
Chapter 7

Central limit theorems

Recall that a random variable is said to have a normal distribution with parameters µ

and σ if it has a continuous distribution with density

fµ,σ (x) = 1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
for − ∞ < x < ∞.

The normal distribution is denoted by N (µ, σ 2). The parameter σ must be positive, other-
wise the density would not be positive. The parameter µ can be any real value.

The special case where µ = 0 and σ = 1 is called the standard normal. The density
function for this N (0, 1) distribution is usually denoted by the special letter φ,

φ(x) = 1√
2π

e−x2/2 for − ∞ < x < ∞.

For this function to be a well defined density it must integrate to 1, that is,∫ ∞

−∞
e−x2/2 dx =

√
2π,

a result that was derived in Chapter 5.

Using the result from Problem 6.4, you can deduce that X has N (µ, σ 2) distribution if
and only if (X −µ)/σ has a standard normal distribution. That is, we can write X = µ+σ Z
where Z has a standard normal distribution.

Example <7.1>: The N (µ, σ 2) distribution has expected value µ and variance σ 2.

The normal distribution also has an important stability property: if X and Y are inde-
pendent, each with a normal distribution, then X + Y also has a normal distribution. This
fact will follow from a more general fact about sums of independent random variables

Example <7.2>: Suppose X has a continuous distribution with density f and Y
has a continuous distribution with density g. If X and Y are independent then the
random variable Z = X + Y has a continuous distribution with density

h(z) =
∫ ∞

−∞
g(z − x) f (x) dx for all real z.

The integral expression for the density h in terms of f and g is called the convolution
formula. The next Example shows the formula in action. It also serves as an advertisement
for indicator functions. You won’t be needing this particular result to understand the general
normal approximation. You could safely skip the details.

Example <7.3>: If X and Y are independent, each with the Uniform(0, 1) distri-
bution, find the distribution of X + Y .
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As promised, the convolution formula also establishes the key fact about sums of inde-
pendent normals, as recorded in the next Example.

Example <7.4>: If X1 and X2 are independent random variables with X1 ∼
N (µ1, σ

2
1 ) and X2 ∼ N (µ2, σ

2
2 ), then X1 + X2 ∼ N (µ1 + µ2, σ

2
1 + σ 2

2 ).

The central limit theorem

The normal approximation to the binomial is just one example of a general phenomenon cor-
responding to the mathematical result known as the central limit theorem. Roughly stated,
the theorem asserts:

If X can be written as a sum of a large number of relatively small, independent
random variables, then it has approximately a N (µ, σ 2) distribution, where µ =
EX and σ 2 = var(X). Equivalently, the standardized variable (X − µ)/σ has
approximately a standard normal distribution.

See the Appendix for an outline of a proof of a central limit theorem, if you are inter-
ested. You can safely ignore the Appendix.

The normal distribution has many agreeable properties that make it easy to work with.
Many statistical procedures have been developed under normality assumptions, with occa-
sional offhand references to the central limit theorem to mollify anyone who doubts that all
distributions are normal. Modern theory has been much concerned with possible harmful ef-
fects of unwarranted assumptions such as normality. The modern fix often substitutes huge
amounts of computing for neat, closed-form, analytic expressions; but normality still lurks
behind some of the modern data analytic tools.

Example <7.5>: A hidden normal approximation—the boxplot

The normal approximation is heavily used to give an estimate of variability for the re-
sults from sampling.

Example <7.6>: Normal approximations for sample means

Things to remember

• If X can be written as a sum of a large number of relatively small, independent random
variables, then it has approximately a N (µ, σ 2) distribution, where µ = EX and σ 2 =
var(X). Equivalently, the standardized variable (X − µ)/σ has approximately a standard
normal distribution.

Examples for Chapter 7

<7.1> Example. The N (µ, σ 2) is a continuous distribution with density

fµ,σ (x) = 1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
for − ∞ < x < ∞.

If X has this distribution then

EX =
∫ ∞

−∞
x fµ,σ (x) dx .

Make the change of variable y = (x − µ)/σ to rewrite the integral as

1

σ
√

2π

∫ ∞

−∞
(µ + σ y) exp(−y2/2) σdy = µ

∫ ∞

−∞
φ(y) dy + σ

∫ ∞

−∞
yφ(y) dy.
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We know (from the fact that φ is a density function) that the coefficient of µ equals 1. Anti-
symmetry of yφ(y) makes it integrate to 0. Thus EX = µ.

Similarly,

var(X) = E (X − µ)2 =
∫ ∞

−∞
(x − µ)2 fµ,σ (x) dx = σ 2

∫ ∞

−∞
y2φ(y) dy.

An integration-by-parts, using the fact that dφ(y)/dy = −yφ(y), simplifies the integral,∫ ∞

−∞
−y

dφ(y)

dy
dy = [ − yφ(y)

]∞
−∞ +

∫ ∞

−∞
φ(y) dy = 1.

Thus var(X) = σ 2.

We could also summarize the calculations by writing X = µ + σ Z , with Z ∼ N (0, 1),
then note that

EX = µ + σEZ = µ + σ × 0

var(X) = σ 2var(Z) = σ 2 × 1

The changes of variables in the integrals were effectively reducing the problem to the case of
a standard normal. �

<7.2> Example. Suppose X has a continuous distribution with density f and Y has a contin-
uous distribution with density g. If X and Y are independent show that the random vari-
able Z = X + Y has a continuous distribution with density

h(z) =
∫ ∞

−∞
g(z − x) f (x) dx for all real z.

As usual, consider a small, positive δ. Define Fi = {iε ≤ X < (i + 1)ε} for
i = 0, ±1, ±2, . . ., where ε is another positive quantity that is much smaller than δ. (More
formally, we will be letting ε tend to zero while δ stays fixed.) Condition.

P{z ≤ X + Y ≤ z + δ} =
∞∑

i=−∞
P{z − X ≤ Y ≤ z − X + δ | Fi }PFi

Conditional on Fi , we know that X is very close to iε. Thus

P{z − X ≤ Y ≤ z − X + δ | Fi } ≈ P{z − iε ≤ Y ≤ z − iε + δ | iε ≤ X < (i + 1)ε}
On the right-hand side the conditioning now provides no useful information about the behav-
ior of Y : by independence, we can discard the conditioning information. The formula then
becomes

P{z ≤ X + Y ≤ z + δ} ≈
∞∑

i=−∞
P{z − iε ≤ Y ≤ z − iε + δ}PFi ≈

∞∑
i=−∞

δg(z − iε)ε f (iε).

Define Hz(x) = g(z − x) f (x). The last sum equals δ times

ε

∞∑
i=−∞

Hz(iε) ≈
∫ ∞

−∞
Hz(x) dx .

Now let ε tend to zero, leaving

P{z ≤ X + Y ≤ z + δ} ≈ δ

∫ ∞

−∞
Hz(x) dx .

Thus h(z) = ∫ ∞
−∞ Hz(x) dx = ∫ ∞

−∞ g(z − x) f (x) dx . �

<7.3> Example. If X and Y are independent, each with the Uniform(0, 1) distribution, find the
distribution of X + Y .

The Uniform(0, 1) has density function f (x) = I{0 < x < 1}, that is,

f (x) =
{

1 if x ∈ (0, 1)

0 otherwise
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The density function h for the distribution of X + Y is given by

h(z) =
∫ ∞

−∞
I{0 < z − x < 1}I{0 < x < 1} dx

=
∫ ∞

−∞
I{0 < x < 1, x < z, x > z − 1} dx

=
∫ ∞

−∞
I{max(0, z − 1) < x < min(1, z)} dx

If z ≤ 0 or z ≥ 2 there are no values of x that satisfy the pair of inequalities in the final
indicator function; for those cases the indicator function is zero. If 0 < z ≤ 1 the indicator
becomes I{0 < x < z}, so that the corresponding integral equals∫ ∞

−∞
I{0 < x < z} dx =

∫ z

0
1 dx = z.

Similarly, if 1 < z < 2 the integral becomes∫ ∞

−∞
I{z − 1 < x < 1} dx =

∫ 1

z−1
1 dx = 2 − z.

In summary,

h(z) =
{ 0 if z ≤ 0 or z ≥ 2

z if 1 < z ≤ z
2 − z if 1 < z < 2

.

More succinctly, h(z) = max
(
0, min(z, 2 − z)

)
. Maybe it would be better to draw a well

labelled picture. �

<7.4> Example. If X1 and X2 are independent random variables with X1 ∼ N (µ1, σ
2
1 ) and

X2 ∼ N (µ2, σ
2
2 ), then X1 + X2 ∼ N (µ1 + µ2, σ

2
1 + σ 2

2 ).

Let me simplify the algebra by writing Xi = µi + σi Zi , where Z1 and Z2 are indepen-
dent standard normals. Then we have X1 + X2 = µ1 + µ2 + σ1 Z1 + σ2 Z2. It will suffice we
show that W = σ1 Z1 + σ2 Z2 has a N (0, σ 2

1 + σ 2
2 ) distribution.

The convolution formula gives the density for the distribution of W ,

h(z) = 1

σ1σ22π

∫ ∞

−∞
exp

(
− (z − x)2

2σ 2
1

− x2

2σ 2
2

)
dx .

The exponent expands to

− 1
2 x2

(
σ−2

1 + σ−2
2

) + zx/σ 2
1 − 1

2 z2/σ 2
1 .

Make the change of variable y = cx , with

c = 1/

√
σ−2

1 + σ−2
2 = σ1σ2/τ where τ =

√
σ 2

1 + σ 2
2 .

The exponent becomes

− 1
2

(
y2 − 2zcy/σ 2

1 + c2z2/σ 4
1

) + 1
2 c2z2/σ 4

1 − 1
2 z2/σ 2

1

= − 1
2

(
y − zc/σ 2

1

)2 − 1
2 z2/τ 2

The expression for h(z) simplifies to

1

τ2π
exp

(
− z2

2τ 2

) ∫ ∞

−∞
exp

( − 1
2 (y − zc/σ 2

1 )2
)

dy.

The change of variable w = y − zc/σ 2
1 then leaves us an integral that equals

√
2π .

All the sneaky changes of variable might leave you feeling that the argument is diffi-
cult. In fact we didn’t have to be so careful. In the original convolution integral we had an
exponent of the form −C1x2 + C2xz − C3z2 for some constants C1, C2, C3. We completed
the square to rewrite the exponent as −C4(y − C5z)2 − C6z2, where y a linear function of x
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and C4, C5, C6 were new constants. A change of variable allowed us to integrate out the y,
leaving an expression of the form C7 exp(−C6z2), which is clearly a N (0, τ 2) density for
some τ . We can calculate τ directly by τ 2 = var(W ) = σ 2

1 var(Z1) + σ 2
2 var(Z2). �

<7.5> Example. The boxplot provides a convenient way of summarizing data (such as grades in
Statistics 241). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ = upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ + 1.5 × IQR and LQ − 1.5 × IQR, but then trim them back
to the most extreme data point in those ranges

(vi) draw dots for each individual data point outside the box and whiskers (There are var-
ious ways to deal with cases where the number of observations is not a multiple of
four, or where there are ties, or . . . )

LQ UQM

Where does the 1.5 × I Q R come from? Consider n independent observations from a
N (µ, σ 2) distribution. The proportion of observations smaller than any fixed x should be
approximately equal to P{W ≤ x}, where W has a N (µ, σ 2) distribution. From normal
tables (or a computer),

P{W ≤ µ + .675σ } ≈ .75

P{W ≤ µ − .675σ } ≈ .25

and, of course,
P{W ≤ µ} = .5

For the sample we should expect

LQ ≈ µ − .675σ

UQ ≈ µ + .675σ

M ≈ µ

and consequently,
IQR ≈ 1.35σ

Check that 0.675 + (1.5 × 1.35) = 2.70. Before trimming, the whiskers should approximately
reach to the ends of the range µ ± 2.70σ . From computer (or tables),

P{W ≤ µ − 2.70σ } = P{W ≥ µ + 2.70σ } = .003
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Only about 0.6% of the sample should be out beyond the whiskers. �

<7.6> Example. In Chapter 4 we found the expected value and variance of a sample mean Ȳ
for a sample of size n from a population {y1, y2, . . . , yN }:

EY = y = 1

N

N∑
i=1

yi

and, for sampling with replacement,

var(Y ) = σ 2

n
where σ 2 = ∑N

i=1 (yi − y)2 /N .

If Z has a N (0, 1) distribution,

P{−1.96 ≤ Z ≤ 1.96} ≈ 0.95.

The standardized random variable (Y −y)/
√

σ 2/n is well approximated by the N (0, 1). Thus

P

{
−1.96σ√

n
≤ Y − y ≤ 1.96σ√

n

}
≈ 0.95.

Before we sample, we can assert that we have about a 95% chance of getting a value of Y
in the range y ± 1.96σ/

√
n. (For the post-sampling interpretation of the approximation, you

should take Statistics 242/542.)

Of course, we would not know the value σ , so it must be estimated.

For sampling without replacement, the variance of the sample mean is multiplied by
the correction factor (N − n)/(N − 1). The sample mean is no longer an average of many
independent summands, but the normal approximation can still be used. (The explanation
would take us beyond 241/541.) �

Appendix: Lindeberg’s method for the Central Limit Theorem

We have X = X1 + X2 + . . .+ Xn , a sum of a lot of small, independent contributions. If
all the Xi ’s are normally distributed, repeated appeals to Example <7.4> show that X is also
normally distributed.

If the Xi ’s are not normal, we replace them one at a time by new independent random
variables Yi for which EYi = EXi and var(Yi ) = var(Xi ). It is easy to use Taylor’s theorem
to track the effect of the replacement if we consider smoooth functions of the sum.

For example, suppose h has a lot of bounded, continuous derivatives. Write S for X1 +
. . . + Xn−1. Then

Eh(X) = Eh(S + Xn) = E
(
h(S) + Xnh′(S) + 1

2 X2
nh′′(S) + 1

6 X3
nh′′′(S) + . . .

)
= Eh(S) + EXnEh′(S) + 1

2 E(X2
n)Eh′′(S) + 1

6 E(X3
n)E(h′′′(S)) + . . .

In the last line, I have used the independence to factorize a bunch of products.

Exactly the same idea works for h(S + Yn). That is,

Eh(S + Yn) = Eh(S) + EYnEh′(S) + 1
2 E(Y 2

n )Eh′′(S) + 1
6 E(Y 3

n )E(h′′′(S)) + . . .

Subtract the two expansions, noting the cancellations caused by the matching of first and
second moments for Xn and Yn .

Eh(S + Xn) − Eh(S + Yn) = 1
6 E(X3

n)E(h′′′(S)) + . . . − 1
6 E(Y 3

n )E(h′′′(S)) + . . .

A similar argument works if we replace the Xn−1 in Eh(S + Yn) by its companion Yn−1.
And so on. After we swap out all the Xi ’s we are left with

Eh(X) − Eh(Y1 + Y2 + . . . Yn) = a sum of quantities of third, or higher order.
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A formal theorem would give a precise meaning to how small the Xi ’s have to be in
order to make the “sum of quantities of third, or higher order” small enough to ignore.

If you were interested in expectations Eh(X) for functions that are not smooth, as hap-
pens with P{X ≤ x}, you would need to approximate the non-smooth h by a smooth func-
tion for which Lindeberg’s method can be applied.
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