
Chapter 10

Conditioning on a random variable with
a continuous distribution

At this point in the course, I hope you understand the importance of the conditioning
formula

E
(
Y | info

) =
∑

i
P

(
Fi | info

)
E

(
Y | Fi , info

)
for finite or countably infinite collections of disjoint events Fi for which � = ∪i Fi . As a
particular case, if X is a random variable that takes only a discrete set of values {x1, x2, . . .}
then

E
(
Y | info

) =
∑

i
P{X = xi | info}E (

Y | X = xi , info
)
.

This formula can be simplified by the introduction of the function

h(x) = E
(
Y | X = x, info

)
.

For then
E

(
Y | info

) =
∑

i
P{X = xi | info}h(xi ) = E

(
h(X) | info

)
.

In this Chapter, I want to persuade you that a similar formula applies when X has a
continuous distribution, with density function f (given the info):

(∗) E
(
Y | info

) = E
(
h(X) | info

) =
∫ ∞

−∞
h(x) f (x) dx .

As a special case, when Y equals the indicator function of an event B, the formula reduces
to

PB =
∫ ∞

−∞
P(B | X = x) f (x) dx .

From now on, I will omit explicit mention of the conditioning information “info”, writ-
ing h(x) for E(Y | X = x).

There are several ways to arrive at formula (∗). The most direct relies on the plausible
assertion that

E
(
Y | X ∈ J

) ≈ h(x) if J is a small interval with x ∈ J .

The error of approximation should disappear as J shrinks to the point x . Split R into a
union of disjoint, small intervals Ji = [xi , xi+1), where xi+1 = xi + δ, then condition:

EY =
∑

i
P{X ∈ Ji }E(Y | X ∈ Ji } ≈

∑
i
δ f (xi )h(xi ) ≈

∫ ∞

−∞
h(x) f (x) dx .

The combined errors of all the approximation should disappear in the limit as δ tends to
zero.
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Alternatively, we could start from a slightly less intuitive assumption that EY should be
nonnnegative if E(Y | X = x) ≥ 0 for every x . If we replace Y by Y − h(X) then we have

E
(
Y − h(X) | X = x

) = E
(
Y | X = x

) − h(x) = 0,

which gives E(Y −h(X)) ≥ 0. A similar argument applied to h(X)−Y gives E
(
h(X) − Y

) ≥
0. Equality (∗) follows.

Remark. Notice that formula (∗) also implies that

(∗∗), E (Y g(X)) = E
(
g(X)h(X)

)
at least for bounded functions g

because E
(
Y g(X) | X = x

) = g(x)h(x). In advanced probability theory, the treatment
of conditional expectations becomes most abstract. Formula (∗∗) is used to define the
conditional expectation h(x) = E(Y | X = x). One needs to show that there exists a
random variable of the form h(X), which is uniquely determined up to trivial changes
on sets of zero probability, for which

Eg(X)
(
Y − h(X)

) = 0 for every bounded g.

Essentially h(X) is the best approximation to Y using only information given by X .

With this abstract approach, one then needs to show that conditional expecta-
tions have the properties that I have taken as axiomatic for Stat 241.

Example <10.1>: The convolution formula for densities derived from (∗).

The Poisson process is often used to model the arrivals of customers in a waiting line,
or the arrival of telephone calls at an exchange. The underlying idea is that of a large popu-
lation of potential customers, each of whom acts independently of all the others.

Example <10.2>: A queuing problem with a surprising solution (can be skipped)

Examples for Chapter 10

<10.1> Example. Suppose X and Y are independent random variables with continuous distri-
butions. If X has density f and Y has density g then (see Chapter 7) the random variable
Z = X + Y has density

h(z) =
∫ ∞

−∞
g(z − x) f (x) dx

The same formula can be derived from the formula

PB =
∫ ∞

−∞
P(B | X = x) f (x) dx,

applied with B = {z ≤ Z ≤ z + δ} for a small, positive δ. Note that

P(z ≤ Z ≤ z + δ | X = x) = P(z − x ≤ Y ≤ z − x + δ | X = x)

= P(z − x ≤ Y ≤ z − x + δ) because X , Y independent

≈ δg(z − x).

Invoke the conditioning formula.

P{z ≤ Z ≤ z + δ} ≈
∫ ∞

−∞
δg(z − x) f (x) dx,

which leads us back to the convolution formula. �

<10.2> Example. Suppose an office receives two different types of inquiry: persons who walk
in off the street, and persons who call by telephone. Suppose the two types of arrival are
described by independent Poisson processes, with rate λw for the walk-ins, and rate λc for
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the callers. What is the distribution of the number of telephone calls received before the first
walk-in customer?

Write T for the arrival time of the first walk-in, and let N be the number of calls in
[0, T ). The time T has a continuous distribution, with the exponential density f (t) =
λwe−λw t for t > 0. We need to calculate P{N = i} for i = 0, 1, 2, . . .. From formula (∗),
with A equal to {N = i},

P{N = i} =
∫ ∞

0
P{N = i | T = t} f (t) dt.

The conditional distribution of N is affected by the walk-in process only insofar as that pro-
cess determines the length of the time interval over which N counts. Given T = t , the ran-
dom variable N has a Poisson(λct) conditional distribution. Thus

P{N = i} =
∫ ∞

0

e−λct (λct)i

i!
λwe−λw t dt

= λw

λi
c

i!

∫ ∞

0

(
x

λc + λw

)i

e−x dx

λc + λw

putting x = (λc + λw)t

= λw

λc + λw

(
λc

λc + λw

)i 1

i!

∫ ∞

0
xi e−x dx

The 1/ i! and the last integral cancel. (Compare with �(i + 1).) Writing p for λw/(λc + λw)

we have
P{N = i} = p(1 − p)i for i = 0, 1, 2, . . .

That is, 1 + N has a geometric(p) distribution. The random variable N has the distribution
of the number of tails tossed before the first head, for independent tosses of a coin that lands
heads with probability p.

Such a nice clean result couldn’t happen just by accident. Maybe we don’t need all the
Calculus to arrive at the distribution for N . In fact, the properties of the Poisson distribution
and Problem 8.1 show what is going on, as I will now explain.

Consider the process of all inquiries, both walk-ins and calls. In an interval of length t ,
the total number of inquiries is the sum of a Poisson(λwt) distributed random variable and
an independent Poisson(λct) distributed random variable; the total has a Poisson(λwt + λct)
distribution. Both walk-ins and calls contribute independent counts to disjoint intervals; the
total counts for disjoint intervals are independent random variables. It follows that the pro-
cess of all arrivals is a Poisson process with rate λw + λc.

Now consider an interval of length t in which there are X walk-ins and Y calls. From
Problem 8.1, given that X + Y = n, the conditional distribution of X is Bin(n, p), where

p = λwt

λwt + λct
= λw

λw + λc

That is, X has the conditional distribution that would be generated by the following mecha-
nism:

(1) Generate inquiries as a Poisson process with rate λw + λc.

(2) For each inquiry, toss a coin that lands heads with probability p = λw/(λw + λc). For
a head, declare the arrival to be a walk-in, for a tail declare it to be a call.

A formal proof that this two-step mechanism does generate a pair of independent Pois-
son processes, with rates λw and λc, would involve:

(1′) Prove independence between disjoint intervals. (Easy)

(2′) If step 2 generates X walk-ins and Y calls in an interval of length t , show that

P{X = i, Y = j} = P{X = i}P{Y = j}
X ∼ Poisson(λwt) and Y ∼ Poisson(λct)
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You should be able to write out the necessary conditioning argument for (2′).
The two-step mechanism explains the appearance of the geometric distribution in the

problem posed at the start of the Example. The classification of each inquiry as either a
walk-in or a call is effectively carried out by a sequence of independent coin tosses, with
probability p of a head (= a walk-in). The problem asks for the distribution of the number
of tails before the first head. The embedding of the inquiries into continuous time is irrele-
vant. �
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