
Chapter 11

Joint densities

Consider the general problem of describing probabilities involving two random vari-
ables, X and Y . If both have discrete distributions, with X taking values x1, x2, . . . and Y
taking values y1, y2, . . ., then everything about the joint behavior of X and Y can be deduced
from the set of probabilities

P{X = xi , Y = yj } for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs of random vari-
ables, but we have not needed to formalize the concept of a joint distribution. When both X
and Y have continuous distributions, it becomes more important to have a systematic way to
describe how one might calculate probabilities of the form P{(X, Y ) ∈ B} for various sub-
sets B of the plane. For example, how could one calculate P{X < Y } or P{X2 + Y 2 ≤ 9} or
P{X + Y ≤ 7}?
Definition. Say that random variables X and Y have a jointly continuous distribution
with joint density function f (·, ·) if

P{(X, Y ) ∈ B} =
∫∫

B
f (x, y) dx dy.

for each subset B of R
2.

Remark. To avoid messy expressions in subscripts, I will sometimes write∫∫ {(x, y) ∈ B} . . . or
∫∫

I{(x, y) ∈ B} . . . instead of
∫∫

B
. . ..

The density function defines a surface, via the equation z =

height = f(x0,y0)

part of surface
     z=f(x,y)

base ∆
 in plane z=0

f (x, y). The probability that the random point (X (ω), Y (ω)) lands
in B is equal to the volume of the “cylinder”

{(x, y, z) ∈ R
3 : 0 ≤ z ≤ f (x, y) and (x, y) ∈ B}.

In particular, if � is small region in R
2 around a point (x0, y0) at

which f is continuous, the cylinder is close to a thin column with
cross-section � and height f (x0, y0), so that

P{(X, Y ) ∈ �} = (area of �) f (x0, y0) + smaller order terms.

More formally,

lim
�↓{x0,y0)

P{(X, Y ) ∈ �}
area of �

= f (x0, y0).

The limit is taken as � shrinks to the point (x0, y0).

Remark. For a rigorous treatment, � is not allowed to be too weirdly shaped.
One can then show that the limit exists and equals f (x0, y0) except for (x0, y0) in a
region with zero area.
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Chapter 11 Joint densities

Apart from the replacement of single integrals by double integrals and the replacement
of intervals of small length by regions of small area, the definition of a joint density is es-
sentially the same as the definition for densities on the real line in Chapter 6.

To ensure that P{(X, Y ) ∈ B} is nonnegative and that it equals one when B is the whole
of R

2, we must require

f ≥ 0 and
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1.

When we wish to calculate a density, the small region � can be chosen in many
ways—small rectangles, small disks, small blobs, and even small shapes that don’t have any
particular name—whatever suits the needs of a particular calculation.

Example <11.1>: (Joint densities for independent random variables) Suppose X
has a continuous distribution with density g and Y has a continuous distribution
with density h. Then X and Y are independent if and only if they have a jointly
continuous distribution with joint density f (x, y) = g(x)h(y) for all (x, y) ∈ R

2.

When pairs of random variables are not independent it takes more work to find a joint
density. The prototypical case, where new random variables are constructed as linear func-
tions of random variables with a known joint density, illustrates a general method for deriv-
ing joint densities.

Example <11.2>: Joint densities for linear combinations

Read through the details of the following important special case, to make sure you under-
stand the notation from Example <11.2>.

Example <11.3>: Linear combinations of independent normals

The method used in Example <11.2>, for linear transformations, gives a good approx-
imation for more general smooth transformations when applied to small regions. Densities
describe the behaviour of distributions in small regions; in small regions smooth transfor-
mations are approximately linear; the density formula for linear transformations gives the
density formula for smooth transformations in small regions.

From Homework 9, you know that for independent random variables X and Y with
X ∼ gamma(α) and Y ∼ gamma(β), we have X/(X + Y ) ∼ beta(α, β) and X + Y ∼
gamma(α + β). The next Example provides a slightly simpler way to derive these two re-
sults, plus a little more.

Example <11.4>: Suppose X and Y are independent random variables, with X ∼
gamma(α) and Y ∼ gamma(β). Show that the random variables U = X/(X + Y )

and V = X + Y are independent, with U ∼ beta(α, β) and V ∼ gamma(α + β).

In general, if X and Y have a joint density function f (x, y) then

P{X ∈ A} =
∫∫

{x ∈ A, −∞ < y < ∞} f (x, y) dx dy =
∫

{x ∈ A} fX (x) dx,

where

fX (x) =
∫ ∞

−∞
f (x, y) dy.

That is, X has a continuous distribution with (marginal) density function fX . Similarly, Y
has a continuous distribution with (marginal) density function fY (y) = ∫ ∞

−∞ f (x, y) dx .
Remember that the word marginal is redundant; it serves merely to stress that a calculation
refers only to one of the random variables.
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Chapter 11 Joint densities

The conclusion about X + Y from Example <11.4> extends to sums of more than two
independent random variables, each with a gamma distribution. The result has a particularly
important special case, involving the sums of squares of independent standard normals.

Example <11.5>: Sums of independent gamma random variables.

Examples for Chapter 11

<11.1> Example. When X has density g(x) and Y has density h(y), and X is independent of Y ,
the joint density is particularly easy to calculate. Let � be a small rectangle with one corner
at (x0, y0) and small sides of length δ > 0 and ε > 0,

� = {(x, y) ∈ R
2 : x0 ≤ x ≤ x0 + δ, y0 ≤ y ≤ y0 + ε}.

By independence,

P{(X, Y ) ∈ �} = P{x0 ≤ X ≤ x0 + δ}P{y0 ≤ Y ≤ y0 + ε}
≈ δg(x0)εh(y0) = (

area of �
) × g(x0)h(y0)

Thus X and Y have a joint density that takes the value f (x0, y0) = g(x0)h(y0) at (x0, y0).

Remark. That is, the joint density f is the product of the marginal densities g
and h. The word marginal is used here to distinguish the joint density for (X, Y ) from
the individual densities g and h.

Conversely, if X and Y have a joint density f that factorizes, f (x, y) = g(x)h(y), then
for each pair of subsets C, D of the real line,

P{X ∈ C, Y ∈ D} =
∫∫

I{x ∈ C, y ∈ D} f (x, y) dx dy

=
∫∫

I{x ∈ C}I{y ∈ D}g(x)h(y)dx dy

=
( ∫

I{x ∈ C}g(x) dx

) ( ∫
I{y ∈ D}h(y) dy

)
In particular, if we take C = D = R then we get∫ ∞

−∞
g(x) dx = K and

∫ ∞

−∞
h(y) dy = 1/K

for some constant K . If we take only D = R we get

P{X ∈ C} = P{X ∈ C, Y ∈ R} =
∫

C
g(x)/K dx

from which it follows that g(x)/K is the marginal density for X . Similarly, K h(y) is the
marginal density for Y . Moreover, provided P{Y ∈ D} 	= 0,

P{X ∈ C | Y ∈ D} = P{X ∈ C, Y ∈ D}
P{Y ∈ D} = P{X ∈ C}P{Y ∈ D}

P{Y ∈ D} = P{X ∈ C}.
The random variables X and Y are independent.

Of course, if we know that g and h are the marginal densities then we have K = 1.
The argument in the previous paragraph actually shows that any factorization of a joint den-
sity (even if we do not know that the factors are the marginal densities) implies indepen-
dence. �

<11.2> Example. Suppose X and Y have a jointly continuous distribution with joint density
f (x, y). For constants a, b, c, d, define

U = aX + bY and V = cX + dY
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Chapter 11 Joint densities

Find the joint density function ψ(u, v) for (U, V ), under the assumption that the quantity
κ = ad − bc is nonzero.

Think of the pair (U, V ) as defining a new random point in R
2. That is (U, V ) =

T (X, Y ), where T maps the point (x, y) ∈ R
2 to the point (u, v) ∈ R

2 with

u = ax + by and v = cx + dy,

or in matrix notation,

(u, v) = (x, y)A where A =
(

a c
b d

)
.

Notice that det A = ad − bc = κ . The assumption that κ 	= 0 ensures that the transformation
is invertible:

(u, v)A−1 = (x, y) where A−1 = 1

κ

(
d −c

−b a

)
.

That is,
du − bv

κ
= x and

−cu + av

κ
= y.

Notice also that det
(

A−1
) = 1/κ = 1/(det A).

It helps to distinguish between the two roles for R
2, by referring to the domain of T as

the (x, y)-plane and the range as the (u, v)-plane.

The joint density function ψ(u, v) is characterized by the property that

P{u0 ≤ U ≤ u0 + δ, v0 ≤ V ≤ v0 + ε} ≈ ψ(u0, v0)δε

for each (u0, v0) in the (u, v)-plane, and small, positive δ and ε. To calculate the probability
on the left-hand side we need to find the region R in the (x, y)-plane corresponding to the
small rectangle �, with corners at (u0, v0) and (u0 + δ, v0 + ε), in the (u, v)-plane.

The linear transformation A−1 maps parallel straight lines in the (u, v)-plane into par-
allel straight lines in the (x, y)-plane. The region R must be a parallelogram. We have only
to determine its vertices, which correspond to the four vertices of the rectangle �. Define
vectors α1 = (d, −c)/κ and α2 = (−b, a)/κ , which correspond to the two rows of the ma-
trix A−1. Then R has vertices:

(x0, y0) = (u0, v0)A−1 = u0α1 + v0α2

(x0, y0) + δα1 = (u0 + δ, v0)A−1 = (u0 + δ)α1 + v0α2

(x0, y0) + εα2 = (u0, v0 + ε)A−1 = u0α1 + (v0 + ε)α2

(x0, y0) + δα1 + εα2 = (u0 + δ, v0 + ε)A−1 = (u0 + δ)α1 + (v0 + ε)α2

(u0+δ,v0+ε)

(x0,y0)
(u0,v0)

(x,y)-plane (u,v)-plane

∆
R

(x0,y0)+δα1

(x0,y0)+εα2

(x0,y0)+δα1+εα2

From the formula in the Appendix to this Chapter, the parallelogram R has area equal
to δε times the absolute value of the determinant of the matrix with rows α1 and α2. That is,

area of R = δε| det(A−1)| = δε

| det A| .
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In summary: for small δ > 0 and ε > 0,

ψ(u0, v0)δε ≈ P{(U, V ) ∈ �}
= P{(X, Y ) ∈ R}
≈ (area of R) f (x0, y0)

≈ δε f (x0, y0)/| det(A)|.
It follows that (U, V ) have joint density

ψ(u, v) = 1

| det A| f (x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du − bv) /κ for x and (−cu + av) /κ for y, in
order to get an expresion involving only u and v. �

Remark. In effect, I have calculated a Jacobian by first principles.

<11.3> Example. Suppose X and Y are independent random variables, each distributed N (0, 1).
By Example <11.1>, the joint density for (X, Y ) equals

f (x, y) = 1

2π
exp

(
− x2 + y2

2

)
for all x, y.

By Example <11.2>, the joint distribution of the random variables

U = aX + bY and V = cX + dY

has the joint density

ψ(u, v) = 1

2π |κ| exp

(
−1

2

(
du − bv

κ

)2

− 1

2

(−cu + av

κ

)2
)

where κ = ad − bc

= 1

2π |κ| exp

(
− (c2 + d2)u2 − 2(db + ac)uv + (a2 + b2)v2

2κ2

)
You’ll learn more about joint normal distributions in Chapter 13. �

<11.4> Example. We are given independent random variables X and Y , with X ∼ gamma(α)

and Y ∼ gamma(β). That is, X has a continuous distribution with density

g(x) = xα−1e−x
I{x > 0}/
(α)

and Y has a continuous distribution with density

h(y) = yβ−1e−y
I{y > 0}/
(β)

From Example <11.1>, the random variables have a jointly continuous distribution with
joint density

f (x, y) = g(x)h(y) = xα−1e−x yβ−1e−y


(α)
(β)
I{x > 0, y > 0}.

We need to find the joint density function ψ(u, v) for the random variables U = X/(X + Y )

and V = X + Y .

The pair (U, V ) takes values in the strip in the (u, v)-plane defined by 0 < u < 1 and
0 < v < ∞. The joint density function ψ can be determined by considering corresponding
points (x0, y0) in the (x, y)-quadrant and (u0, v0) in the (u, v)-strip:

u0 = x0/(x0 + y0) and v0 = x0 + y0,
that is,

x0 = u0v0 and y0 = (1 − u0)v0.
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Chapter 11 Joint densities

u0 u0+δ

(x0,y0)

v0+ε

v0

(x,y)-quadrant (u,v)-strip

∆R

When (U, V ) lies near (u0, v0) then (X, Y ) lies near (x0, y0) = (u0v0, v0(1 − u0)).
More precisely, for small positive δ and ε, there is a small region R in the (x, y)-quadrant
corresponding to the small rectangle

� = {(u, v) : u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}
in the (u, v)-strip. First locate the points corresponding to the corners of �, under the
maps x = uv and y = v(1 − u):

(u0 + δ, v0) 
→ (x0, y0) + (δv0, −δv0)

(u0, v0 + ε) 
→ (x0, y0) + (εu0, ε(1 − u0))

(u0 + δ, v0 + ε) 
→ (x0, y0) + (δv0 + εu0 + δε, −δv0 + ε(1 − u0) − δε)

= (x0, y0) + (δv0 + εu0, −δv0 + ε(1 − u0)) + (δε, −δε)

In matrix notation,

(u0, v0) + (δ, 0) 
→ (x0, y0) + (δ, 0)J
where J =

(
v0 −v0

u0 1 − u0

)
(u0, v0) + (0, ε) 
→ (x0, y0) + (0, ε)J

(u0, v0) + (δ, ε) 
→ (x0, y0) + (δ, ε)J + smaller order terms.

You might recognize J as the Jacobian matrix of partial derivatives( ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)

evaluated at (u0, v0). For small perturbations, the transformation from (u, v) to (x, y) is ap-
proximately linear.

The region R is approximately a parallelogram, with the edges oblique to the coordinate
axes. To a good approximation, the area of R is equal to δε times the area of the parallelo-
gram with corners at

(0, 0) and a = (v0, −v0) and b = (u0, 1 − u0) and a + b,

which, from the Appendix to this Chapter, equals | det(J )| = v0.

The rest of the calculation of the joint density ψ(·, ·) for (U, V ) is easy:

δεψ(u0, v0) ≈ P{(U, V ) ∈ �}
= P{(X, Y ) ∈ R}

≈ f (x0, y0)(area of R) ≈ xα−1
0 e−x0


(α)

yβ−1
0 e−y0


(β)
δ ε v0

Substitute x0 = u0v0 and y0 = (1 − u0)v0 to get the joint density at (u0, v0):

ψ(u0, v0) = uα−1
0 vα−1

0 e−u0v0


(α)

(1 − u0)
β−1v

β−1
0 e−v0+u0v0


(β)
v0

= uα−1
0 (1 − u0)

β−1

B(α, β)

v
α+β−1
0 e−v0


(α + β)


(α + β)B(α, β)


(α)
(β)
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That is,

ψ(u, v) = f0(u) f1(v)

(α + β)B(α, β)


(α)
(β)

where

f0(u) = uα−1(1 − u)β−1
I{0 < u < 1}

B(α, β)
the beta(α, β) density

f1(v) = vα+β−1e−v
I{0 < v}


(α + β)
the gamma(α + β) density.

I have dropped the subscripting zeros because I no longer need to keep your attention fixed
on a particular (u0, v0) in the (u, v) strip. The jumble of constants involving beta and
gamma functions must reduce to the constant 1, because

1 = P{0 < U < 1, 0 < V < ∞}
=

∫∫
{0 < u < 1, 0 < v < ∞}ψ(u, v) du dv

=
( ∫ 1

0
f0(u) du

) ( ∫ ∞

0
f1(v) dv

)
B(α, β)
(α + β)


(α)
(β)

= B(α, β)
(α + β)


(α)
(β)
.

Once again we have derived the expression relating beta and gamma functions.

The joint density factorizes into a product of the marginal densities: the random vari-
ables U and V are independent. �

Remark. The fact that 
(1/2) = √
π also follows from the equality


(1/2)
(1/2)


(1)
= B(1/2, 1/2) =

∫ 1

0

t−1/2(1 − t)−1/2 dt put t = sin2(θ)

=
∫ π/2

0

1
sin(θ) cos(θ)

2 sin(θ) cos(θ) dθ = π.

<11.5> Example. If X1, X2, . . . , Xk are independent random variables, with Xi distributed
gamma(αi ) for i = 1, . . . , k, then

X1 + X2 ∼ gamma(α1 + α2),

X1 + X2 + X3 = (X1 + X2) + X3 ∼ gamma(α1 + α2 + α3)

X1 + X2 + X3 + X4 = (X1 + X2 + X3) + X4 ∼ gamma(α1 + α2 + α3 + α4)

. . .

X1 + X2 + . . . + Xk ∼ gamma(α1 + α2 + . . . + αk)

A particular case has great significance for Statistics. Suppose Z1, . . . Zk are inde-
pendent random variables, each distributed N(0,1). From Chapter 9, the random variables
Z2

1/2, . . . , Z2
k /2 are independent gamma(1/2) distributed random variables. The sum

(Z2
1 + . . . + Z2

k )/2

must have a gamma(k/2) distribution with density t k/2−1e−t
I{0 < t}/
(k/2). It follows that

the sum Z2
1 + . . . + Z2

k has density

(t/2)k/2−1e−t/2
I{0 < t}

2
(k/2)
.

This distribution is called the chi-squared on k degrees of freedom, usually denoted by χ2
k .

The letter χ is a lowercase Greek chi. �
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Appendix: area of a parallelogram

Let R be a parallelogram in the plane with corners at 0 = (0, 0), and a = (a1, a2), and
b = (b1, b2), and a + b. The area of R is equal to the absolute value of the determinant of
the matrix

J =
(

a1 a2

b1 b2

)
=

(
a
b

)
.

That is, the area of R equals |a1b2 − a2b1|.
Proof. Let θ denotes the angle between a and b. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b

With the side from 0 to a, which has length ‖a‖, as the base,

0

a

b

a+b

θ

the vertical height is ‖b‖ × | sin θ |. The absolute value of the
area equals ‖a‖ × ‖b‖ × | sin θ |. The square of the area equals

‖a‖2‖b‖2 sin2(θ) = ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2(θ)

= (a · a)(b · b) − (a · b)2

= det

(
a · a a · b
a · b b · b

)
= det

(
J J ′)

= (det J )2 .

If you are not sure about the properties of determinants used in the last two lines, you
should check directly that

(a2
1 + a2

2)(b
2
1 + b2

2) − (a1b1 + a2b2)
2 = (a1b2 − a2b1)

2

�
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