
Chapter 14

Generating functions

Throughout the course I have been emphasizing the idea that discrete probability dis-
tributions are specified by the list of possible values and the probabilities attached to those
values (and that continuous distributions are specified by density functions). Probability dis-
tributions can also be specified by a variety of transforms, that is, by functions that somehow
encode the properties of the distributions into a form more convenient for certain kinds of
probability calculation. This Chapter will describe a technique that is particularly useful for
discrete distributions concentrated on the set N0 = {0, 1, 2, . . .} of nonnegative integers.

Definition. Suppose X is a random variable that takes only nonnegative integer values,
with probabilities pk = P{X = k} for k ∈ N0. The probability generating function g(·) is
defined as

g(s) = Es X =
∑∞

k=0
pksk for 0 ≤ s ≤ 1.

The powers of the dummy variable s serve as placeholders for the pk probabilities that
determine the distribution; we could recover the pk’s as the coefficients in a power series
expansion of the probability generating function. For example, if an N0-valued random vari-
able X has probability generating function

g(s) = exp (λ(s − 1)) for 0 ≤ s ≤ 1,

with λ a positive constant, then X has a Poisson(λ) distribution, because the coefficient of sk

in the power series expansion

exp (λ(s − 1)) = e−λ
∑∞

k=0

(λs)k

k!

equals e−λλk/k!.

Expansion of a probability generating function in a power series is just one way of ex-
tracting information about the distribution. Repeated differentiation inside the expectation
sign gives

g(m)(s) = ∂m

∂sm
E(s X ) = E

(
X (X − 1) . . . (X − m + 1)s X−m

)
,

whence
g(m)(1) = E

(
X (X − 1) . . . (X − m + 1)

)
for m = 1, 2, . . .

In particular, we have EX = g′(1) and E(X2 − X) = g′′(1). It follows that var(X) =
g′′(1)+g′(1)−g′(1)2. With a little more algebra we could recover the higher moments of X .

Example <14.1>: Some properties of the negative binomial distribution, derived
using probability generating functions.

The next two Examples show how probability generating functions can be used to solve
problems involving the stochastic model called a branching process. I start with a warm-up
exercise to show how the method works.
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Chapter 14 Generating functions

Example <14.2>: A careful study of the reproductive behaviour of the royal house
of Oz has revealed that each member of the family has probability:

1
6 of producing no children;
3
6 of producing only one child;
2
6 of producing exactly two children.

The present king, Osgood, is only 8 years old. Assuming that family members
reproduce independently of each other, according to the stated distribution, find the
probability that Osgood eventually has exactly two grandchildren.

Naturally Osgood would like the House of Oz to survive forever. The prospects might
appear good, because each member of the family has expected number of offspring equal to
(0×1/6)+(1×3/6)+(2×2/6) = 7/6. On the average, each generation size should be about
7/6 times the size of the previous generation size. But averages don’t tell the whole story, as
the next Example shows.

Example <14.3>: Extinction probability for a branching process: probability 1/2
that the Osgood line dies out eventually.

In general, suppose there is a probability pk , for k ∈ N0, that an individual has k off-
spring. Write g(s) for the corresponding probability generating function and µ = ∑∞

k=0 kpk

for the mean. Let Xi denote the size of the i th generation, starting from X0 = 1. As-
sume independence of reproduction. The conditional distribution of Xn given Xn−1 = k is
like that of a sum ξ1 + . . . + ξk , where the ξi are independent random variables each with
P{ξi = k} = pk for k ∈ N0. Thus

gn(s) = Es Xn =
∑∞

k=0
P{Xn−1 = k}E (

s Xn | Xn−1 = k
)

=
∑∞

k=0
P{Xn−1 = k}g(s)k = gn−1(g(s))

and

EXn =
∑∞

k=0
P{Xn−1 = k}E (

Xn | Xn−1 = k
) =

∑∞
k=0

P{Xn−1 = k}(kµ) = µEXn−1.

The expression for gn leads to the conclusion that P{ process dies out eventually } = θ ,
where θ is the smaller solution of the equation θ = g(θ). If µ ≤ 1 then θ = 1.

By repeated substitution, we get EXn = µn . If µ < 1 then the expected number of
offspring (including the founder) equals

E

( ∑∞
n=0

Xn

)
=

∑∞
n=0

EXn =
∑∞

n=0
µn = 1/(1 − µ).

Note that the expected number of offspring is infinite when µ = 1, even though the process
dies out eventually with probability one.

Branching processes show up in unexpected places.

Example <14.4>: Behavior of a queue.

Examples for Chapter 14

<14.1> Example. Let X have a negative binomial distribution (as defined on Homework 4),

P{X = k} =
(−α

k

)
pα(−q)k for k ∈ N0, where q = 1 − p.
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It has probability generating function

g(s) = Es X =
∑∞

k=0

(−α

k

)
pα(−qs)k = pα(1 − qs)−α for 0 ≤ s ≤ 1,

with derivatives

g′(s) = pααq(1 − qs)−α−1 and g′′(s) = pαα(α + 1)q2(1 − qs)−α−2.

Thus EX = g′(1) = αq/p and

var(X) = g′′(1) + EX − (EX)2 = αq/p2.

As a check, note that 1 + X has a geometric(p) distribution if α = 1. The expectation
E(1 + X) = 1 + q/p = 1/p agrees with the calculation from Chapter 2.

On Homework 10, you were asked to find the marginal distribution of a random vari-
able X when X | L = λ ∼ Poisson(λ) and L/θ ∼ gamma(α) for some fixed, positive
constant θ . You could have solved this Problem by an application of the conditioning for-
mula from Chapter 10. For k ∈ N0,

P{X = k} =
∫ ∞

0
P{X = k | L/θ = t} f (t) dt with f = gamma(α) density

=
∫ ∞

0

e−θ t (θ t)k

k!

tα−1e−t

�(α)
dt = θ k

k!�(α)

∫ ∞

0
t k+α−1e−t (1+θ) dt

= θ k

(1 + θ)k+αk!�(α)

∫ ∞

0
yk+α−1e−y dy change: y = t (1 + θ)

=
(

θ

1 + θ

)k (
1

1 + θ

)α
�(k + α)

k!�(α)
.

The last ratio equals

(α + k − 1)(α + k − 2) . . . (α)

k!
=

(−α

k

)
(−1)k

If we choose θ = q/p then X has the negative binomial distribution with parameters p
and α, as defined at the start of the Example.

We can also derive the result by using probability generating functions.

Es X =
∫ ∞

0
E

(
s X | L/θ = t

) tα−1e−t

�(α)
dt

=
∫ ∞

0
eθ t (s−1) tα−1e−t

�(α)
dt cf. pgf for Poisson(θ t)

= (
1 + θ(1 − s)

)−α
∫ ∞

0

yα−1e−y

�(α)
dy change: y = t + θ t (1 − s)

=
(

1/(1 + θ)

1 − θs/(1 + θ)

)α

.

Putting p = 1/(1 + θ) we get the probability generating function of the negative binomial
distribution. A power series expansion (not really necessary) would recover the negative bi-
nomial probabilities as coefficients. �

<14.2> Example. Write Xn for the size of the nth generation, starting from X0 = 1 for Osgood
himself. The question asks for P{X2 = 2}.

The problem is simple enough to yield to straightforward conditioning on X1, the num-
ber of children that Osgood will produce. Clearly

P{X2 = 2 | X1 = 0} = 0 and P{X2 = 2 | X1 = 1} = 2
6
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If X1 = 2 then each of the two children will reproduce according to the stated offspring
distribution, so that X2 can be written as a sum of two (conditionally) independent random
variables ξ1 and ξ2 with

P{ξi = 0 | X1 = 2} = 1
6 , P{ξi = 1 | X1 = 2} = 3

6 , P{ξi = 2 | X1 = 2} = 2
6 .

Arguing conditonally, with X2 = ξ1 + ξ2, we get

P{X2 = 2 | X1 = 2} = P{ξ1 + ξ2 = 2 | X1 = 2}
= P{ξ1 = 0, ξ2 = 2 | X1 = 2} + P{ξ1 = 1, ξ2 = 1 | X1 = 2} + P{ξ1 = 2, ξ2 = 0 | X1 = 2}
= (

1
6 × 2

6

) + (
3
6 × 3

6

) + (
2
6 × 1

6

)
by conditional independence

= 13

36
.

Average out over the X1 distribution.

P{X2 = 2} = P{X2 = 2 | X1 = 0} 1
6 + P{X2 = 2 | X1 = 1} 3

6 + P{X2 = 2 | X1 = 2} 2
6

= 0 + (
2
6 × 3

6

) + (
13
36 × 2

6

)
= 31

108 .

Not so hard.

You would have a lot more work to do—mainly bookkeeping—if I asked for the proba-
bility of exactly 7 great-great-great-great-grandchildren. It would be hard to keep track of all
the possible ways of getting X6 = 7. For such a task, generating functions come in handy.

Define gn(s) = Es Xn for 0 ≤ s ≤ 1. For fixed s, calculate the expected value of a
function of a random variable in the usual way:

g1(s) = s0
P{X1 = 0} + s1

P{X1 = 1} + s2
P{X1 = 2} = 1

6 + 3
6 s + 2

6 s2.

Similarly,

g2(s) = s0
P{X2 = 0} + s1

P{X2 = 1} + s2
P{X2 = 1} + s3

P{X2 = 3} + s4
P{X2 = 4} = ?

It might appear that calculation of g2(s) involves five times the sort of work required for the
calculation of P{X2 = 2}. Not so.

Condition once more on the value of X1.

E(s X2 | X1 = 0) = s0 = 1 = g1(s)
0 because P{X2 = 0 | X1 = 0} = 1

E(s X2 | X1 = 1) = g1(s) offspring distribution for one king.

Conditional independence of the offspring from each child when X1 = 2 justifies a factoriza-
tion:

E(s X2 | X1 = 2) = E(sξ1 sξ2 | X1 = 2) = g1(s)
2.

In short,
E(s X2 | X1 = k) = g1(s)

k for k = 0, 1, 2.

Average out over the X1 distribution.

g2(s) = Es X2 = E
(
s X2 | X1 = 0

)
P{X1 = 0} + E

(
s X2 | X1 = 1

)
P{X1 = 1}

+ E
(
s X2 | X1 = 2

)
P{X1 = 2}

= g1(s)
0
P{X1 = 0} + g1(s)P{X1 = 1} + g1(s)

2
P{X1 = 2}

= g1(g1(s)) cf. g1(t) where t = g1(s)

= 1
6 + 3

6 g1(s) + 2
6 g1(s)

2

= 1
6 + 3

6

(
1
6 + 3

6 s + 2
6 s2

) + 2
6

(
1
6 + 3

6 s + 2
6 s2

)2

= (
1
6 + 3

6 × 1
6 + 2

6 × 1
36

) + (
3
6 × 3

6 + 2
6 × 6

36

)
s

+ (
3
6 × 2

6 + 2
6 × 13

36

)
s2 + (

2
6 × 12

36

)
s3 + (

2
6 × 4

36

)
s4.
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The probability P{X2 = 2} equals 31/108, the coefficient of s2. Not only is the answer the
same as before, but also the numerical expression leading to that value is exactly the same as
in the direct calculation of P{X2 = 2}. The powers of s have served merely as placeholders
around which the algebra has been organized; the powers of s tag the various products of
probabilities that go into the sums for calculating each P{X2 = k} by conditioning. �

The virtue of the generating function as a bookkeeping device becomes clearer if we
follow the later generations of the House of Oz. You should check that

E(s Xn | Xn−1 = k) = g1(s)
k,

by writing Xn as a sum of k conditionally independent random variables ξ1, . . . , ξk when
Xn−1 = k. Averaging out over the Xn−1 distribution, you would then get

Es Xn = 1 + g1(s)P{Xn−1 = 1} + g1(s)
2
P{Xn−1 = 2} + . . . = gn−1(g1(s))

The same argument repeated n − 2 more times would then give

gn(s) = g1(g1(g1(. . . g1(s))) . . .),

an n-fold composition of functions.

Your algebraic abilities might be up to multiplying out polynomials of polynomials, but
mine aren’t. Luckily, there are computer packages, such as Mathematica, that make short
work of such algebra. For g6(s), the Mathematica code

g[s ] := 1/6 + 3/6 ∗ s + 2/6 ∗ s ∗ s

gn[n ] := Expand[Nest[g, s, n]]

gg[n ] := N[gn[n], 3]

gave me the polynomial1

0.412 + 0.0824s + 0.107s2 + 0.0934s3 + 0.0808s4 + 0.0624s5 + 0.0483s6 + 0.0354s7+
0.0254s8 + 0.0178s9 + 0.0122s10 + 0.00819s11 + 0.00539s12 + 0.00348s13 + 0.00221s14+
0.00137s15 + 0.000838s16 + 0.000503s17 + 0.000296s18 + 0.000171s19 + 0.0000969s20+
0.0000539s21 + 0.0000294s22 + 0.0000157s23 + (Are you still checking?)

8.22 × 10−6s24 + 4.21 × 10−6s25 + 2.11 × 10−6s26 + 1.04 × 10−6s27 + 4.99 × 10−7s28+
2.34 × 10−7s29 + 1.08 × 10−7s30 + 4.82 × 10−8s31 + 2.11 × 10−8s32 + 9.02 × 10−9s33 + 3.75 × 10−9s34+
1.52 × 10−9s35 + 6. × 10−10s36 + 2.3 × 10−10s37 + 8.57 × 10−11s38 + 3.1 × 10−11s39 + 1.09 × 10−11s40+
3.68 × 10−12s41 + 1.21 × 10−12s42 + 3.81 × 10−13s43 + 1.16 × 10−13s44 + 3.4 × 10−14s45 + 9.56 × 10−15s46+
2.57 × 10−15s47 + 6.61 × 10−16s48 + 1.62 × 10−16s49 + 3.75 × 10−17s50 + 8.22 × 10−18s51 + 1.7 × 10−18s52+
3.27 × 10−19s53 + 5.88 × 10−20s54 + 9.75 × 10−21s55 + 1.48 × 10−21s56 + 2.03 × 10−22s57 + 2.49 × 10−23s58+
2.66 × 10−24s59 + 2.43 × 10−25s60 + 1.82 × 10−26s61 + 1.05 × 10−27s62 + 4.19 × 10−29s63 + 8.74 × 10−31s64

Just for the record, the probability that Osgood has exactly 7 great-great-great-great-
grandchildren is P{X6 = 7} = coefficient of s7 ≈ 0.0354. You should also notice that
P{X6 = 0} ≈ 0.412. There is a 41% chance that the House of Oz will have died out by the
6th generation. It’s tough to keep the family name alive, even if each family member works
hard at keeping the birth rate up.

1 The last line rounds the coefficients off to 3 decimal places: I got tired of looking at fractions
like 2317562/89725362 in the output.
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<14.3> Example. (The House of Oz, continued—maybe.) What is the probability that the House
never dies out?

With the same notation as in the previous Example, the probability of survival to at
least the nth generation is

P{Xn > 0} = 1 − P{Xn = 0} = 1 − gn(0).

Write θn for P{Xn = 0}. As n increases, θn increases. Why? It must have a limiting value,
which we can denote by θ . Thus P{survive forever} = 1 − θ . How do we calculate θ?

Notice that

θn = gn(0) = g1(g1(g1(. . . g1(0) . . .))) = g1(gn−1(0)) = g1(θn−1).

As n increases, the θn on the left-hand side increases to θ and the θn−1 on the right hand
side also increases to θ . In the limit we have θ = g1(θ). That is,

θ = 1
6 + 3

6θ + 2
6θ2.

The quadratic equation has two roots, θ = 1 and θ = 1/2. Which one is the value we seek?

Here is an argument to show that θ = 1/2 is the root that solves the extinction problem.
By direct substitution,

θ1 = g1(0) = 1/6 < 1/2.

Apply the increasing function g1(.) to both sides to get

θ2 = g1(θ1) = g1(1/6) < g1(1/2) = 1/2.

Apply g1 again:
θ3 = g1(θ2) < g1(1/2) = 1/2.

And so on. For every n, we have θn < 1/2. The θn values cannot increase to 1; they must
increase to the other root: θ = 1/2. There is a probability 1/2 that the Osgood line eventu-
ally dies out.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

• ← (0.5,0.5)

g
1
(s)

  ↓

s
↓

Another way to understand the convergence of θn to 1/2 is to plot the functions g1(s) =
1/6+3s/6+2s2/6 and s on the same graph. They cross at 1/2 and 1. The successive values
θ1, θ2, . . . correspond to a zig-zag path with alternating horizontal and vertical steps, starting
from the point (0, 1/6). The path jams itself into the narrow spike between s and g(s); the
zig-zag converges to the tip of the spike at (1/2, 1/2). �
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<14.4> Example. Consider customers waiting in a line (a queue) for the attention of a single
server. Suppose the customers arrive according to a Poisson Process with rate λ. Suppose
also that the service times for the customers are independent, identically distributed random
variables T1, T2, . . . each with expected value τ .

At each time t ≥ 0 the server would have to work for a time W (t) just to take care
of all the customers already in the waiting line. The random variable W (t) is a rather com-
plicated function of the arrival times A1, A2, . . . of customers during [0, t] and their service
times. It can be represented by a function that increases by an amount Ti at the i th arrival
and decreases at a 45◦ slope between arrivals. Whenever W (t) = 0 the server is not busy.

W(t)

t

T5T4

T3

T1

T2

first busy period

A1

A1+T1

A2 A3 A4 A5 A6

The times between arrivals are independent, exponentially distributed random variables,
each with expected value 1/λ. Roughly speaking, for large n we should have An ≈ n/λ.
The service time for these n customers should be about nτ . If nτ > n/λ then the server will
be in trouble: on average, customers arriving faster than they can be handled. If nτ < n/λ,
we might expect that the server will eventually fall idle, until the arrival of a new bunch of
customers. With the help of a branching process, we can make this intuition more precise.

Think of the first customer as the Osgood who begins a new royal line, with the X1

customers who arrive in the time interval (A1, A1 + T1] while he is being served as his chil-
dren. Think of the customers who arrive during a service period of a child as his children,
grandchildren of Osgood. And so on.

Notice that X1 | T1 = t ∼ Poisson(λt). Suppose T1 has a continuous distribution with
density function f . Define H(r) = Ee−rT1 for each r ≥ 0. Then

g1(s) = Es X1 =
∫ ∞

0
E(s X1 | T1 = t) f (t) dt =

∫ ∞

0
eλt (s−1) f (t) dt = H

(
λ(1 − s)

)
and

EX1 =
∫ ∞

0
E(X1 | T1 = t) f (t) dt =

∫ ∞

0
λt f (t) dt = λET1 = λτ.

If λτ ≤ 1 the branching process dies out with probability one. In that case, the server
eventually falls idle. If λτ > 1 there is a nonzero probability that the server never gets a
rest. In fact, the probability θ of getting a rest eventually is given by the smaller root of the
equation θ = H(λ − λθ).

Suppose λτ < 1. Let L denote the length (in time) of the first busy period and let Bi

denote the event that customer i arrives during that first busy period. Then

L =
∑∞

i=1
Ti IBi

The service time Ti is independent of the event Bi . Why? Thus

EL =
∑∞

i=1
E

(
Ti IBi

) =
∑∞

i=1
E

(
Ti

) (
EIBi

) = τE

( ∑∞
i=1

IBi

)
.
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The sum
∑∞

i=1 IBi counts the number of customers served during the first busy period, which
is the same as

∑∞
n=0 Xn , the total number of individuals generated by the branching process.

Thus
EL = τE

( ∑∞
n=0

Xn

)
= τ

1 − λτ
when λτ < 1.

Who would have guessed that within a queue there lurks a branching process? �
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