
Chapter 3

Things binomial

The standard coin-tossing mechanism drives much of classical probability. It gener-
ates several standard distributions, the most important of them being the Binomial. The
name comes from the binomial coefficient,

(n
k

)
, which is defined as the number of subsets

of size k for a set of size n. (Read the symbol as “n choose k”.) By convention,
(n

0

) = 1.

There is a quick probabilistic way to determine
(n

k

)
, for integers 1 ≤ k ≤ n. Suppose

k balls are sampled at random, without replacement, from an urn containing k red balls and
n − k black balls. Each of the

(n
k

)
different subsets of size k has probability 1/

(n
k

)
of being

selected. In particular, there is probabilty 1/
(n

k

)
that the sample consists of the red balls. We

can also calculate this probability using a conditioning argument. Given that the first i balls
are red, the probability that the (i + 1)st is red is (k − i)/(n − i). Thus

k

n
.
k − 1

n − 1
.
k − 2

n − 2
. . .

1

n − k + 1
Equating the two values for P{sample consists of all red balls}, we get(

n

k

)
= n(n − 1) . . . (n − k + 1)

k!
= n!

k!(n − k)!

The formula also holds for k = 0 if we interpret 0! as 1.

Remark. The symbol
(

n
k

)
is called a binomial coefficient because of its connec-

tion with the binomial expansion: (a + b)n = ∑n
k=0

(
n
k

)
akbn−k . The expansion can

be generalized to fractional and negative powers by means of Taylor’s theorem. For
general real α define(

α

0

)
= 1 and

(
α

k

)
= α(α − 1)(α − 2) . . . (α − k + 1)

k!
for k = 1, 2, . . .

Then

(1 + x)α =
∞∑

k=0

(
α

k

)
xk at least for |x | < 1.

Definition. A random variable is said to have a Bin(n, p) distribution, for a parameter p
in the range 0 ≤ p ≤ 1, if can take values 0, 1, . . . , n − 1, n with probabilities

P{X = k} =
(

n

k

)
pk(1 − p)n−k for k = 0, 1, . . . , n

Compare with the binomial expansion,

1 = (p + q)n =
n∑

k=0

(
n

k

)
pkqn−k where q = 1 − p.
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Example 1: For n independent tosses of a coin that lands heads with probability p,
show that the total number of heads has a Bin(n, p) distribution, with expected
value np.

The Binomial distribution arises in any situation where one is interested in the number
of successes in a fixed number of independent trials (or experiments), each of which can
result in either success or failure.

Example 2: An unwary visitor to the Big City is standing at the corner of 1st
Street and 1st Avenue. He wishes to reach the railroad station, which actually oc-
cupies the block on 6th Street from 3rd to 4th Avenue. (The Street numbers in-
crease as one moves north; the Avenue numbers increase as one moves east.) He is
unaware that he is certain to be mugged as soon as he steps onto 6th Street or 6th
Avenue.

Being unsure of the exact location of the railroad station, the visitor lets him-
self be guided by the tosses of a fair coin: at each intersection he goes east, with
probability 1/2, or north, with probability 1/2. What is the probability that he is
mugged outside the railroad station?

The following problem is an example of Bayesian inference, based on the probabilistic
result known as Bayes’s rule. You need not memorize the rule, because it is just an applica-
tion of the conditioning method you already know.

Example 3: Suppose a multiple-choice exam consists of a string of unrelated ques-
tions, each having three possible answers. Suppose there are two types of candi-
date who will take the exam: guessers, who make a blind stab on each question,
and skilled candidates, who can always eliminate one obviously false alternative,
but who then choose at random between the two remaining alternatives. Sup-
pose 70% of the candidates who take the exam are skilled and the other 30% are
guessers. A particular candidate has gotten 4 of the first 6 question correct. What
is the probability that he will also get the 7th question correct?

As a method of solving statistical problems, Bayesian inference is advocated devoutly
by some Statisticians, and derided by others. There is no disagreement regarding the validity
of Bayes’s rule; it is the assignment of prior probabilities—such as the PS and PG of the
previous Example—that is controversial in a general setting.

Problem 3 on Homework Sheet 1 could also be thought of as an example of Bayesian
inference. The Bayesian message comes through more strongly when we observe more than
one toss before calculating posterior probabilities.

Example 4: Suppose we have three coins, which land heads with probabili-
ties p1, p2, and p3. Choose a coin according to the prior distribution θi =
P{ choose coin i }, for i = 1, 2, 3, then toss that coin n times. Find the posterior
probabilities P{ chose coin i | k heads with n tosses }, for k = 0, 1, . . . , n.

To retain a neutral statistical position, I should also give an example of a different ap-
proach to statistical inference. The example just happens to involve the Binomial distribution
again.

Example 5: Members of the large governing body of a small country are given
special banking privileges. Unfortunately, some members appear to be abusing the
privilege by writing bad checks. The royal treasurer declares the abuse to be a mi-
nor aberration, restricted to fewer than 5% of the members. An investigative re-
porter manages to expose the bank records of 20 members, showing that 4 of them
have been guilty. How credible is the treasurer’s assertion?

We will meet the Binomial again.
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Examples to Chapter 3

<3.1> Example. For n independent tosses of a coin that lands heads with probability p, show
that the total number of heads has a Bin(n, p) distribution.

Clearly X can take only values 0, 1, 2, . . . , n. For a fixed a k in this range, break the
event {X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}

...

Here i runs from 1 to
(n

k

)
, because each Fi corresponds to a different choice of the k posi-

tions for the heads to occur. (The indexing on the Fi is most uninformative; it gives no in-
dication of the corresponding pattern of heads and tails. Maybe you can think of something
better.) Write Hj for {jth toss is a head}. Then

PF1 = P
(
H1 H2 . . . Hk H c

k+1 . . . H c
n

)
= (PH1)(PH2) . . . (PH c

n ) by independence

= pk(1 − p)n−k .

A similar calculation gives PFi = pk(1 − p)n−k for every other i ; all that changes is the
order in which the p and (1 − p) factors appear. Thus

P{X = k} =
(

n

k

)
pk(1 − p)n−k for k = 0, 1, . . . , n,

which is the asserted Binomial distribution.

It is possible to calculate EX by the summation formula

EX =
n∑

k=0

E(X | X = k)P{X = k}

=
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k

=
n∑

k=1

n(n − 1)!

(k − 1)!(n − k)!
pk(1 − p)n−k

= np
n−1∑

k−1=0

(
n − 1

k − 1

)
pk−1(1 − p)(n−1)−(k−1)

= np cf. binomial expansion of (p + (1 − p))n−1.

The manipulations of the sums was only slightly tedious, but why endure even a little tedium
when the method of indicators is so much simpler? Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.

Then X = X1 + . . . Xn , which gives EX = EX1 + . . . EXn = nEX1. Calculate.

EX1 = 0P{X1 = 0} + 1P{X1 = 1} = p.

Thus EX = np. �

The calculation made no use of the independence. If each Xi has marginal distribution
Bin(1, p), that is, if

P{Xi = 1} = p = 1 − P{Xi = 0} for each i,

then E(X1 + . . . Xn) = np, regardless of possible dependence between the tosses. The ex-
pectation of a sum is the sum of the expectations, no matter how dependent the summands
might be.
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�

<3.2> Example. An unwary visitor to the Big City is standing at the corner of 1st Street and
1st Avenue. He wishes to reach the railroad station, which actually occupies the block on
6th Street from 3rd to 4th Avenue. (The Street numbers increase as one moves north; the
Avenue numbers increase as one moves east.) He is unaware that he is certain to be mugged
as soon as he steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor lets himself be
guided by the tosses of a fair coin: at each intersection he goes east, with probability 1/2,
or north, with probability 1/2. What is the probability that he is mugged outside the railroad
station?

To get mugged at (3,6) or (4,6) the visitor must proceed north from ei-

1

6

3 4

ther the intersection (3,5) or the intersection (4,5)—we may assume that if
he gets mugged at (2,6) and then moves east, he won’t get mugged again
at (3,6), which would be an obvious waste of valuable mugging time for no
return. The two possibilities correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north} + P{reach (4,5), move north}
= 1/2P{reach (3,5)} + 1/2P{reach (4,5)}
= 1/2P{move east twice during first 6 blocks}

+ 1/2P{move east 3 times during first 7 blocks}.
A better way to describe the last event might be “move east 3 times and north 4 times, in
some order, during the choices governed by the first 7 tosses of the coin.” The Bin(7, 1/2)

lurks behind the calculation. The other calculation involves the Bin(6, 1/2).

P{mugged at railroad} = 1

2

(
6

2

) (
1

2

)2 (
1

2

)4

+ 1

2

(
7

3

) (
1

2

)3 (
1

2

)4

= 65

256
.

�

Notice that the events {reach (3,5)} and {reach (4,5)} are not disjoint. We need to in-
clude the part about moving north to get a clean break.

<3.3> Example. Suppose a multiple-choice exam consists of a string of unrelated questions,
each having three possible answers. Suppose there are two types of candidate who will take
the exam: guessers, who make a blind stab on each question, and skilled candidates, who
can always eliminate one obviously false alternative, but who then choose at random be-
tween the two remaining alternatives. Suppose 70% of the candidates who take the exam
are skilled and the other 30% are guessers. A particular candidate has gotten 4 of the first 6
question correct. What is the probability that he will also get the 7th question correct?

Interpret the assumptions to mean that a guesser answers questions independently, with
probability 1/3 of being correct, and that a skilled candidate also answers independently,
but with probability 1/2 of being correct. Let X denote the number of questions answered
correctly from the first six. Let C denote the event {question 7 answered correctly}, G de-
note the event {the candidate is a guesser}, and S denote the event {the candidate is skilled}.
Then

(i) for a guesser, X has (conditional) distribution Bin(6,1/3)

(ii) for a skilled candidate, X has (conditional) distribution Bin (6,1/2).

(iii) PG = 0.3 and PS = 0.7.

The question asks for P(C | X = 4).
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Split according to the type of candidate, then condition.

P(C | X = 4) = P{C S | X = 4} + P{CG | X = 4}
= P(S | X = 4)P(C | X = 4, S) + P(G | X = 4)P(C | X = 4, G).

If we know the type of candidate, the {X = 4} information becomes irrelevant. The last
expression simplifies to

1/2P(S | X = 4) + 1/3P(G | X = 4).

Notice how the success probabilities are weighted by probabilities that summarize our cur-
rent knowledge about whether the candidate is skilled or guessing. If the roles of {X = 4}
and type of candidate were reversed we could use the conditional distributions for X to cal-
culate conditional probabilities:

P(X = 4 | S) = (6
4

)
(1/2)

4(1/2)
22 = (6

4

)
1/64

P(X = 4 | G) = (6
4

)
(1/3)

4(2/3)
2 = (6

4

)
4/729.

I have been lazy with the binomial coefficients because they will later cancel out.

Apply the usual splitting/conditioning argument.

P(S | X = 4) = PS{X = 4}
P{X = 4}

= P(X = 4 | S)PS

P(X = 4 | S)PS + P(X = 4 | G)PG

=
(6

4

)
1/64(.7)(6

4

)
1/64(.7) + (6

4

)
4/729(.3)

≈ .869.

Remark. The preceding calculation is an instance of Bayes’s rule.

There is no need to repeat the calculation for the other conditional probability, because

P(G | X = 4) = 1 − P(S | X = 4) ≈ .131.

Thus, given the 4 out of 6 correct answers, the candidate has conditional probability of ap-
proximately

1/2(.869) + 1/3(.131) ≈ .478

of answering the next question correctly.

Some authors prefer to summarize the calculations by means of the odds ratios:

P(S | X = 4)

P(G | X = 4)
= PS

PG
· P(X = 4 | S)

P(X = 4 | G)
.

The initial odds ratio, PS/PG, is multiplied by a factor that reflects the relative support of
the data for the two competing explanations “skilled” and “guessing”. �

<3.4> Example. Suppose we have three coins, which land heads with probabilities p1, p2,
and p3. Choose a coin according to the prior distribution θi = P{ chose coin i }, for i =
1, 2, 3, then toss that coin n times. Find the posterior probabilities

P{ chose coin i | k heads with n tosses } for k = 0, 1, . . . , n.

Let Ci denote the event { choose coin i } and Dk denote the event that we get k heads
from the n tosses. Then PCi = θi and

P(Dk | Ci ) =
(

n

k

)
pk

i (1 − pi )
n−k for k = 0, 1, . . . , n.

Statistics 241: 18 September 2005 C3-5 c©David Pollard



Chapter 3 Things binomial

Condition.

P(Ci | Dk) = P(Ci Dk)

PDk

= P(Dk | Ci )P(Ci )∑3
j=1 P(Dk | Cj )P(Cj )

= pk
i (1 − pi )

n−kθi∑3
j=1 pk

j (1 − pj )n−kθj

Notice that the
(n

k

)
factors have cancelled. In fact, we would get the same posterior probabil-

ities if we conditioned on any particular pattern of k heads and n − k tails.

The R-script Bayes.R defines functions to plot the posterior probabilities as a function
of k/n, for various choices of the pi ’s and the θi ’s and n. The small circles in the plots cor-
respond to the values P(C1 | Dk), the small triangles to P(C2 | Dk), and the small + signs
to P(C3 | Dk). For the pictures I chose p1 = 0.45, p2 = 0.5 and p3 = 0.55 with prior
probabilities θ1 = 0.5, θ2 = 0.3, and θ3 = 0.2.

draw.posterior(p=c(0.45,0.5,0.55), prior=c(0.5,0.3,0.2),

tosses=c(10,50))
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draw.posterior(p=c(0.45,0.5,0.55), prior=c(0.5,0.3,0.2),

tosses=c(100,500))
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When n gets large, the posterior probability P(Ci | Dk) gets closer to 1 for values
of k/n close to pi . Is that a comforting fact? �

<3.5> Example. Members of the large governing body of a small country are given special
banking privileges. Unfortunately, some members appear to be abusing the privilege by writ-
ing bad checks. The royal treasurer declares the abuse to be a minor aberration, restricted
to fewer than 5% of the members. An investigative reporter manages to expose the bank
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records of 20 members, showing that 4 of them have been guilty. How credible is the trea-
surer’s assertion?

Suppose a fraction p of the members are guilty. If the sample size 20 is small relative
to the size of the legislature, and if the reporter samples at random from its members, the
number of guilty in the sample should be distributed Bin(20, p). You should be able to think
of many ways in which these assumptions could be violated, but I’ll calculate as if the sim-
ple Binomial model were correct.

Write X for the number of guilty in the sample, and add a subscript p to the probabil-
ities to show that they refer to the Bin(20, p) distribution. Before the sample is taken we
could assert

Pp{X ≥ 4}
= (20

4

)
p4(1 − p)16 + (20

5

)
p5(1 − p)14 + . . . + (20

4

)
p20(1 − p)0

= 1 −
((20

0

)
p0(1 − p)20 + (20

1

)
p1(1 − p)19 + (20

2

)
p2(1 − p)18 + (20

3

)
p3(1 − p)17

)
.

The second form makes it easier to calculate by hand when p = .05:

P.05{X ≥ 4} ≈ .02.

For values of p less than 0.05 the probability is even smaller.

After the sample is taken we are faced with a choice: either the treasurer is right, and
we have just witnessed something very unusual; or maybe we should disbelieve the 5% up-
per bound. This dichotomy illustrates the statistical procedure called hypothesis testing.
One chooses an event that should be rare under one model (the so-called null hypothesis),
but more likely under an alternative model. If the event occurs, it casts doubt on the validity
of the null hypothesis. For the present example the event {X ≥ 4} would have been much
more likely under alternative explanations involving larger proportions of bad-check writers
amongst the members of the legislature.
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