
Chapter 9

Poisson processes

The Binomial distribution and the geometric distribution describe the behavior of two
random variables derived from the random mechanism that I have called coin tossing. The
name coin tossing describes the whole mechanism; the names Binomial and geometric refer
to particular aspects of that mechanism. If we increase the tossing rate to n tosses per sec-
ond and decrease the probability of heads to a small p, while keeping the expected number
of heads per second fixed at λ = np, the number of heads in a t second interval will have
approximately a Bin(nt, p) distribution, which is close to the Poisson(λt). Also, the num-
bers of heads tossed during disjoint time intervals will still be independent random variables.
In the limit, as n → ∞, we get an idealization called a Poisson process.

Remark. The double use of the name Poisson is unfortunate. Much confusion
would be avoided if we all agreed to refer to the mechanism as “idealized-very-fast-
coin-tossing”, or some such. Then the Poisson distribution would have the same re-
lationship to idealized-very-fast-coin-tossing as the Binomial distribution has to coin-
tossing. Obversely, we could create more confusion by renaming coin tossing as “the
binomial process”. Neither suggestion is likely to be adopted, so you should just get
used to having two closely related objects with the name Poisson.

Definition. A Poisson process with rate λ on [0, ∞) is a random mechanism that gener-
ates ‘‘points’’ strung out along [0, ∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random variable with
a Poisson(λt) distribution

(ii) the numbers of points landing in disjoint (= non-overlapping) intervals are indepen-
dent random variables.

Note that, for a very short interval of length δ, the number of points X in the interval
has a Poisson(λδ) distribution, with

P{X = 0} = e−λδ = 1 − λδ + terms of order δ2 or smaller

P{X = 1} = λδe−λδ = λδ + terms of order δ2 or smaller

P{X ≥ 2} = 1 − e−λδ − λδe−λδ = quantity of order δ2.

When we pass to the idealized mechanism of points generated in continuous time, sev-
eral awkward artifacts of discrete-time coin tossing disappear.

Example <9.1>: (Gamma distribution from Poisson process) The waiting time Wk

to the kth point in a Poisson process with rate λ has a continuous distribution, with
density gk(w) = λkwk−1e−λw/(k − 1)! for w > 0, zero otherwise.
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It is easier to remember the distribution if we rescale the process, defining Tk = λWk .
From the results derived in Homework Problem 6.4, the new Tk has a continuous distribution
with a gamma(k) density,

fk(t) = t k−1e−t

(k − 1)!
I{t > 0}

Remark. Notice that gk = fk when λ = 1. That is, Tk is the waiting time to
the kth point for a Poisson process with rate 1. Put another way, we can generate a
Poisson process with rate λ by taking the points appearing at times 0 < T1 < T2 <

T3 < . . . from a Poisson process with rate 1, then rescaling to produce a new process
with points at

0 <
T1

λ
<

T2

λ
<

T3

λ
< . . .

You could verify this assertion by checking the two defining properties for a Poisson
process with rate λ. Doesn’t it makes sense that, as λ gets bigger, the points appear
more rapidly?

More generally, for each α > 0,

fα(t) =
{

tα−1e−t

�(α)
for t > 0,

0 otherwise,

is called the gamma(α) density. The scaling constant, �(α), which ensures that the density
integrates to one, is given by

�(α) =
∫ ∞

0
xα−1e−x dx for each α > 0.

The function �(·) is called the gamma function. Don’t confuse the gamma density (or the
gamma distribution that it defines) with the gamma function.

Example <9.2>: Facts about the gamma function: �(k) = (k − 1)! for k =
1, 2, . . ., and �(1/2) = √

π .

The change of variable used in Example <9.2> to prove �(1/2) = √
π is essentially

the same piece of mathematics as the calculation used to find the density for the distribution
of Y = Z2/2 when Z ∼ N (0, 1): For y > 0, and small δ > 0,

P{y < Y < y + δ} = P{2y < Z2 < 2y + 2δ}
= P{

√
2y < Z <

√
2y + 2δ} + P{−

√
2y + 2δ < Z < −

√
2y}

≈ 2δ√
2y

φ(
√

2y) because
√

2y + 2δ −
√

2y ≈ δ/
√

2y

= δ
1√
π

y−1/2e−y

That is, Y has a gamma (1/2) distribution. �

Example <9.3>: Moments of the gamma distribution

The special case of the gamma distribution when the parameter α equals 1 is called the
(standard) exponential distribution, with density f1(t) = e−t for t > 0, and zero else-
where. From Example <9.3>, if T1 has a standard exponential distribution then ET1 = 1.
The waiting time W1 to the first point in a Poisson process with rate λ has the same distribu-
tion as T1/λ, that is, a continuous distribution with density λe−λt for t > 0, an exponential
distribution with expected value 1/λ. Don’t confuse the exponential density (or the expo-
nential distribution that it defines) with the exponential function.

Notice the parallels between the negative binomial distribution (in discrete time) and
the gamma distribution (in continuous time). Each distribution corresponds to the waiting
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time to the kth occurrence of something, for various values of k. The negative binomial (see
Problem Sheet 4) can be written as a sum of independent random variables, each with a ge-
ometric distribution. The gamma(k) can be written as a sum of k independent random vari-
ables,

Tk = T1 + (T2 − T1) + (T3 − T2) + . . . + (Tk − Tk−1),

each with a standard exponential distribution. (For a Poisson process, the independence
between the counts in disjoint intervals ensures that the mechanism determining the time
W2 − W1 between the first and the second points is just another Poisson process started off
at time W1. And so on.) The times between points in a Poisson process are independent,
exponentially distributed random variables.

Poisson Processes can also be defined for sets other than the half-line.

Example <9.4>: A Poisson Process in two dimensions.

Things to remember

• Analogies between coin tossing, as a discrete time mechanism, and the Poisson process,
as a continuous time mechanism:

discrete time continuous time

coin tossing, prob p of heads Poisson process with rate λ

X = #heads in n tosses ∼ Bin(n, p) X = # points in [a, a + t] ∼ Poisson(λt)

P{X = i} = (n
i

)
pi qn−i for i = 0, 1, . . . , n P{X = i} = e−λt (λt)i/ i! for i = 0, 1, 2 . . .

(geometric) (exponential)

N1 = # tosses to first head; T1/λ = time to first point;

P{N1 = 1 + i} = qi p for i = 0, 1, 2, . . . T1 has density f1(t) = e−t for t > 0

(negative binomial) (gamma)

Nk = # tosses to kth head; Tk/λ = time to kth point;

P{Nk = k + i} = (k+i−1
k−1

)
qi pk = (−k

i

)
(−q)i pk Tk has density

for i = 0, 1, 2, . . . fk(t) = t k−1e−t/k! for t > 0

negative binomial as sum of gamma(k) as sum of

independent geometrics independent exponentials

Examples for Chapter 9

<9.1> Example. Let Wk denote the waiting time to the kth point in a Poisson process on [0, ∞)

with rate λ. It has a continuous distribution, whose density gk we can find by an argument
similar to the one used in Chapter 6 to find the distribution of an order statistic for a sample
from the Uniform(0, 1).

For a given w > 0 and small δ > 0, write M for the number of points landing in the
interval [0, w), and N for the number of points landing in the interval [w, w + δ]. From the
definition of a Poisson process, M and N are independent random variables with

M ∼ Poisson(λw) and N ∼ Poisson(λδ).
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To have Wk lie in the interval [w, w + δ] we must have N ≥ 1. When N = 1, we need
exactly k − 1 points to land in [0, w). Thus

P{w ≤ Wk ≤ w + δ} = P{M = k − 1, N = 1} + P{w ≤ Wk ≤ w + δ, N ≥ 2}.
The second term on the right-hand side is of order δ2. Independence of M and N lets us
factorize the contribution from N = 1 into

P{M = k − 1}P{N = 1} = e−λw(λw)k−1

(k − 1)!

e−λδ(λδ)1

1!

= e−λwλk−1wk−1

(k − 1)!

(
λδ + smaller order terms

)
,

Thus

P{w ≤ Wk ≤ w + δ} = e−λwλkwk−1

(k − 1)!
δ + smaller order terms,

which makes

gk(w) = e−λwλkwk−1

(k − 1)!
for w > 0.

the density function for Wk . �

<9.2> Example. The gamma function is defined for α > 0 by

�(α) =
∫ ∞

0
xα−1e−x dx .

By direct integration, �(1) = ∫ ∞
0 e−x dx = 1. Also, a change of variable y = √

2x gives

�(1/2) =
∫ ∞

0
x−1/2e−x dx

=
∫ ∞

0

√
2e−y2/2dy

=
√

2

2

√
2π√
2π

∫ ∞

−∞
e−y2/2dy

= √
π cf. integral ofN (0, 1) density.

For each α > 0, an integration by parts gives

�(α + 1) =
∫ ∞

0
xαe−x dx

= [−xαe−x
]∞

0 + α

∫ ∞

0
xα−1e−x dx

= α�(α).

Repeated appeals to the same formula, for α > 0 and each positive integer m, give

(∗) �(α + m) = (α + m − 1)(α + m − 2) . . . (α)�(α).

In particular,

�(k) = (k − 1)(k − 2)(k − 3) . . . (2)(1)�(1) = (k − 1)! for k = 1, 2, . . ..

�

<9.3> Example. For parameter value α > 0, the gamma(α) distribution is defined by its density

fα(t) =
{

tα−1e−t/�(α) for t > 0
0 otherwise
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If a random variable T has a gamma(α) distribution then, for each positive integer m,

ET m =
∫ ∞

0
tm fα(t) dt

=
∫ ∞

0

tmtα−1e−t

�(α)
dt

= �(α + m)

�(α)

= (α + m − 1)(α + m − 2) . . . (α) by equality (∗) in Example <9.2>.

In particular, ET = α and

var(T ) = E
(
T 2

) − (ET )2 = (α + 1)α − α2 = α.

�

<9.4> Example. A Poisson process with rate λ on R
2 is a random mechanism that generates

“points” in the plane in such a way that

(i) the number of points landing in any region of area A is a random variable with a
Poisson(λA) distribution

(ii) the numbers of points landing in disjoint regions are independent random variables.

Suppose mold spores are distributed across the plane as a Poisson process with in-
tensity λ. Around each spore, a circular moldy patch of radius r forms. Let S be some
bounded region. Find the expected proportion of the area of S that is covered by mold.

S

Write x = (x, y) for the typical point of R
2. If B is a subset of R

2,

area of S ∩ B =
∫∫

x∈S
I{x ∈ B} dx

If B is a random set then

E
(

area of S ∩ B
) =

∫∫
x∈S

EI{x ∈ B} dx =
∫∫

x∈S
P{x ∈ B} dx

If B denotes the moldy region of the plane,

1 − P{x ∈ B} = P{ no spores land within a distance r of x }
= P{ no spores in circle of radius r around x }
= exp

( − λπr2
)

Notice that the probability does not depend on x. Connsequently,

E
(

area of S ∩ B
) =

∫∫
x∈S

1 − exp
( − λπr2

)
dx = (

1 − exp
( − λπr2

)) × area of S

The expected proportion of the area of S that is covered by mold is 1 − exp
( − λπr2

)
. �
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