
Chapter 13

Multivariate normal distributions

The multivariate normal is the most useful, and most studied, of the standard joint dis-
tributions in probability. A huge body of statistical theory depends on the properties of fam-
ilies of random variables whose joint distributions are at least approximately multivariate
normal. The bivariate case (two variables) is the easiest to understand, because it requires a
minimum of notation. Vector notation and matrix algebra becomes necessities when many
random variables are involved: for random variables X1, . . . , Xn we write X for the random
vector (X1, . . . , Xn), and x for the generic point (x1, . . . , xn) in R

n .

Definition. Random variables X1, X2, . . . , Xn are said to have a jointly continuous distri-
bution with joint density function f (x1, x2, . . . , xn) if, for each subset A of R

n ,

P{X ∈ A} =
∫∫

. . .

∫
{(x1, x2, . . . xn) ∈ A} f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

=
∫

{x ∈ A} f (x) dx,

where
∫

. . . dx is an abbreviation for the n-fold integral. For small regions � containing a
point x, the probability P{X ∈ �} is approximately vol(�)× f (x), where vol(�) denotes the
n-dimensional volume of �.

The density f must be nonnegative and integrate to one over R
n . If the random vari-

ables X1, . . . , Xn are independent, the joint density function is equal to the product of the
marginal densities for each Xi , and conversely. The proof is similar to the proof for the bi-
variate case.

For example, if Z1, . . . , Zn are independent and each Zi has a N (0, 1) distribution, the
joint density is

f (z1, . . . , zn) = 1

(2π)n/2
exp

(
−

∑
i≤n

z2
i /2

)
for all z1, . . . , zn

= 1

(2π)n/2
exp(−‖z‖2/2) for all z.

This joint distribution is denoted by N (0, In). It is often referred to as the spherical normal
distribution, because of the spherical symmetry of the density. The notation refers to the
vector of means,

EZ = (EZ1, . . . , EZn) = (0, 0, . . . , 0) = 0,

and the variance matrix, whose (i, j)th element equals cov(Zi , Zj ), that is,

var(Z) = In because cov(Zi , Zj ) =
{

1 if i = j
0 if i �= j

.
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The distance of the random vector Z from the origin is ‖Z‖ =
√

Z2
1 + . . . + Z2

n . From

Chapter 11, you know that ‖Z‖2/2 has a gamma(n/2) distribution. The distribution of ‖Z‖2

is given a special name, because of its great importance in the theory of statistics.

Definition. Let Z = (Z1, Z2, . . . , Zn) have a spherical normal distribution, N (0, In). The
chi-square, χ2

n , is defined as the distribution of ‖Z‖2 = Z2
1 + . . . + Z2

n .

The methods for finding joint densities for functions of random variables with jointly
continuous distributions extend easily to multivariate distributions. There is a problem with
the drawing of pictures in n dimensions, to keep track of the transformations, and one must
remember to say “n-dimensional volume” instead of area, but otherwise calculations are not
much more complicated than in two dimensions.

The spherical symmetry of the N (0, In) makes some arguments particularly easy. Let
me start with the two-dimensional case. Suppose Z1 and Z2 have independent N (0, 1) dis-
tributions, defining a random point Z = (Z1, Z2) in the plane. Rotate the coordinate axes
through an angle α, writing (W1, W2) for the coordinates of the random point in the new co-
ordinate system.

z1

z2

w1

w2 α

The new axes are defined by the unit vectors

q1 = (cos α, sin α) and q2 = (− sin α, cos α).

From the representation Z = (Z1, Z2) = W1q1 + W2q2 we get

W1 = Z · q1 = Z1 cos α + Z2 sin α

W2 = Z · q2 = −Z1 sin α + Z2 cos α.

That is, W1 and W2 are both linear functions of Z1 and Z2. The random variables W =
(W1, W2) have a multivariate normal distribution with EW = 0 and

var(W1) = cos2 α + sin2 α = 1

var(W2) = sin2 α + cos2 α = 1

cov(W1, W2) = (cos α)(− sin α) + (sin α)((cos α) = 0.

More succinctly, var(W) = I2. The random variables W1 and W2 are independent and each
is distributed N (0, 1).

Something analogous happens in higher dimensions. In fact, we don’t even have to in-
voke facts about linear combinations of independent normals; it is easier to go back to first
principles.

Example <13.1>: Suppose Z ∼ N (0, In). Let q1, . . . , qn be a new orthonormal
basis for R

n , and let Z = W1q1 + . . . + Wnqn be the representation for Z in the
new basis. Then the W1, . . . , Wn are also independent N (0, 1) distributed random
variables.

To prove results involving the spherical normal it is often merely a matter of transform-
ing to an appropriate orthonormal basis. This technique greatly simplifies the study of statis-
tical problems based on multivariate normal models.
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Example <13.2>: Suppose Z1, Z2, . . . , Zn are independent, each distributed
N (0, 1). Define Z̄ = (Z1 + . . . + Zn) /n and T = ∑

i≤n(Zi − Z̄)2. Show that
Z̄ has a N (0, 1/n) distribution independently of T , which has a χ2

n−1 distribution.

In statistics we often deal with independent random variables Y1, . . . , Yn each dis-
tributed N (µ, σ 2), where µ and σ 2 are unknown parameters that need to be estimated. If
we define Zi = (Yi − µ)/σ then the Zi are as in the previous Example. Moreover,

Ȳ = 1

n

∑
i≤n

Yi = µ + σ Z̄ ∼ N (µ, σ 2/n)∑
i≤n

(Yi − Ȳ )2/σ 2 =
∑

i≤n
(Zi − Z̄)2 ∼ χ2

n−1,

from which it follows that Ȳ and σ̂ 2 = ∑
i≤n(Yi − Ȳ )2/(n − 1) are independent. It is tradi-

tional to use Ȳ to estimate µ and σ̂ 2 to estimate σ 2. The random variable
√

n(Ȳ − µ)/σ̂ has

the same distribution as U/

√
V/(n − 1), where U ∼ N (0, 1) independently of V ∼ χ2

n−1.
By definition, such a ratio is said to have a t distribution on n − 1 degrees of freedom.

Example <13.3>: Distribution of least squares estimators for regression.

Examples for Chapter 13

<13.1> Example. We have Z ∼ N (0, In) and q1, . . . , qn a new orthonormal basis for R
n . In the

new coordinate system, Z = W1q1 + . . . + Wnqn We need to show that the W1, . . . , Wn are
also independent N (0, 1) distributed random variables.

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

The picture shows only two of the n coordinates; the other n−2 coordinates are sticking
out of the page. I have placed the pictures for the w- and z-spaces on top of each other, so
that you can see how the balls B and B∗ line up.

For a small ball B centered at z,

P{Z ∈ B} ≈ f (z)(volume of B) where f (z) = (2π)−n/2 exp(−‖z‖2/2).

The corresponding region for W is B∗, a ball of the same radius, but centered at the point
w = (w1, . . . , wn) for which w1q1 + . . . + wnqn = z. Thus

P{W ∈ B∗} = P{Z ∈ B} ≈ (2π)−n/2 exp(− 1
2‖x‖2)(volume of B).

From the equalities

‖w‖ = ‖z‖ and volume of B = volume of B∗,
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we get
P{W ∈ B∗} ≈ (2π)−n/2 exp(− 1

2‖w‖2)(volume of B∗).

That is, W has the asserted N (0, In) density. �

<13.2> Example. Suppose Z1, Z2, . . . , Zn are independent, each distributed N (0, 1). Define

Z̄ = Z1 + . . . + Zn

n
and T =

∑
i≤n

(Zi − Z̄)2

Show that Z̄ has a N (0, 1/n) distribution independently of T , which has a χ2
n−1 distribution.

Choose the new orthonormal basis with q1 = (1, 1, . . . , 1)/
√

n. Choose q2, . . . , qn

however you like, provided they are orthogonal unit vectors, all orthogonal to q1. In the new
coordinate system,

Z = W1q1 + . . . + Wnqn where Wi = Z · qi for each i .

In particular,

W1 = Z · q1 = Z1 + . . . + Zn√
n

= √
n Z̄

From Example <13.1> we know that W1 has a N (0, 1) distribution. It follows that Z̄ has a
N (0, 1/n) distribution.

The random variable T equals the squared length of the vector

(Z1 − Z̄ , . . . , Zn − Z̄) = Z − Z̄(
√

nq1) = Z − W1q1 = W2q2 + . . . + Wnqn.

That is,
T = ‖W2q2 + . . . + Wnqn‖2 = W 2

2 + . . . + W 2
n ,

a sum of squares of n − 1 independent N (0, 1) random variables, which has a χ2
n−1-

distribution.

Finally, notice that Z̄ is a function of W1, whereas T is a function of the independent
random variables W2, . . . , Wn . The independence of Z̄ and T follows. �

<13.3> Example. Suppose Y1, . . . Yn are independent random variables, with Yi ∼ N (µi , σ
2) for

an unknown σ 2. Suppose also that µi = α + βxi , for unknown parameters α and β and
observed constants x1, . . . , xn .

The method of least squares estimates α and β by the values α̂ and β̂ that minimize

S2(a, b) =
∑

i≤n

(
Yi − a − bxi

)2

over all (a, b) in R
2. One then estimates σ 2 by the value σ̂ 2 = S2(̂α, β̂)/(n − 2).

Define Y = (Y1, . . . , Yn) and x = (x1, . . . , xn) and 1 = (1, 1, . . . , 1). Then

EY = µ = α1 + βx and Y = µ + σZ where Z ∼ N (0, In)

and
S2(a, b) = ‖Y − a1 − bx‖2.

Create a new orthonormal basis for R
n by taking

q1 = (1, 1, . . . , 1)/
√

n and q2 = x − x̄1
‖x − x̄1‖

Choose q3, . . . , qn however you like, provided they are orthogonal unit vectors, all orthogo-
nal to q1.

Remark. Of course we must assume that
∑

i≤n(xi − x̄)2 �= 0, that is, the xi are
not all the same, for q2 to be well defined.
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Any vector that can be written as a linear combination of 1 and x can also be written
as a linear combination of q1 and q2; any vector that can be written as a linear combination
of q1 and q2 can also be written as a linear combination of 1 and x. That is, 1, x and q1, q2

span the same two-dimensional subspace of R
2.

In the new coordinate system,

Z = W1q1 + W2q2 + . . . + Wnqn with W ∼ N (0, In)

Y = (Y · q1)q1 + . . . (Y · qn)qn = µ + σ
∑n

i=1
Wi qi .

Dotting both sides of the last equation with qi we get

Y · qi =
{

(α1 + βx) · qi + σ Wi for i = 1, 2
σ Wi for 3 ≤ i ≤ n.

With the new coordinates the least squares problem simplifies, because

S2(a, b) = ‖Y − a1 − bx‖2

= ‖(Y · q1)q1 + (Y · q2)q2 − a1 − bx +
∑n

i=3
(Y · q2)qi‖2

= ‖(Y · q1)q1 + (Y · q2)q2 − a1 − bx‖2 + ‖
∑n

i=3
(Y · qi )qi‖2 by orthogonality.

The first term in the last line takes its minimum value of zero when we choose a and b to
make a1 + bx equal to (Y · q1)q1 + (Y · q2)q2. That is,

α̂1 + β̂x = (Y · q1)q1 + (Y · q2)q2 = α1 + βx + σ W1q1 + σ W2q2

and
(n − 2)̂σ 2 = S2(̂α, β̂) = ‖

∑n

i=3
(Y · qi )qi‖2 = σ 2

(
W 2

3 + . . . + W 2
n

)
.

Solve for the least squares estimators. First use the fact that 1 · q2 = 0 and

x · q2 = (x − x̄1) · q2 = ‖x − x̄1‖ =
( ∑

i≤n
(xi − x̄)2

)1/2

to get
β̂(x · q2) = (̂

α1 + β̂x
) · q2 = Y · q2 = β(x · q2) + σ W2,

that is,

β̂ = Y · q2

x · q2
=

∑
i≤n Yi (xi − x̄)∑
i≤n(xi − x̄)2

= β + σ W2/(x · q2) ∼ N
(
β, σ 2/

∑
i≤n

(xi − x̄)2
)
.

Similarly,

α̂(1 · q1) + β̂(x · q1) = Y · q1 = (α1 + βx) · q1 + σ W1

that is,
α̂ + β̂ x̄ = Ȳ = β̂ x̄ = α + β x̄ + σ W1.

It follows that β̂ also has a normal distribution with mean β. Moreover, as both α̂

and β̂ depend only on W1 and W2 but σ̂ 2 depends on W3, . . . , Wn , the random variables
(̂α, β̂) are independent of (n − 2)̂σ 2/σ 2, which has a χ2

n−3 distribution. These distributional
facts are the basis for the various statistics and p-values that accompany the output from
many regression programs. �
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