In my opinion, there is little point in memorizing formulae for the coefficients
a and b, because all calculations are carried out easily by computer. There are a few
points worth knowing, because they explain a lot.

(i) For all (linear) least squares problems, the fitted values are expressible as linear
combinations of the observedyi ’s, with multipliers depending only on thexi values. For
the xi ’s in this artificial example, the multipliers are given in the next table.
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y1 y2 y3 y4 y5 y6 y7 y8
fit1 0.38 0.34 0.2 0.14 0.13 0.07 −0.08 −0.18
fit2 0.34 0.31 0.19 0.14 0.13 0.08 −0.05 −0.14
fit3 0.2 0.19 0.15 0.13 0.13 0.11 0.07 0.04
fit4 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.11
fit5 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12
fit6 0.07 0.08 0.11 0.12 0.12 0.14 0.17 0.19
fit7 −0.08 −0.05 0.07 0.12 0.12 0.17 0.28 0.37
fit8 −0.18 −0.14 0.04 0.11 0.12 0.19 0.37 0.49

You should read the table as asserting that

<1> ŷ1 = 0.38y1+ 0.34y2+ 0.2y3+ 0.14y4+ 0.13y5+ 0.07y6− 0.08y7− 0.18y8

and so on. There is a formula that gives the multipliers as a functions of thexi ’s, but
you don’t need to memorize it. For any least squares problem, it would not be hard to
produce the values by computer, if you ever wanted to inspect them. For different least
squares problems the multipliers are different.

If all the εi were zero, all the(xi , yi ) points would lie on the liney = α + βx.
The fitted valueŝyi would then coincide with the meansα + βxi . In other words, if we
replace the observedyi values by their means we must recover those same means using
least squares:

α + βx1 = 0.38(α + βx1)+ 0.34(α + βx2)+ 0.2(α + βx3)+ 0.14(α + βx4)

+ 0.13(α + βx5)+ 0.07(α + βx6)− 0.08(α + βx7)− 0.18(α + βx8),<2>

and similarly for all the other means.
The two formulae,<1> and<2>, have an important consequence whenyi =

α + βxi + εi , namely:

ŷ1 = 0.38(α + βx1+ ε1)+ 0.34(α + βx2+ ε2)+ 0.2(α + βx3+ ε3)

+ 0.14(α + βx4+ ε4)+ 0.13(α + βx5+ ε5)+ 0.07(α + βx6+ ε6)

− 0.08(α + βx7+ ε7)− 0.18(α + βx8+ ε8)

= α + βx1+ 0.38ε1+ 0.34ε2+ 0.2ε3+ 0.14ε4+ 0.13ε5+ 0.07ε6− 0.08ε7− 0.18ε8

and so on. That is,̂y1 differs from the valueα + βx1, which it is supposed to estimate,
by the quantity

0.38ε1+ 0.34ε2+ 0.2ε3+ 0.14ε4+ 0.13ε5+ 0.07ε6− 0.08ε7− 0.18ε8,

a linear combination of independent normal errors. The last sum has a normal distribution
with mean 0 and variance equal to

0.382var(ε1)+ 0.342var(ε2)+ 0.22var(ε3)+ 0.142var(ε4)

+ 0.132var(ε5)+ 0.072var(ε6)+ 0.082var(ε7)+ 0.182var(ε8) = σ 2C2,

with C a constant that you, or the computer, can easily figure out.
The bottom line is that the fitted values are all normally distributed, with means

equal to the correspondingα + βxi values, and variances equal to multiples ofσ 2 that
are easily determined.

(ii) Similarly, the coefficients for the least squares fit are always expressible as linear
combinations of the observedyi ’s, with multipliers depending only on thexi values.
For the artificial example, the multipliers are given in the next table. In a different least
squares problem the multipliers would be different.

y1 y2 y3 y4 y5 y6 y7 y8
a 0.44 0.4 0.21 0.14 0.13 0.05 −0.12 −0.25
b −0.75 −0.65 −0.21 −0.04 −0.02 0.17 0.59 0.9



Statistics 101–106 Lecture 9 (3 November 98) c©David Pollard Page 4

As before, you should interpret the table as meaning

a = 0.44y1+ 0.4y2+ 0.21y3+ 0.14y4+ 0.13y5+ 0.05y6− 0.12y7− 0.25y8

b = −0.75y1− 0.65y2− 0.21y3− 0.04y4− 0.02y5+ 0.17y6+ 0.59y7+ 0.9y8

As with the fitted valueŝyi , the estimatora is normally distributed with meanα, and
variance equal to a known multiple ofσ 2; and similarly forb.

(iii) How can we estimate the unknownσ 2 in general? Each of the random variables
Zi = εi /σ has a standard normal distribution. The sum of squares

∑
i Z2

i =
∑

i ε
2
i /σ

2

has a chi-square distribution onn degrees of freedom, with mean valuen and standard
deviation

√
2n. The random variable

∑
i ε

2
i should be close tonσ 2. Unfortunately, in

general we do not know theεi , but we can calculate the residualsei , which we hope are
close to theεi .

The residuals are slightly more constrained than theεi ’s, because of the fitting
procedure. We must have

∑
i ei = 0, for otherwise a change in the coefficienta would

lead to a smaller sum of squared residuals. [In fact, addition of the meane of the
resdiuals to the coefficienta would reduce the sum of squared residuals from

∑
i e2

i to∑
i (ei − e)2.] Similarly, the sum

∑
i ei xi must be zero, for otherwise a small change in

the coefficientb would lead to a smaller sum of squared residuals. The two constraints,∑
i

ei = 0 and
∑

i

ei xi = 0,

imply that all the residuals can be determined once we known−2 of them. As with the
chi-square tests from Lecture 8, the constraints reduce the degrees of freedom. The sum
of squares

∑
i e2

i /σ
2 has chi-square distribution with onlyn−2 degrees of freedom. The

random variable
∑

i e2
i should be close to(n− 2)σ 2. The parameterσ can be estimated

by the random variables=
√∑

i e2
i /(n− 2).

Armed with these facts, let us return to the Minitab output. The first portion was:

Predictor Coef StDev T P
Constant 2.8115 0.2377 11.83 0.000

x 2.4111 0.4926 4.89 0.003

S = 0.3307 R-Sq = 80.0% R-Sq(adj) = 76.6%

The valueS= 0.3307 is the estimate ofσ . The column headed ‘Coef’ gives the
values fora and b. Under the model, the coefficientb has aN(β,C1σ) distribution,
whereC1 is a constant that Minitab has calculated, as in (i). The values in the column
headed ‘StDev’ gives the estimated standard deviations. For example, 0.4926= C1s
is the estimate forC1σ . The column headed ‘T’ is just the ratio ‘Coef’/‘StDev’. For
example, 4.89= b/(C1s). If β were zero (just pretend that we don’t really knowβ for
the moment), the ratiob/(C1σ) would have aN(0, 1) distribution, and the ratiob/(C1s)
would have a t-distribution onn− 2= 6 degrees of freedom. The number 0.003 in the
column headed ‘P’ is the corresponding p-value: it is the probabilityP{|T | ≥ 4.89} for
a random variableT with a t-distribution on 6 degrees of freedom.

The p-values can be used to test hypotheses, such asβ = 0, under the assumption
that the model is correct.That is, the p-value is calculated under the assumption that
the yi are independentN(α, σ ) random variables.

For a simple, straight line regression, the Analysis of Variance table contains almost
the same information as the table just discussed.

Source DF SS MS F P
Regression 1 2.6200 2.6200 23.96 0.003

Residual Error 6 0.6562 0.1094
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Total 7 3.2762
I will explain more about the details next week. For the moment just observe that
0.1094= s2 and 23.96= 4.892, and that the p-value 0.003 is the same as before.

Mintab could also predict the valueα + βx0, for an x0 of your choosing. Under
the model, the estimatora+ bx0 would be normally distributed with meanα + βx0 and
standard deviation equal to a mutipleC0σ for a constantC0 that Minitab could calculate.
With probability 95%, the intervala+ bx0 ± 1.96C0σ would contain the trueα + βx0.
If we replacedσ by the estimates, we would have to increase 1.96 to a value taken
from a t-ditribution on 6 degrees of freedom.

If we were trying to predict the behavior of a new value,y0 = α + βx0 + ε0, with
ε0 distributedN(0, σ ) independently of all the observed data, the width of the interval
would have to be increased, because

var(a+ bx0+ ε0) = var(a+ bx0)+ var(ε0) = (C2
0 + 1)σ 2

Some of the Section leaders might want to explain this idea further.

2. An ancient example

The method of least squares was invented by Legendre (or maybe by Gauss—it is a
matter of dispute) near the start of the nineteenth century, for the solution of problems
in astronomy and geodesy.†

Legendre demonstrated his method by a calculation of the “figure of the earth”,
based on measurement of distances between places of known latitude along a meridean
running through France. The calculation was important because it was related to the
question of whether the earth bulged slightly more at the equator than a perfect sphere
should. The calculation was also closely related to the definition of the kilometer, as one
10,000th of the distance from the equator to the north pole along the meridean through
Paris.

A quarter of a century earlier, Roger Boscovitch had developed another method
to calculate the ellipticity of the earth (the fraction by which the diameter in the plane
of the equator exceeds the diameter through the poles), using the data from the first
two columns of the following table. The distances represent the lengths of 1◦ arcs of
latitude, measured in units of toises (1 toise≈ 6.39 feet).

place latitude distance ‘true’ lat ‘true’ arc
Quito 0◦0′ 56751 0◦12′ 56778

Cape of Good Hope 33◦18′ 57037 34◦26′ 56958
Rome 42◦59′ 56979 41◦54′ 57029
Paris 49◦23′ 57074 48◦51′ 57098

Lapland 66◦19′ 57422 68◦ 57263

I derived the values in the last two columns by interpolation from a modern atlas (the
value for Lapland is of course imprecise, because I don’t know which point in Lapland
is intended), then application of a theoretical formula using modern values for the
diameters of the earth (12,756km in the plane of the equator, 12,714km from pole to
pole). The diameter at the equator is about 1.0033 times the diameter at the poles. The
earth is (roughly) an oblate spheroid, not a perfect sphere; a cross-section taken through
the poles is an ellipse, not a perfect circle.

The geometry of the ellipse gives the relationship,

distance≈ α + β sin2(θ) at latitudeθ,

† The material for this section comes mostly from Chapter 1 ofThe History of Statistics:
The Measurement of Uncertainty before 1900by Stephen M. Stigler, Harvard University
Press, 1986.
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whereα denotes the length of a degree of latitude at the equator andα + β denotes the
length of a degree of latitude at the pole. The constantsα andβ can be derived from
the equatorial and polar diameters. I calculatedα = 56777.6 andβ = 564.5. The ratio
of diameters should be close to 1+ β/(3α) ≈ 1.0033.
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The picture shows the theoretical relationship as a sloping dotted line, with the
vertical dotted lines indicating the modern values (as best as I could determine them) for
sin2(latitude). The solid line shows the least squares fit. Of course Boscovitch couldn’t
have used a computer to fit the least squares line—least squares hadn’t even been
invented when he studied the problem. If he had been able to, he would have seen some
output like:

Value Std. Error t value Pr(> |t |)
(Intercept) 56736.4856 80.4995 704.8056 0.0000

ss2 724.6624 155.3664 4.6642 0.0186
Residual standard error: 97.13 on 3 degrees of freedom
Multiple R-Squared: 0.8788

He could then have estimated the ratio of diameters as

1+ 725/(3× 56736) ≈ 1.004

Notice thatα andβ, as calculated from modern data, are both within one (estimated)
standard deviation of their estimated values:

56736− α
80

≈ −0.5 and
725− β

155
≈ 1.0

If we believe that the earth is a spheroid, then we know that the plot of arc length
per degree versus sin2(latitude) should be linear, and that departures from the theoretical
straight line should be attributed to measurement error. Should we take the estimated
standard errors, and ther 2 value, seriously? [They are calculated assuming a specific
probabilty model for the data. If the model is a poor approximation, then the calculations
have little meaning.] Is it reasonable to treat the errors in measurement as independent
N(0, σ ) random variables, perhaps with some vague appeal to a central limit effect as
justification? [It is standard practice to do so, unless examination of diagnostics makes
the assumption implausible. With only five observations it is rather difficult to make any
serious enquiry into distributional assumptions about errors, but you might try looking
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at the residuals.] Should we worry about the errors in the determination of latitudes?
[We should, but the details are a bit too complicated for this course.]

3. The leaning tower of Pisa

Exercises 10.8 through 10.10 of M&M (pages 697–698) concern data on the amount
on lean in the famous tower over time, during the twentieth century. The lean (or tilt)
is given in tenths of a millimeter. The picture shows only the data from 1975 to 1987,
with the least squares line for those years superimposed.

year lean
(18) (71)
75 642
76 644
77 656
78 667
79 673
80 688
81 696
82 698
83 713
84 717
85 725
86 742
87 757

year
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The output from Mintab seems to indicate a good straight line fit for the data.

Minitab output (slightly edited):

The regression equation isy = −61.1+ 9.32x
Predictor Coef StDev T P
Constant -61.12 25.13 -2.43 0.033

x 9.3187 0.3099 30.07 0.000

S = 4.181 R-Sq = 98.8% R-Sq(adj) = 98.7%

Analysis of Variance
Source DF SS MS F P

Regression 1 15804 15804 904.12 0.000
Residual Error 11 192 17

Total 12 15997
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What do you think? Do the residuals look roughly like normal noise? [It might
be better to scale the residuals by estimates of their standard errors before we wonder
whether they look like normal noise.] Is that a pattern in the residuals that I see, or is
my imagination just working too hard at finding patterns? Are you inclined to accept the
description of the data for the lean over time as (independent) normal noise superimposed
on a linear trend?

I know too little about physics to say whether a linear fit is predicted by some grand
theory about the behavior of heavy objects sitting on soft ground. It does not surprise
me that, over a short time period, the lean increases at a roughly linear rate—any smooth
function is roughly linear over short intervals. [It would also not have surprised me
to see a series of jumps following periods of little activity, by analogy with the way
earthquakes periodically release pent up strains within the crust.]

It would amaze me greatly if the rate of increase in the lean were constant over a
long stretch of time. That is, it would be amazing to see a straight line fitting well to
the data over a very long period. For example, I know that various attempts have been
made in the past to stop the progressive leaning, with bad effects in some cases.

If the object of the exercise were to predict what might happen in a few more years,
it seems reasonable to project the linear relationship out a little beyond 1987. I can have
faith that whatever was causing the roughly linear association between tilt and time will
keep acting similarly for a little while, without buying into the idea that the linear trend
is a “true explanation” for what is going on.


