
Chapter 5

Normal approximation to the Binomial

In 1733, Abraham de Moivre presented an approximation to the Binomial distribution.
He later appended the derivation of his approximation to the solution of a problem asking
for the calculation of an expected value for a particular game. He posed the rhetorical ques-
tion of how we might show that experimental proportions should be close to their expected
values.

A passage from De Moivre

Corollary.

From this it follows, that if after taking a great number of Experiments,
it should be perceived that the happenings and failings have been nearly in
a certain proportion, such as of 2 to 1, it may safely be concluded that the
Probabilities of happening or failing at any one time assigned will be very
near in that proportion, and that the greater the number of Experiments has
been, so much nearer the Truth will the conjectures be that are derived from
them.

But suppose it should be said, that notwithstanding the reasonableness
of building Conjectures upon Observations, still considering the great Power
of Chance, Events might at long run fall out in a different proportion from
the real Bent which they have to happen one way or the other; and that sup-
posing for Instance that an Event might as easily happen as not happen,
whether after three thousand Experiments it may not be possible it should
have happened two thousand times and failed a thousand; and that there-
fore the Odds against so great a variation from Equality should be assigned,
whereby the Mind would be the better disposed in the Conclusions derived
from the Experiments.

In answer to this, I’ll take the liberty to say, that this is the hardest
Problem that can be proposed on the Subject of Chance, for which reason I
have reserved it for the last, but I hope to be forgiven if my Solution is not
fitted to the capacity of all Readers; however I shall derive from it some
Conclusions that may be of use to every body: in order thereto, I shall here
translate a Paper of mine which was printed November 12, 1733, and com-
municated to some Friends, but never yet made public, reserving to myself
the right of enlarging my own Thoughts, as occasion shall require.

Novemb. 12, 1733
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Chapter 5 Normal approximation to the Binomial

A Method of approximating the Sum of the Terms of the Bi-
nomial a + b\n expanded into a Series, from whence are
deduced some practical Rules to estimate the Degree of
Assent which is to be given to Experiments.

Altho’ the Solution of problems of Chance often requires that several Terms
of the Binomial a + b\n be added together, nevertheless in very high Pow-
ers the thing appears so laborious, and of so great difficulty, that few peo-
ple have undertaken that Task; for besides James and Nicolas Bernouilli, two
great Mathematicians, I know of no body that has attempted it; in which,
tho’ they have shown very great skill, and have the praise that is due to their
Industry, yet some things were further required; for what they have done is
not so much an Approximation as the determining very wide limits, within
which they demonstrated that the Sum of the Terms was contained. Now the
method . . .

A. De Moivre, The Doctrine of Chances: or, A Method of Calculating the Probabilities of
Events in Play, 3rd edition (1756), pages 242–243. (Photographic reprint of final edi-
tion by Chelsea Publishing Company, 1967.)

This Chapter will explain de Moivre’s approximation.

Suppose Xn has a Bin(n, p) distribution. That is,

bn(k) := P{Xn = k} =
(

n

k

)
pkqn−k for k = 0, 1, . . . , n, where q = 1 − p,

What does the distribution look like?

Recall that Tchebychev’s inequality suggests the distribution should be clustered around
the expected value, np, with a spread determined by the standard deviation, σn = √

npq.
Also, from Problem sheet 4, you know that the probabilities bn(k) for k = 0, 1, . . . , n
achieve their maximum vaue at a value kmax close to np. Moreover, the values of b(k) are
increasing for k < kmax and decreasing for k > kmax, facts that follow from the simple ex-
pression for the ratio of successive terms:

<5.1>
bn(k)

bn(k − 1)
= (n − k + 1)p

kq
for k = 1, 2, . . . , n.

The plots on the left-hand side of the next display, for the Bin(n, 0.4) distribution with
n = 20, 50, 100, 150, 200, illustrate this behavior. Each plot shows bars of height bn(k)

and width 1, centered at k. The maxima occur near n × 0.4 for each plot. As n increases,
the spread also increases, reflecting the increase in the standard deviations σn = √

npq for
p = 0.4. Each of the shaded regions has area∑n

k=0
bn(k) = 1 for various n.

The location and scaling effects of the increasing expected values and standard devia-
tions (with p = 0.4 and various n) is removed from the plots on the right-hand side of the
display. Each plot is shifted to bring the location of the maximum to 0 and the horizontal
scale is multiplied by a factor 1/σn . Now a bar of height σn × bn(k) with width 1/σn is cen-
tered at (k − np)/σn . The plots all have similar shapes. Each shaded region still has area 1.
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Notice how the plots on the right settle down to a symmetric ‘bell-shaped’ curve. The shape
of the “standardized” Binomial quickly stablizes as n increases.

De Moivre established this stability mathematically, by showing that

P{X = kmax + m} ≈ b(kmax) exp

(
− m2

2npq

)
.

Here, and subsequently, I translate de Moivre’s results into modern notation. Also, I omit
the subscript n from the bn(k) symbol, because n will stay fixed duringthe explanation.

De Moivre’s approximation is largely explained by two simple facts:

log(1 + x) ≈ x for x near 0,

1 + 2 + 3 + . . . + m = 1
2 m(m + 1) ≈ 1

2 m2.

The ratio in equality <5.1> takes a simpler form if we replace k by kmax + i .

b(kmax + i)

b(kmax + i − 1)
= (n − kmax − i + 1)p

(kmax + i)q
≈ (nq − i)p

(np + i)q
= 1 − i/(nq)

1 + i/(np)
.

The logarithm of the last ratio equals

log

(
1 − i

nq

)
− log

(
1 + i

np

)
≈ − i

nq
− i

np
= − i

npq
.

By summing such terms we get an approximation for the logarithm of the ratio of the indi-
vidual Binomial probabilities to their largest term. For example, if m ≥ 1 and kmax + m ≤ n,

log
b(kmax + m)

b(kmax)
= log

(
b(kmax + 1)

b(kmax)
× b(kmax + 2)

b(kmax + 1)
× . . . × b(kmax + m)

b(kmax + m − 1)

)
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= log
b(kmax + 1)

b(kmax)
+ log

b(kmax + 2)

b(kmax + 1)
+ . . . + log

b(kmax + m)

b(kmax + m − 1)

≈ −1 − 2 − . . . − m

npq

≈ − 1
2

m2

npq
.

Thus

P{X = kmax + m} ≈ b(kmax) exp

(
− m2

2npq

)
for m not too large.

An analogous approximation holds for 0 ≤ kmax + m ≤ kmax.

Using the fact that the probabilities sum to 1, de Moivre was also able to show for
p = 1/2 that the b(kmax) should decrease like 2/(B

√
n), for a constant B that he was ini-

tially only able to express as an infinite sum. Referring to his calculation of the ratio of the
maximum term in the expansion of (1 + 1)n to the sum, 2n , he wrote (page 244 of the Doc-
trine of Chances):

When I first began that inquiry, I contented myself to determine at large
the Value of B, which was done by the addition of some Terms of the
above-written Series; but as I perceived that it converged but slowly, and
seeing at the same time that what I had done answered my purpose tol-
erably well, I desisted from proceeding further till my worthy and learned
Friend Mr. James Stirling, who had applied himself after me to that
inquiry, found that the Quantity B did denote the Square-root of the
Circumference of a Circle whose Radius is Unity, so that if that Cir-
cumference be called c, the Ratio of the middle Term to the Sum of all
the Terms will be expressed by 2√

nc
.

For positive integers n, the Stirling formula asserts that

n! ≈
√

2πnn+1/2e−n

in the sense that the ratio of both sides tends to 1 as n goes to infinity. (See the derivation at
the end of this Chapter.) Consequently,

b(k) = n!

k!(n − k)!
pkqn−k

≈ nn+1/2e−n+k+n−k

√
2π(np)k+1/2(nq)n−k+1/2

pkqn−k if k ≈ np

= 1√
2πnpq

De Moivre’s approximation becomes, for general p,

P{Xn = kmax + m} ≈ 1√
2πnpq

exp

(
− m2

2npq

)
,

or, substituting np for kmax and writing k for kmax + m,

P{Xn = k} ≈ 1√
2πnpq

exp

(
− (k − np)2

2npq

)
= 1√

2πσn

exp

(
− (k − np)2

2σ 2
n

)
.

That is, P{Xn = k} is approximately equal to the area under the smooth curve

f (x) = 1√
2πσn

exp

(
− (x − np)2

2σ 2
n

)
,

for the interval k − 1/2 ≤ x ≤ k + 1/2. (The length of the interval is 1, so it does not appear
in the previous display.)
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Similarly, for each pair of integers with 0 ≤ a < b ≤ n,

P{a ≤ Xn ≤ b} =
∑b

k=a
bn(k) ≈

∑b

k=a

∫ k+1/2

k−1/2
f (x) dx =

∫ b+1/2

a−1/2
f (x) dx .

A change of variables, y = (x − np)/σn , simplifies the last integral to

1√
2π

∫ β

α

e−y2/2dy where α = (a − np − 1/2)/σn and β = (b − np + 1/2)/σn.

Remark. It usually makes little difference to the approximation if we omit the
±1/2 terms from the definitions of α and β.

How does one actually perform a normal approximation? Back in the olden days, one
would interpolate from a table of values for the function

�(x) = 1√
2π

∫ x

−∞
e−y2/2dy,

which was found in most statistics texts. For example, if X has a Bin(100, 1/2) distribution,

P{45 ≤ X ≤ 55} ≈ �

(
55.5 − 50

5

)
− �

(
44.5 − 50

5

)
≈ 0.8643 − 0.1356 = 0.7287

These days, I would just calculate in R:

> pnorm(55.5, mean = 50, sd = 5) - pnorm(44.5, mean = 50, sd = 5)

[1] 0.7286679

or use another very accurate, built-in approximation:

> pbinom(55,size = 100, prob = 0.5) - pbinom(44,size = 100, prob = 0.5)

[1] 0.728747

The mysterious
√

2π

Notice that, for the Binomial(n, 1/2) distribution with n very large,

1 = P{0 ≤ Xn ≤ n} ≈ �(
√

n) − �(−√
n) ≈ 1√

2π

∫ +∞

−∞
e−y2/2dy

In fact, the constant C = ∫ ∞
−∞ exp(−x2/2) dx is exactly equal to

√
2π . Equivalently, the

constant C2 = ∫∫
exp(−(x2 + y2)/2) dx dy equal to 2π . (Here, and subsequently, the double

integral runs over the whole plane.) We can evaluate this double integral by using a small
Calculus trick.

Using the fact that ∫ ∞

0
I{r ≤ z}e−z dz = e−r for r > 0,

we may rewrite C2 as a triple integral: replace r by (x2 + y2)/2, then substitute into the
double integral to get

C2 =
∫∫ (∫ ∞

0
I{x2 + y2 ≤ 2z}e−z dz

)
dx dy =

∫ ∞

0

(∫∫
I{x2 + y2 ≤ 2z} dx dy

)
e−z dz.

With the change in the order of integration, the double integral is now calculating the area of
a circle centered at the origin and with radius

√
2z. The triple integral reduces to∫ ∞

0
π

(√
2z

)2
e−z dz =

∫ ∞

0
π2ze−z dz = 2π.

That is, C = √
2π , as asserted.
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Stirling’s Formula

For positive integers n, the formula asserts that

<5.2> n! ≈
√

2πnn+1/2 exp(−n),

in the sense that the ratio of both sides tends to 1 as n goes to infinity.

As the first step towards a proof, write

log n! = log 1 + log 2 + . . . + log n

as a sum of integrals of indicator functions:

log n! =
n∑

i=1

∫ n

1
I{1 ≤ x < i} 1

x
dx =

∫ n

1

n∑
i=1

I{1 ≤ x < i} 1

x
dx

The sum of indicator functions counts the number of integers in the range 1, 2, . . . , n that
are greater than x . It equals n −�x�, where �x� denotes the integer part of x . The difference
ψ(x) = x − �x� lies in the range [0, 1); it gives the fractional part of x .

The integral representating log(n!) is equal∫ n

1

n − �x�
x

dx =
∫ n

1

n − x + ψ(x)

x
dx = n log n − n +

∫ n

1

ψ(x)

x
dx .

The last integral diverges as n tends to infinity, because the contribution from the inter-
val [i, i + 1) equals ∫ i+1

i

x − i

x
dx =

∫ 1

0

t

t + i
dt ≈ 1

2i
.

For the approximation I have treated the t + i in the denominator as approximately equal to i
and then noted that

∫ 1
0 t dt = 1/2. The sum of the contributions from the integral involv-

ing ψ increases like 1/2 log n.

It seems we have to subtract off an extra 1
2 log n = 1

2

∫ n
1

1
x dx to keep the remainder

term under control. Splitting the integral into contributions from intervals [i, i + 1), we then
get

<5.3> log(n!) − (n + 1/2) log n − n =
n∑

i=1

∫ 1

0

t − 1/2

t + i
dt

With the subtraction of the 1/2 we will get some cancellation between the negative contribu-
tion for 0 ≤ t ≤ 1/2 and the positive contribution for 1/2 < t ≤ 1.

Make the change of variable s = 1/2 − t for the integral over [0, 1/2], and the change
of variable s = t − 1/2 over (1/2, 1].∫ 1

0

t − 1/2

t + i
dt =

∫ 1/2

0

−s

i + 1/2 − s
ds +

∫ 1/2

0

s

i + 1/2 + s
ds

= −2
∫ 1/2

0

s2

(i + 1/2)2 − s2
ds.

The last expression is bounded in absolute value by i−2. The sum of the integrals forms a
convergent series. That is, for some constant c,∫ n

1

ψ(x) − 1/2

x
dx → c as n → ∞.

Equivalently, from <5.3>,
n!

nn+1/2e−n
→ ec as n → ∞

This result is equivalent to formula <5.2>, except for the identification of ec as the constant√
2π . See the discussion on the next page for a way of deriving the value of the constant.

For an alternative derivation of Stirling’s formula, see Feller An Introduction to Proba-
bility Theory and Its Applications, volume I, third edition, pages 52–53.
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