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Chapter 1

Probabilities and random variables

Probability theory is a systematic method for describing randomness and uncertainty.
It prescribes a set of mathematical rules for manipulating and calculating probabilities and
expectations. It has been applied in many areas: gambling, insurance, finance, the study of
experimental error, statistical inference, and more.

One standard approach to probability theory (but not the only approach) starts from the
concept of a sample space, which is an exhaustive list of possible outcomes in an experi-
ment or other situation where the result is uncertain. Subsets of the list are called events.
For example, in the very simple situation where 3 coins are tossed, the sample space might
be

S = {hhh, hht, hth, htt, thh, tht, t th, t t t}.
Notice that S contains nothing that would specify an outcome like “the second coin spun
17 times, was in the air for 3.26 seconds, rolled 23.7 inches when it landed, then ended
with heads facing up”. There is an event corresponding to “the second coin landed heads”,
namely,

{hhh, hht, thh, tht}.
Each element in the sample space corresponds to a uniquely specified outcome.

The choice of a sample space—the detail with which possible outcomes are described—
depends on the sort of events we wish to describe. The sample space is constructed to make
it easier to think precisely about events. In many cases, you will find that you don’t actually
need an explicitly defined sample space; it often suffices to manipulate events via a small
number of rules (to be specified soon) without explicitly identifying the events with subsets
of a sample space.

If the outcome of the experiment corresponds to a point of a sample space belonging to
some event, one says that the event has occurred. For example, with the outcome hhh each
of the events {no tails}, {at least one head}, {more heads than tails} occurs, but the event
{even number of heads} does not.

The uncertainty is modelled by a probability assigned to each event. The probabibility
of an event E is denoted by PE . One popular interpretation of P (but not the only interpre-
tation) is as a long run frequency: in a very large number (N) of repetitions of the experi-
ment,

(number of times E occurs)/N ≈ PE,

provided the experiments are independent of each other.

As many authors have pointed out, there is something fishy about this interpretation.
For example, it is difficult to make precise the meaning of “independent of each other” with-
out resorting to explanations that degenerate into circular discussions about the meaning of
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Chapter 1 Probabilities and random variables

probability and independence. This fact does not seem to trouble most supporters of the fre-
quency theory. The interpretation is regarded as a justification for the adoption of a set of
mathematical rules, or axioms. (See Example 14 for an alternative interpretation.)

The first four rules are easy to remember if you think of probability as a proportion.
One more rule will be added soon.

Rules for probabilities

(P1) : 0 ≤ PE ≤ 1 for every event E .

(P2) : For the empty subset ∅ (= the “impossible event”), P∅ = 0,

(P3) : For the whole sample space (= the “certain event”), PS = 1.

(P4) : If an event E is a disjoint union of events E1, E2, . . . then PE = ∑
i PEi .

Example 1: Find P{at least two heads} for the tossing of three coins.

Probability theory would be very boring if all problems were solved like that: break the
event into pieces whose probabilities you know, then add. Things become much more in-
teresting when we recognize that the assignment of probabilities depends on what we know
or have learnt (or assume) about the random situation. For example, in the last problem we
could have written

P{at least two heads | coins fair, “independence,” . . . } = . . .

to indicate that the assignment is conditional on certain information (or assumptions). The
vertical bar stands for the word given; that is, we read the symbol as probability of at least
two heads given that . . .

For fixed conditioning information, the conditional probabilities P{. . . | info} sat-
isfy rules (P1) through (P4). For example, P

(∅ | info
) = 0, and so on. If the conditioning

information stays fixed throughout the analysis, one usually doesn’t bother with the “given
. . . ”, but if the information changes during the analysis the conditional probability notation
becomes most useful.

The final rule for (conditional) probabilities lets us break occurrence of an event into a
succession of simpler stages, whose conditional probabilities might be easier to calculate or
assign. Often the successive stages correspond to the occurrence of each of a sequence of
events, in which case the notation is abbreviated:

P
(
. . . | event A and event B have occurred and previous info

)
or

P
(
. . . | A ∩ B∩ previous info

)
where ∩ means intersection

or

P
(
. . . | A, B, previous info

)
or

P
(
. . . | A ∩ B

)
if the “previous info” is understood.

or

P
(
. . . | AB

)
where AB is an abbreviation for A ∩ B.

The commas in the third expression are open to misinterpretation, but convenience recom-
mends the more concise notation.

Remark. I must confess to some inconsistency in my use of parentheses and
braces. If the “. . . ” is a description in words, then {. . . } denotes the subset of S on
which the description is true, and P{. . .} or P{. . . | info} seems the natural way to
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Chapter 1 Probabilities and random variables

denote the probability attached to that subset. However, if the “. . . ” stand for an ex-
pression like A ∩ B, the notation P(A ∩ B) or P(A ∩ B | info) looks nicer to me. It is
hard to maintain a convention that covers all cases. You should not attribute much
significance to differences in my notation involving a choice between parentheses and
braces.

Rule for conditional probability

(P5) : if A and B are events then P
(

A ∩ B | info
) = P

(
A | info

) · P
(
B | A, info

)
.

The frequency interpretation might make it easier for you to appreciate this rule. Sup-
pose that in N “independent” repetitions (given the same initial conditioning information)

A occurs NA times,

A ∩ B occurs NA∩B times.

Then, for big N ,

P
(

A | info
) ≈ NA/N

P
(

A ∩ B | info
) ≈ NA∩B/N .

If we ignore those repetitions where A fails to occur then we have NA repetitions given the
original information and occurrence of A, in NA∩B of which the event B also occurs. Thus
P
(
B | A, info

) ≈ NA∩B/NA. The rest is division.

In my experience, conditional probabilities provide a more reliable method for solving
problems traditionally handled by counting arguments (Combinatorics). I find it hard to be
consistent about how I count, to make sure every case is counted once and only once, to
decide whether order should matter, and so on. The next Example illustrates my point.

Example 2: What is the probability that a hand of 5 cards contains four of a kind?

I wrote out many of the gory details to show you how the rules reduce the calculation to
a sequence of simpler steps. In practice, one would be less explicit, to keep the audience
awake.

The next example is taken from the delightful Fifty Challenging Problems in Probability
by Frederick Mosteller. This little book is one of my favourite sources for elegant examples.
One could learn a lot of probability by trying to solve all fifty problems. The underlying
problem has resurfaced in recent years in various guises, including a variation in the highly
publicized “Ask Marylyn” incident.

Example 3: Three prisoners, A, B, and C, with apparently equally good records
have applied for parole. The parole board has decided to release two of the three,
and the prisoners know this but not which two. A warder friend of prisoner A
knows who are to be released. Prisoner A realizes that it would be unethical to
ask the warder if he, A, is to be released, but thinks of asking for the name of one
prisoner other than himself who is to be released. He thinks that before he asks,
his chances of release are 2/3. He thinks that if the warder says “B will be re-
leased,” his own chances have now gone down to 1/2, because either A and B or
B and C are to be released. And so A decides not to reduce his chances by asking.
However, A is mistaken in his calculations. Explain.

You might have the impression at this stage that the first step towards the solution of a
probability problem is always a specification of a sample space. In fact one seldom needs
an explicit listing of the sample space; an assignment of (conditional) probabilities to well
chosen events is usually enough to set the probability machine in action. Only in cases of
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Chapter 1 Probabilities and random variables

possible confusion (as in the last Example), or great mathematical precision, do I find a list
of possible outcomes worthwhile to contemplate.

In the next Example, as is often the case, constuction of a sample space would be a
nontrivial exercise. The Example shows how conditioning can break a complex random
mechanism into a sequence of simpler stages.

Example 4: Imagine that I have a fair coin, which I toss repeatedly. Two players,
M and R, observe the sequence of tosses, each waiting for a particular pattern on
consecutive tosses: M waits for hhh, and R waits for tthh. The one whose pattern
appears first is the winner. What is the probability that M wins?

In both Examples 3 and 4 we had situations where particular pieces of information
could be ignored in the calculation of some conditional probabilities,

P
(
A | B∗) = P(A),

P
(
next toss a head | past sequence of tosses

) = 1/2.

Both situations are instances of a property called independence.

Definition. Call events E and F conditionally independent given a particular piece of
information if

P
(
E | F , information

) = P
(
E | information

)
.

If the ‘‘information" is understood, just call E and F independent.

The apparent asymmetry in the definition can be removed by an appeal to rule P5, from
which we deduce that

P
(
E ∩ F | information

) = P
(
E | information

)
P
(
F | information

)
for conditionally independent events E and F . Except for the conditioning information, the
last quality is the traditional definition of independence. Some authors prefer that form be-
cause it includes various cases involving events with zero (conditional) probability.

Conditional independence is one of the most important simplifying assumptions used in
probabilistic modeling. It allows one to reduce consideration of complex sequences of events
to an analysis of each event in isolation. Several standard mechanisms are built around the
concept. The prime example for these notes is independent “coin-tossing”: independent rep-
etition of a simple experiment (such as the tossing of a coin) that has only two possible out-
comes. By establishing a number of basic facts about coin tossing I will build a set of tools
for analyzing problems that can be reduced to a mechanism like coin tossing, usually by
means of well-chosen conditioning.

Example 5: Suppose a coin has probability p of landing heads on any partic-
ular toss, independent of the outcomes of other tosses. In a sequence of such
tosses, what is the probability that the first head appears on the kth toss (for
k = 1, 2, . . .)?

The Example would have been slightly neater if we had had a name for the toss on which
the first head occurs. Suppose we define

X = the position at which the first head occurs.

Then we could write

P{X = k} = (1 − p)k−1 p for k = 1, 2, . . . .

The X is an example of a random variable.

Formally, a random variable is just a function that attaches a number to each item in
the sample space. Typically we don’t need to specify the sample space precisely before we

Statistics 241: 28 August 2000 C1-4 c©David Pollard



Chapter 1 Probabilities and random variables

study a random variable. What matters more is the set of values that it can take and the
probabilities with which it takes those values. This information is called the distribution
of the random variable.

For example, we say that a random variable Z has a geometric(p) distribution if it can
take values 1, 2, 3, . . . with probabilities

P{Z = k} = (1 − p)k−1 p for k = 1, 2, . . . .

The result from the last example asserts that the number of tosses required to get the first
head has a geometric(p) distribution.

Remark. Warning: some authors would use geometric(p) to refer to the distri-
bution of the number of tails before the first head, which corresponds to the distribu-
tion of Z − 1, with Z as above.

Why the name “geometric”? Recall the geometric series,
∞∑

k=0

ark = a/(1 − r) for |r | < 1.

Notice, in particular, that if 0 < p ≤ 1, and Z has a geometric(p) distribution,
∞∑

k=1

P{Z = k} =
∞∑

j=0

p(1 − p) j = 1.

What does that tell you about coin tossing?

The next example, also borrowed from the Mosteller book, is built around a “geomet-
ric” mechanism.

Example 6: A, B, and C are to fight a three-cornered pistol duel. All know that
A’s chance of hitting his target is 0.3, C’s is 0.5, and B never misses. They are to
fire at their choice of target in succession in the order A, B, C, cyclically (but a hit
man loses further turns and is no longer shot at) until only one man is left unhit.
What should A’s strategy be?

Things to remember

• , , and the five rules for manipulating (conditional) probabilities.

• Conditioning is often easier, or at least more reliable, than counting.

• Conditional independence is a major simplifying assumption of probability theory.

• What is a random variable? What is meant by the distribution of a random variable?

• What is the geometric(p) distribution?
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Example 1: Three coins

Find P{at least two heads} for the tossing of three coins. Use the sample space

S = {hhh, hht, hth, htt, thh, tht, t th, t t t}.
If we assume that each coin is fair and that the outcomes from the coins don’t affect each
other (“independence”), then we must conclude by symmetry (“equally likely”) that

P{hhh} = P{hht} = . . . = P{t t t}.
By rule P4 these eight probabilities add to PS = 1; they must each equal 1/8. Again by P4,

P{at least two heads} = P{hhh} + P{hht} + P{hth} + P{thh} = 1/2.

�
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Example 2: Four of a kind

What is the probability that a hand of 5 cards contains four of a kind?

Let us assume everything fair and aboveboard, so that simple probability calculations
can be carried out by appeals to symmetry. The fairness assumption could be carried along
as part of the conditioning information, but it would just clog up the notation to no useful
purpose.

I will consider the ordering of the cards within the hand as significant. For example,
(7♣, 3♦, 2♥, K♥, 8♥) will be a different hand from (K♥, 7♣, 3♦, 2♥, 8♥).

Start by breaking the event of interest into 13 disjoint pieces:

{four of a kind} =
13⋃

i=1

Fi

where

F1 = {four aces, plus something else},
F2 = {four twos, plus something else},

...

F13 = {four kings, plus something else}.
By symmetry each Fi has the same probability, which means we can concentrate on just one
of them.

P{four of a kind} =
13∑
1

PFi = 13PF1 by rule P4.

Now break F1 into simpler pieces,

F1 =
5⋃

j=1

F1 j

where F1 j = {four aces with jth card not an ace}. Again by disjointness and symmetry,
PF1 = 5PF1,1.

Decompose the event F1,1 into five “stages”, F1,1 = N1 ∩ A2 ∩ A3 ∩ A4 ∩ A5, where

N1 = {first card is not an ace} and A1 = {first card is an ace}
and so on. To save on space, I will omit the intersection signs, writing N1 A2 A3 A4 instead of
N1 ∩ A2 ∩ A3 ∩ A4, and so on. By rule P5,

PF1,1 = PN1 P(A2 | N1) P(A3 | N1 A2) . . . P(A5 | N1 A2 A3 A4)

= 48

52
× 4

51
× 3

50
× 2

49
× 1

48
.

Thus

P{four of a kind} = 13 × 5 × 48

52
× 4

51
× 3

50
× 2

49
× 1

48
≈ .00024.

Can you see any hidden assumptions in this analysis? �

Which sample space was I using, implicitly? How would the argument be affected if
we took S as the set of all of all

(52
5

)
distinct subsets of size 5, with equal probability on

each sample point? That is, would it matter if we ignored ordering of cards within hands?
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Example 3: Prisoner’s dilemma

(The Prisoner’s Dilemma) Three prisoners, A, B, and C, with apparently equally good
records have applied for parole. The parole board has decided to release two of the three,
and the prisoners know this but not which two. A warder friend of prisoner A knows who
are to be released. Prisoner A realizes that it would be unethical to ask the warder if he, A,
is to be released, but thinks of asking for the name of one prisoner other than himself who
is to be released. He thinks that before he asks, his chances of release are 2/3. He thinks
that if the warder says “B will be released,” his own chances have now gone down to 1/2,
because either A and B or B and C are to be released. And so A decides not to reduce his
chances by asking. However, A is mistaken in his calculations. Explain.

It is quite tricky to argue through this problem without introducing any notation, be-
cause of some subtle distinctions that need to be maintained.

The interpretation that I propose requires a sample space with only four items, which I
label suggestively

aB = both A and B to be released, warder must say B

aC = both A and C to be released, warder must say C

Bc = both B and C to be released, warder says B

bC = both B and C to be released, warder says C.

There are three events to be considered

A = {A to be released} = {
aB , aC

}
B = {B to be released} = {

aB , Bc , bC
}

B∗ = {warder says B to be released} = {
aB , Bc

}
.

Apparently prisoner A thinks that P
(
A | B∗) = 1/2.

How should we assign probabilities? The words “equally good records” suggest (com-
pare with Rule P4)

P{A and B to be released}
= P{B and C to be released}
= P{C and A to be released}
= 1/3

That is,
P{ aB } = P{ aC } = P{ Bc } + P{ bC } = 1/3.

What is the split between Bc and bC ? I think the poser of the problem wants us to
give 1/6 to each outcome, although there is nothing in the wording of the problem requiring
that allocation. (Can you think of another plausible allocation that would change the conclu-
sion?)

With those probabilities we calculate

PA ∩ B∗ = P{ aB } = 1/3

PB∗ = P{ aB } + P{ Bc } = 1/3 + 1/6 = 1/2,

from which we deduce (via rule P5) that

P
(
A | B∗) = PA ∩ B∗

PB∗ = 1/3

1/2
= 2/3 = PA.

The extra information B∗ should not change prisoner A’s perception of his probability of
being released.
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Notice that

P
(
A | B

) = PA ∩ B

PB
= 1/3

1/2 + 1/6 + 1/6
= 1/2 �= PA.

Perhaps A was confusing P
(
A | B∗) with P

(
A | B

)
.

The problem is more subtle than you might suspect. Reconsider the conditioning argu-
ment from the point of view of prisoner C, who overhears the conversation between A and
the warder. With C denoting the event

{C to be released} = {
aC , Bc , bC

}
,

he would calculate a conditional probability

P
(
C | B∗) = P{ Bc }

PB∗ = 1/6

1/2
�= PC.

The warder might have nominated C as a prisoner to be released. The fact that he didn’t do
so conveys some information to C. Do you see why A and C can infer different information
from the warder’s reply? �

The last part of the Example, concerning the bad news for prisoner C, is a version of
a famous puzzler that recently caused a storm in a teacup when it was posed in a newspa-
per column. If we replace “stay in prison” by “win a prize” then a small variation on Quiz
Contestant Problem emerges. The lesson is: Be prepared to defend your assignments of con-
ditional probabilities.
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Example 4: Coin tossing game: HHH vs. TTHH

Here is a coin tossing game that illustrates how conditioning can break a complex ran-
dom mechanism into a sequence of simpler stages. Imagine that I have a fair coin, which I
toss repeatedly. Two players, M and R, observe the sequence of tosses, each waiting for a
particular pattern on consecutive tosses.

M waits for hhh
R waits for tthh.

The one whose pattern appears first is the winner. What is the probability that M wins?

For example, the sequence ththhttthh . . . would result in a win for R, but ththhthhh . . .

would result in a win for M.

At first thought one might imagine that M has the advantage. After all, surely it must
be easier to get a pattern of length 3 than a pattern of length 4. You’ll discover that the so-
lution is not that straightforward.

The possible states of the game can be summarized by recording how much of his pat-
tern each player has observed (ignoring false starts, such as hht for M, which would leave
him back where he started, although R would have matched the first t of his pattern.).

States M partial pattern R partial pattern

S – –

H h –

T – t

TT – tt

HH hh –

TTH h tth

M wins hhh ?

R wins ? tthh

By claiming that these states summarize the game I am tacitly assuming that the coin
has no “memory”, in the sense that the conditional probability of a head given any particular
past sequence of heads and tails is 1/2 (for a fair coin). The past history leading to a partic-
ular state does not matter; the future evolution of the game depends only on what remains
for each player to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented by little boxes
joined by arrows that indicate the probabilities of transition from one state to another. Only
transitions with a nonzero probability are drawn. In this problem each nonzero probability
equals 1/2. The solid arrows correspond to transitions resulting from a head, the dotted ar-
rows to a tail.

H M winsHH

TTH R wins

S

M winsHH

T

TT

For example, the arrows leading from S to H to HH to M wins correspond to
heads; the game would progress in exactly that way if the first three tosses gave hhh. Simi-
larly the arrows from S to T to TT correspond to tails.
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The arrow looping from TT back into itself corresponds to the situation where, after
. . . tt, both players progress no further until the next head. Once the game progresses down
the arrow T to TT the step into TTH becomes inevitable. Indeed, for the purpose of
calculating the probability that M wins, we could replace the side branch by:

T TTH

The new arrow from T to TTH would correspond to a sequence of tails followed by
a head. With the state TT removed, the diagram would become almost symmetric with
respect to M and R. The arrow from HH back to T would show that R actually has an
advantage: the first h in the tthh pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game. The problem be-
comes one of following the path of a particle that moves between the states according to the
transition probabilities on the arrows. The original game has S as its starting state, but it
is just as easy to solve the problem for a particle starting from any of the states. The method
that I will present actually solves the problems for all possible starting states by setting up
equations that relate the solutions to each other. Define probabilities for the particle:

PS = P{reach M wins | start at S }
PT = P{reach M wins | start at T }

and so on. I’ll still refer to the solid arrows as “heads”, just to distinguish between the two
arrows leading out of a state, even though the coin tossing interpretation has now become
irrelevant.

Calculate the probability of reaching M wins , under each of the different starting
circumstances, by breaking according to the result of the first move, and then conditioning.

PS = P{reach M wins , heads | start at S } + P{reach M wins , tails | start at S }
= P{heads | start at S }P{reach M wins | start at S , heads}

+ P{tails | start at S }P{reach M wins | start at S , tails}.
The lack of memory in the fair coin reduces the last expression to 1

2 PH + 1
2 PT . Notice how

“start at S , heads” has been turned into “start at H ” and so on. We have our first equa-
tion:

PS = 1
2 PH + 1

2 PT .

Similar splitting and conditioning arguments for each of the other starting states give

PH = 1
2 PT + 1

2 PH H

PH H = 1
2 + 1

2 PT

PT = 1
2 PH + 1

2 PT T

PT T = 1
2 PT T + 1

2 PT T H

PT T H = 1
2 PT + 0.

We could use the fourth equation to substitute for PT T , leaving

PT = 1
2 PH + 1

2 PT T H .

This simple elimination of the PT T contribution corresponds to the excision of the TT state
from the diagram. If we hadn’t noticed the possibility for excision the algebra would have
effectively done it for us. The six splitting/conditioning arguments give six linear equations
in six unknowns. If you solve them you should get PS = 5/12, PH = 1/2, PT = 1/3,
PH H = 2/3, and PT T H = 1/6. For the original problem, M has probability 5/12 of winning.
�
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There is a more systematic way to carry out the analysis in the last problem without
drawing the diagram. The transition probabilities can be installed into an 8 by 8 matrix
whose rows and columns are labeled by the states:

P =




S H T HH TT TTH M wins R wins

S 0 1/2 1/2 0 0 0 0 0
H 0 0 1/2 1/2 0 0 0 0
T 0 1/2 0 0 1/2 0 0 0
HH 0 0 1/2 0 0 0 1/2 0
TT 0 0 0 0 1/2 1/2 0 0
TTH 0 0 1/2 0 0 0 0 1/2
M wins 0 0 0 0 0 0 1 0
R wins 0 0 0 0 0 0 0 1




If we similarly define a column vector,

π = (PS, PH , PT , PH H , PT T , PT T H , PM wins, PR wins)
′,

then the equations that we needed to solve could be written as

Pπ = π,

with the boundary conditions PM wins = 1 and PR wins = 0. I didn’t bother adding the
equations PM wins = 1 and PR wins = 0 to the list of equations; they correspond to the
isolated terms 1/2 and 0 on the right-hand sides of the equations for PH H and PT T H .

The matrix P is called the transition matrix. The element in row i and column j gives
the probability of a transition from state i to state j. For example, the third row, which is
labeled T , gives transition probabilities from state T . If we multiply P by itself we get
the matrix P2, which gives the “two-step” transition probabilities. For example, the element
of P2 in row T and column TTH is given by∑

j

PT, j Pj,T T H =
∑

j

P{step to j | start at T }P{step to TTH | start at j}.

Here j runs over all states, but only j = H and j = TT contribute nonzero terms.
Substituting

P{reach TTH in two steps | start at T , step to j}
for the second factor in the sum, we get the splitting/conditioning decomposition for

P{reach TTH in two steps | start at T },
a two-step transition possibility.

Questions: What do the elements of the matrix Pn represent? What happens to this
matrix as n tends to infinity? See the output from the MatLab m-file Markov.m.

The name Markov chain is given to any process representable as the movement of a
particle between states (boxes) according to transition probabilities attached to arrows con-
necting the various states. The sum of the probabilities for arrows leaving a state should add
to one. All the past history except for identification of the current state is regarded as irrel-
evant to the next transition; given the current state, the past is conditionally independent of
the future.
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Example 5: Geometric distribution

Suppose a coin has probability p of landing heads on any particular toss, independent
of outcomes of other tosses. In a sequence of such tosses, what is the probability that the
first head appears on the kth toss (for k = 1, 2, . . .)?

Write Hi for the event {head on the ith toss}. Then, for a fixed k (an integer greater
than or equal to 1),

P{first head on kth toss}
= P(H c

1 H c
2 . . . H c

k−1 Hk)

= P(H c
1 )P(H c

2 . . . H c
k−1 Hk | H c

1 ) by rule P5.

By the independence assumption, the conditioning information is irrelevant. Also PH c
1 =

1 − p because PH c
1 + PH1 = 1. Why? Thus

P{first head on kth toss} = (1 − p)P(H c
2 . . . H c

k−1 Hk).

Similar conditioning arguments let us strip off each of the outcomes for tosses 2 to k − 1,
leaving

P{first head on kth toss} = (1 − p)k−1 p for k = 1, 2, . . . .

�
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Example 6: Three way duel

(The Three-Cornered Duel) A, B, and C are to fight a three-cornered pistol duel. All
know that A’s chance of hitting his target is 0.3, C’s is 0.5, and B never misses. They are
to fire at their choice of target in succession in the order A, B, C, cyclically (but a hit man
loses further turns and is no longer shot at) until only one man is left unhit. What should
A’s strategy be?

What could A do? If he shoots at C and hits him, then he receives a bullet between the
eyes from B on the next shot. Not a good strategy:

P
(
A survives | he kills C first

) = 0.

If he shoots at C and misses then B naturally would pick off his more dangerous oppenent,
C, leaving A one shot before B finishes him off too. That single shot from A at B would
have to succeed:

P
(
A survives | he misses first shot

) = 0.3.

If A shoots first at B and misses the result is the same. What if A shoots at B first and suc-
ceeds? Then A and C would trade shots until one of them was hit, with C taking the first
shot. We could solve this part of the problem by setting up a Markov chain diagram, or we
could argue as follows: For A to survive, the fight would have to continue,

{C misses, A hits}
or

{C misses, A misses, C misses, A hits}
or

{C misses, (A misses, C misses) twice, A hits}

and so on. The general piece in the decomposition consists of some number of repetitions of
(A misses, C misses) sandwiched between the initial “C misses” and the final “A hits.” The
repetitions are like coin tosses with probability (1 − 0.3)(1 − 0.5) = .35 for the double miss.
Independence between successive shots (or should it be conditional independence, given the
choice of target?) allows us to multiply together probabilities to get

P
(
A survives | he first shoots B

)

=
∞∑

k=0

P{C misses, (A misses, C misses) k times, A hits}

=
∞∑

k=0

(.5)(.35)k(.3)

= .15/(1 − 0.35) by the rule of sum of geometric series

≈ .23

In summary:

P
(
A survives | he kills C first

) = 0

P
(
A survives | he kills B first

) ≈ .23

P
(
A survives | he misses with first shot

) = .3

Somehow A should try to miss with his first shot. Is that allowed? �
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Chapter 2

Expectations

Just as events have (conditional) probabilities attached to them, with possible interpre-
tation as a long-run frequency, so too do random variables have a number interpretable as a
long-run average attached to them. Given a particular piece of information, the symbol

E
(
X | information

)
denotes the (conditional) expected value or (conditional) expectation of the random vari-
able X (given that information). When the information is taken as understood, the expected
value is abbreviated to EX .

Expected values are not restricted to lie in the range from zero to one.

As with conditional probabilities, there are convenient abbreviations when the condition-
ing information includes something like {event F has occurred}:

E
(
X | information and “F has occurred”

)
E

(
X | information, F

)
Unlike many authors, I will take the expected value as a primitive concept, not one to be
derived from other concepts. All of the methods that those authors use to define expected
values will be derived from a small number of basic rules. You should provide the interpre-
tations for these rules as long-run averages of values generated by independent repetitions of
random experiments.

Rules for (conditional) expectations

Let X and Y be random variables, c and d be constants, and F1, F2, . . . be events. Then:

(E1) E
(
cX + dY | info

) = cE
(
X | info

) + dE
(
Y | info

)
;

(E2) if X can only take the constant value c under the given “info” then E
(
X | info

) = c;

(E3) if the given “info” forces X ≤ Y then E
(
X | info

) ≤ E
(
Y | info

)
;

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole sample space
then

E
(
X | info

) =
∑

i

E
(
X | Fi , info

)
P
(
Fi | info

)
.

Only rule E4 should require much work to interpret. It combines the power of both
rules P4 and P5 for conditional probabilities. Here is the frequency interpretation for the
case of two disjoint events F1 and F2 with union S.
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Chapter 2 Expectations

Repeat the experiment a very large number (n) of times, noting for each repetition the
value taken by X and which of F1 or F2 occurs.

1 2 3 4 . . . n − 1 n total
F1 occurs � � � . . . � � n1

F2 occurs � . . . � � � n2

X x1 x2 x3 x4 . . . xn−1 xn

Those trials where F1 occurs correspond to conditioning on F1:

E
(
X | F1, info

) ≈ 1

n1

∑
F1 occurs

xi .

Similarly,

E
(
X | F2, info

) ≈ 1

n2

∑
F2 occurs

xi

and

P
(
F1 | info

) ≈ n1/n

P
(
F2 | info

) ≈ n2/n.

Thus

E
(
X | F1, info

)
P
(
F1 | info

) + E
(
X | F2, info

)
P
(
F2 | info

)

≈
(

1

n1

∑
F1 occurs

xi

) (n1

n

)
+

(
1

n2

∑
F2 occurs

xi

) (n2

n

)

= 1

n

n∑
i=1

xi

≈ E
(
X | info

)
.

As n gets larger and larger all approximations are supposed to get better and better, and so
on.

Example 7: Interpretation of expectations as a fair prices for an uncertain returns.
(only for those who don’t find the frequency interpretation helpful—not essential
reading)

Rules E2 and E4 imply immediately a result that is used to calculate expectations from
probabilities. Consider the case of a random variable Y expressible as a function g(X) of
another random variable, X , which takes on only a discrete set of values c1, c2, . . .. (I will
return later to the case of so-called continuous random variables.) Let Fi be the subset of S
on which X = ci , that is,

Fi = {X = ci }.
Then by E2,

E
(
Y | Fi , info

) = g(ci ),

and by E5,
E

(
Y | info

) =
∑

i

g(ci )P
(
Fi | info

)
.

More succinctly,

(E5) E
(
g(X) | info

) =
∑

i

g(ci )P
(
X = ci | info

)
.

In particular,

(E5)′ E
(
X | info

) =
∑

i

ciP
(
X = ci | info

)
.
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Chapter 2 Expectations

I will refer to these results as new rules for expectations, even though they are consequences
of the other rules. They apply to random variables that take values in the “discrete set”
{c1, c2, . . .}. If the range of values includes an interval of real numbers, an approximation
argument (see Chapter 6) replaces sums by integrals.

Remark. If we extend E1 to sums of more than two random variables, we get a
collection of rules that includes the probability rules P1 through P5 as special cases.
The derivation makes use of the indicator function of an event, defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

Rule E4 with F1 = A and F2 = Ac gives

E
(
IA | info

) = E
(
IA | A, info

)
P (A | info) + E

(
IA | Ac, info

)
P (Ac | info)

= 1 × P (A | info) + 0 × P (Ac | info) by E2.

That is, E
(
IA | info

) = P (A | info).

If an event A is a disjoint union of events A1, A2, . . . then IA = IA1 + IA2 + . . ..
(Why?) Taking expectations then invoking the extended E1, we get rule P4.

As an exercise, you might try to derive the other probability rules, but don’t
spend much time on the task or worry about it too much. Just keep buried some-
where in the back of your mind the idea that you can do more with expectations
than with probabilities alone.

You will find it useful to remember that E
(
IA | info

) = P (A | info), a result that
is easy to reconstruct from the fact that the long-run frequency of occurrence of an
event, over many repetitions, is just the long-run average of its indicator function.

Example 8: Expected number of tosses to get TTHH.

The calculation of an expectation is often a good way to get a rough feel for the be-
haviour of a random process. It is helpful to remember expectations for a few standard
mechanisms, such as coin tossing, rather than have to rederive them repeatedly.

Example 9: Expected value for the geometric distribution.

Probabilists study standard mechanisms, and establish basic results for them, partly in
the hope that they will recognize those same mechanisms buried in other problems. In that
way, unnecessary calculation can be avoided, making it easier to solve more complex prob-
lems. It can, however, take some work to find the hidden mechanism.

Example 10: [Coupon collector problem] In order to encourage consumers to buy
many packets of cereal, a manufacurer includes a Famous Probabilist card in each
packet. There are 10 different types of card: Chung, Feller, Lévy, Kolmogorov,
. . . , Doob. Suppose that I am seized by the desire to own at least one card of
each type. What is the expected number of packets that I need to buy in order to
achieve my goal?

For the coupon collectors problem I assumed large numbers of cards of each type, in
order to justify the analogy with coin tossing. Without that assumption the depletion of
cards from the population would have a noticeable effect on the proportions of each type
remaining after each purchase. The next example illustrates the effects of sampling from a
finite population without replacement, when the population size is not assumed very large.

The example also provides an illustration of the method of indicators, whereby a ran-
dom variable is expressed as a sum of indicator variables IA1 + IA2 + . . ., in order to reduce

Statistics 241: 8 September 2000 C2-3 c©David Pollard



Chapter 2 Expectations

calculation of an expected value to separate calculation of probabilities PA1, PA2, . . . . Re-
member the formula

E
(
IA1 + IA2 + . . . | info

) = E
(
IA1 | info

) + E
(
IA2 | info

) + . . .

= P
(

A1 | info
) + P

(
A2 | info

) + . . .

Example 11: Suppose an urn contains r red balls and b black balls, all balls iden-
tical except for color. Suppose balls are removed from the urn one at a time, with-
out replacement. Assume that the person removing the balls selects them at ran-
dom from the urn: if k balls remain then each has probability 1/k of being cho-
sen. Question: What is the expected number of red balls removed before the first
black ball?

The classical gambler’s ruin problem was solved by Abraham de Moivre over two hun-
dred years ago, using a method that has grown into one of the main technical tools of mod-
ern probability. The solution makes an elegant application of conditional expectations.

Example 12: Suppose two players, Alf and Betamax, bet on the tosses of a fair
coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax pays Alf one
dollar. The stop playing when one player runs out of money. If Alf starts with α

dollar bills, and Betamax starts with β dollars bills (both α and β whole numbers),
what is the probability that Alf ends up with all the money?

De Moivre’s method also works with biased coins, if we count profits in a different
way—an even more elegant application of conditional expectations.

Example 13: Same problem as in Example 12, except that the coin they toss has
probability p = 1/2 of landing heads. (Could be skipped.)

You could safely skip the final Example. It contains a discussion of a tricky little prob-
lem, that can be solved by conditioning or by an elegant symmetry argument.

Example 14: Big pills, little pills. (Tricky. Should be skipped.)

Things to remember

• Expectations (and conditional expectations) are linear (E1), increasing (E3) functions of
random variables, which can be calculated as weighted averages of conditional expecta-
tions,

E
(
X | info

) = ∑
i E

(
X | Fi , info

)
P
(
Fi | info

)
,

where the disjoint events F1, F2, . . . cover all possibilities (the weights sum to one).

• The indicator function of an event A is the random variable defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

The expected value of an indicator variable, E (IA | info), is the same as the probability
of the corresponding event, P (A | info).

• As a consequence of the rules,

E
(
g(X) | info

) = ∑
i g(ci )P

(
X = ci | info

)
,

if X can take only values c1, c2, . . ..
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Example 7: Fair price interpretation of expectations

Consider a situation—a bet if you will—where you stand to receive an uncertain re-
turn X . You could think of X as a random variable, a real-valued function on a sample
space S. For the moment forget about any probabilities on the sample space S. Suppose you
consider p(X) the fair price to pay in order to receive X . What properties must p(·) have?

Your net return will be the random quantity X − p(X), which you should consider to
be a fair return. Unless you start worrying about the utility of money you should find the
following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y ) fair for Y then
you should be prepared to make both bets, paying p(X) + p(Y ) to receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you pay 2p(X) to
receive 2X (actually, that particular example is a special case of (i)) or 3.76p(X) to
receive 3.76X , or −p(X) to receive −X . The last example corresponds to willing-
ness to take either side of a fair bet. In general, to receive cX you should pay cp(X),
for constant c.

(iii) There is no fair bet whose return X − p(X) is always ≥ 0 (except for the trivial
situation where X − p(X) is certain to be zero).

If you were to declare a bet with return X − p(X) ≥ 0 under all circumstances to be fair, I
would be delighted to offer you the opportunity to receive the “fair” return −C (X − p(X)),
for an arbitrarily large positive constant C . I couldn’t lose.

Fact 1: Properties (i), (ii), and (iii) imply that p(αX + βY ) = αp(X) + βp(Y ) for all
random variables X and Y , and all constants α and β.

Consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY ) − αp(X) − βp(Y ).

If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii). The asserted
equality follows.

Fact 2: Properties (i), (ii), and (iii) imply that p(Y ) ≤ p(X) if the random variable Y is
always ≤ the random variable X .

If you claim that p(X) < p(Y ) then I would be happy for you to accept the bet that
delivers

(Y − p(Y )) − (X − p(X)) = −(X − Y ) − (p(Y ) − p(X)) ,

which is always < 0.

The two Facts are analogous to rules E1 and E3 for expectations. You should be able to
deduce the analog of E2 from (iii).

As a special case, consider the bet that returns 1 if an event F occurs, and 0 otherwise.
If you identify the event F with the random variable taking the value 1 on F and 0 on Fc

(that is, the indicator of the event F), then it follows directly from Fact 1 that p(·) is addi-
tive: p(F1 ∪ F2) = p(F1) + p(F2) for disjoint events F1 and F2, an analog of rule P4 for
probabilities.
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Contingent bets

Things become much more interesting if you are prepared to make a bet to receive an
amount X , but only when some event F occurs. That is, the bet is made contingent on
the occurrence of F . Typically, knowledge of the occurrence of F should change the fair
price, which we could denote by p(X | F). Let me write Z for the indicator function of the
event F , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is (X − p(X | F)) Z . The indicator function Z
ensures that money changes hands only when F occurs.

By combining various bets and contingent bets, we can deduce that an analog of rule
E4 for expectations: if S is partitioned into disjoint events F1, . . . , Fk , then

p(X) =
k∑

i=1

p(Fi )p(X | Fi ).

Make the following bets. Write ci for p(X | Fi ).

(a) For each i , pay ci p(Fi ) in order to receive ci if Fi occurs.

(b) Pay −p(X) in oder to receive −X .

(c) For each i , make a bet contingent on Fi : pay ci (if Fi occurs) to receive X .

If event Fk occurs, your net profit will be

−
∑

i

ci p(Fi ) + ck + p(X) − X − ck + X = p(X) −
∑

i

ci p(Fi ),

which does not depend on k. Your profit is always the same constant value. If the constant
were nonzero, requirement (iii) for fair bets would be viiolated.

If you rewrite p(X) as the expected value EX , and p(F) as PF for an event F , you
will see that the properties of fair prices are completely analogous to the rules for probabil-
ities and expectations. Some authors take the bold step of interpreting probability theory as
a calculus of fair prices. The interpretation has the virtue that it makes sense in some situa-
tions where there is no reasonable way to imagine an unlimited sequence of repetions from
which to calculate a long-run frequency or average.

�
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Example 8: Expected values for coin tossing game

The “HHH versus TTHH” Example in Chapter 1 solved the following problem:

Imagine that I have a fair coin, which I toss repeatedly. Two players, M and
R, observe the sequence of tosses, each waiting for a particular pattern on
consecutive tosses: M waits for hhh, and R waits for tthh. The one whose
pattern appears first is the winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly surprising, because, at
first sight, a pattern of four appears harder to achieve than a pattern of three.

A calculation of expected values will add to the puzzlement. As you will see, if the
game is continued until each player sees his pattern, it takes tthh longer (on average) to ap-
pear than it takes hhh to appear. However, when the two patterns are competing, the tthh
pattern is more likely to appear first. How can that be?

For the moment forget about the competing hhh pattern: calculate the expected num-
ber of tosses needed before the pattern tthh is obtained with four successive tosses. That
is, if we let X denote the number of tosses required then the problem asks for the expected
value EX .

S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the starting state (la-
belled S) to the state TTHH where the pattern is achieved. Each arrow in the diagram cor-
responds to a transition between states with probability 1/2.

Once again it is easier to solve not just the original problem, but a set of problems, one
for each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)

...

Then the original problem is asking for the value of ES .

Condition on the outcome of the first toss, writing H for the event {first toss lands
heads} and T for the event {first toss lands tails}. From rule E4 for expectations,

ES = E(X | start at S, T)P(T | start at S) + E(X | start at S, H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does not depend on the
state). For the first of the conditional expectations, count 1 for the first toss, then recognize
that the remaining tosses are just those needed to reach TTHH starting from the state T :

E(X | start at S, T) = 1 + E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an analogous expression
for the second conditional expectation. Substitution into the expression for ES then gives

ES = 1/2(1 + ET ) + 1/2(1 + ES)

Similarly,

ET = 1/2(1 + ET T ) + 1/2(1 + ES)

ET T = 1/2(1 + ET T ) + 1/2(1 + ET T H )

ET T H = 1/2(1 + 0) + 1/2(1 + ET )

What does the zero in the last equation represent?
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The four linear equations in four unknowns have the solution ES = 16, ET = 14, ET T =
10, ET T H = 8. Thus, the solution to the original problem is that the expected number of
tosses to achieve the tthh pattern is 16.

By similar arguments, you can show that the expected number of tosses needed to get
hhh, without competition, is 14. The expected number of tosses for the completion of the
game with competition between hhh and tthh is 91/3 (see Matlab m-file solve hhh tthh.m).
Notice that the expected value for the game with competition is smaller than the minimum
of the expected values for the two games. Why must it be smaller? �
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Example 9: Expected value for geometric distribution

For independent coin tossing, what is the expected number of tosses to get the first
head?

Suppose the coin has probability p > 0 of landing heads. (So we are actually calculat-
ing the expected value for the geometric(p) distribution.) I will present two methods.

Method A.

Condition on whether the first toss lands heads (H) or tails (T). With X defined as the num-
ber of tosses until the first head,

EX = E(X | H)PH + E(X | T )PT

= (1)p + (1 + EX)(1 − p).

The reasoning behind the equality

E(X | T ) = 1 + EX

is: After a tail we are back where we started, still counting the number of tosses until a
head, except that the first tail must be included in that count.

Solving the equation for EX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it increase as p increases?
What happens as p tends to zero or one?)

Method B.

By the formula E5,

EX =
∞∑

k=1

k(1 − p)k−1 p.

There are several cute ways to sum this series. Here is my favorite. Write q for 1− p. Write
the kth summand as a a column of k terms pqk−1, then sum by rows:

EX = p + pq + pq2 + pq3 + . . .

+pq + pq2 + pq3 + . . .

+pq2 + pq3 + . . .

+pq3 + . . .

...
Each row is a geometric series.

EX = p/(1 − q) + pq/(1 − q) + pq2/(1 − q) + . . .

= 1 + q + q2 + . . .

= 1/(1 − q)

= 1/p,

same as before. �
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Example 10: Coupon collector problem

In order to encourage consumers to buy many packets of cereal, a manufacurer includes
a Famous Probabilist card in each packet. There are 10 different types of card: Chung,
Feller, Lévy, Kolmogorov, . . . , Doob. Suppose that I am seized by the desire to own at least
one card of each type. What is the expected number of packets that I need to buy in order
to achieve my goal?

Assume that the manufacturer has produced enormous numbers of cards, the same num-
ber for each type. (If you have ever tried to collect objects of this type, you might doubt the
assumption about equal numbers. But, without it, the problem becomes exceedingly diffi-
cult.) The assumption ensures, to a good approximation, that the cards in different packets
are independent, with probability 1/10 for a Chung, probability 1/10 for a Feller, and so on.

The high points in my life occur at random “times” T1, T1 + T2, . . . , T1 + T2 + . . .+ T10,
when I add a new type of card to my collection: After one card (that is, T1 = 1) I have
my first type; after another T2 cards I will get something different from the first card; after
another T3 cards I will get a third type; and so on.

The question asks for E(T1 + T2 + . . . + T10), which rule E1 (applied repeatedly) reex-
presses as ET1 + ET2 + . . . + ET10.

The calculation for ET1 is trivial because T1 must equal 1: we get ET1 = 1 by rule
E2. Consider the mechanism controlling T2. For concreteness suppose the first card was a
Doob. Each packet after the first is like a coin toss with probability 9/10 of getting a head
(= a nonDoob), with T2 like the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example 9 that ET2 = 10/9, which is slightly larger than 1.

Now consider the mechanism controlling T3. Condition on everything that was observed
up to time T1 + T2. Under the assumption of equal abundance and enormous numbers of
cards, most of this conditioning information is acually irrelevent; the mechanism control-
ling T3 is independent of the past information. (Hard question: Why would the T2 and T3

mechanisms not be independent if the cards were not equally abundant?) So what is that T3

mechanism? I am waiting for any one of the 8 types I have not yet collected. It is like coin
tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thus ET3 = 10/8. And so on, leading to

ET1 + ET2 + . . . + ET10 = 1 + 10/9 + 10/8 + ... + 10/1 ≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards. �

Note: The independence between packets was not needed to justify the appeal to
rule E1, to break the expected value of the sum into a sum of expected values. It did allow
us to recognize the various geometric distributions without having to sort through possible
effects of large T2 on the behavior of T3, and so on.

You might appreciate better the role of independence if you try to solve a similar (but
much harder) problem with just two sorts of card, not in equal proportions.
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Example 11: Urn experiment

Suppose an urn contains r red balls and b black balls, all balls identical except for
color. Suppose balls are removed from the urn one at a time, without replacement. Assume
that the person removing the balls selects them at random from the urn: if k balls remain
then each has probability 1/k of being chosen.

Question: What is the expected number of red balls removed before the first black ball?

The problem might at first appear to require nothing more than a simple application of
rule E5′ for expectations. We shall see. Let T be the number of reds removed before the
first black. Find the distribution of T , then appeal to E5′ to get

ET =
∑

k

kP{T = k}.

Sounds easy enough. We have only to calculate the probabilities P{T = k}.
Define Ri = {i th ball red} and Bi = {i th ball black}. The possible values for T are

0, 1, . . . , r . For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1 R2 . . . Rk Bk+1)

= (PR1)P(R2 | R1)P(R3 | R1 R2) . . . P(Bk+1 | R1 . . . Rk)

= r

r + b
.

r − 1

r + b − 1
. . .

b

r + b − k
.

The dependence on k is fearsome. I wouldn’t like to try multiplying by k and summing. If
you are into pain you might try to continue this line of argument. Good luck.

There is a much easier way to calculate the expectation, by breaking T into a sum of
much simpler random variables for which E5′ is trivial to apply. This approach is sometimes
called the method of indicators.

Suppose the red balls are labelled 1, . . . , r . Let Ti equal 1 if red ball number i is sam-
pled before the first black ball. (Be careful here. The black balls are not thought of as num-
bered. The first black ball is not a ball bearing the number 1; it might be any of the b black
balls in the urn.) Then T = T1+. . .+Tr . By symmetry—it is assumed that the numbers have
no influence on the order in which red balls are selected—each Ti has the same expectation.
Thus

ET = ET1 + . . . + ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event {T1 = 1} occurs
if and only if red ball number 1 is drawn before all b of the black balls. By symmetry, the
event has probability 1/(b + 1). (If b + 1 objects are arranged in random order, each object
has probability 1/(1 + b) of appearing first in the order.)

Remark. If you are not convinced by the appeal to symmetry, you might find it
helpful to consider a thought experiment where all r + b balls are numbered and they
are removed at random from the urn. That is, treat all the balls as distinguishable
and sample until the urn is empty. (You might find it easier to follow the argument
in a particular case, such as all 120 = 5! orderings for five distinguishable balls, 2 red
and 3 black.) The sample space consists of all permutations of the numbers 1 to r+b.
Each permutation is equally likely. For each permutation in which red 1 precedes all
the black balls there is another equally likely permutation, obtained by interchanging
the red ball with the first of the black balls chosen; and there is an equally likely per-
mutation in which it appears after two black balls, obtained by interchanging the red
ball with the second of the black balls chosen; and so on. Formally, we are partition-
ing the whole sample space into equally likely events, each determined by a relative
ordering of red 1 and all the black balls. There are b + 1 such equally likely events,
and their probabilities sum to one.
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Now it is easy to calculate the expected value for red 1.

ET1 = 0 P{T1 = 0} + 1 P{T1 = 1} = 1/(b + 1)

The expected number of red balls removed before the first black ball is equal to r/(b + 1).
�

Compare the solution r/(b + 1) with the result for sampling with replacement, where
the number of draws required to get the first black would have a geometric(b/(r + b)) distri-
bution. With replacement, the expected number of reds removed before the first black would
be

(b/(r + b))−1 − 1 = r/b.

Replacement of balls after each draw increases the expected value slightly. Does that make
sense?
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Example 12: Gambler’s ruin: fair coin

Suppose two players, Alf (A for short) and Betamax (B for short), bet on the tosses of
a fair coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax pays Alf one dollar.
They stop playing when one player runs out of money. If Alf starts with α dollar bills, and
Betamax starts with β dollars bills (both α and β whole numbers), what is the probability
that Alf ends up with all the money?

Write Xn for the number of dollars held by A after n tosses. (Of course, once the game
ends the value of Xn stays fixed from then on, at either a + b or 0, depending on whether
A won or not.) It is a random variable taking values in the range {0, 1, 2, . . . , a + b}. We
start with X0 = α. To solve the problem, calculate EXn , for very large n in two ways, then
equate the answers. We need to solve for the unknown θ = P{A wins}.

First calculation

Invoke rule E4 with the sample space broken into three pieces,

An = {A wins at, or before, the nth toss},
Bn = {B wins at, or before, the nth toss},
Cn = {game still going after the nth toss}.

For very large n the game is almost sure to be finished, with PAn ≈ θ , PBn ≈ 1 − θ , and
PCn ≈ 0. Thus

EXn = E(Xn | An)PAn + E(Xn | Bn)PBn + E(Xn | Cn)PCn

≈ (
(α + β) × θ

) + (
0 × (1 − θ)

) + (
(something) × 0

)
.

The error in the approximation goes to zero as n goes to infinity.

Second calculation

Calculate conditionally on the value of Xn−1. That is, split the sample space into disjoint
events Fk = {Xn−1 = k}, for k = 0, 1, . . . , a + b, then works towards another appeal to rule
E4. For k = 0 or k = a + b, the game will be over, and Xn must take the same value as
Xn−1. That is,

E(Xn | F0) = 0 and E(Xn | Fα+β) = α + β.

For values of k between the extremes, the game is still in progress. With the next toss, A’s
fortune will either increase by one dollar (with probability 1/2) or decrease by one dollar
(with probability 1/2). That is, for k = 1, 2, . . . , α + β − 1,

E(Xn | Fk) = 1/2(k + 1) + 1/2(k − 1) = k.

Now invoke E4.

E(Xn) = 0 × PF0 + 1 × PF1 + . . . + (a + b)PFα+β.

Compare with the direct application of E5′ to the calculation of E Xn−1:

E(Xn−1) = (
0 × P{Xn−1 = 0}) + (

1 × P{Xn−1 = 1}) + . . . + (
(α + β) × P{Xn−1 = α + β}) ,

which is just another way of writing the sum for EXn derived above. Thus we have

EXn = EXn−1

The expected value doesn’t change from one toss to the next.

Follow this fact back through all the previous tosses to get

EXn = EXn−1 = EXn−2 = . . . = EX2 = EX1 = EX0.

But X0 is equal to α, for certain, which forces EX0 = α.
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Putting the two answers together

We have two results: EXn = α, no matter how large n is; and EXn gets arbitrarily close to
θ(α+β) as n gets larger. We must have α = θ(α+β). That is, Alf has probability α/(α+β)

of eventually winning all the money. �

Remark. Twice I referred to the sample space, without actually having to de-
scribe it explicitly. It mattered only that several conditional probabilities were deter-
mined by the wording of the problem.
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Example 13: Gambler’s ruin: biased coin

Same problem as in Example 12, except that the coin they toss has probability p �= 1/2
of landing heads.

The cases p = 0 and p = 1 are trivial. So let us assume that 0 < p < 1. Essentially
De Moivre’s idea was that we could use almost the same method as in Example 12 if we
kept track of A’s fortune on a geometrically expanding scaled. For some number s, to be
specified soon, consider a new random variable Zn = s Xn .

Xn scale

Zn scale

0 1 α+β

sα+β

s= s1

1=s0

s2

Once again write θ for P{A wins}, and give the events An , Bn , and Cn the same mean-
ing as in Example 12.

As in the first calculation for the other Example, we have

EZn = E(s Xn | An)PAn + E(s Xn | Bn)PBn + E(s Xn | Cn)PCn

≈ (
sα+β × θ

) + (
s0 × (1 − θ)

) + (
(something) × 0

)
if n is very large.

For the analog of the second calculation, in the cases where the game has ended by at
or before the (n − 1)st toss we have

E(Zn | Xn−1 = 0) = s0 and E(Zn | Xn−1 = α + β) = sα+β.

For 0 < k < α + β, the result of the calculation is slightly different.

E(Zn | Xn−1 = k) = psk+1 + (1 − p)sk−1 = (
ps + (1 − p)s−1

)
sk .

If we choose s = (1 − p)/p, the factor
(

ps + (1 − p)s−1
)

becomes 1. Invoking rule E4 we
then get

EZn = E(Zn | Xn−1 = 0) × P(Xn−1 = 0) + E(Zn | Xn−1 = 1) × P(Xn−1 = 1)

+ . . . + E(Zn | Xn−1 = α + β) × P(Xn−1 = α + β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . . + sα+β × P(Xn−1 = α + β)

Compare with the calculation of EZn−1 via E5.

EZn−1 = E(s Xn−1 | Xn−1 = 0) × P(Xn−1 = 0) + E(s Xn−1 | Xn−1 = 1) × P(Xn−1 = 1)

+ . . . + E(s Xn−1 | Xn−1 = α + β) × P(Xn−1 = α + β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . . + sα+β × P(Xn−1 = α + β)
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Once again we have a situation where EZn stays fixed at the initial value EZ0 = sα ,
but, with very large n, it can be made arbitrarily close to θsα+β + (1 − θ)s0. Equating the
two values, we deduce that

P{Alf wins} = θ = 1 − sα

1 − sα+β
where s = (1 − p)/p.

�
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Example 14: Big pills, little pills

My interest in the calculations in Example 11 was kindled by a problem that appeared
in the August-September 1992 issue of the American Mathematical Monthly. My solution
to the problem—the one I first came up with by application of a straightforward condition-
ing argument—reduces the calculation to several applications of the result from the previous
Example. The solution offered by two readers of the Monthly was slicker.

E 3429 [1991, 264]. Proposed by Donald E. Knuth and John McCarthy, Stanford Uni-
versity, Stanford, CA.

A certain pill bottle contains m large pills and n small pills initially, where each large pill
is equivalent to two small ones. Each day the patient chooses a pill at random; if a small pill is
selected, (s)he eats it; otherwise (s)he breaks the selected pill and eats one half, replacing the
other half, which thenceforth is considered to be a small pill.

(a) What is the expected number of small pills remaining when the last large pill is se-
lected?

(b) On which day can we expect the last large pill to be selected?

Solution from AMM:

Composite solution by Walter Stromquist, Daniel H. Wagner, Associates, Paoli, PA and Tim
Hesterberg, Franklin & Marshall College, Lancaster, PA. The answers are (a) n/(m + 1) +∑m

k=1(1/k), and (b) 2m + n − (n/(m + 1)) − ∑m
k=1(1/k). The answer to (a) assumes that

the small pill created by breaking the last large pill is to be counted. A small pill present
initially remains when the last large pill is selected if and only if it is chosen last from
among the m + 1 element set consisting of itself and the large pills—an event of probability
1/(m + 1). Thus the expected number of survivors from the original small pills is n/(m + 1).
Similarly, when the kth large pill is selected (k = 1, 2, . . . , m), the resulting small pill will
outlast the remaining large pills with probability 1/(m − k + 1), so the expected number of
created small pills remaining at the end is

∑m
k=1(1/k). Hence the answer to (a) is as above.

The bottle will last 2m + n days, so the answer to (b) is just 2m + n minus the answer to (a),
as above.

I offer two alternative methods of solution for the problem. The first method uses a
conditioning argument to set up a recurrence formula for the expected numbers of small
pills remaining in the bottle after each return of half a big pill. The equations are easy to
solve by repeated substitution. The second method uses indicator functions to spell out the
Hesterberg-Stromquist method in more detail. Apparently the slicker method was not as ob-
vious to most readers of the Monthly (and me):

Editorial comment. Most solvers derived a recurrence relation, guessed the
answer, and verified it by induction. Several commented on the origins of
the problem. Robert High saw a version of it in the MIT Technology Review
of April, 1990. Helmut Prodinger reports that he proposed it in the Canary
Islands in 1982. Daniel Moran attributes the problem to Charles MacCluer of
Michigan State University, where it has been known for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect solution

was received.

Conditioning method.

Invent random variables to describe the depletion of the pills. Initially there are L0 = n
small pills in the bottle. Let S1 small pills be consumed before the first large pill is bro-
ken. After the small half is returned to the bottle let there be L1 small pills left. Then let
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S2 small pills be consumed before the next big pill is split, leaving L2 small pills in the bot-
tle. And so on.

S1 small S2 small Si small

L1 small left Li small left

first big broken ith big brokenith big brokenfirst big broken last big broken

With this notation, part (a) is asking for ELm . Part (b) is asking for 2m + n − ELm : If
the last big pill is selected on day X then it takes X + Lm days to consume the 2m + n small
pill equivalents, so EX + ELm = 2m + n.

The random variables are connected by the equation

Li = Li−1 − Si + 1,

the −Si representing the small pills consumed between the breaking of the (i − 1)st and i th
big pill, and the +1 representing the half of the big pill that is returned to the bottle. Taking
expectations we get

ELi = ELi−1 − ESi + 1.

The result from Example 11 will let us calculate ESi in terms of ELi−1, thereby producing
the recurrence formula for ELi .

Condition on the pill history up to the (i − 1)st breaking of big pill (and the return of
the unconsumed half to the bottle). At that point there are Li−1 small pills and m − (i − 1)

big pills in the bottle. The mechanism controlling Si is just like the urn problem of Exam-
ple 11, with

r = Li−1 red balls (= small pills)

b = m − (i − 1) black balls (= big pills).

From that Example,

E
(
Si | history to (i − 1)st breaking of a big pill

) = Li−1

1 + m − (i − 1)
.

To calculate ESi we would need to average out using weights equal to the probability of
each particular history:

ESi = 1

1 + m − (i − 1)

∑
histories

P{history}(value of Li−1 for that history).

The sum on the right-hand side is exactly the sum we would get if we calculated ELi−1 us-
ing rule E4, partitioning the sample space according to possible histories up to the (i − 1)st
breaking of a big pill. Thus

ESi = 1

2 + m − i
ELi−1.

Now we can eliminate ESi from equality 15 to get the recurrence formula for the ELi

values:

ELi =
(

1 − 1

2 + m − i

)
ELi−1 + 1.

If we define θi = ELi/(1 + m − i) the equation becomes

θi = θi−1 + 1

1 + m − i
for i = 1, 2, . . . , m,
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with initial condition θ0 = EL0/(1 + m) = n/(1 + m). Repeated substitution gives

θ1 = θ0 + 1

m

θ2 = θ1 + 1

m − 1
= θ0 + 1

m
+ 1

m − 1

θ3 = θ2 + 1

m − 2
= θ0 + 1

m
+ 1

m − 1
+ 1

m − 2
...

θm = . . . = θ0 + 1

m
+ 1

m − 1
+ . . . + 1

2
+ 1

1
.

That is, the expected number of small pills left after the last big pill is broken equals

ELm = (1 + m − m)θm

= n

1 + m
+ 1 + 1

2
+ . . . + 1

m
.

Rewrite of the Stromquist-Hesterberg solution.

Think in terms of half pills, some originally part of big pills. Number the original half pills
1, . . . , n. Define

Hi =
{ +1 if original half pill i survives beyond last big pill

0 otherwise.
Number the big pills 1, . . . , m. Use the same numbers to refer to the half pills that are cre-
ated when a big pill is broken. Define

Bj =
{ +1 if created half pill j survives beyond last big pill

0 otherwise.
The number of small pills surviving beyond the last big pill equals

H1 + . . . + Hn + B1 + . . . + Bm .

By symmetry, each Hi has the same expected value, as does each Bj . The expected value
asked for by part (a) equals

<.15> nEH1 + mEB1 = nP{H1 = 1} + mP{B1 = 1}.
For the calculation of P{H1 = +1} we can ignore all except the relative ordering of

the m big pills and the half pill described by H1. By symmetry, the half pill has probabil-
ity 1/(m +1) of appearing in each of the m +1 possible positions in the relative ordering. In
particular,

P{H1 = +1} = 1

m + 1
.

For the created half pills the argument is slightly more complicated. If we are given
that big pill number 1 the kth amongst the big pills to be broken, the created half then has
to survive beyond the remaining m − k big pills. Arguing again by symmetry amongst the
(m − k + 1) orderings we get

P
(
B1 = +1 | big number 1 chosen as kth big

) = 1

m − k + 1
.

Also by symmetry,

P{big 1 chosen as kth big} = 1

m
.

Average out using the conditioning rule E4 to deduce

P{B1 = +1} = 1

m

m∑
k=1

1

m − k + 1
.
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Notice that the summands run through the values 1/1 to 1/m in reversed order.

When the values for P{H1 = +1} and P{B1 = +1} are substituted into 16, the asserted
answer to part (a) results. �
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Chapter 3

Things binomial

The standard coin-tossing mechanism drives much of classical probability. It gener-
ates several standard distributions, the most important of them being the Binomial. The
name comes from the binomial coefficient,

(n
k

)
, which is defined as the number of subsets

of size k for a set of size n. (Read the symbol as “n choose k”.) By convention,
(n

0

) = 1.

There is a quick probabilistic way to determine
(n

k

)
, for integers 1 ≤ k ≤ n. Suppose

k balls are sampled at random, without replacement, from an urn containing k red balls and
n − k black balls. Each of the

(n
k

)
different subsets of size k has probability 1/

(n
k

)
of being

selected. In particular, there is probabilty 1/
(n

k

)
that the sample consists of the red balls. We

can also calculate that probability, via a conditioning argument, to be

k

n
.
k − 1

n − 1
.
k − 2

n − 2
. . .

1

n − k + 1
:

given that the first i balls are red, the probability that the (i + 1)st is red is (k − i)/(n − i).
Equating the two values for P{sample consists of all red balls}, we get(

n

k

)
= n(n − 1) . . . (n − k + 1)

k!
= n!

k!(n − k)!

The formula also holds for k = 0 if we interpret 0! as 1.

Remark. The symbol
(

n
k

)
is called a binomial coefficient because of its connec-

tion with the binomial expansion:

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k .

The expansion can be generalized to fractional and negative powers by means of Tay-
lor’s theorem. For general real α define(

α

0

)
= 1 and

(
α

k

)
= α(α − 1)(α − 2) . . . (α − k + 1)

k!
for k = 1, 2, . . .

Then

(1 + x)α =
∞∑

k=0

(
α

k

)
xk at least for |x | < 1.
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Chapter 3 Things binomial

Definition. A random variable is said to have a Bin(n, p) distribution, for a parameter p
in the range 0 ≤ p ≤ 1, if can take values 0, 1, . . . , n − 1, n with probabilities

P{X = k} =
(

n

k

)
pk(1 − p)n−k for k = 0, 1, . . . , n

Compare with the binomial expansion,

1 = (p + q)n =
n∑

k=0

(
n

k

)
pkqn−k where q = 1 − p.

Example 15: For n independent tosses of a coin that lands heads with probabil-
ity p, show that the total number of heads has a Bin(n, p) distribution.

The Binomial distribution arises in any situation where one is interested in the number
of successes in a fixed number of independent trials (or experiments), each of which can
result in either success or failure. The distribution appears often in probabilistic modelling; it
is worthwhile recording its properties.

Example 16: Show that the Bin(n, p) distribution has expected value np.

The Binomial distribution is often buried within complicated problems.

Example 17: An unwary visitor to the Big City is standing at the corner of 1st
Street and 1st Avenue. He wishes to reach the railroad station, which actually oc-
cupies the block on 6th Street from 3rd to 4th Avenue. (The Street numbers in-
crease as one moves north; the Avenue numbers increase as one moves east.) He is
unaware that he is certain to be mugged as soon as he steps onto 6th Street or 6th
Avenue.

Being unsure of the exact location of the railroad station, the visitor lets him-
self be guided by the tosses of a fair coin: at each intersection he goes east, with
probability 1/2, or north, with probability 1/2. What is the probability that he is
mugged outside the railroad station?

The following problem is an example of Bayesian inference, based on the probabilistic
result known as Bayes’s rule. You need not memorize the rule, because it is just an applica-
tion of the chopping/peeling method you already know.

Example 18: Suppose a multiple-choice exam consists of a string of unrelated
questions, each having three possible answers. Suppose there are two types of can-
didate who will take the exam: guessers, who make a blind stab on each question,
and skilled candidates, who can always eliminate one obviously false alternative,
but who then choose at random between the two remaining alternatives. Sup-
pose 70% of the candidates who take the exam are skilled and the other 30% are
guessers. A particular candidate has gotten 4 of the first 6 question correct. What
is the probability that he will also get the 7th question correct?

To retain a neutral position, I should also give an example of a different approach to
statistical inference. The example just happens to involve the Binomial distribution again.

Example 19: Members of the large governing body of a small country are given
special banking privileges. Unfortunately, some members appear to be abusing the
privilege by writing bad checks. The royal treasurer declares the abuse to be a mi-
nor aberration, restricted to fewer than 5% of the members. An investigative re-
porter manages to expose the bank records of 20 members, showing that 4 of them
have been guilty. How credible is the treasurer’s assertion?

We will meet the Binomial again.
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Example 15: Binomials from coin tossing

For n independent tosses of a coin that lands heads with probability p, show that
the total number of heads has a Bin(n, p) distribution.

Clearly X can take only values 0, 1, 2, . . . , n. For a fixed a k in this range, break the
event {X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}

...

The indexing on the Fi is most uninformative. (Maybe you can think of something better.)
It matters only that each Fi specifies k positions for the heads and leaves the remaining n −k
for tails. Write Hj for {jth toss is a head}. Then

PF1 = P
(
H1 H2 . . . Hk H c

k+1 . . . H c
n

)
= (PH1)(PH2) . . . (PH c

n ) by independence

= pk(1 − p)n−k .

A similar calculation gives PFi = pk(1 − p)n−k for every other i ; all that changes is the
order in which the p and (1 − p) factors appear. There are exactly

(n
k

)
different Fi ’s, because

each Fi corresponds to a different choice of the k positions for the heads to occur. Adding
up that many of the pk(1 − p)n−k probabilities, we get

P{X = k} =
(

n

k

)
pk(1 − p)n−k for k = 0, 1, . . . , n,

which is the asserted Binomial distribution. �
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Example 16: Expected value of the Binomial distribution

Show that the Bin(n, p) distribution has expected value np.

Hard way: By rule E5′ in Chapter 2,

EX =
n∑

k=0

k

(
n

k

)
pk(1 − p)n−k = ??

The series is not so hard to sum, but why try?

Easy way: Use the method of indicators, as in Chapter 2. Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.

Then X = X1 + . . . Xn and EX = EX1 + . . . EXn by multiple applications of rule E1 for
expectations. Consider X1. From rule E5′,

EX1 = 0P{X1 = 0} + 1P{X1 = 1} = p.

Similarly EXi = p for all the other Xi . Add to get EX = np. �

The calculation made no use of the independence. If each Xi has marginal distribution
Bin(1,p), that is, if

P{Xi = 1} = p = 1 − P{Xi = 0} for each i,

then E(X1 + . . . Xn) = np, regardless of possible dependence between the tosses. The ex-
pectation of a sum is the sum of the expectations, no matter how dependent the summands
might be.
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Example 17: Where to get mugged

An unwary visitor to the Big City is standing at the corner of 1st Street and 1st
Avenue. He wishes to reach the railroad station, which actually occupies the block
on 6th Street from 3rd to 4th Avenue. (The Street numbers increase as one moves
north; the Avenue numbers increase as one moves east.) He is unaware that he is
certain to be mugged as soon as he steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor lets him-
self be guided by the tosses of a fair coin: at each intersection he goes east, with
probability 1/2, or north, with probability 1/2. What is the probability that he is
mugged outside the railroad station?

To get mugged at (3,6) or (4,6) the visitor must proceed north from ei-

1

6

3 4

ther the intersection (3,5) or the intersection (4,5)—we may assume that if
he gets mugged at (2,6) and then moves east, he won’t get mugged again
at (3,6), which would be an obvious waste of valuable mugging time for no
return. The two possibilities correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north} + P{reach (4,5), move north}
= 1/2P{reach (3,5)} + 1/2P{reach (4,5)}
= 1/2P{move east twice during first 6 blocks}

+ 1/2P{move east 3 times during first 7 blocks}.
A better way to describe the last event might be “move east 3 times and north 4 times, in
some order, during the choices governed by the first 7 tosses of the coin.” The Bin(7, 1/2)

lurks behind the calculation. The other calculation involves the Bin(6, 1/2).

P{mugged at railroad} = 1

2

(
6

2

) (
1

2

)2 (
1

2

)4

+ 1

2

(
7

3

) (
1

2

)3 (
1

2

)4

= 65

256
.

�

Notice that the events {reach (3,5)} and {reach (4,5)} are not disjoint. We need to in-
clude the part about moving north to get a clean break.
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Example 18: Bayesian example

Suppose a multiple-choice exam consists of a string of unrelated questions, each
having three possible answers. Suppose there are two types of candidate who will
take the exam: guessers, who make a blind stab on each question, and skilled can-
didates, who can always eliminate one obviously false alternative, but who then
choose at random between the two remaining alternatives. Suppose 70% of the
candidates who take the exam are skilled and the other 30% are guessers. A par-
ticular candidate has gotten 4 of the first 6 question correct. What is the probabil-
ity that he will also get the 7th question correct?

Interpret the assumptions to mean that a guesser answers questions independently, with
probability 1/3 of being correct, and that a skilled candidate also answers independently,
but with probability 1/2 of being correct. Let X denote the number of questions answered
correctly from the first six. Let C denote the event {question 7 answered correctly}, G de-
note the event {the candidate is a guesser}, and S denote the event {the candidate is skilled}.
Then

(i) for a guesser, X has (conditional) distribution Bin(6,1/3)

(ii) for a skilled candidate, X has (conditional) distribution Bin (6,1/2).

(iii) PG = 0.3 and PS = 0.7.

The question asks for P(C | X = 4).

Split according to the type of candidate, then condition.

P(C | X = 4) = P{C S | X = 4} + P{CG | X = 4}
= P(S | X = 4)P(C | X = 4, S) + P(G | X = 4)P(C | X = 4, G).

If we know the type of candidate, the {X = 4} information becomes irrelevant. The last
expression simplifies to

1/2P(S | X = 4) + 1/3P(G | X = 4).

Notice how the success probabilities are weighted by probabilities that summarize our cur-
rent knowledge about whether the candidate is skilled or guessing. If the roles of {X = 4}
and type of candidate were reversed we could use the conditional distributions for X to cal-
culate conditional probabilities:

P(X = 4 | S) = (6
4

)
(1/2)

4(1/2)
22 = (6

4

)
1/64

P(X = 4 | G) = (6
4

)
(1/3)

4(2/3)
2 = (6

4

)
4/729.

I have been lazy with the binomial coefficients because they will later cancel out.

Apply the usual splitting/conditioning argument.

P(S | X = 4) = PS{X = 4}
P{X = 4}

= P(X = 4 | S)PS

P(X = 4 | S)PS + P(X = 4 | G)PG

=
(6

4

)
1/64(.7)(6

4

)
1/64(.7) + (6

4

)
4/729(.3)

≈ .869.

Remark. The preceding calculation is an instance of Bayes’s rule.

There is no need to repeat the calculation for the other conditional probability, because

P(G | X = 4) = 1 − P(S | X = 4) ≈ .131.
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Thus, given the 4 out of 6 correct answers, the candidate has conditional probability of ap-
proximately

1/2(.869) + 1/3(.131) ≈ .478

of answering the next question correctly. �

Some authors prefer to summarize the calculations by means of the odds ratios:

P(S | X = 4)

P(G | X = 4)
= PS

PG
· P(X = 4 | S)

P(X = 4 | G)
.

The initial odds ratio, PS/PG, is multiplied by a factor that reflects the relative support of
the data for the two competing explanations “skilled” and “guessing”.

The Example is an instance of Bayesian inference, a method of statistical inference
followed devoutly by some Statisticians, and derided by others. There is no disagreement
regarding the validity of Bayes’s rule; it is the assignment of prior probabilities—such as the
PS and PG of the problem—that is controversial in a general setting.
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Example 19: Bad checks

Members of the large governing body of a small country are given special bank-
ing privileges. Unfortunately, some members appear to be abusing the privilege by
writing bad checks. The royal treasurer declares the abuse to be a minor aberra-
tion, restricted to fewer than 5% of the members. An investigative reporter man-
ages to expose the bank records of 20 members, showing that 4 of them have been
guilty. How credible is the treasurer’s assertion?

Suppose a fraction p of the members are guilty. If the sample size 20 is small relative
to the size of the legislature, and if the reporter samples at random from its members, the
number of guilty in the sample should be distributed Bin(20, p). You should be able to think
of many ways in which these assumptions could be violated, but I’ll calculate as if the sim-
ple Binomial model were correct.

Write X for the number of guilty in the sample, and add a subscript p to the probabil-
ities to show that they refer to the Bin(20, p) distribution. Before the sample is taken we
could assert

Pp{X ≥ 4}
= (20

4

)
p4(1 − p)16 + (20

5

)
p5(1 − p)14 + . . . + (20

4

)
p20(1 − p)0

= 1 −
((20

0

)
p0(1 − p)20 + (20

1

)
p1(1 − p)19 + (20

2

)
p2(1 − p)18 + (20

3

)
p3(1 − p)17

)
.

The second form makes it easier to calculate by hand when p = .05:

P.05{X ≥ 4} ≈ .02.

For values of p less than 0.05 the probability is even smaller.

After the sample is taken we are faced with a choice: either the treasurer is right, and
we have just witnessed something very unusual; or maybe we should disbelieve the 5% up-
per bound. This dichotomy illustrates the statistical procedure called hypothesis testing.
One chooses an event that should be rare under one model (the so-called null hypothesis),
but more likely under an alternative model. If the event occurs, it casts doubt on the validity
of the null hypothesis. For the present example the event {X ≥ 4} would have been much
more likely under alternative explanations involving larger proportions of bad-check writers
amongst the members of the legislature.
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Chapter 4

Symmetry

You should always look for symmetry properties before slogging your way through cal-
culations with what might seem the obvious method. Symmetry, like a fairy godmother, can
turn up in unexpected places.

Example 20: Suppose an urn initially contains r red balls and b black balls. Sup-
pose balls are sampled from the urn one at a time, but after each draw k + 1 balls
of the same color are returned to the urn (with thorough mixing between draws,
blindfolds, and so on).

(a) What is the distribution of the number of red balls in the first n draws?

(b) What is the probability that the i th ball drawn is red?

(c) What is the expected number of red balls in the first n draws?

The return of multiple balls to the urn gives a crude model for contagion, whereby the oc-
currence of an event (such as selection of a red ball) makes the future occurrence of similar
events more likely. The model is known as the Polya urn scheme.

The next Example illustrates a slightly different type of argument, where the symmetry
enters conditionally.

Example 21: A pack of cards consists of 26 reds and 26 blacks. I shuffle the
cards, then deal them out one at a time, face up. You are given the chance to win
a big prize by correctly predicting when the next card to be dealt will be red. You
are allowed to make the prediction for only one card, and you must predict red,
not black. What strategy should you adopt to maximize your probability of win-
ning the prize?

For the Bet Red problem, one obvious strategy is: wait until there there are more red
cards than black cards left in the deck. It might seem that such a strategy must ensure a
probability greater than 1/2 of correctly predicting a red card. The flaw in the method lies
in the possibility that we might wait until it is too late; it might happen that the number of
red cards revealed is always ≥ the number of black cards revealed. With a deck of 52 cards,
the probability might seem to be so small that it can be ignored—but it is not. The calcula-
tion of the probability is closely related to the so-called ballot problem, described in the next
Example.

Example 22: (Can be skipped.) Suppose an urn contains r red balls and b black
balls, with r > b. As balls are sampled without replacement from the urn, keep
track of the total number of red balls removed and the total number of black balls
removed after each draw. Show that the probability of the event {number of reds
removed is strictly greater than the number of blacks removed, after every draw} is
equal to (r − b)/(r + b).

Statistics 241: 24 September 2000 c©David Pollard



Example 20: Polya urn model

Suppose an urn initially contains r red balls and b black balls. Suppose balls are
sampled from the urn one at a time, but after each draw k + 1 balls of the same
color are returned to the urn (with thorough mixing between draws, blindfolds, and
so on).

Questions (for general k):

(a) What is the distribution of the number of red balls in the first n draws?

(b) What is the probability that the i th ball drawn is red?

(c) What is the expected number of red balls in the first n draws?

Remark. If k = 0, the procedure is just sampling with replacement. The number
of red balls in the first n draws would then have a Bin(n,r/(r+b)) distribution. If
k = −1, the procedure is sampling without replacement. If k ≥ 1 we will need a very
big urn if we intend to sample for a long time: there will be r +b+ki balls in the urn
after the ith draw and replacement.

To answer these questions we do not need to keep track of exactly which ball is selected at
each draw; only its color matters. The questions involve only the events

Ri = {i th ball drawn from urn is red}
and their complements Bi , for i = 1, 2, . . .. Clearly PR1 = r/(r + b).

To get a feel for what is going on, start with some simple calculations for the first few
draws, conditioning on the outcomes of the preceeding draws.

PR2 = PR1 R2 + PB1 R2

= PR1P(R2 | R1) + PB1P(R2 | B1)

=
(

r

r + b
× r + k

r + b + k

)
+

(
b

r + b
× r

r + b + k

)

= r(r + k) + rb

(r + b)(r + k + b)

= r

r + b
.

Slightly harder:

PR3 = P(R1 R2 R3) + P(R1 B2 R3) + P(B1 R2 R3) + P(B1 B2 R3)

= r

r + b
× r + k

r + b + k
× r + 2k

r + b + 2k

+ r

r + b
× b

r + b + k
× r + k

r + b + 2k

+ b

r + b
× r

r + b + k
× r + k

r + b + 2k

+ b

r + b
× b + k

r + b + k
× r

r + b + 2k
Each summand has the same denominator:

(r + b)(r + b + k)(r + b + 2k),

corresponding to the fact that the number of balls in the urn increases by k after each draw.
The sum of the numerators rearranges to(

r(r + k)(r + 2k) + r(r + k)b
) + (

rb(r + k) + rb(b + k)
)

= r(r + k)(r + 2k + b) + rb(r + 2k + b)

= r(r + k + b)(r + 2k + b)
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The last two factors, r +k+b and r +2k+b, cancel with the same factors in the denominator,
leaving PR3 = r/(r + b).

Remark. There is something wrong with the calculation of PR3 in the case r = 1
and k = −1 if we interpret each of the factors in a product like

r

r + b
× r + k

r + b + k
× r + 2k

r + b + 2k

as a conditional probability. The third factor would become (−1)/(b − 1), which is
negative: the urn had run out of balls after the previous draw. Fortunately the sec-
ond factor reduces to zero. The product of these factors is zero, which is the correct
value for P(R1 R2 R3) when r = 1 and k = −1. The oversight did not invalididate the
final answer. Moral: The value of a conditional probability needn’t make sense if it is to
be multiplied by zero.

By now you probably suspect that the answer to question (b) is r/(r + b), no matter
what the value of k. A symmetry argument will prove your suspicions correct. Look for the
pattern in probabilities like P(R1 R2 B3 . . .) when expressed as a ratio of two products. The
successive factors in the denominator correspond to the numbers of balls in the urn before
each draw. The same factors will appear no matter what string of Ri ’s and Bi ’s is involved.
In the numerator, the first appearance of an Ri contributes an r , the second appearance con-
tributes an r + k, and so on. The Bi ’s contribute b, then b + k, then b + 2k, and so on. For
example,

P(R1 R2 B3 B4 R5 B6 R7) = r(r + k)(r + 2k)(r + 3k)b(b + k)(b + 2k)

(r + b)(r + b + k)(r + b + 2k)(r + b + 3k) . . . (r + b + 6k)

You might like to rearrange the order of the factors in the numerator to make the representa-
tion as a product of conditional probabilities clearer.

In short, the probability of a particular string of Ri ’s and Bi ’s, corresponding to a par-
ticular sequence of draws from the urn, depends only on the number of Ri and Bi terms, and
not on their ordering.

Answer to question (a)

For i = 0, 1, . . . , n, we need to calculate the probability of getting exactly i red balls
amongst the first n draws. There are

(n
i

)
different orderings for the first n draws that would

give exactly i reds. (Think of the number of ways to choose the i positions for the red from
the n available). The event {i reds in first n draws} is a disjoint union of

(n
i

)
equally likely

events, whence

P{i reds in first n draws}
=

(
n

i

)
PR1 R2 . . . Ri Bi+1 Bi+2 . . . Bn

=
(

n

i

)
r(r + k) . . . (r + k(i − 1))b(b + k) . . . (b + k(n − i − 1))

(r + b)(r + b + k) . . . (r + b + k(n − 1))

As a quick check, notice that when k=0, the probability reduces to(
n

i

) (
r

r + b

)i (
b

r + b

)n−i

,

as it should be for a Bin(n, r/(r + b)) distribution.
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For the special case of sampling without replacement (k = −1), the probability becomes(
n

i

)
r(r − 1) . . . (r − i + 1)b(b − 1) . . . (b − n + i + 1)

(r + b)(r + b − 1) . . . (r + b − n + 1)

= n!

i!(n − i)!

r !

(r − i)!

b!

(b − n + i)!

(r + b − n)!

(r + b)!

= r !

i!(r − i)!

b!

(n − i)!(b − n + i)!

n!(r + b − n)!

(r + b)!

=
(

r

i

)(
b

n − i

)/(
r + b

n

)
.

Notice that (
r

i

)
= number of ways to choose i from r reds

(
b

n − i

)
= number of ways to choose n − i from b blacks

(
r + b

n

)
= number of ways to choose n from r + b in urn

Compare the last probability with the direct calculation based on a sample space where all
possible subsets from the urn are given equal probability.

Unless you subscribe to tricky conventions about factorials or binomial coefficients, you
might want to restrict the last calculation to values of i and n for which

0 ≤ i ≤ r

0 ≤ n − i ≤ b

1 ≤ n ≤ r + b

Definition. A random variable X is said to have a hypergeometric distribution if it
takes only integer values in the range max(0, n − b) ≤ i ≤ r , with probabilities

P{X = i} =
(

r

i

)(
b

n − i

)/(
r + b

n

)
,

where the ‘‘parameters’’ are fixed positive integers for which n ≤ r + b.

Remark. How would you explain the form of the lower limit for the range of
possible values?

I advise against trying to memorize the form of the hypergeometric distribution.
Think of it as a slightly “compressed” analog of the Bin(n, r/(r + b)) distribution.
Rederive when absolutely necessary.

Answer to question (b)

The symmetry property that lets us ignore the ordering when calculating probabilities for
particular sequences of draws also lets us eliminate much of the algebra we first used to find
PR3. Reconsider that case. We broke the event R3 into four disjoint pieces:

(R1 R2 R3) ∪ (R1 B2 R3) ∪ (B1 R2 R3) ∪ (B1 B2 R3) .

Each triple ends with an R3, with the first two positions giving all possible R and B combi-
nations. The probability for each triple is unchanged if we permute the subscripts, because
ordering does not matter. Thus

PR3 = P(R3 R2 R1) + P(R3 B2 R1) + P(B3 R2 R1) + P(B3 B2 R1).
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Notice how the triple for each term now ends in an R1 instead of an R3. The last sum is just
a decomposition for PR1 obtaining by splitting according to the outcome of the second and
third draws. It follows that PR3 = PR1. Similarly,

P{i th ball is red} = PR1 = r/(r + b) for each i.

Answer to question (c)

You should resist the urge to use the answer to question (a) in a direct attack on ques-
tion (c). Instead, write the number of reds in n draws as X1 + . . . + Xn , where Xi denotes
the indicator of the event Ri , that is,

Xi =
{

1 if i th ball red
0 otherwise

From the answer to question (b),

EXi = 1P{Xi = 1} + 0P{Xi = 0} = PRi = r/(r + b).

It follows that the expected number of reds in the sample of n is nr/(r + b). This expected
number does not depend on k; it is the same for k = 0 (sampling with replacement, draws
independent) and k = 0 (draws are dependent), provided we exclude cases where the urn
gets emptied out before the nth draw. �
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Example 21: The game of Bet Red

A pack of cards consists of 26 reds and 26 blacks. I shuffle the cards, then deal
them out one at a time, face up. You are given the chance to win a big prize by
correctly predicting when the next card to be dealt will be red. You are allowed to
make the prediction for only one card, and you must predict red, not black. What
strategy should you adopt to maximize your probability of winning the prize?

First let us be clear on the rules. Your strategy will predict that card τ + 1 is red, where
τ is one of the values 0, 1, . . . , 51. That is, you observe the first τ cards then predict that
the next one will be red. The value of τ is allowed to depend on the cards you observe. For
example, a decision to choose τ = 3 can be based on the observed colors of cards 0, 1, 2,
and 3; but it cannot use information about cards 4, 5, . . . , 52.

Remark. In the probability jargon, τ is called a stopping rule, or stopping time,
or several other terms that make sense in other contexts.

Here are some simple-minded strategies: always choose the first card (probability 1/2
of winning); always choose the last card (probability 1/2 of winning). A more complicated
strategy: if the first card is black choose card 2, otherwise choose card 52, which gives

P{win} = P{first red, last red} + P{first black, second red}
= 1

2
· 25

51
+ 1

2
· 26

51

= 1

2
.

Notice the hidden appeal to (conditional) symmetry to calculate

P{last red | first red} = P{second red | first red} = 25

51
.

All three stategies give the same probability of a win.

We have to be a bit more cunning. How about: wait until the proportion of reds in the
remaining cards is high enough and then go for the next card. As you will soon see, the
extra cunning gets us nowhere, because all strategies have the same probability, 1/2, of win-
ning. Amazing!

Consider first an analogous problem for a pack of 3 red and 3 black cards. Why
doesn’t the following strategy improve one’s chances of winning?

Wait until
number of reds observed is < number of blacks observed,

then choose the next card.

With such a small deck we are able to list all possible ways that the cards might appear,
calculate τ for each outcome, then calculate the probability of a win. There are

(6
3

) = 20
possible orderings of 3 reds and 3 blacks, each equally likely. (Here I am treating all red
cards as equivalent. You could construct a more detailed sample space, with 6! orderings for
the 6 cards, but the calculations would end up with the same conclusion.) With r denoting a
red card, and b a black card, the outcomes are:
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pattern value of τ win?
bbbrrr 1
bbrbrr 1
bbrrbr 1
bbrrrb 1
brbbrr 1 �
brbrbr 1 �
brbrrb 1 �
brrbbr 1 �
brrbrb 1 �
brrrbb 1 �
rbbbrr 3
rbbrbr 3 �
rbbrrb 3 �
rbrbbr 5 �
rbrbrb ?
rbrrbb ?
rrbbbr 5 �
rrbbrb ?
rrbrbb ?
rrrbbb ?

Where possible I have underlined the card that the strategy would predict to be red.
Even though the game ends after the card is predicted, I have written out the whole string,
to make calculation of probabilities a mere matter of counting up equally probable events.
Notice that in 5 cases (rbrbrb,. . . ,rrrbbb) the strategy fails to predict. We could modify the
strategy by adding

. . . , but if only one card remains, choose it.

Notice that the addendum has no effect on the probability of a win. There are still only
10 of the 20 equally likely cases that lead to win. The strategy again has probability 1/2 of
winning.

The enumeration of outcomes gives a clue to why we keep coming back to 1/2. Look,
for example, at the block of ten outcomes beginning b?????. Each of them gives τ = 1.
There are only ten possible continuations, each having conditional probability 1/10. The
strategy τ has conditional probability 6/10 of leading to a win; six of the ten possible con-
tinuations have an r where τ wants it. By symmetry, six of the ten possible continuations
have an r in the last position. Thus

P{τ wins | b?????} = P{br???? | b?????} = P{b????r | b?????}.
It follows that τ has the same conditional probability for a win as the strategy for which
τ ≡ 5.

Now try the same idea on the original problem. Consider a string x1, x2, . . . , x52 of 26
reds and 26 blacks in some order such that a strategy τ would choose card i . The strategy
must be using information from only the first i cards. Consider sequences

x1, x2, . . . , xi , ? . . .?

that give τ = i . These sequences must have the same i cards at the start. (The particular
x1 . . . xi depend on the strategy.) Conditioning on this starting fragment, which triggered the
choice τ = i , we get

P{τ wins | x1, x2, . . . , xi , ? . . .? } = P{x1, x2, . . . , xi , r, ? . . .? | x1, x2, . . . , xi , ? . . .? }
= P{x1, x2, . . . , xi , ? . . .?r | x1, x2, . . . , xi , ? . . .? }.
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If we write LAST for the strategy of always choosing the 52nd card, the equality becomes

P{τ wins | x1, x2, . . . , xi , ? . . .? } = P{LAST wins | x1, x2, . . . , xi , ? . . .? }
Multiply both sides by P{x1, x2, . . . , xi , ? . . .?} then sum over all possible starting fragments
that trigger a choice for τ to deduce that

P{τ wins} = P{LAST wins} = 1/2.

Maybe the LAST strategy is not so simple-minded after all. �
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Example 22: The ballot theorem

Suppose an urn contains r red balls and b black balls, with r > b. As balls are
sampled without replacement from the urn, keep track of the total number of red
balls removed and the total number of black balls removed after each draw. Show
that the probability of the event {number of reds removed is strictly greater than
the number of blacks removed, after every draw} is equal to (r − b)/(r + b).

For simplicity, I will refer to the event whose probability we seek as “red always
leads”.

The sampling scheme should be understood to imply that all (r + b)! orderings of the
balls (treating balls of the same color as distinguishable for the moment) are equally likely.
There is a sneaky way to generate a random permutation, which will lead to an elegant solu-
tion to the problem.

Imagine that the balls are placed into a circular track as they are removed, without
any special marker to indicate the position of the first ball. After every ball is placed in the
track, choose a starting position at random, with each of the r + b possible choices equally
likely, then select the balls in order moving clockwise from the starting position.

To calculate P{red always leads}, condition on the “circle”, the ordering of the balls
around the circular track. I will show that

(∗) P{red always leads | circle} = r − b

r + b
,

for every circle configuration. Regardless of the probabilities of the various circle configura-
tion, the weighted average of these conditional probabilities must give the asserted result.

The calculation of the conditional probability in (*) reduces to a simple matter of count-
ing: How many of the r + b possible starting positions generate a “GOOD” permutation
where red always leads?

BADBAD

BAD

BAD

BAD

B
A

D

BAD
BAD

GOOD

G
O

O
D

Imagine the r + b positions labelled as GOOD or BAD, as in the picture. Somewhere
around the circle there must exist a pair red-black, with the black ball immediately following
the red ball in the clockwise ordering.

Two of the positions—the one between the red-black pair, and the one just before the
inital red—are obviously bad. (Look at the first few balls in the resulting permutation.)

Consider the effect on the total number (not probability) of GOOD starting positions
if the red-black pair is removed from the track. Two BAD starting positions are eliminated
immediately. It is less obvious, but true, that removal of the pair has no effect on any of the
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other starting positions: a GOOD starting position stays GOOD, and a BAD starting position
stays BAD. (Consider the effect on the successive red and black counts.) The total number
of GOOD starting positions is unchanged.

Repeat the argument with the new circle configuration of r +b−2 balls, eliminating one
more red-black pair but leaving the total GOOD count unchanged. And so on.

After removal of b red-black pairs all r − b remaining balls are red, and all r − b start-
ing positions are GOOD. Initally, therefore, there must also have been r − b of the GOOD
positions out of the r + b available. The assertion (*), and thence the main assertion, follow.
�

Reconsider the Bet Red problem. The strategy of waiting for the proportion of red
cards left in the deck to exceed 1/2, then betting on the next red, works except when the
proportion of reds never gets above 1/2. How likely is that? The answer can be deduced
from Example 22.

If a deck contains n + 1 red cards and n black cards then

P{#reds sampled > #blacks sampled, always} = 1

2n + 1
.

If we condition on the first card being red, then we get

1

2n + 1
= n + 1

2n + 1
P{subsequent #reds ≥ #blacks | first card red}.

The conditional probability is the same as the probability, for a deck of n red cards and n
black cards, that the number of black cards dealt never strictly exceeds the number of red
cards dealt. Solving for that probability, we find that the strategy of waiting for a higher
proportion of reds in the deck will fail with probability 1/(n + 1) for a deck of n red and n
black cards. The probability might not seem very large, but apparently it is just large enough
to offset the slight advantage gained when the strategy works.
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Chapter 5

Variances and covariances

The expected value of a random variable gives a crude measure for the “center of loca-
tion” of the distribution of that random variable. For instance, if the distribution is symmet-
ric about a value µ then the expected value equals µ. To refine the picture of a distribution
distributed about its “center of location” we need some measure of spread (or concentration)
around that value. The simplest measure to calculate for many distributions is the variance
(or, more precisely, the square root of the variance).

Definition. The variance of a random variable X with expected value EX = µX is de-
fined as var(X) = E

(
(X − µX )2

)
. The covariance between random variables Y and Z , with

expected values µY and µZ , is defined as cov(Y, Z) = E ((Y − µY )(Z − µZ )). The correla-
tion between Y and Z is defined as

corr(Y, Z) = cov(Y, Z)√
var(Y )var(Z)

The square root of the variance of a random variable is called its standard deviation, some-
times denoted by sd(X).

Remark. Notice that cov(X, X) = var(X). Results about covariances contain
results about variances as special cases.

Sometimes it is easier to subtract off the expected values at the end of the calcula-
tion, by means of the formulae cov(Y, Z) = E(Y Z) − (EY )(EZ) and, as a particular case,
var(X) = E(X2) − (EX)2 . Both formulae follow via an expansion of the product:

cov(Y, Z) = E (Y Z − µY Z − µZ Y + µY µZ )

= E(Y Z) − µY EZ − µZ EY + µY µZ

= E(Y Z) − µY µZ .

A pair of random variables X and Y is said to be uncorrelated if cov(X, Y ) = 0,
and independent if “every event determined by X is independent of every event determined
by Y ”. For example, independence implies that events such as {X ≤ 5} and {7 ≤ Y ≤ 18}
are independent, and so on. Independence of the random variables also implies indepen-
dence of functions of those random variables. For example, sin(X) would be independent
of eY , and so on. Independent random variables are uncorrelated, but uncorrelated random
variables need not be independent.

Example 23: An argument showing that independent random variables are uncorre-
lated, with an example of uncorrelated random variables that are dependent.

The variance of a random variable X is unchanged by an added constant: var(X + C) =
var(X) for every constant C , because (X +C)−E(X +C) = X −EX , the C’s cancelling. It is
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Chapter 5 Variances and covariances

a desirable property that the spread should not be affected by a change in location. However,
it is also desirable that multiplication by a constant should change the spread: var(C X) =
C2var(X) and sd(C X) = |C |sd(X), because (C X − E(C X))2 = C2(X − EX)2. In summary:

var(a + bX) = b2var(X) and sd(a + bX) = |b|sd(X) for constants a and b.

Remark. Try not to confuse properties of expected values with properties of
variances: for constants a and b we have var(a + bX) = b2var(X) but E(a + bX) =
a + bEX . Measures of location (expected value) and spread (standard deviation)
should react differently to linear transformations of the variable. As another exam-
ple: if a given piece of “information” implies that a random variable X must take the
constant value C then E(X | information) = C , but var(X | information) = 0.

It is also a common blunder to confuse the formula for the variance of a differ-
ence with the formula E(Y − Z) = EY − EZ . If you ever find yourself wanting to
assert that var(Y − Z) is equal to var(Y ) − var(Z), think again. What would happen
if var(Z) were larger than var(Y )? Variances can’t be negative.

Covariances enter the picture when we consider variances of sums of random variables.
For example, var(Y + Z) = var(Y ) + 2cov(Y, Z) + var(Z), a result that follows by taking
expectations of both sides of the expansion

(X + Y − µX − µY )2 = (X − µX )2 + 2 (X − µX ) (Y − µY ) + (Y − µY )2 .

More generally, For constants a, b, c, d, and random variables U, V, Y, Z ,

cov(aU + bV,cY + d Z)

= ac cov(U, Y ) + bc cov(V, Y ) + ad cov(U, Z) + bd cov(V, Z).

It is easier to see the pattern if we work with the centered random variables U ′ = U − µU ,
. . . , Z ′ = Z − µZ . For then the left-hand side becomes

E
(
(aU ′ + bV ′)(cY ′ + d Z ′)

) = E(ac U ′Y ′ + bc V ′Y ′ + ad U ′ Z ′ + bd V ′ Z ′)
= ac E(U ′Y ′) + bc E(V ′Y ′) + ad E(U ′ Z ′) + bd E(V ′ Z ′).

The expected values in the last line correspond to the covariances.

If Y and Z are uncorrelated, the covariance term drops out from the expression for the
variance of their sum, leaving var(Y + Z) = var(Y ) + var(Z). Similarly, if X1, . . . , Xn are
random variables for which cov(Xi , X j ) = 0 for each i �= j then

var(X1 + . . . + Xn) = var(X1) + . . . + var(Xn) for “pairwise uncorrelated” rv’s.

You should check the last assertion by expanding out the quadratic in the variables Xi −EXi ,
observing how all the cross-product terms disappear because of the zero covariances.

There is an enormous body of probability literature that deals with approximations to
distributions, and bounds for probabilities, expressible in terms of expected values and vari-
ances. One of the oldest and simplest examples, the Tchebychev inequality, is still useful,
even though it is rather crude by modern standards.

Example 24: The Tchebychev inequality

The Tchebychev bound explains an important property of sample means: their distribu-
tions concentrate increasingly around their expectations as the sample size increases.

Example 25: Concentration of sample mean about expected value

The concentration phenomenon will also hold for averages of dependent random vari-
ables, if the variance is small.

Example 26: Comparison of spread in sample averages for sampling with and
without replacement.
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Chapter 5 Variances and covariances

As with expectations, variances and covariances can also be calculated conditionally on
various pieces of information. The conditioning formula in the final Example has the inter-
pretation of a decomposition of “variability” into distinct sources, a precursor to the statisti-
cal technique know as the “analysis of variance”.

Example 27: An example to show how variances can sometimes be decomposed
into components attributable to difference sources. (Can be skipped.)

Things to remember

• the initial definitions of variance and covariance, and their expanded forms cov(Y, Z) =
E(Y Z) − (EY )(EZ) and var(X) = E(X2) − (EX)2

• var(a + bX) = b2var(X) and sd(a + bX) = |b|sd(X) for constants a and b.

• Sampling without replacement gives smaller variances than sampling with replacement.
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Example 23: Independent versus uncorrelated

Suppose a random variable X can take values x1, x2, . . ... The expected value E(XY )

can then be rewritten as a weighted sum of conditional expectations,

E(XY ) =
∑

i

P{X = xi }E(XY | X = xi ) by rule E4 for expectations

=
∑

i

P{X = xi }xiE(Y | X = xi ).

If Y is independent of X , the information “X = xi ” does not help with the calculation of the
conditional expectation, E(Y | X = xi ) = E(Y ). The last calculation then simplifies to

E(XY ) = (EY )
∑

i

xiP{X = xi } = (EY )(EX).

It follows that cov(X, Y ) = E(XY ) − (EX)(EY ) = 0 if Y and X are independent.

Uncorrelated random variables need not be independent. Consider the following exam-
ple. For two independent rolls of a fair die, let X denote the value rolled the first time and
Y denote the value rolled the second time. The random variables X and Y are independent,
and they have the same distribution. Consequently cov(X, Y ) = 0, and var(X) = var(Y ).

The two random variables X + Y and X − Y are uncorrelated,

cov(X + Y, X − Y ) = cov(X, X) + cov(X, −Y ) + cov(Y, X) + cov(Y, −Y )

= var(X) − cov(X, Y ) + cov(Y, X) − var(Y )

= 0.

Nevertheless, the sum and difference are not independent. For example,

P{X + Y = 12} = P{X = 6}P{Y = 6} = 1

36
but

P{X + Y = 12 | X − Y = 5} = P{X + Y = 12 | X = 6, Y = 1} = 0.

�
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Example 24: The Tchebychev inequality

The inequality asserts: for a random variable X with expected value µ,

P{|X − µ| > ε} ≤ var(X)/ε2 for each ε > 0.

The inequality becomes obvious if we write F for the event {|X − µ| > ε}. First note that
IF ≤ |X − µ|2/ε2: when IF = 0 the inequality holds for trivial reasons; and when IF takes
the value one, the random variable |X − µ|2 must be larger than ε2. It follows that

P{|X − µ| > ε} = EIF ≤ E|X − µ|2/ε2.

In the Chapter on the normal distribution you will find more refined probability approx-
imations involving the variance. �

Statistics 241: 30 September 2000 E24-1 c©David Pollard



Example 25: Concentration of sample means

Suppose X1, . . . , Xn are uncorrelated random variables, each with expected value µ and
variance σ 2. By repeated application of the formulae for the variance of a sum of variables
with zero covariances,

var (X1 + . . . + Xn) = var(X1) + . . . + var(Xn) = nσ 2.

Typically the Xi would come from repeated independent measurements of some unknown
quantity. The random variable X = (X1 + . . . + Xn)/n is then called the sample mean.

The variance of the sample mean decreases like 1/n,

var(X) = (1/n)2var (X1 + . . . + Xn) = σ 2/n.

From the Tchebychev inequality,

P{|X − µ| > ε} ≤ (σ 2/n)/ε2 for each ε > 0.

In particular, for each positive C ,

P{|X − µ| > Cσ/
√

n} ≤ 1/C2.

For example, there is at most a 1% chance that X lies more than 10σ/
√

n away from µ. (A
normal approximation will give a much tighter bound.) Note well the dependence on n. �
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Example 26: Variability of a sample average

In the decennial census of housing and population, the Census Bureau obtain some im-
formation from a more extensive list of questions sent to only a random sample of housing
units. For an area like New Haven, about 1 in 6 units receive the so-called “long form”.

For example, one question on the long form asks for the number of rooms in the hous-
ing unit. We could imagine the population of all units numbered 1, 2, . . . , N , with the i th
unit containing yi rooms. Complete enumeration would reveal the value of the population
average,

ȳ = 1

N
(y1 + y2 + . . . + yN ) .

A sample can provide a good estimate of ȳ with less work.

Suppose a sample of n housing units are selected from the population without replace-
ment. (For the decennial census, n ≈ N/6.) The answer from each unit is a random variable
that could take each of the values y1, y2, . . . , yN , each with probability 1/N .

Remark. It might be better to think of a random variable that takes each of
the values 1, 2, . . . , N with probability 1/N , then take the corresponding number of
rooms as the value of the random variable that is recorded. Otherwise we can fall
into verbal ambiguities when many of the units have the same number of rooms.

That is, the sample consists of random variables Y1, Y2, . . . , Yn , for each of which

P{Yi = yj } = 1

N
for j = 1, 2, . . . , N .

Notice that

EYi = 1

N

N∑
j=1

yj = ȳ,

and consequently, the sample average Ȳ = (Y1 + . . . + Yn)/n also has expected value ȳ.
Notice also that each Yi has the same variance,

var(Yi ) = 1

N

N∑
j=1

(
yj − ȳ

)2
,

a quantity that I will denote by σ 2.

If the sample is taken without replacement—which, of course, the Census Bureau must
do, if only to avoid media ridicule—the random variables are dependent. For example, in the
extreme case where n = N , we would necessarily have

Y1 + Y2 + . . . + YN = y1 + y2 + . . . + yN ,

in which case YN would be a function of the other Yi ’s, a most extreme form of dependence.
Even if n < N , there is still some dependence, as you will soon see.

Sampling with replacement would be mathematically simpler, for then the random vari-
ables Yi would be independent, and, as in Example 25, we would have var

(
Ȳ

) = σ 2/n.
With replacement, it is possible that the same unit might be sampled more than once, espe-
cially if the sample size is an appreciable fraction of the population size. There is also some
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inefficiciency in sampling with replacement, as shown by a calculation of variance for sam-
pling without replacement.

var
(
Ȳ

) = E
(
Ȳ − ȳ

)2

= E

(
1

n

n∑
i=1

(Yi − ȳ)

)2

= 1

n2
E

(
n∑

i=1

(Yi − ȳ)2 + 2
∑

1≤i< j≤n

(Yi − ȳ)(Yj − ȳ)

)

= 1

n2

(
n∑

i=1

E (Yi − ȳ)2 + 2
∑

1≤i< j≤n

E
(
(Yi − ȳ)(Yj − ȳ)

))

= 1

n2

(
n∑

i=1

var(Yi ) +
∑

1≤i = j≤n

cov(Yi , Yj )

)
What formula did I just rederive?

There are n variance terms and n(n − 1) covariance terms. We know that each Yi has vari-
ance σ 2, regardless of the dependence between the variables. The effect of the dependence
shows up in the covariance terms. By symmetry, cov(Yi , Yj ) is the same for each pair i < j ,
a value that I will denote by c. Thus, for sampling without replacement,

(∗) var
(
Ȳ

) = 1

n2

(
nσ 2 + n(n − 1)c

) = σ 2

n
+ (n − 1)c

n
.

We can calculate c directly, from the fact that the pair (Y1, Y2) takes each of N (N − 1)

pairs of values (yi , yj ) with equal probability. Thus

c = cov(Y1, Y2) = 1

N (N − 1)

∑
i = j

(yi − ȳ)(yj − ȳ).

If we added the “diagonal” terms (yi − ȳ)2 to the sum we would have the expansion for the
product ∑N

i=1 (yi − ȳ)
∑N

j=1

(
yj − ȳ

)
,

which equals zero because N ȳ = ∑N
i=1 yi . The expression for the covariance simplifies to

c = cov(Y1, Y2) = 1

N (N − 1)

(
02 −

N∑
i=1

(yi − ȳ)2

)
= − σ 2

N − 1
.

Substitution in formula (*) then gives

var(Ȳ ) = σ 2

n

(
1 − n − 1

N − 1

)
= σ 2

n

N − n

N − 1
.

Compare with the σ 2/n for var(Y ) under sampling with replacement. The correction
factor (N − n)/(N − 1) is close to 1 if the sample size n is small compared with the
population size N , but it can decrease the variance of Y appreciably if n/N is not small.
For example, if n ≈ N/6 (as with the Census long form) the correction factor is approxi-
mately 5/6.

If n = N , the correction factor is zero. That is, var(Y ) = 0 if the whole population is
sampled. Indeed, when n = N we know that Ȳ equals the population mean, ȳ, a constant. A
random variable that always takes the same constant value has zero variance. Thus the right-
hand side of (∗) must reduce to zero when we put n = N , which gives a quick method for
establishing the equality c = −σ 2/(N − 1), without all the messing around with sums of
products and products of sums. �
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Example 27: Decomposition of variance

Consider a two stage method for generating a random variable. Suppose we have k
different random variables Y1, . . . , Yk , with EYi = µi and var(Yi ) = σ 2

i . Suppose also
that we have a random method for selecting which variable to choose: a random variable
X that is independent of all the Yi ’s, with P{X = i} = pi for i = 1, 2, . . . , k, where
p1 + p2 + . . . + pk = 1. If X takes the value i , define Z to equal Yi .

The variability in Z is due to two effects: the variability of each Yi ; and the variability
of X . Conditional on X = i , we have Z equal to Yi , and

E (Z | X = i) = E(Yi ) = µi

var (Z | X = i) = E
(
(Z − µi )

2 | X = i
) = var(Yi ) = σ 2

i .

From the first formula we get

EZ = ∑
i P{X = i}E (Z | X = i) = ∑

i piµi ,

a weighted average of the µi ’s that I will denote by µ̄. A similar conditioning exercise gives

var(Z) = E (Z − µ̄)2 = ∑
i piE

(
(Z − µ̄)2 | X = i

)
.

If we could replace the µ̄ in the i th summand by µi , the sum would become a weighted av-
erage of conditional variances. To achieve such an effect, rewrite (Z − µ̄)2 as

(Z − µi + µi − µ̄)2 = (Z − µi )
2 + 2(µi − µ̄)(Zi − µi ) + (µi − µ̄)2.

Taking conditional expectations, we then get

E
(
(Z − µ̄)2 | X = i

) = E
(
(Z − µ̄i )

2 | X = i
) + 2(µi − µ̄)E (Z − µi | X = i) + (µi − µ̄)2.

On the right-hand side, the first term equals σ 2
i , and the middle term disappears because

E(Z | X = i) = µi . With those simplifications, the expression for the variance becomes

var(Z) = ∑
i piσ

2
i + ∑

i pi (µi − µ̄)2.

If we think of each Yi as coming from a separate “population”, the first sum represents the
component of variability within the populations, and the second sum represents the variabil-
ity between the populations.

The formula is sometimes written symbolically as

var(Z) = E (var(Z | X)) + var (E(Z | X)) ,

where E(Z | X) denotes the random variable that takes the value µi when X takes the
value i , and var(Z | X) denotes the random variable that takes the value σ 2

i when X takes
the value i . �
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Chapter 6

Continuous Distributions

All the distributions we have met so far have been discrete: the possible values that
the random variable could take were a finite set, as in 0, 1, . . . , n for the Bin(n, p), or a se-
quence, as in 1, 2, 3, . . . for the geometric(p). We shall also encounter random variables
with continuous distributions, that is, random variables that take values in a continuous
range.

The simplest example of a continuous distribution is the Uniform[0, 1], the distribution
of a random variable U that takes values in the interval [0, 1], with

P{a ≤ U ≤ b} = b − a for all 0 ≤ a ≤ b ≤ 1.

We have to specify the distribution by describing the probability it puts in intervals, because,
for each x in (0, 1),

P{U = x} = P{x ≤ U ≤ x} = x − x = 0.

The probability is smeared out so smoothly that none of it can pile up exactly at the point x .
The next best thing would be to specify how much probability is given to small intervals
around x ,

P{x ≤ U ≤ x + δ} = δ for small enough δ > 0.

Notice that the amount of probability in the inerval is exactly propertion to the length, pro-
vided that δ is small enough that [x, x + δ] does not poke outside [0, 1].

Remark. Of course, to actually simulate a Uniform[0, 1] distribution on a com-
puter one would work with a discrete approximation. For example, if numbers were
specified to only 7 decimal places, one would be approximating Uniform[0,1] by a dis-
crete distribution placing probabilities of about 10−7 on a fine grid of about 107 equi-
spaced points in the interval. You might think of the Uniform[0, 1] as a convenient
idealization of the discrete approximation.

For a general continuous distribution, the probability in small intervals is again (approx-
imately) proportional to the length of the small interval, but now the constant of proportion-
ality need not be the same at every point.

Definition. A random variable Y is said to have a continuous distribution with density
function g(·) if P{t ≤ Y ≤ t + δ} = g(t)δ + terms of order δ or smaller, for each small
interval [t, t + δ].

Probabilities of larger intervals are given areas under the curve defined by the density func-
tion,

P{a ≤ Y ≤ b} =
∫ b

a
g(t) dt for all intervals [a, b].

The formula is obtained by splitting [a, b] into smaller intervals, to each of which the
defining property of the density applies, then passing to a limit. More precisely, for a large
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Chapter 6 Continuous Distributions

m break [a, b] into a union of disjoint subintervals let I1, . . . , Im with lengths δ = (b − a)/m
and left end points ti−1 = a + (i − 1)δ. When δ is small enough,

P{Y ∈ Ii } = g(ti )δ + terms of order δ2 or smaller

Sum over the subintervals.

P{Y ∈ [a, b]} = δ
∑m

i=1 g(ti ) + remainder of order δ or smaller.

Notice how m contributions of order δ2 (or smaller) can amount to a remainder of order at
worst δ (or smaller), because m increases like 1/δ. (Can you make this argument rigorous?)

t0 = a tm = bti-1 = a+(i-1)δ

g(.)

The sum δ
∑m

i=1 g(ti ) corresponds to the shaded area in the picture. It is an approxima-
tion to the integral of g over [a, b]. As δ tends to zero, the sum converges to that integral.
The remainder terms tend to zero with δ. The left-hand side just sits there. In the limit we
get the asserted integral formula for P{Y ∈ [a, b]}.

Remark. Densities are usually defined via the integral property, rather than
as constants of proportionality. The integral definition has the advantage that the
probabilities are not affected by changes in the definition of g at isolated points. We
don’t really need to worry about the precise definition at end points of a range, for
example. However, I find the interpretation as a constant of proportionality the more
useful when calculating densities, or when deriving facts about continuous distribu-
tions.

Note well: the density g(t) is the constant of proportionality, and not a probability; it is
not the same as P{Y = t}, which is zero for every t . The density function, g, must be non-
negative, for otherwise some tiny interval would receive a negative probability. Also it must
integrate to one over the whole line, because 1 = P{−∞ < Y < ∞} = ∫ ∞

−∞ g(t) dt .

Remark. I prefer to think of densities as being defined on the whole real line,
with values outside the range of the random variable being handled by setting the
density function equal to zero appropriately. That way my integrals always run from
−∞ to ∞, with the zero density killing off unwanted contributions. This convention
will be useful when we consider densities that vanish outside a range depending on a
parameter of the distribution; it will also help us avoid some amusing calculus blun-
ders.

Calculations with continuous distributions typically involve calculations of integrals or
derivatives, where discrete distribution involve sums or probabilities attached to individual
points.

Example 28: Functions of a random variable with a continuous distribution

Statistics 241: 7 October 2000 c©David Pollard



Chapter 6 Continuous Distributions

Here is a nontrivial example showing one method for finding a density. The trick is to
work with very small intervals, so that higher order terms in the lengths of the intervals can
be ignored. (More formally, the errors in approximation tend to zero as the intervals shrink.)

Example 29: The distribution of the order statistics from the uniform distribution

The distribution from the previous Example is a member of a family whose name is
derived from the beta function, defined by

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt for α > 0, β > 0.

The equality ∫ 1

0
t k−1(1 − t)n−kdt = (k − 1)!(n − k)!

n!
,

noted at the end of the Example, gives the value for B(k, n − k + 1).

In general, if we divide tα−1(1 − t)β−1 by B(α, β) we get a candidate for a density
function: non-negative and integrating to 1.

Definition. For α > 0 and β > 0 the Beta(α, β) distribution is defined by the density
function

tα−1(1 − t)β−1

B(α, β)
for 0 < t < 1.

The density is zero outside (0, 1).

For example, the kth order statistic from a sample of n independently generated random
variables with Uniform[0, 1] distributions, from Example 29, is Beta(k, n − k + 1) distributed.

Example 30: The beta distribution: pictures and computing

There is an interesting exact relationship between the tails of the beta and Binomial
distributions.

Example 31: Binomial tail probabilities from beta distributions

Remark. For many purposes it suffices to have a good approximation to the Bi-
nomial tail probabil;ities. The best known method—the normal approximation, due
to de Moivre (1733)—will be described in Chapter 7. The relationship between Bi-
nonial and beta distributions can be used as the starting point for a particulary pre-
cise version of the normal approximation.

The formulae developed in previous chapters for expectations and variances of random
variables have analogs for continuous distributions.

Example 32: Expectation of a random variable with a continuous distribution

Things to remember

• The density g(t) is the constant of proportionality, and not a probability; it is not the
same as P{Y = t}, which is zero for every t . A density function, g, must be non-
negative, for otherwise some tiny interval would receive a negative probability. Also
it must integrate to one over the whole line, 1 = P{−∞ < Y < ∞} = ∫ ∞

−∞ g(t) dt .

• Expected value of a function of a random variable with a continuous distribution:

EH(X) =
∫ ∞

−∞
H(x) f (x) dx where X has density f .

• Be very careful not to confuse the formulae for expectations in the discrete and con-
tinuous cases. Think again if you find yourself integrating probabilities or summing
expressions involving probability densities.
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Example 28: Functions of random variables with continuous distributions

Suppose X has a uniform distribution on the interval (−π/2, π/2). That is, it has a
continuous distribution given by the density function

f (x) =
{

1/π for −π/2 < x < π/2
0 elsewhere

Let a new random variable be defined by Y = tan(X). It takes values over the whole real
line. For a fixed real y, and a small positive δ, we have

(∗) y ≤ Y ≤ y + δ if and only if x ≤ X ≤ x + ε,

where x and ε are related to y and δ by the equalities

y = tan(x) and y + δ = tan(x + ε).

By Calculus,

δ = ε × tan(x + ε) − tan(x)

ε
≈ ε

cos2 x
.

Compare with the definition of the derivative:

lim
ε→0

tan(x + ε) − tan(x)

ε
= d tan(x)

dx
= 1

cos2 x
.

Thus

P{y ≤ Y ≤ y + δ} = P{x ≤ X ≤ x + ε}
≈ ε f (x) definition of density for X

≈ δ cos2 x

π
.

We need to express cos2 x as a function of y. Note that

1 + y2 = 1 + sin2 x

cos2 x
= cos2 x + sin2 x

cos2 x
= 1

cos2 x
.

Thus Y has a continuous distribution with density

g(y) = 1

π(1 + y2)
for −∞ < y < ∞.

Remark. This distribution is called the Cauchy.

For functions that are not one-to-one, the analog of (∗) can require a little more work.
In general, we can have a random variable Y defined as H(X), a function of another ran-
dom variable. If X has a continous distribution with density f , and if H is a smooth func-
tion with derivative H ′, then we can calculate a density for Y by an extension of the method
above.

H( . )

y

y+δ

x1 x1+ε1
x3 x3+ε3

x5 x5+ε5

A small interval [y, y + δ] in the range of values taken by Y can correspond to a more
complicated range of values for X . For instance, it might consist of a union of several inter-
vals [x1, x1 + ε1], [x2, x2 + ε2], . . . . The number of pieces in the X range might be different
for different values of y.
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From the representation of {y ≤ Y ≤ y + δ} as a disjoint union of events

{x1 ≤ X ≤ x1 + ε1} ∪ {x2 ≤ X ≤ x2 + ε2} ∪ . . . ,

we get, via the defining property of the density f for X ,

P{y ≤ Y ≤ y + δ} = P{x1 ≤ X ≤ x1 + ε1} + P{x2 ≤ X ≤ x2 + ε2} + . . .

≈ ε1 f (x1) + ε2 f (x2) + . . . .

For each small interval, the ratio of δ to εi is close to the derivative of the function H at the
corresponding xi . That is, εi ≈ δ/H ′(xi ).

y

y+δ

xi xi+εi

δ
εi

Adding the contributions from each such interval, we then have an approximation that
tells us the density for Y ,

P{y ≤ Y ≤ y + δ} ≈ δ

(
f (x1)

H ′(x1)
+ f (x2)

H ′(x2)
+ . . .

)

That is, the density for Y at the particular point y in its range equals

f (x1)

H ′(x1)
+ f (x2)

H ′(x2)
+ . . .

Of course we should reexpress each xi as a function of y, to get the density in a usable
form. �

I recommend that you remember the method used in the Example, rather than trying to
memorize the result for various special cases. In each particular application, rederive. That
way, you will be less likely to miss multiple contributions to a density.
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Example 29: Order statistics from the uniform distribution

Suppose U1, U2, . . . , Un are independent random variables, each with a Uniform[0, 1]
distribution. They define n points in the unit interval. If we measure the distance of each
point from 0 we obtain random variables 0 ≤ T1 < T2 < . . . < Tn , the values U1, . . . , Un

rearranged into increasing order. For n = 6, the picture (with T5 and T6 not shown) looks
like:

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

If we repeated the process by generating a new sample of Ui ’s, we would probably not have
U4 as the smallest, U1 as the second smallest, and so on. That is, T1 might correspond to a
different Ui .

Problem: Find the distribution of Tk , the kth smallest of the ordered values (also known
as the kth order statistic). For a very short interval [t, t + δ], with 0 < t < t + δ < 1 and
δ very small, we need to show that P{t ≤ Tk ≤ t + δ} is roughly proportional to δ, then
determine f (t), the constant of proportionality.

Write N for the number of Ui points that land in [t, t + δ]. To get t ≤ Tk ≤ t + δ

we must have N ≥ 1. If N = 1 then we must have exactly k − 1 points in [0, t) to get
t ≤ Tk ≤ t + δ. If N ≥ 2 then it becomes more complicated to describe all the ways that
we would get t ≤ Tk ≤ t + δ. Luckily for us, the contributions from all those complicated
expressions will turn out to be small enough to ignore if δ is small. Calculate.

P{t ≤ Tk ≤ t + δ} = P{N = 1 and exactly k − 1 points in [0, t)}
+ P{N ≥ 2 and t ≤ Tk ≤ t + δ}.

Let me first dispose of the second contribution, where N ≥ 2. The indicator function of
the event

F2 = {N ≥ 2} ∩ {t ≤ Tk ≤ t + δ}
is less than the sum of indicator functions∑

1≤i< j≤n

I{Ui , Uj both in [t, t + δ]}

You should check this assertion by verifying that the sum of indicators is nonnegative and
that it takes a value ≥ 1 if the event F2 occurs. Take expectations, remembering that the
probability of an event is equal to the expectation of its indicator function, to deduce that

PF2 ≤
∑

1≤i< j≤n

P{Ui , Uj both in [t, t + δ]}.

By symmetry, all
(n

2

)
terms in the sum are equal to

P{U1, U2 both in [t, t + δ]}
= P{t ≤ U1 ≤ t + δ}P{t ≤ U2 ≤ t + δ} by independence

= δ2.

Thus PF2 ≤ (n
2

)
δ2, which tends to zero much faster than δ as δ → 0. (The value of n stays

fixed throughout the calculation.)

Next consider the contribution from the event

F1 = {N = 1} ∩ {exactly k − 1 points in [0, t)}.
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Break into disjoint pieces like

{U1, . . . , Uk−1 in [0, t), Uk in [t, t + δ], Uk+1, . . . , Un in (t + δ, 1]}.
Again by virtue of the independence between the {Ui }, this piece has probability

P{U1 < t}P{U2 < t} . . . P{Uk−1 < t}P{Uk in [t, t + δ]}P{Uk+1 > t + δ} . . . P{Un > t + δ},
Invoke the defining property of the uniform distribution to factorize the probability as

t k−1δ(1 − t − δ)n−k = t k−1(1 − t)n−kδ + terms of order δ2 or smaller.

How many such pieces are there? There are
( n

k−1

)
ways to choose the k − 1 of the Ui ’s to

land in [0, t), and for each of these ways there are n − k + 1 ways to choose the single
observation to land in [t, t + δ]. The remaining observations must go in (t + δ, 1]. We must
add up (

n

k − 1

)
× (n − k + 1) = n!

(k − 1)!(n − k)!

pieces with the same probability to calculate PF1.

Consolidating all the small contributions from PF1 and PF2 we then get

P{t ≤ Tk ≤ t + δ} = n!

(k − 1)!(n − k)!
t k−1(1 − t)n−kδ + terms of order δ2 or smaller.

That is, the distribution of Tk is continuous with density function

f (t) = n!

(k − 1)!(n − k)!
t k−1(1 − t)n−k for 0 < t < 1.

Outside (0, 1) the density is zero. �

Remark. Remember that it makes no difference how we define f (t) at t = 0 and
t = 1, because it can have no effect on integrals

∫ b

a
f (t) dt .

From the fact that the density must integrate to 1, we get

1 =
∫ 0

−∞
0dt + n!

(k − 1)!(n − k)!

∫ 1

0
t k−1(1 − t)n−kdt +

∫ ∞

1
0dt

That is, ∫ 1

0
t k−1(1 − t)n−kdt = (k − 1)!(n − k)!

n!
,

a fact that you might try to prove by direct calculation.
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Example 30: The beta distribution

β 
=

 5
β 

=
 4

β 
=

 3
β 

=
 2

α = 1

β 
=

 1

α = 2

Beta densities: tα-1 (1-t) β-1 /B(α,β) for 0 < t <1 and vertical range (0,5)

α = 3 α = 4 α = 5

The function beta in Matlab calculates the beta function, defined for z > 0 and w > 0
by

beta(z, w) =
∫ 1

0
t z−1(1 − t)w−1dt.

The function betainc in Matlab calculates the incomplete beta function, defined by

betainc(x, z, w) =
∫ x

0

t z−1(1 − t)w−1

beta(z, w)
dt for 0 ≤ x ≤ 1.

I used the function beta to draw the pictures of the density functions for various values of
the parameters. See the Matlab m-file drawbeta.m for the calculations. �
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Example 31: Binomial tail probabilities

In principle it is easy to calculate probabilities such as P{Bin(30, p) ≥ 17} for various
values of p: one has only to sum the series(

30

17

)
p17(1 − p)13 +

(
30

18

)
p18(1 − p)12 + . . . + (1 − p)30

With a computer (compare with the Matlab m-file BinProbs.m) such a task would not be
as arduous as it used to be back in the days of hand calculation. However, there is a neater
method, based on the facts about the order statistics, which relates the Binomial and beta tail
probabilities.

The relationship becomes clear from a special method for simulating coin tosses. For
a fixed n (such as n = 30), generate independently n random variables U1, . . . , Un , each
distributed uniformly on [0, 1]. Fix a p in [0, 1]. Then the independent events

{U1 ≤ p}, {U2 ≤ p}, . . . , {Un ≤ p}
are like n independent flips of a coin that lands heads with probability p. The number, Xn ,
of such events that occur has a Bin(n, p) distribution.

As in Example 29, write Tk for the kth smallest value when the Ui ’s are sorted into
increasing order.

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

p

The random variables Xn and Tk are related by an equivalence,

Xn ≥ k if and only if Tk ≤ p.

That is, there are k or more of the Ui ’s in [0, p] if and only if the kth smallest of them is
in [0, p]. Thus

P{Xn ≥ k} = P{Tk ≤ p} = n!

(k − 1)!(n − k)!

∫ 1

p
tk−1(1 − t)n−k dt.

I know of at least one statistical package that calculates Binomial tail probabilities by
means of this representation. �

Statistics 241: 7 October 2000 E31-1 c©David Pollard



Example 32: Expectation of a random variable with a continuous distribution

Consider a random variable X whose distribution has density function f (·). Let Y =
H(X) be a new random variable, defined as a function of X . We calculate EY by an ap-
proximation argument similar to the one used in Example 28.

H( . )

nδ

(n+1)δ

An

Cut the range of values taken by Y into disjoint intervals of the form nδ ≤ y < (n + 1)δ, for
a small, positive δ. Write An for the set of X values corresponding to this range, that is,

{nδ ≤ Y < (n + 1)δ} = {X ∈ An}.
When X lies in An , the value of Y must lie somewhere between nδ and (n + 1)δ. Thus

E (Y | X ∈ An) ≈ nδ,

with an error of approximation smaller than δ. We could also approximate P{X ∈ An} by a
sum, as in Example 28, but it is better just to leave it in the form of an integral of the den-
sity f of the corresponding range.

P{X ∈ An} =
∫

An

f (x) dx .

From rule E4 for expectations,

EY =
∑

n

P{X ∈ An}E (Y | X ∈ An)

≈
∑

n

∫
An

(nδ) f (x) dx

≈
∑

n

∫
An

H(x) f (x) dx because H(x) ≈ nδ when x ∈ An

=
∫ ∞

−∞
H(x) f (x) dx .

As δ is made smaller and smaller, the error in the approximations tends to zero. In the limit
we are left with the desired formula,

EY = EH(X) =
∫ ∞

−∞
H(x) f (x) dx where X has density f .

Compare with the formula for a random variable X∗ taking only a discrete set of values
x1, x2, . . .,

EH(X∗) =
∑

i

H(xi )P{X∗ = xi }

In the passage from discrete to continuous distributions, discrete probabilities get replaced by
densities and sums get replaced by integrals. �

You should be very careful not to confuse the formulae for expectations in the discrete
and continuous cases. Think again if you find yourself integrating probabilities or summing
expressions involving probability densities.
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Chapter 7

Normal distribution

In 1733, Abraham de Moivre presented an approximation to the Binomial distribution.
He later appended the derivation of his approximation to the solution of a problem asking
for the calculation of an expected value for a particular game. He posed the rhetorical ques-
tion (see Appendix A7 for a more extensive quotation) of how we might show that experi-
mental proportions should be close to their expected values.

In answer to this, I’ll take the liberty to say, that this is the hardest
Problem that can be proposed on the Subject of Chance, for which reason
I have reserved it for the last, but I hope to be forgiven if my Solution is
not fitted to the capacity of all Readers; however I shall derive from it some
Conclusions that may be of use to every body: in order thereto, I shall
here translate a Paper of mine which was printed November 12, 1733, and
communicated to some Friends, but never yet made public, reserving to
myself the right of enlarging my own Thoughts, as occasion shall require.

Novemb. 12, 1733

A Method of approximating the Sum of the Terms of the
Binomial a + b\n expanded into a Series, from whence are
deduced some practical Rules to estimate the Degree of
Assent which is to be given to Experiments.

Altho’ the Solution of problems of Chance often requires that several Terms
of the Binomial a + b\n be added together, nevertheless in very high Powers
the thing appears so laborious, and of so great difficulty, that few people have
undertaken that Task; for besides James and Nicolas Bernouilli, two great
Mathematicians, I know of no body that has attempted it; in which, tho’ they
have shown very great skill, and have the praise that is due to their Industry,
yet some things were further required; for what they have done is not so much
an Approximation as the determining very wide limits, within which they
demonstrated that the Sum of the Terms was contained. Now the method . . .

A. De Moivre, The Doctrine of Chances: or, A Method of Calculating the Probabilities of
Events in Play, 3rd edition (1756). (Photographic reprint of final edition by Chelsea
Publishing Company, 1967. The 1733 paper on the normal approximation is included as
pages 243–259.)

This Chapter will explain de Moivre’s approximation, then describe its modern coun-
terpart, the so-called central limit theorem, which is used to justify a huge array of normal
approximations.
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Chapter 7 Normal distribution

What does a Binomial look like? Recall that Tchebychev’s inequality suggests it should
be clustered around the expected value, with a spread determined by the standard deviation.

Example 33: A random variable X with a Bin(n, p) distribution has EX = np and
var(X) = np(1 − p).

Also, from Problem sheet 5, we know that if X has a Bin(n, p) distribution, then the
probabilities

bn(k) = P{X = k} =
(

n

k

)
pkqn−k for k = 0, 1, . . . , n, where q = 1 − p,

achieve their maximum vaue at a value kmax close to np, the expected value. Moreover,
the values of b(k) are increasing for k < kmax, and decreasing for k > kmax. The
pictures on the left-hand side of the next display, for the Bin(n, 0.4) distribution with
n = 20, 50, 100, 150, 200, exhibit this behavior. Each plot shows bars of height bn(k) and
width 1, centered at k. The maxima occur near n × 0.4 for each picture. As n increases,
the spread also increases, reflecting the increase in the standard deviations σn = √

npq for
p = 0.4.

The gross effect of the increasing expected value and standard deviation is removed
from the pictures on the right-hand side of the plot, where a bar of height σn×bn(k) now has
width 1/σn and is centered at (k − np)/σn , again with p = 0.4. The pictures now highlight
the common shape of the distributions. The shaded region still has area 1.
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Notice how the plots on the right settle down to a symmetric ‘bell-shaped’ curve. The shape
of the “standardized” Binomial quickly stablizes as n increases.
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Chapter 7 Normal distribution

De Moivre expressed this stability by showing that

P{X = kmax + m} ≈ b(kmax) exp

(
− m2

2npq

)
.

(Here, and subsequently, I translate de Moivre’s results into modern notation.)

Example 34: Derivation of de Moivre’s approximation.

Using the fact that the probabilities sum to 1, he was also able to show for p = 1/2
that the b(kmax) should decrease like 2/(B

√
n), for a constant B that he was initially only

able to express as an infinite sum. Referring to his calculation of the ratio of the maximum
term in the expansion of (1 + 1)n to the sum, 2n , he wrote (page 244 of the Doctrine of
Chances):

When I first began that inquiry, I contented myself to determine at large
the Value of B, which was done by the addition of some Terms of the
above-written Series; but as I perceived that it converged but slowly, and
seeing at the same time that what I had done answered my purpose tol-
erably well, I desisted from proceeding further till my worthy and learned
Friend Mr. James Stirling, who had applied himself after me to that
inquiry, found that the Quantity B did denote the Square-root of the
Circumference of a Circle whose Radius is Unity, so that if that Cir-
cumference be called c, the Ratio of the middle Term to the Sum of all
the Terms will be expressed by 2√

nc
.

With Stirling’s refinement, the approximation becomes, for general p,

P{X = kmax + m} ≈ 1√
2πnpq

exp

(
− m2

2npq

)
,

or, substituting np for kmax and writing k for kmax + m,

P{X = k} ≈ 1√
2πnpq

exp

(
− (k − np)2

2npq

)
.

That is, P{X = k} is approximately equal to the area under the smooth curve

f (x) = 1√
2πnpq

exp

(
− (x − np)2

2npq

)
,

for the interval k − 1/2 ≤ x ≤ k + 1/2. (The length of the interval is 1, so it does not appear
in the previous display.) Effectively, we have replaced a calculation for the discrete Binomial
distribution by a calculation for an approximating continuous distribution.

Definition. A random variable is said to have a normal distribution with parameters µ

and σ if it has a continuous distribution with density

fµ,σ (x) = 1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
for − ∞ < x < ∞.

The normal distribution is denoted by N (µ, σ 2). The parameter σ must be positive, other-
wise the density would not be positive. The parameter µ can be any real value.

The special case where µ = 0 and σ = 1 is called the standard normal. The density
function for this N (0, 1) distribution is usually denoted by the special letter φ,

φ(x) = 1√
2π

e−x2/2 for − ∞ < x < ∞.

For this function to be a well defined density it must integrate to 1, that is,∫ ∞

−∞
e−x2/2 dx =

√
2π,
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Chapter 7 Normal distribution

a far from obvious result. (See the Appendix for a direct way to establish this equality.)

De Moivre’s result asserts that the Bin(n, p) distribution is well approximated by the
N (np, npq). The next Example explains why the parameters of the approximating normal
are taken as the expected value and variance of the Binomial.

Example 35: The N (µ, σ 2) distribution has expected value µ and variance σ 2.

For many purposes it is easier to think in terms of standardized random variables and
their distributions. De Moivre’s result tells us that a Binomially distributed X can be approx-
imated by a N (µ, σ 2), where µ = np = EX and σ 2 = npq = var(X). Equivalently, the
distribution of the random variable (X − np)/

√
npq is approximated by the corresponding

standardized normal, which turns out to have a N (0, 1) distribution.

Example 36: If Y has N (µ.σ 2) distribution then the standardized random variable
(Y − µ)/σ has a standard normal distribution.

How does one actually perform a normal approximation? Back in the olden days,
one would interpolate from tables found in most statistics texts. For example, if X has a
Bin(100, 1/2) distribution,

P{45 ≤ X ≤ 55} = P

{
45 − 50

5
≤ X − 50

5
≤ 55 − 50

5

}
≈ P{−1 ≤ Z ≤ +1}

where Z has a standard normal distribution. From the tables one finds, P{Z ≤ 1} ≈ .8413;
and by symmetry (draw a picture) of the N (0, 1) density, P{Z ≥ −1} ≈ .8413, so that
P{Z ≤ −1} ≈ 1 − .8413. By subtraction,

P{−1 ≤ Z ≤ +1} = P{Z ≤ 1} − P{Z ≤ 1} ≈ .6826

That is, by the normal approximation,

P{45 ≤ X ≤ 55} ≈ .68

More concretely, there is about a 68% chance that 100 tosses of a fair coin will give some-
where between 45 and 55 heads.

It is possible to be more careful about the atoms of probability at 45 and 55 to improve
the approximation, but the refinement is usually not vital.

These days, many computer packages will calculate areas under the normal density
curve directly. However one must be careful to read the fine print about exactly which curve
and which area is used.

The central limit theorem

The normal approximation to the binomial is just one example of a general phenomenon cor-
responding to the mathematical result known as the central limit theorem. Roughly stated,
the theorem asserts:

If X can be written as a sum of a large number of relatively small, independent
random variables, then it has approximately a N (µ, σ 2) distribution, where µ =
EX and σ 2 = var(X). Equivalently, the standardized variable (X − µ)/σ has
approximately a standard normal distribution.

The normal distribution has many agreeable properties that make it easy to work with.
Many statistical procedures have been developed under normality assumptions, with occa-
sional obeisance toward the central limit theorem. Modern theory has been much concerned
with possible harmful effects of unwarranted assumptions such as normality. The modern fix
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Chapter 7 Normal distribution

often substitutes huge amounts of computing for neat, closed-form, analytic expressions; but
normality still lurks behind some of the modern data analytic tools.

Example 37: A hidden normal approximation—the boxplot

The normal approximation is heavily used to give an estimate of variability for the re-
sults from sampling.

Example 38: Normal approximations for sample means

Things to remember

• A random variable is said to have a normal distribution with parameters µ and σ if it
has a continuous distribution with density

fµ,σ (x) = 1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
for − ∞ < x < ∞

The normal distribution is denoted by N (µ, σ 2). The parameter σ must be positive,
otherwise the density would not be positive. The parameter µ can be any real value.

• If Y has N (µ, σ 2) distribution then EX = µ and var(X) = σ 2. The standardized
random variable (Y − µ)/σ has a standard normal distribution, N (0, 1).

• If X can be written as a sum of a large number of relatively small, independent random
variables, then it has approximately a N (µ, σ 2) distribution, where µ = EX and σ 2 =
var(X). Equivalently, the standardized variable (X − µ)/σ has approximately a standard
normal distribution.
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Example 33: expected value and variance of the Binomial distribution

Remember that the Bin(n, p) comes from counting the number of heads in n indepen-
dent tosses of a coin that lands heads with probability p. We can write the total number of
heads as X = ξ1 + ξ2 + . . . + ξn , where ξi takes the value 1 if the i th toss lands heads, and 0
otherwise.

It is easy to calculate the expected value and variance for each ξi .

Eξi = (0 × P{ξi = 0}) + (1 × P{ξi = 1}) = p,

and

var (ξi ) = E (ξi − p)2

= (
(0 − p)2 × P{ξi = 0}) + (

(1 − p)2 × P{ξi = 1})
= p2(1 − p) + (1 − p)2 p

= p(1 − p)

The rule for expectation of a sum gives

EX = Eξ1 + . . . + Eξn = np.

The rule for calculating the variance of a sum simplifies because all the covariance terms
equal zero (by independence of the ξi ’s), leaving

var (X) = var (ξ1) + . . . + var (ξn) = np(1 − p).

�
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Example 34: Normal approximation to the Binomial

The normal approximation to the binomial is largely explained by two simple facts:

log(1 + x) ≈ x for x near 0,

1 + 2 + 3 + . . . + m = 1
2 m(m + 1) ≈ 1

2 m2.

From Problem sheet 5, you know that

b(k)

b(k − 1)
= (n − k + 1)p

kq
,

which helped you to show that the value kmax maximizing b(k) is close to np. The ratio
takes a simpler form if we replace k by kmax + i .

b(kmax + i)

b(kmax + i − 1)
= (n − kmax − i + 1)p

(kmax + i)q
≈ (nq − i)p

(np + i)q
= 1 − i/(nq)

1 + i/(np)
.

The logarithm of the last ratio equals

log

(
1 − i

nq

)
− log

(
1 + i

np

)
≈ − i

nq
− i

np
= − i

npq
.

By summing such terms we get an approximation for the logarithm of the ratio of the indi-
vidual Binomial probabilities to their largest term. For example, if m ≥ 1 and kmax + m ≤ n,

log
b(kmax + m)

b(kmax)
= log

(
b(kmax + 1)

b(kmax)
× b(kmax + 2)

b(kmax + 1)
× . . . × b(kmax + m)

b(kmax + m − 1)

)

= log
b(kmax + 1)

b(kmax)
+ log

b(kmax + 2)

b(kmax + 1)
+ . . . + log

b(kmax + m)

b(kmax + m − 1)

≈ −1 − 2 − . . . − m

npq

≈ − 1
2

m2

npq
.

Thus

P{X = kmax + m} ≈ b(kmax) exp

(
− m2

2npq

)
for m not too large.

An analogous approximation holds for 0 ≤ kmax + m ≤ kmax. �
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Example 35: The N (µ, σ 2) distribution has expected value µ and variance σ 2.

The N (µ, σ 2) is a continuous distribution with density

fµ,σ (x) = 1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
for − ∞ < x < ∞.

If X has this distribution then, from Example 32,

EX =
∫ ∞

−∞
x fµ,σ (x) dx .

Make the change of variable y = (x − µ)/σ to rewrite the integral as

1

σ
√

2π

∫ ∞

−∞
(µ + σ y) exp(−y2/2) σdy = µ

∫ ∞

−∞
φ(y) dy + σ

∫ ∞

−∞
yφ(y) dy.

We know (from the fact that φ is a density function) that the coefficient of µ equals 1. Anti-
symmetry of yφ(y) makes it integrate to 0. Thus

EX = µ when X has a N (µ, σ 2) distribution.

A similar appeal to Example 32, followed by the same change of variable gives

var(X) = E (X − µ)2 =
∫ ∞

−∞
(x − µ)2 fµ,σ (x) dx = σ 2

∫ ∞

−∞
y2φ(y) dy.

An integration-by-parts, using the fact that dφ(y)/dy = −yφ(y), simplifies the integral,∫ ∞

−∞
−y

dφ(y)

dy
dy = [ − yφ(y)

]∞
−∞ +

∫ ∞

−∞
φ(y) dy = 1.

Thus
var(X) = σ 2 when X has a N (µ, σ 2) distribution.

�
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Example 36: Standardization of the normal distribution

If Y has a N (µ, σ 2) distribution, the standardized random variable Z = (Y − µ)/σ has

EZ = 1

σ
(EX − µ) = 0,

var(Z) = 1

σ 2
var (X − µ) = 1.

In fact, even more is true. Calculate the density for Z . For small, positive δ,

P{z ≤ Z ≤ z + δ} = P{µ + σ z ≤ X ≤ µ + σ(z + δ)}
≈ (σδ) fµ,σ (µ + σ z) density for X

= σδ
1

σ
√

2π
exp

(
− (µ + σ z − µ)2

2σ 2

)

= δφ(z).

That is, Z has a continuous distribution with density φ; it has a N (0, 1) distribution.

Put another way, we can construct an Y with a N (µ, σ 2) by defining it as µ + σ Z ,
where Z has a standard normal distribution. �
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Example 37: The box plot

The boxplot provides a convenient way of summarizing data (such as grades in Statis-
tics 241). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ = upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ + 1.5 × IQR and LQ − 1.5 × IQR, but then trim them back
to the most extreme data point in those ranges

(vi) draw dots for each individual data point outside the box and whiskers (There are var-
ious ways to deal with cases where the number of observations is not a multiple of
four, or where there are ties, or . . . )

LQ UQM

Where does the 1.5 × I Q R come from? Consider n independent observations from a
N (µ, σ 2) distribution. The proportion of observations smaller than any fixed x should be
approximately equal to P{W ≤ x}, where W has a N (µ, σ 2) distribution. From normal
tables (or a computer),

P{W ≤ µ + .675σ } ≈ .75

P{W ≤ µ − .675σ } ≈ .25

and, of course,
P{W ≤ µ} = .5

For the sample we should expect

LQ ≈ µ − .675σ

UQ ≈ µ + .675σ

M ≈ µ

and consequently,
IQR ≈ 1.35σ

Check that 0.675 + (1.5 × 1.35) = 2.70. Before trimming, the whiskers should approximately
reach to the ends of the range µ ± 2.70σ . From computer (or tables),

P{W ≤ µ − 2.70σ } = P{W ≥ µ + 2.70σ } = .003

Only about 0.6% of the sample should be out beyond the whiskers. �
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Example 38: Normal approximations in sampling

In Example 26 we found the expected value and variance of a sample mean Ȳ for a
sample of size n from a population {y1, y2, . . . , yN }:

EY = y = 1

N

N∑
i=1

yi

and, for sampling with replacement,

var(Y ) = σ 2

n
where σ 2 = 1

N

∑N
i=1 (yi − y)2.

If Z has a N (0, 1) distribution,

P{−1.96 ≤ Z ≤ 1.96} ≈ 0.95.

The standardized random variable (Y −y)/
√

σ 2/n is well approximated by the N (0, 1). Thus

P

{
−1.96σ√

n
≤ Y − y ≤ 1.96σ√

n

}
≈ 0.95.

Before we sample, we can assert that we have about a 95% chance of getting a value of Y
in the range y ± 1.96σ/

√
n. (For the post-sampling interpretation of the approximation, you

should take Statistics 242/542.)

Of course, we would not know the value σ , so it must be estimated.

For sampling without replacement, the variance of the sample mean is multiplied by
the correction factor (N − n)/(N − 1). The sample mean is no longer an average of many
independent summands, but the normal approximation can still be used. (The explanation
would take us beyond 241/541.) �
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Appendix A7

A passage from De Moivre

Corollary.

From this it follows, that if after taking a great number of Experiments, it should
be perceived that the happenings and failings have been nearly in a certain propor-
tion, such as of 2 to 1, it may safely be concluded that the Probabilities of happening
or failing at any one time assigned will be very near in that proportion, and that the
greater the number of Experiments has been, so much nearer the Truth will the con-
jectures be that are derived from them.

But suppose it should be said, that notwithstanding the reasonableness of building
Conjectures upon Observations, still considering the great Power of Chance, Events
might at long run fall out in a different proportion from the real Bent which they have
to happen one way or the other; and that supposing for Instance that an Event might
as easily happen as not happen, whether after three thousand Experiments it may not
be possible it should have happened two thousand times and failed a thousand; and
that therefore the Odds against so great a variation from Equality should be assigned,
whereby the Mind would be the better disposed in the Conclusions derived from the
Experiments.

In answer to this, I’ll take the liberty to say, that this is the hardest Problem
that can be proposed on the Subject of Chance, for which reason I have reserved it
for the last, but I hope to be forgiven if my Solution is not fitted to the capacity of all
Readers; however I shall derive from it some Conclusions that may be of use to ev-
ery body: in order thereto, I shall here translate a Paper of mine which was printed
November 12, 1733, and communicated to some Friends, but never yet made public,
reserving to myself the right of enlarging my own Thoughts, as occasion shall require.

Novemb. 12, 1733

A Method of approximating the Sum of the Terms of the Bi-
nomial a + b\n expanded into a Series, from whence are de-
duced some practical Rules to estimate the Degree of As-
sent which is to be given to Experiments.

Altho’ the Solution of problems of Chance often requires that several Terms of the Bi-
nomial a + b\n be added together, nevertheless in very high Powers the thing appears
so laborious, and of so great difficulty, that few people have undertaken that Task;
for besides James and Nicolas Bernouilli, two great Mathematicians, I know of no body
that has attempted it; in which, tho’ they have shown very great skill, and have the
praise that is due to their Industry, yet some things were further required; for what
they have done is not so much an Approximation as the determining very wide lim-
its, within which they demonstrated that the Sum of the Terms was contained.

A. De Moivre, The Doctrine of Chances: or, A Method of Calculating the Probabilities of
Events in Play, 3rd edition (1756), pages 242–243. (Photographic reprint of final edi-
tion by Chelsea Publishing Company, 1967.)
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Appendix A7

The mysterious
√

2π

Why is it that the constant C = ∫ ∞
−∞ exp(−x2/2) dx is equal to

√
2π? Equivalently,

why is the constant C2 = ∫∫
exp(−(x2 + y2)/2) dx dy equal to 2π? (Here, and subsequently,

the double integral runs over the whole plane.)

Using the fact that ∫ ∞

0
I{r ≤ z}e−z dz = e−r for r > 0,

we may rewrite C2 as a triple integral: replace r by (x2 + y2)/2, then substitute into the
double integral to get

C2 =
∫∫ (∫ ∞

0
I{x2 + y2 ≤ 2z} dz

)
dx dy =

∫ ∞

0

(∫∫
I{x2 + y2 ≤ 2z} dx dy

)
dz.

With the change in the order of integration, the double integral is now calculating the area of
a circle centered at the origin and with radius

√
2z. The triple integral reduces to∫ ∞

0
π

(√
2z

)2
e−z dz =

∫ ∞

0
π2ze−z dz = 2π.

That is, C = √
2π , as asserted.
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Appendix A7

Stirling’s Formula

For positive integers n, the formula asserts that

<A7.1> n! ≈
√

2πnn+1/2 exp(−n),

in the sense that the ratio of both sides tends to 1 as n goes to infinity.

As the first step towards a proof, write

log n! = log 1 + log 2 + . . . + log n

as a sum of integrals of indicator functions:

log n! =
n∑

i=1

∫ n

1
I{1 ≤ x < i} 1

x
dx =

∫ n

1

n∑
i=1

I{1 ≤ x < i} 1

x
dx

The sum of indicator functions counts the number of integers in the range 1, 2, . . . , n that
are greater than x . It equals n −x�, where x� denotes the integer part of x . The difference
ψ(x) = x − x� lies in the range [0, 1); it gives the fractional part of x .

The integral representating log(n!) is equal∫ n

1

n − x�
x

dx =
∫ n

1

n − x + ψ(x)

x
dx = n log n − n +

∫ n

1

ψ(x)

x
dx .

The last integral diverges as n tends to infinity, because the contribution from the inter-
val [i, i + 1) equals ∫ i+1

i

x − i

x
dx =

∫ 1

0

t

t + i
dt ≈ 1

2i
.

For the approximation I have treated the t + i in the denominator as approximately equal to i
and then noted that

∫ 1
0 t dt = 1/2. The sum of the contributions from the integral involv-

ing ψ increases like 1/2 log n.

It seems we have to subtract off an extra 1
2 log n = 1

2

∫ n
1

1
x dx to keep the remainder

term under control. Splitting the integral into contributions from intervals [i, i + 1), we then
get

<A7.2> log(n!) − (n + 1/2) log n − n =
n∑

i=1

∫ 1

0

t − 1/2

t + i
dt

With the subtraction of the 1/2 we will get some cancellation between the negative contribu-
tion for 0 ≤ t ≤ 1/2 and the positive contribution for 1/2 < t ≤ 1.

Make the change of variable s = 1/2 − t for the integral over [0, 1/2], and the change
of variable s = t − 1/2 over (1/2, 1].∫ 1

0

t − 1/2

t + i
dt =

∫ 1/2

0

−s

i + 1/2 − s
ds +

∫ 1/2

0

s

i + 1/2 + s
ds

= −2
∫ 1/2

0

s2

(i + 1/2)2 − s2
ds.

The last expression is bounded in absolute value by i−2. The sum of the integrals forms a
convergent series. That is, for some constant c,∫ n

1

ψ(x) − 1/2

x
dx → c as n → ∞.

Equivalently, from <A7.2>,

n!

nn+1/2e−n
→ ec as n → ∞

This result is equivalent to formula <A7.1>, except for the identification of ec as the con-
stant

√
2π . See the discussion on the next page for a way of deriving the value of the con-

stant.

For an alternative derivation of Stirling’s formula, see Feller I, pages 52–53.
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Appendix A7

The maximum of the Binomial probabilities

We know that the probability b(k) = (n
k

)
pkqn−k achieves its maximum at a value K

close to np. Temporarily write L for n − K ≈ nq . Use Stirling’s formula to approximate the
value at the maximum,

b(K ) = n!

L!K !
pK q L ≈ Cnn+1/2e−n pK q L

C L L+1/2e−LC K K+1/2e−K
≈ nn+1/2 pnpqnq

C(np)np+1/2(nq)nq+1/2
,

where C denotes the constant
√

2π . The actual value is unimportant for the present calcula-
tion. After some very satisfying cancellations, we are left with

b(K ) ≈ 1

C
√

npq
.

When combined with the approximation from Example 34, this result gives an approxima-
tion for all the Binomial probabilities,

b(k) ≈ 1

C
√

npq

∫ k+1/2

k−1/2
exp

(
− (x − np)2

2npq

)
dx .

We know that the probabilities must sum to 1. Thus

C ≈ 1√
npq

n∑
k=0

∫ k+1/2

k−1/2
exp

(
− (x − np)2

2npq

)
dx =

∫ nq+1/2

−np−1/2
exp

(−y2/2
)

dy →
√

2π.

In the limit we recover C = √
2π .

Statistics 241: 19 October 2000 A7-4 c©David Pollard



Chapter 8

Poisson approximations

The Bin(n, p) can be thought of as the distribution of a sum of independent indicator
random variables X1 + . . . + Xn , with {Xi = 1} denoting a head on the i th toss of a coin.
The normal approximation to the Binomial works best when the variance np(1 − p) is large,
for then each of the standardized summands (Xi − p)/

√
np(1 − p) makes a relatively small

contribution to the standardized sum. When n is large but p is small, in such a way that np
is not large, a different type of approximation to the Binomial is better.

Definition. A random variable Y is said to have a Poisson distribution with parameter λ

if it can take values 0, 1, 2, . . . with probabilities

P{Y = k} = e−λλk

k!
for k = 0, 1, 2, . . .

The parameter λ must be positive. The distribution is denoted by Poisson(λ).

Example 39: Poisson(np) approximation to the Binomial(n, p)

The Poisson inherits several properties from the Binomial. For example, the Bin(n, p)

has expected value np and variance np(1− p). One might suspect that the Poisson(λ) should
therefore have expected value λ = n(λ/n) and variance λ = limn→∞ n(λ/n)(1 − λ/n). Also,
the coin-tossing origins of the Binomial show that if X has a Bin(m, p) distribution and X ′

has Bin(n, p) distribution independent of X , then X + X ′ has a Bin(n + m, p) distribution.
Putting λ = mp and µ = np one would then suspect that the sum of independent Poisson(λ)

and Poisson(µ) distributed random variables is Poisson(λ + µ) distributed.

Example 40: If X has a Poisson(λ) distribution, then EX = var(X) = λ. If also
Y has a Poisson(µ) distribution, and Y is independent of X , then X + Y has a
Poisson(λ + µ) distribution.

Counts of rare events—such as the number of atoms undergoing radioactive decay dur-
ing a short period of time, or the number of aphids on a leaf—are often modelled by Pois-
son distributions, at least as a first approximation. In some situations it makes sense to think
of the counts as the number of successes in a large number of independent trials, with the
chance of a success on any particular trial being very small (“rare events”). In such a set-
ting, the Poisson arises as an approximation for the Binomial. The Poisson approximation
also applies in many settings where the trials are “almost independent” but not quite.

Example 41: Poisson approximation for a matching problem
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Example 39: Poisson(np) approximation to Binomial(n, p)

The Poisson(λ) appears as an approximation to the Bin(n, p) when n is large, p is
small, and λ = np:(

n

k

)
pk(1 − p)n−k = n(n − 1) . . . (n − k + 1)

k!

(
λ

n

)k (
1 − λ

n

)n−k

= 1 ×
(

1 − 1

n

)
× . . .

(
1 − k − 1

n

) (
1 − λ

n

)−k
λk

k!

(
1 − λ

n

)n

≈ λk

k!

(
1 − λ

n

)n

if k is small relative to n

≈ λk

k!
e−λ if n is large.

The final e−λ comes from an approximation to the logarithm,

log

(
1 − λ

n

)n

= n log

(
1 − λ

n

)
= n

(
−λ

n
− 1

2

λ2

n2
− . . .

)
≈ −λ if λ/n ≈ 0.

By careful consideration of the error terms, one can find explicit bounds for the error
of approximation. For example, it can be shown1 that if X is distributed Bin(n, p) and Y is
distributed Poisson(np) then

∞∑
k=0

|P{X = k} − P{Y = k}| ≤ 4p.

Clearly the Poisson is an excellent approximation when p is small. �

1 Le Cam, page 187 of “On the distribution of sums of independent random variables”, in
Bernouilli, Bayes, Laplace: Anniversary Volume, J. Neyman and L Le Cam, eds., Springer-
Verlag 1965. The 1992 book by Barbour, Holst, and Janson (“Poisson Approximation,” Oxford
University Press) contains an extensive discussion of similar results.
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Example 40: Properties of the Poisson distribution

Verify the properties of the Poisson distribution suggested by the Binomial analogy: If
X has a Poisson(λ) distribution, show that

(i) EX = λ

(ii) var(X) = λ

Also, if Y has a Poisson(µ) distribution independent of X , show that

(iii) X + Y has a Poisson(λ + µ) distribution

Solution: Assertion (i) comes from a routine application of the formula for the expecta-
tion of a random variable with a discrete distribution.

EX =
∞∑

k=0

kP{X = k} =
∞∑

k=1

k
e−λλk

k!
What happens to k = 0?

= e−λλ

∞∑
k−1=0

λk−1

(k − 1)!

= e−λλeλ

= λ.

Notice how the k cancelled out one factor from the k! in the denominator.

If we were to calculate E(X2) in the same way, one factor in the k2 would cancel the
leading k from the k!, but would leave an unpleasant k/(k − 1)! in the sum. Too bad the k2

cannot be replaced by k(k − 1). Well, why not?

E(X2 − X) =
∞∑

k=0

k(k − 1)P{X = k}

= e−λ
∞∑

k=2

k(k − 1)
λk

k!
What happens to k = 0 and k = 1?

= e−λλ2
∞∑

k−2=0

λk−2

(k − 2)!

= λ2.

Now calculate the variance.

var(X) = E(X2) − (EX)2 = E(X2 − X) + EX − (EX)2 = λ.

For assertion (iii), first note that X + Y can take only values 0, 1, 2 . . .. For a fixed k in
this range, decompose the event {X + Y = k} into disjoint pieces whose probabilities can be
simplified by means of the independence between X and Y .

P{X + Y = k} = P{X = 0, Y = k} + P{X = 1, Y = k − 1} + . . . + P{X = k, Y = 0}
= P{X = 0}P{Y = k} + P{X = 1}P{Y = k − 1} + . . . + P{X = k}P{Y = 0}
= e−λλ0

0!

e−µµk

k!
+ . . . + e−λλk

k!

e−µµ0

0!

= e−λ−µ

k!

(
k!

0!k!
λ0µk + k!

1!(k − 1)!
λ1µk−1 + . . . + k!

k!0!
λkµ0

)

= e−λ−µ

k!
(λ + µ)k .

The bracketed sum in the second last line is just the binomial expansion of (λ + µ)k . �

Question: How do you interpret the notation in the last calculation when k = 0? I
always feel slightly awkward about a contribution from k − 1 if k = 0.
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Example 41: Poisson approximation with dependence

Suppose N letters are placed at random into N envelopes, one letter per envelope. The
total number of correct matches, X , can be written as a sum X1 + . . . + X N of indicators,

Xi =
{

1 if letter i is placed in envelope i ,
0 otherwise.

The Xi are dependent on each other. For example, symmetry implies that

P{Xi = 1} = 1/N for each i

and

P{Xi = 1 | X1 = X2 = . . . = Xi−1 = 1} = 1

N − i + 1

We could eliminate the dependence by relaxing the requirement of only one letter per enve-
lope. The number of letters placed in the correct envelope (possibly together with other, in-
correct letters) would then have a Bin(N , 1/N ) distribution, which approximates Poisson(1)

if N is large.

We can get some supporting evidence for X having something close to a Poisson(1)

distribution under the original assumption (one letter per envelope) by calculating some mo-
ments,

EX =
∑
i≤N

EXi = NP{Xi = 1} = 1

and

EX2 = E

(
X2

1 + . . . + X2
N + 2

∑
i< j

Xi X j

)

= NEX2
1 + 2

(
N

2

)
EX1 X2 by symmetry

= NP{X1 = 1} + (N 2 − N )P{X1 = 1, X2 = 1}
=

(
N × 1

N

)
+ (N 2 − N ) × 1

N (N − 1)

= 2.

Compare with Example 40, which gives EY = 1 and EY 2 = 2 for a Y distributed
Poisson(1). �

Using the method of inclusion and exclusion, it is possible2 to calculate the exact dis-
tribution of the number of correct matches,

P{X = k} = 1

k!

(
1 − 1 + 1

2!
− 1

3!
− . . . ± 1

(N − k)!

)
.

For fixed k, as N → ∞ the probability converges to

1

k!

(
1 − 1 + 1

2!
− 1

3!
− . . .

)
= e−1

k!
,

which is the probability that Y = k if Y has a Poisson(1) distribution.

2 Feller Vol 1, Chapter 4
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Chapter 9

Poisson processes

The Binomial distribution and the geometric distribution describe the behavior of two
random variables derived from the random mechanism that I have called coin tossing. The
name coin tossing describes the whole mechanism; the names Binomial and geometric refer
to particular aspects of that mechanism. If we increase the tossing rate to n tosses per sec-
ond and decrease the probability of heads to a small p, while keeping the expected number
of heads per second fixed at λ = np, the number of heads in a t second interval will have
approximately a Bin(nt, p) distribution, which is close to the Poisson(λt). Also, the num-
bers of heads tossed during disjoint time intervals will still be independent random variables.
In the limit, as n → ∞, we get an idealization called a Poisson process.

Definition. A Poisson process with rate λ on [0, ∞) is a random mechanism that gener-
ates ‘‘points" strung out along [0, ∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random variable with
a Poisson(λt) distribution

(ii) the numbers of points landing in disjoint (= non-overlapping) intervals are indepen-
dent random variables.

The double use of the name Poisson is unfortunate. Much confusion would be avoided
if we all agreed to refer to the mechanism as “idealized-very-fast-coin-tossing”, or some
such. Then the Poisson distribution would have the same relationship to idealized-very-fast-
coin-tossing as the Binomial distribution has to coin-tossing. Obversely, we could create
more confusion by renaming coin tossing as “the binomial process”. Neither suggestion is
likely to be adopted, so you should just get used to having two closely related objects with
the name Poisson.

Why bother about Poisson processes? When we pass to the idealized mechanism of
points generated in continuous time, several awkward artifacts of discrete-time coin tossing
disappear.

Example 42: (Gamma distribution from Poisson process) The waiting time Wk to
the kth point in a Poisson process with rate λ has a continuous distribution, with
density

gk(w) = λkwk−1e−λw

(k − 1)!
for w > 0.

As noted at the end of the Example, the density for Tk = λWk , takes a simpler form,
namely,

fk(t) = t k−1e−t

(k − 1)!
for t > 0,
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Chapter 9 Poisson processes

the so-called gamma(k) density. More generally, for each α > 0,

fα(t) =
{

tα−1e−t


(α)
for t > 0,

0 otherwise,

is called the gamma(α) density. The scaling constant, 
(α), which ensures that the density
integrates to one, is given by


(α) =
∫ ∞

0
xα−1e−x dx for each α > 0.

The function 
(·) is called the gamma function. Don’t confuse the gamma density (or the
gamma distribution that it defines) with the gamma function.

Example 43: Facts about the gamma function: 
(k) = (k − 1)! for k = 1, 2, . . .,
and 
(1/2) = √

π . Moments of the gamma(α) distribution.

The special case of the gamma distribution when the parameter equals 1 is called the
(standard) exponential distribution, with density f1(t) = e−t for t > 0, and zero else-
where. From Example 43, if T1 has a standard exponential distribution then ET1 = 1. The
waiting time W1 to the first point in a Poisson process with rate λ has the same distribution
as T1/λ, that is, a continuous distribution with density λe−λt for t > 0, an exponential dis-
tribution with expected value 1/λ. Don’t confuse the exponential density (or the exponential
distribution that it defines) with the exponential function.

Notice the parallels between the negative binomial distribution (in discrete time) and
the gamma distribution (in continuous time). Each distribution corresponds to the waiting
time to the kth occurrence of something, for various values of k. The negative binomial (see
Problem Sheet 4) can be written as a sum of independent random variables, each with a ge-
ometric distribution. The gamma(k) can be written as a sum of k independent random vari-
ables,

Tk = T1 + (T2 − T1) + (T3 − T2) + . . . + (Tk − Tk−1),

each with a standard exponential distribution. (For a Poisson process, the independence
between the counts in disjoint intervals ensures that the mechanism determining the time
W2 − W1 between the first and the second points is just another Poisson process started off
at time W1. And so on.) The times between points in a Poisson process are independent, ex-
ponentially distributed random variables. If you don’t feel comfortable with this explanation,
wait for the more analytic argument in the next Chapter.

The gamma distribution is related to the normal distribution.

Example 44: The connection between gamma(1/2) and the standard normal

The final Example will derive probabilities related to waiting times for Poisson pro-
cesses of arrivals. As part of the calculations we will need to find probabilities by condition-
ing on the values of a random variable with a continuous distribution. As before, the trick is
first to condition on a discretized approximation to the the variable, and then pass to a limit.

Example 45: Conditioning on a random variable with a continuous distribution

The Poisson process is often used to model the arrivals of customers in a waiting line,
or the arrival of telephone calls at an exchange. The underlying idea is that of a large popu-
lation of potential customers, each of whom acts independently of all the others.

Example 46: A queuing problem with a surprising solution (can be skipped)
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Chapter 9 Poisson processes

Things to remember

• Analogies between coin tossing, as a discrete time mechanism, and the Poisson process,
as a continuous time mechanism:

discrete time continuous time

coin tossing, prob p of heads Poisson process with rate λ

X = #heads in n tosses ∼ Bin(n, p) X = # points in [a, a + t] ∼ Poisson(λt)

P{X = i} = (n
i

)
pi qn−i for i = 0, 1, . . . , n P{X = i} = e−λt (λt)i/ i! for i = 0, 1, 2 . . .

(geometric) (exponential)

N1 = # tosses to first head; T1/λ = time to first point;

P{N1 = 1 + i} = qi p for i = 0, 1, 2, . . . T1 has density f1(t) = e−t for t > 0

(negative binomial) (gamma)

Nk = # tosses to kth head; Tk/λ = time to kth point;

P{Nk = k + i} = (k+i−1
k−1

)
qi pk = (−k

i

)
(−q)i pk Tk has density

for i = 0, 1, 2, . . . fk(t) = t k−1e−t/k! for t > 0

negative binomial as sum of gamma(k) as sum of

independent geometrics independent exponentials
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Example 42: Gamma distributions from Poisson process

Let Wk denote the waiting time to the kth point in a Poisson process on [0, ∞) with
rate λ. It has a continuous distribution, whose density gk we can find by an argument similar
to the one in Example 29.

For a given w > 0 and small δ > 0, write M for the number of points landing in the
interval [0, t), and N for the number of points landing in the interval [w, w + δ]. From the
definition of a Poisson process, M and N are independent random variables with

M ∼ Poisson(λw) and N ∼ Poisson(λδ).

To have Wk lie in the interval [w, w + δ] we must have N ≥ 1. When N = 1, we need
exactly k − 1 points to land in [0, t).

P{w ≤ Wk ≤ w + δ} = P{M = k − 1, N = 1} + P{w ≤ Wk < w + δ, N ≥ 2}.
When N ≥ 2, the exact specification of what we need becomes more complicated, but luck-
ily all such terms make a contribution of order δ2 because

P{N ≥ 2} = e−λδ(λδ)2

2!
+ e−λδ(λδ)3

3!
. . .

Independence of M and N lets us factorize the contribution from N = 1 into

P{M = k − 1}P{N = 1} = e−λw(λw)k−1

(k − 1)!

e−λδ(λδ)1

1!

= e−λwλkwk−1

(k − 1)!
δ + smaller order terms,

Thus

P{w ≤ Wk ≤ w + δ} = e−λwλk tk−1

(k − 1)!
δ + smaller order terms,

which makes

gk(w) = e−λwλkwk−1

(k − 1)!
for w > 0.

the density function for Wk . �

It is easier to remember the distribution if we rescale, defining Tk = λWk . Then for
each t > 0 and each small δ > 0,

P{t ≤ Tk ≤ t + δ} = P{t/λ ≤ Wk ≤ (t + δ)/λ}
= gk(t/λ)(δ/λ) + smaller order terms

= t k−1e−t

(k − 1)!
δ + . . .

That is, Tk has a continuous distribution with a gamma(k) density,

fk(t) = t k−1e−t

(k − 1)!
for t > 0.

Remark. Notice that gk = fk when λ = 1. That is, Tk is the waiting time to
the kth point for a Poisson process with rate 1. Put another way, we can generate a
Poisson process with rate λ by taking the points appearing at times 0 < T1 < T2 <

T3 < . . . from a Poisson process with rate 1, then rescaling to produce a new process
with points at

0 <
T1

λ
<

T2

λ
<

T3

λ
< . . .

You could verify this assertion by checking the two defining properties for a Poisson
process with rate λ. Doesn’t it makes sense that, as λ gets bigger, the points appear
more rapidly?
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Example 43: Facts about the gamma function and gamma distribution

The gamma function is defined for α > 0 by

(α) =
∫ ∞

0
xα−1e−x dx .

By direct integration, (1) = ∫ ∞
0 e−x dx = 1. Also, a change of variable y = √

2x gives

(1/2) =
∫ ∞

0
x−1/2e−x dx

=
∫ ∞

0

√
2e−y2/2dy

=
√

2

2

∫ ∞

−∞
e−y2/2dy

= √
π from the Appendix to Chapter 7.

For each α > 0, an integration by parts gives

(α + 1) =
∫ ∞

0
xαe−x dx

= [−xαe−x
]∞

0 + α

∫ ∞

0
xα−1e−x dx

= α(α).

Repeated appeals of the same formula, for each α > 0 and each positive integer m, give

(∗) (α + m) = (α + m − 1)(α + m − 2) . . . (α)(α).

In particular,

(k) = (k − 1)(k − 2)(k − 3) . . . (2)(1)(1) = (k − 1)! for k = 1, 2, . . ..

Gamma distribution

For parameter value α > 0, the gamma(α) distribution is defined by its density

fα(t) =
{

tα−1e−t/(α) for t > 0
0 otherwise

If a random variable T has a gamma(α) distribution then, for each positive integer m,

ET m =
∫ ∞

0
tm fα(t) dt

=
∫ ∞

0

tmtα−1e−t

(α)
dt

= (α + m)

(α)

= (α + m − 1)(α + m − 2) . . . (α) by equality (∗).

In particular, ET = α and

var(T ) = E
(
T 2

) − (ET )2 = (α + 1)α − α2 = α.

�
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Example 44: Gammas from normals

Suppose Z has a standard normal distribution, with density φ(t) = exp(−t2/2)/
√

2π

for −∞ < t < ∞, The random variable Y = Z2/2 has a continuous distribution concen-
trated on the positive half line (0, ∞). For y > 0, and δ > 0 small,

P{y < Y < y + δ} = P{2y < Z2 < 2y + 2δ}
= P{

√
2y < Z <

√
2y + 2δ or −

√
2y + 2δ < Z < −

√
2y}.

Notice the two contributions; the square function is not one-to-one.

As in Example 28, Calculus gives a good approximation to the length of the short inter-
val from

√
2y to

√
2y + 2δ. Temporarily write g(y) for

√
2y. Then√

2y + 2δ −
√

2y = g(y + δ) − g(y) ≈ δg′(y) = δ/
√

2y.

The interval from −√
2y + 2δ to −√

2y has the same length. Thus

P{y < Y < y + δ} ≈ δ√
2y

φ(
√

2y) + δ√
2y

φ(−
√

2y)

= 2δ√
2y

1√
2π

exp

(
−

(√
2y

)2
/2

)

= δ√
π

y−1/2e−y .

That is, Y has the distribution with density

1√
π

y−1/2e−y for y > 0.

Compare with the gamma(1/2) density,

y1−1/2e−y

(1/2)
for y > 0.

The distribution of Z2/2 is gamma (1/2). �

Remark. The change of variable in Example 43, used to prove (1/2) = √
π , is

essentially the same idea as the calculation used to prove
√

2y + 2δ − √
2y ≈ δ/

√
2y.
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Example 45: Conditioning on a rv with a continuous distribution

Suppose T has density f (·), and let X be another random variable. We can calculate
EX as a weighted average of the conditional expectations E(X | T = t), by means of an
approximation argument.

First break the whole range for T into small intervals, each of length δ. Rule E4 for
expectations gives

EX =
∞∑

j=−∞
E (X | jδ ≤ T < ( j + 1)δ) P{ jδ ≤ T < ( j + 1)δ}

If δ is small, the first factor in the j th summand is close to E(X | T = jδ), and the second
factor is close to f ( jδ)δ, allowing us to approximate,

EX ≈
∞∑

j=−∞
g( jδ) f ( jδ)δ where g(t) denotes E(X | T = t).

The last sum is an approximation to
∫ ∞
−∞ g(t) f (t) dt . As δ tends to zero, the errors of ap-

proximation to both the expectation and the integral tend to zero, leaving (in the limit)

EX =
∫

E(X | T = t) f (t) dt for each random variable X.

As a special case, when X is replaced by the indicator function of an event, we get

PA =
∫

P(A | T = t) f (t) dt for each event A,

Rule E4 for expectations strikes again. �
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Example 46: A queuing problem

Suppose an office receives two different types of inquiry: persons who walk in off the
street, and persons who call by telephone. Suppose the two types of arrival are described
by independent Poisson processes, with rate λw for the walk-ins, and rate λc for the callers.
What is the distribution of the number of telephone calls received before the first walk-in
customer?

Write T for the arrival time of the first walk-in, and let N be the number of calls in
[0, T ). The time T has a continuous distribution, with the exponential density f (t) =
λwe−λw t for t > 0. We need to calculate P{N = i} for i = 0, 1, 2, . . .. From Example 45,
with A equal to {N = i},

P{N = i} =
∫ ∞

0
P{N = i | T = t} f (t) dt.

The conditional distribution of N is affected by the walk-in process only insofar as that pro-
cess determines the length of the time interval over which N counts. Given T = t , the ran-
dom variable N has a Poisson(λct) conditional distribution. Thus

P{N = i} =
∫ ∞

0

e−λct (λct)i

i!
λwe−λw t dt

= λw

λi
c

i!

∫ ∞

0

(
x

λc + λw

)i

e−x dx

λc + λw

putting x = (λc + λw)t

= λw

λc + λw

(
λc

λc + λw

)i 1

i!

∫ ∞

0
xi e−x dx

The 1/ i! and the last integral cancel. (Compare with (i + 1).) Writing p for λw/(λc + λw)

we have
P{N = i} = p(1 − p)i for i = 0, 1, 2, . . .

Compare with the geometric(p) distribution. The random variable N has the distribution of
the number of tails tossed before the first head, for independent tosses of a coin that lands
heads with probability p. �

Such a nice clean result couldn’t happen just by accident. Maybe we don’t need all the
Calculus to arrive at the distribution for N . In fact, the properties of the Poisson distribution
and Problem 7.6 show what is going on, as I will now explain.

Consider the process of all inquiries, both walk-ins and calls. In an interval of length t ,
the total number of inquiries is the sum of a Poisson(λwt) distributed random variable and
an independent Poisson(λct) distributed random variable; the total has a Poisson(λwt + λct)
distribution. Both walk-ins and calls contribute independent counts to disjoint intervals; the
total counts for disjoint intervals are independent random variables. It follows that the pro-
cess of all arrivals is a Poisson process with rate λw + λc.

Now consider an interval of length t in which there are X walk-ins and Y calls. From
Problem 7.6, given that X + Y = n, the conditional distribution of X is Bin(n, p), where

p = λwt

λwt + λct
= λw

λw + λc

That is, X has the conditional distribution that would be generated by the following mecha-
nism:

(1) Generate inquiries as a Poisson process with rate λw + λc.

(2) For each inquiry, toss a coin that lands heads with probability p = λw/(λw + λc). For
a head, declare the arrival to be a walk-in, for a tail declare it to be a call.
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A formal proof that this two-step mechanism does generate a pair of independent Pois-
son processes, with rates λw and λc, would involve:

(1′) Prove independence between disjoint intervals. (Easy)

(2′) If step 2 generates X walk-ins and Y calls in an interval of length t , show that

P{X = i, Y = j} = P{X = i}P{Y = j}
X ∼ Poisson(λwt) and Y ∼ Poisson(λct)

You should be able to write out the necessary conditioning argument for (2′).
The two-step mechanism explains the appearance of the geometric distribution in the

problem posed at the start of the Example. The classification of each inquiry as either a
walk-in or a call is effectively carried out by a sequence of independent coin tosses, with
probability p of a head (= a walk-in). The problem asks for the distribution of the number
of tails before the first head. The embedding of the inquiries into continuous time is irrele-
vant.
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Chapter 10

Joint densities

Consider the general problem of describing probabilities involving two random vari-
ables, X and Y . If both have discrete distributions, with X taking values x1, x2, . . . and Y
taking values y1, y2, . . ., then everything about the joint behavior of X and Y can be deduced
from the set of probabilities

P{X = xi , Y = yj } for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs of random vari-
ables, but we have not needed to formalize the concept of a joint distribution. When both X
and Y have continuous distributions, it becomes more important to have a systematic way to
describe how one might calculate probabilities of the form P{(X, Y ) ∈ B} for various sub-
sets B of the plane. For example, how could one calculate P{X < Y } or P{X2 + Y 2 ≤ 9} or
P{X + Y ≤ 7}?
Definition. Say that random variables X and Y have a jointly continuous distribution
with joint density function f (·, ·) if, for each subset B of R

2,

P{(X, Y ) ∈ B} =
∫∫

{(x, y) ∈ B} f (x, y) dx dy.

Equivalently, for each (x0, y0) and each small region � containing (x0, y0),

P{(X, Y ) ∈ �} = (area of �) f (x0, y0) + smaller order terms.

Remark. There might be a small set of points (x0, y0) at which the equivalent
form of the definition does not work. For example, if f takes a particular form in
some region R, but is zero outside that region, we might get different answers for
f (x0, y0) at points on the boundary of R, depending on whether � is chosen to poke
into the region R, or outside R. In fact, we need not worry about these points be-
cause it will always turn out that they make no contribution to any of the double
integrals defining probabilities P{(X, Y ) ∈ B}.

Apart from the replacement of single integrals by double integrals, and the replacement
of intervals of small length by regions of small area, the definition of a joint density is es-
sentially the same as the definition for densities on the real line in Chapter 6.

The density function defines a surface, via the equation z = f (x, y). A thin column,

height = f(x0,y0)

part of surface
     z=f(x,y)

base ∆
 in plane z=0

sitting on the base � around (x0, y0) in the plane z = 0 and reaching up to that surface, has
volume approximately equal to (area of �) × f (x0, y0). The approx-
imation comes from ignoring variations in the height of the column.
To calculate P{(X, Y ) ∈ B} for a larger region B, we could parti-
tion B into small regions �1, �2, . . . , then add up the probabilities
P{(X, Y ) ∈ �1} + P{(X, Y ) ∈ �1} + . . .. The contribution from
each �i is approximately equal to the volume of a thin column. The
sum of the contributions is approximately equal to the volume of the
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Chapter 10 Joint densities

entire region bounded by the surface and the plane z = 0, and lying above the set B, a vol-
ume given precisely by the double integral. As we make the partitions finer, the errors of
approximation go to zero. In the limit, P{(X, Y ) ∈ B} is recovered as the double integral.

To ensure that P{(X, Y ) ∈ B} is nonnegative and that it equals one when B is the whole
of R

2, we must require

f ≥ 0 and
∫∫

{(x, y) ∈ R
2} f (x, y) dx dy = 1.

When we wish to calculate a density, the small region � can be chosen in many
ways—small rectangles, small disks, small blobs, and even small shapes that don’t have any
particular name—whatever suits the needs of a particular calculation.

Example 47: Joint densities for indepependent random variables

When pairs of random variables are not independent it takes more work to find a joint
density. The prototypical case, where new random variables are constructed as linear func-
tions of random variables with a known joint density, illustrates a general method for deriv-
ing joint densities.

Example 48: Joint densities for linear combinations

Read through the details of the following important special case, to make sure you under-
stand the notation from Example 48.

Example 49: Linear combinations of independent normals

The method used in Example 48, for linear transformations, gives a good approximation
for more general smooth transformations when applied to small regions. Densities describe
the behaviour of distributions in small regions; in small regions smooth transformations are
approximately linear; the density formula for linear transformations gives the density formula
for smooth transformations in small regions.

Example 50: Suppose X and Y are independent random variables, with X having
a gamma(α) distribution and Y having a gamma(β) distribution. Find the joint
density for the random variables U = X/(X + Y ) and V = X + Y .

As shown in Example 50, the random variables U and V have joint density

ψ(u, v) = g(u)h(v) for 0 < u < 1 and 0 < v < ∞,

where

g(u) = uα−1(1 − u)β−1

B(α, β)
for 0 < u < 1, the beta(α, β) density

h(v) = vα+β−1e−v

(α + β)
for 0 < v < ∞, the gamma(α + β) density.

The factorization of the joint density implies that the random variables U and V are inde-
pendent. To see why, consider any pair of subsets A and B of the real line. The defining
property of the joint density gives

P{U ∈ A} = P{U ∈ A, 0 < V < ∞}
=

∫∫
{u ∈ A, 0 < v < ∞}g(u)h(v) du dv

=
∫

{u ∈ A}g(u) du.
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Chapter 10 Joint densities

That is, U has density g; it has a beta(α, β) distribution. Similarly, V has a continuous dis-
tribution with density h; it has a gamma(α + β) distribution. Finally,

P{U ∈ A, V ∈ B} =
∫∫

{u ∈ A, v ∈ B}ψ(u, v) du dv

=
∫

{u ∈ A}g(u) du
∫

{v ∈ A}h(v) dv = P{U ∈ A}P{V ∈ B}.
The events {U ∈ A} and {V ∈ B} are independent, for all choices of A and B. In sum-
mary: if X ∼ gamma(α) independently of Y ∼ gamma(β), then X/(X + Y ) ∼ beta(α, β)

independently of X + Y ∼ gamma(α + β).

In general, if X and Y have a joint density function f (x, y) then

P{X ∈ A} =
∫∫

{x ∈ A, −∞ < y < ∞} f (x, y) dx dy =
∫

{x ∈ A} fX (x) dx,

where

fX (x) =
∫ ∞

−∞
f (x, y) dy.

That is, X has a continuous distribution with (marginal) density function fX . Similarly, Y
has a continuous distribution with (marginal) density function fY (y) = ∫ ∞

−∞ f (x, y) dx .
Remember that the word marginal is redundant; it serves merely to stress that a calculation
refers only to one of the random variables.

The conclusion about X + Y from Example 50 extends to sums of more than two in-
dependent random variables, each with a gamma distribution. The result has a particularly
important special case, involving the sums of squares of independent standard normals.

Example 51: Sums of independent gamma random variables

Appendix: area of a parallelogram

Let R be a parallelogram in the plane with corners at 0 = (0, 0), a = (a1, a2), b =
(b1, b2), and a + b. The area of R is equal to the absolute value of the determinant of the
matrix

J =
(

a1 b1

a2 b2

)
= (a, b).

That is, the area of R equals |a1b2 − a2b1|.
Proof. Let θ denotes the angle between a and b. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b

With the side from 0 to a, which has length ‖a‖, as the base,

0

a

b

a+b

θ

the vertical height is ‖b‖ × | sin θ |. The absolute value of the
area equals ‖a‖ × ‖b‖ × | sin θ |. The square of the area equals

‖a‖2‖b‖2 sin2(θ) = ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2(θ)

= (a · a)(b · b) − (a · b)2

= det

(
a · a a · b
a · b b · b

)

= det
(
J ′ J

)
= (det J )2 .

If you are not sure about the properties of determinants used in the last two lines, you
should check directly that (a2

1 + a2
2)(b

2
1 + b2

2) = (a1b2 − a2b1)
2.�
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Example 47: Joint densities for indepependent random variables

When X has density g(x) and Y has density h(y), and X is independent of Y , the
joint density is particularly easy to calculate. Let � be a small rectangle with one corner
at (x0, y0) and small sides of length δx > 0 and δy > 0,

� = {(x, y) ∈ R
2 : x0 ≤ x ≤ x0 + δx , y0 ≤ y ≤ y0 + δy}.

By independence,

P{(X, Y ) ∈ �} = P{x0 ≤ X ≤ x0 + δx }P{y0 ≤ Y ≤ y0 + δy}
Invoke the defining property of the densities g and h to approximate the last product by

(g(x0)δx + smaller order terms)
(
h(y0)δy + smaller order terms

) ≈ δxδy g(x0)h(y0).

Thus f (x0, y0) = g(x0)h(y0). That is, the joint density f is the product of the marginal
densities g and h. The word marginal is used here to distinguish the joint density for
(X, Y ) from the individual densities g and h. �
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Example 48: Joint densities for linear combinations

Suppose X and Y have a jointly continuous distribution with joint density f (x, y).
For constants a, b, c, d, define

U = aX + bY and V = cX + dY

Find the joint density function ψ(u, v) for (U, V ), under the assumption that the
quantity κ = ad − bc is nonzero.

Think of the pair (U, V ) as defining a new random point in R
2. That is (U, V ) =

T (X, Y ), where T maps the point (x, y) ∈ R
2 to the point (u, v) ∈ R

2 with

u = ax + by and v = cx + dy,

or in matrix notation,

(u, v) = (x, y)A where A =
(

a c
b d

)
.

Notice that det A = ad − bc = κ . The assumption that κ �= 0 ensures that the transformation
is invertible:

(u, v)A−1 = (x, y) where A−1 = 1

κ

(
d −c

−b a

)
.

That is,
du − bv

κ
= x and

−cu + av

κ
= y.

Notice that det
(

A−1
) = 1/κ = 1/(det A).

It helps to distinguish between the two roles for R
2, referring to the domain of T as the

(X, Y )-plane and the range as the (U, V )-plane.

The joint density function ψ(u, v) is characterized by the property that

P{u0 ≤ U ≤ u0 + δu, v0 ≤ V ≤ v0 + δv} ≈ ψ(u0, v0)δuδv

for each (u0, v0) in the (U, V )-plane, and small (δu, δv). To calculate the probability on the
left-hand side we need to find the region R in the (X, Y )-plane corresponding to the small
rectangle �, with corners at (u0, v0) and (u0 + δu, v0 + δv), in the (U, V )-plane.

The linear transformation A−1 maps parallel straight lines in the (U, V )-plane into par-
allel straight lines in the (X, Y )-plane. The region R must be a parallelogram, with vertices

(x0, y0 + δy) = (u0, v0 + δv)A−1 and (x0 + δx , y0 + δy) = (u0 + δu, v0 + δv)A−1

(x0, y0) = (u0, v0)A−1 and (x0 + δx , y0) = (u0 + δu, v0)A−1

More succinctly, (δx , δy) = (δu, δv)A−1 = δuαu + δvαv , where au = (d, −c)/κ and av =
(−b, a)/κ denote the two rows of A−1.

(u0+δu,v0+δv)

(x0,y0)
(u0,v0)

(X,Y)-plane (U,V)-plane

∆
R

(x0,y0)+δuαu

(x0,y0)+δvαv

(x0,y0)+δuαu+δvαv

From the formula in the Appendix to the Chapter, the parallelogram R has area
∣∣det

(
δuα

′
u, δvα

′
v

)∣∣ = δuδv| det
(

A−1
)′ | = δuδv

| det A| .
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For small δu > 0 and δv > 0,

ψ(u0, v0)δuδv ≈ P{(U, V ) ∈ �}
= P{(X, Y ) ∈ R}
≈ (area of R) f (x0, y0)

≈ δuδv f (x0, y0)/| det(A)|
It follows that (U, V ) have joint density

ψ(u, v) = 1

| det A| f (x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du − bv) /κ for x and (−cu + av) /κ for y, in
order to get an expresion involving only u and v.

In effect, we have calculated a Jacobian by first principles. �
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Example 49: Linear combinations of independent normals

Suppose X and Y are independent random variables, each distributed N (0, 1). By Ex-
ample 47, the joint density for (X, Y ) equals

f (x, y) = 1

2π
exp

(
− x2 + y2

2

)
for all x, y.

By Example 48, the joint distribution of the random variables

U = aX + bY and V = cX + dY

has the joint density

ψ(u, v) = 1

2π |κ| exp

(
−1

2

(
du − bv

κ

)2

− 1

2

(−cu + av

κ

)2
)

where κ = ad − bc

= 1

2π |κ| exp

(
− (c2 + d2)u2 − 2(db + ac)uv + (a2 + b2)v2

2κ2

)

You’ll learn more about joint normal distributions in Chapter 12. �
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Example 50: Betas from gammas

Suppose X and Y are independent random variables, with X having a gamma(α)

distribution and Y having a gamma(β) distribution. Find the joint density for the
random variables U = X/(X + Y ) and V = X + Y .

Write U for X/(X +Y ) and V for X +Y . The pair (X, Y ) takes values ranging over the
positive quadrant (0, ∞)2, with joint density function

f (x, y) = xα−1e−x

�(α)
× yβ−1e−y

�(β)
for x > 0, y > 0.

The pair (U, V ) takes values in a strip where 0 < u < 1 and 0 < v < ∞. The joint density
function, ψ(u, v), for (U, V ) can be determined by considering corresponding points (x0, y0)

in the (X, Y )-quadrant and (u0, v0) in the (U, V )-strip, where

u0 = x0/(x0 + y0) and v0 = x0 + y0,

x0 = u0v0 and y0 = (1 − u0)v0.

u0 u0+δu

(x0,y0)

v0+δv

v0

(X,Y)-quadrant (U,V)-strip

∆R

When (U, V ) lies near (u0, v0) then (X, Y ) lies near (x0, y0). More precisely, for small
positive δu and δv , there is a small region R in the (X, Y )-quadrant corresponding to the
small rectangle

� = {(u, v) : u0 ≤ u ≤ u0 + δu, v0 ≤ v ≤ v0 + δv}
in the (U, V )-strip. First locate the points corresponding to the corners of �.

(u0 + δu, v0) �→ (x0, y0) + (δuv0, −δuv0)

(u0, v0 + δv) �→ (x0, y0) + (δvu0, δv(1 − u0))

(u0 + δu, v0 + δv) �→ (x0, y0) + (δuv0 + δvu0, −δuv0 + δv(1 − u0)) + (δuδv, −δuδv)

In matrix notation,

(u0, v0) + (δu, 0) �→ (x0, y0) + (δu, 0)J
where J =

(
v0 −v0

u0 1 − u0

)
(u0, v0) + (0, δv) �→ (x0, y0) + (0, δv)J

(u0, v0) + (δu, δv) �→ (x0, y0) + (δu, δv)J + smaller order terms

You might recognize J as the Jacobian matrix of partial derivatives( ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)

evaluated at (u0, v0). For small perturbations, the transformation from (u, v) to (x, y) is ap-
proximately linear.
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The region R is approximately a parallelogram, with the edges oblique to the coordinate
axes. To a good approximation, the area of R is equal to δuδv times the area of the parallel-
ogram with corners at

(0, 0) and a = (v0, −v0) and b = (u0, 1 − u0) and a + b,

which, from the Appendix to the Chapter, equals | det(J )| = v0.

The rest of the calculation of the joint density ψ(·, ·) for (U, V ) is easy:

δuδvψ(u0, v0) ≈ P{(U, V ) ∈ �}
= P{(X, Y ) ∈ R}
≈ f (x0, y0)(area of R)

≈ xα−1
0 e−x0

�(α)

yβ−1
0 e−y0

�(β)
δu δv v0

Substitute x0 = u0v0 and y0 = (1 − u0)v0 to get the joint density

ψ(u0, v0) = uα−1
0 vα−1

0 e−u0v0

�(α)

(1 − u0)
β−1v

β−1
0 e−v0+u0v0

�(β)
v0

If we write

g(u) = uα−1(1 − u)β−1

B(α, β)
the beta(α, β) density

h(v) = vα+β−1e−v

�(α + β)
the gamma(α + β) density.

then

ψ(u, v) = g(u)h(v)
B(α, β)�(α + β)

�(α)�(β)
for 0 < u < 1 and 0 < v < ∞.

I have dropped the subscripting zeros because I no longer need to keep your attention fixed
on a particular (u0, v0) in the (U, V ) strip. The jumble of constants involving beta and
gamma functions must reduce to the constant 1, because

1 = P{0 < U < 1, 0 < V < ∞}
=

∫∫
{0 < u < 1, 0 < v < ∞}ψ(u, v) du dv

=
∫ 1

0
g(u) du

∫ ∞

0
h(v) dv

B(α, β)�(α + β)

�(α)�(β)

Notice how the double integral has split into a product of two single integrals because the
joint density factorized into a product of a function of u and a function of v. Both the single
integrals equal 1 because both g and h are density functions. We have earned a bonus,

B(α, β) = �(α)�(β)

�(α + β)
for α > 0 and β > 0

which is a useful expression relating beta and gamma functions.

Remark. The fact that �(1/2) = √
π follows from the equality

�(1/2)�(1/2)

�(1)
= B(1/2, 1/2) =

∫ 1

0

t−1/2(1 − t)−1/2 dt put t = sin2(θ)

=
∫ π/2

0

1
sin(θ) cos(θ)

2 sin(θ) cos(θ) dθ = π.

The random variables U and V have joint density

ψ(u, v) = g(u)h(v) for 0 < u < 1 and 0 < v < ∞,

where g denotes the beta(α, β) density, and h denotes the gamma(α + β) density.
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Example 51: Sums of independent gamma random variables

If X1, X2, . . . , Xk are independent random variables, with Xi distributed gamma(αi ) for
i = 1, . . . , k, then

X1 + X2 ∼ gamma(α1 + α2),

X1 + X2 + X3 = (X1 + X2) + X3 ∼ gamma(α1 + α2 + α3)

X1 + X2 + X3 + X4 = (X1 + X2 + X3) + X4 ∼ gamma(α1 + α2 + α3 + α4)

. . .

X1 + X2 + . . . + Xk ∼ gamma(α1 + α2 + . . . + αk)

A particular case has great significance for Statistics. Suppose Z1, . . . Zk are inde-
pendent random variables, each distributed N(0,1). From Chapter 9, the random variables
Z2

1/2, . . . , Z2
k /2 are independent gamma(1/2) distributed random variables. The sum

(Z2
1 + . . . + Z2

k )/2

must have a gamma(k/2) distribution with density t k/2−1e−t/�(k/2) for t > 0. The sum
Z2

1 + . . . + Z2
k has density

(t/2)k/2−1e−t/2

2�(k/2)
for t > 0

This distribution is called the chi-squared on k degrees of freedom, usually denoted by χ2
k .

The letter χ is a lowercase Greek chi. �
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Example 48: Joint densities for linear combinations

Suppose X and Y have a jointly continuous distribution with joint density f (x, y).
For constants a, b, c, d, define

U = aX + bY and V = cX + dY

Find the joint density function ψ(u, v) for (U, V ), under the assumption that the
quantity κ = ad − bc is nonzero.

Think of the pair (U, V ) as defining a new random point in R
2. That is (U, V ) =

T (X, Y ), where T maps the point (x, y) ∈ R
2 to the point (u, v) ∈ R

2 with

u = ax + by and v = cx + dy,

or in matrix notation,

(u, v) = (x, y)A where A =
(

a c
b d

)
.

Notice that det A = ad − bc = κ . The assumption that κ �= 0 ensures that the transformation
is invertible:

(u, v)A−1 = (x, y) where A−1 = 1

κ

(
d −c

−b a

)
.

That is,
du − bv

κ
= x and

−cu + av

κ
= y.

Notice that det
(

A−1
) = 1/κ = 1/(det A).

It helps to distinguish between the two roles for R
2, referring to the domain of T as the

(X, Y )-plane and the range as the (U, V )-plane.

The joint density function ψ(u, v) is characterized by the property that

P{u0 ≤ U ≤ u0 + δu, v0 ≤ V ≤ v0 + δv} ≈ ψ(u0, v0)δuδv

for each (u0, v0) in the (U, V )-plane, and small (δu, δv). To calculate the probability on the
left-hand side we need to find the region R in the (X, Y )-plane corresponding to the small
rectangle �, with corners at (u0, v0) and (u0 + δu, v0 + δv), in the (U, V )-plane.

The linear transformation A−1 maps parallel straight lines in the (U, V )-plane into par-
allel straight lines in the (X, Y )-plane. The region R must be a parallelogram, with vertices

(u0, v0 + δv)A−1 and (x0 + δx , y0 + δy) = (u0 + δu, v0 + δv)A−1

(x0, y0) = (u0, v0)A−1 and (u0 + δu, v0)A−1

More succinctly, (δx , δy) = (δu, δv)A−1 = δuαu + δvαv , where αu = (d, −c)/κ and αv =
(−b, a)/κ denote the two rows of A−1.

(u0+δu,v0+δv)

(x0,y0)
(u0,v0)

(X,Y)-plane (U,V)-plane

∆
R

(x0,y0)+δuαu

(x0,y0)+δvαv

(x0,y0)+δuαu+δvαv

Statistics 241: 23 November 2000 E48-1 c©David Pollard



From the formula in the Appendix to the Chapter, the parallelogram R has area
∣∣det

(
δuα

′
u, δvα

′
v

)∣∣ = δuδv| det
(

A−1
)′ | = δuδv

| det A| .
For small δu > 0 and δv > 0,

ψ(u0, v0)δuδv ≈ P{(U, V ) ∈ �}
= P{(X, Y ) ∈ R}
≈ (area of R) f (x0, y0)

≈ δuδv f (x0, y0)/| det(A)|
It follows that (U, V ) have joint density

ψ(u, v) = 1

| det A| f (x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du − bv) /κ for x and (−cu + av) /κ for y, in
order to get an expresion involving only u and v.

In effect, we have calculated a Jacobian by first principles. �
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Chapter 11

Conditional densities

Density functions determine continuous distributions. If the distribution is calculated
conditionally on some information, then the density is called a conditional density. When
the conditioning information involves a random variable with a continuous distribution, the
calculation of the conditional density involves arguments like those of Chapter 10.

Suppose X and Y have a jointly continuous distribution with joint density f (x, y).
From Chapter 10, we know that the marginal distribution of Y has density

g(y) =
∫ ∞

−∞
f (x, y) dx .

The conditional distribution for X given Y = y has a (conditional) density, which I will
denote by fX (x | Y = y), for which

P{x ≤ X ≤ x + δ | Y = y} ≈ fX (x | Y = y)δ, if δ is small and positive.

The subscript X on the fX is intended to remind you that we are working with a density for
the (conditional) distribution of X .

The conditioning information corresponds to an event {Y = y} with zero probability.
An attempt to invoke the formula (PA) P (B | A) = P (AB) would lead to the meaningless
ratio

P{x ≤ X ≤ x + δ, Y = y}
P Y = y}

?= 0

0
.

Instead we must replace {Y = y} by an event {y ≤ Y ≤ y + ε}, for a small ε > 0, that
provides almost the same conditioning information. Then

fX (x | Y = y)δ ≈ P{x ≤ X ≤ x + δ | y ≤ Y ≤ y + ε}
= P{x ≤ X ≤ x + δ, y ≤ Y ≤ y + ε}

P{y ≤ Y ≤ y + ε} ≈ f (x, y)δε

g(y)ε
.

The ε factors cancel. In the limit, as δ and ε tend to zero, we are left with

fX (x | Y = y) = f (x, y)/g(y).

Symbolically,

conditional density for X given {Y = y} = joint density at (x, y)

marginal density at y

Example 52: Let X and Y be independent random variables, each distributed
N (0, 1). Define R = √

X2 + Y 2. Show that, for each r > 0, the conditional
distribution of X given R = r has density

fX (x | R = r) = 1

π
√

r2 − x2
for |x | < r and r > 0.
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Chapter 11 Conditional densities

The conditional density has a more intuitive interpretation via a transformation to polar
coordinates: X = R cos(�) and Y = R sin(�), where the polar angle � is taken to lie in
the range [0, 2π). Remember from Chapter 9 that (X2 + Y 2)/2 has a gamma(1) distribution,
with density e−t for t > 0. That is, R2/2 has a standard exponential distribution. Thus, for
|t | < 1 and small δ > 0,

P{t ≤ cos(�) ≤ t + δ | R = r} = P{r t ≤ X ≤ r(t + δ) | R = r}
≈ (rδ) fX (r t | R = r) = 1

π
√

1 − t2
δ.

That is, the conditional distribution of cos(�) does not depend on the value taken by R,
which suggests that � might be independent of R.

Example 53: Let W have a standard exponential distribution independent of �,
which is distributed Uniform[0, 2π). Put R = √

2W . Show that the random vari-
ables X = R cos � and Y = R sin � are independent, with each variable having a
N (0, 1) distribution.

In Example 52, we could have taken X = √
2W cos � and Y = √

2W sin �, with W
and � as in Example 53. Then X2 + Y 2 = 2W , and the problem asks for the conditional
distribution of

√
2W cos(�) given that W = r2/2. The conditioning lets us put

√
2W equal

to the constant r . The independence of W and � lets us ignore the effects on cos(�) of the
conditioning; the conditional density for cos(�) is the same as its marginal density, which
you have already calculated in homework Problem 6.1 to be

1

π
√

1 − t2
for |t | < 1,

in agreement with the calculation at the top of the page.

Remark. The Box-Muller method generates independent N (0, 1) variates X1 and
X2, from two independent Uniform(0, 1) variates, U1 and U2, by

X1 =
√

−2 log U1 cos(2πU2) and X2 =
√

−2 log U1 sin(2πU2).

Why does the method work?

Things to remember

• Suppose Y has a continuous distribution, with density fY (y). For small positive ε,

E (Z | Y = y) ≈ E (Z | y ≤ Y ≤ y + ε) ,

for each random variable Z . With Z = h(Y ), a function of Y , we have used the ap-
proximation to calculate

Eh(Y ) =
∫ ∞

−∞
h(y) fY (y) dy.

With Z as the indicator function of an event {x ≤ X ≤ x + δ}, we have used the
approximation to find the conditional density fX (x | Y = y).
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Example 52: Conditional density from joint density

Let X and Y be independent random variables, each distributed N (0, 1). Define
R = √

X2 + Y 2. For each r > 0, find the density for the conditional distribution
of X given R = r .

The joint density for (X, Y ) equals

f (x, y) = 1

2π
exp

(
− x2 + y2

2

)

To find the joint density for X and R, calculate P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε} for
small, positive δ and ε. For |x0| < r0, the event corresponds to the two small regions in the
(X, Y )-plane lying between the lines x = x0 and x = x0 +δ, and between the circles centered
at the origin with radii r0 and r0 + ε.

radius r0+ε

radius r0

x0+δx0

x0 x0+δ

y0+η =   (r0+ε)2-x0
2

y0 =   r0
2-x0

2

By symmetry, both regions contribute the same probability. Consider the upper region. For
small δ and ε, the region is approximately a parallelogram, with side length

η =
√

(r0 + ε)2 − x2
0 −

√
r2

0 − x2
0

and width δ. We could expand the expression for η as a power series in ε by multiple appli-
cations of Taylor’s theorem. It is easier to argue less directly, starting from the equalities

x2
0 + (y0 + η)2 = (r0 + ε)2 and x2

0 + y2
0 = r2

0 .

Expand the square on both sides of the first equality, discarding terms (η2 and ε2) of smaller
order, to get

x2
0 + y2

0 + 2ηy0 ≈ r2
0 + 2r0ε,

then invoke the second equality to deduce that η ≈ (r0ε/y0). The upper region has approxi-
mate area r0εδ/y0. Thus

P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε} = 2
r0εδ

y0
f (x0, y0) + smaller order terms

≈ 2r0√
r2

0 − x2
0

exp(−r2
0 /2)

2π
εδ.

The random variables X and R have joint density

ψ(x, r) = r exp(−r2/2)

π
√

r2 − x2
for |x | ≤ r and r > 0.

Once again I have omitted the subscript on the dummy variables, to indicate that the argu-
ment works for every x, r in the specified range.
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The random variable R has marginal density

g(r) =
∫ r

−r
ψ(x, r) dx = r exp(−r2/2)

π

∫ r

−r

dx√
r2 − x2

put x = r cos θ

= r exp(−r2/2)

π

∫ 0

π

−r sin θ

r sin θ
dθ = r exp(−r2/2) for r > 0.

The conditional density equals

fX (x | R = r) = ψ(x, r)

g(r)
= 1

π
√

r2 − x2
for |x | < r and r > 0.

�

Remark. For t > 0 and small δ > 0,

P{t ≤ R2/2 ≤ t + δ} = P{√2t ≤ R ≤ √
2t + 2δ }

≈ (√
2t + 2δ − √

2t
)

g
(√

2t
)

≈ 2δ

2
√

2t

√
2te−t ,

showing that R2/2 has a standard exponential distribution, in agreement with the
calculation in Example 51.
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Example 53: Transformation to polar coordinates

Let W have a standard exponential distribution independent of �, which is dis-
tributed Uniform[0, 2π). Put R = √

2W . Show that the random variables
X = R cos � and Y = R sin � are independent, with each variable having a
N (0, 1) distribution.

The rectangle � with corners (t0, θ0), and (t0 +δ, θ0 +ε) in the (W, �) strip corresponds
to a region �∗ in the (X, Y )-plane bounded by radial lines at angles θ0 and θ0 + ε from the
X -axis and two circles, of radii

√
2t0 and

√
2(t0 + δ), centered at the origin.

angle ε

θ0

radius   2t0

radius   2(t0+δ)
∆∗

Simple geometry will give the area of �∗. (You might calculate the Jacobian as a
cross-check.) The annular region between the two circles has area π2(t0 + δ) − π(2t0). The
two radial lines carve out a proportion ε/(2π) of that area. That is,

area of �∗ = ε

2π
2πδ = εδ.

The joint density f (x, y) for (X, Y ) at the point (x0, y0) = (
√

2t0 cos θ0,
√

2t0 sin θ0) is given
by

εδ f (x0, y0) ≈ P{(X, Y ) ∈ �∗}
= P{θ0 ≤ � ≤ θ0 + ε, t0 ≤ W ≤ t0 + δ}
= P{θ0 ≤ � ≤ θ0 + ε}P{t0 ≤ W ≤ t0 + δ} by independence

≈ ε

2π
δ exp(−t0) where t0 = x2

0 + y2
0

2
.

That is

f (x, y) = 1

2π
exp

(
− x2 + y2

2

)
.

The random variables X , and Y have the joint density of a pair of independent N (0, 1) dis-
tributed variates. �
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Chapter 12

Multivariate normal distributions

The multivariate normal is the most useful, and most studied, of the standard joint dis-
tributions in probability. A huge body of statistical theory depends on the properties of fam-
ilies of random variables whose joint distributions are at least approximately multivariate
normal. The bivariate case (two variables) is the easiest to understand, because it requires a
minimum of notation. Vector notation and matrix algebra becomes necessities when many
random variables are involved.

Example 54: The standard bivariate normal with correlation ρ,

ψ(u, v) = 1

2π
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2(1 − ρ2)

)
for all u, v,

the joint density for U = X and V = ρX +
√

1 − ρ2 Y , where X and Y have
independent N (0, 1) distributions and ρ is a constant with −1 < ρ < 1.

The construction of U and V from the independent random variables X and Y makes
the calculation of the conditional distribution of V given U = u a triviality: the conditional
distribution ρX +

√
1 − ρ2 Y | X = x is the same as the marginal distribution of the random

variable ρx +
√

1 − ρ2Y . That is,

V | U = u ∼ N (ρu, 1 − ρ2).

Symmetry of the joint distribution of U and V implies that

U | V = v ∼ N (ρv, 1 − ρ2),

a fact that you could check by explicit calculation of the ratio of joint to marginal densities,

ψU (u | V = v) = ψ(u, v)
/(

e−v2/2/
√

2π
)

= 1√
2π

√
1 − ρ2

exp

(
− (u − ρv)2

2(1 − ρ2)

)
.

With various rescalings, we can manufacture more general bivariate normal distribu-
tions, involving five parameters. I feel it is much easier to think in terms of the standardized
distribution.

Definition. Random variables S and T are said to have a bivariate normal distribution,
with parameters ES = µS , ET = µT , var(S) = σ 2

S , var(T ) = σ 2
T , and correlation ρ, if

the standardized random variables (S − µS)/σS and (T − µT )/σT have a standard bivariate
normal distribution with correlation ρ.

The general bivariate normal is often used to model pairs of dependent random vari-
ables, such as: the height and weight of an individual; or (as an approximation) the score a
student gets on a final exam and the total score she gets on the problem sets; or the heights
of father and son; and so on. Many fancy statistical procedures implicitly require bivariate
(or multivariate, for more than two random variables) normality.
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Chapter 12 Multivariate normal distributions

Example 55: (Regression to the mean) Let S denote the height (in inches) of a
randomly chosen father, and T denote the height (in inches) of his son at maturity.
Suppose each of S and T has a N (µ, σ 2) distribution with µ = 69 and σ = 2.
Suppose also that S and T have a bivariate normal distribution with correlation
ρ = .3.

If Ulysses has a height of 74 inches, what would one predict about the ulti-
mate height of his son Victor?

The joint density f (x, y) = exp(−(x2 + y2)/2)/(2π) for a pair of independent
N (0, 1) random variables is radially symmetric, that is, f is a function of the radial distance√

x2 + y2. This fact has far reaching consequences.

Example 56: Let Z1 and Z2 have independent N (0, 1) distributions, defining a
random point Z = (Z1, Z2) in the plane. Rotate the coordinate axes through an
angle α, writing (W1, W2) for the coordinates of the random point in the new co-
ordinate system. Show that W1 and W2 are also independent N (0, 1) distributed
random variables.

More than two variables

When we deal with many variables X1, X2, . . . it becomes convenient to use vector notation,
writing X for the random vector (X1, . . . , Xn), and x for the generic point (x1, . . . , xn)

in R
n .

Definition. Random variables X1, X2, . . . , Xn are said to have a jointly continuous distri-
bution with joint density function f (x1, x2, . . . , xn) if, for each subset A of R

n ,

P{X ∈ A} =
∫∫

. . .

∫
{(x1, x2, . . . xn) ∈ A} f (x1, x2, . . . , xn) dx1 dx2 . . . dxn

=
∫

{x ∈ A} f (x) dx,

where
∫

. . . dx is an abbreviation for the n-fold integral. For small regions � containing a
point x◦, the probability P{X ∈ �} is approximately vol(�) × f (x◦), where vol(�) denotes
the n-dimensional volume of �.

The density f must be nonnegative and integrate to 1 over R
n .

If the random variables X1, . . . , Xn are independent, the joint density function is equal
to the product of the marginal densities for each Xi , and conversely. The proof is similar to
the proof for the bivariate case.

For example, if X1, . . . , Xn are independent and each Xi has a N (0, 1) distribution, the
joint density is

f (x1, . . . , xn) = 1

(2π)n/2
exp

(
−

∑
i≤n

x2
i /2

)
for all x1, . . . , xn

= 1

(2π)n/2
exp(−‖x‖2/2) for all x.

This joint distribution is denoted by N (0, In). It is often referred to as the spherical normal
distribution, because of the spherical symmetry of the density.

The distance of the random vector Z from the origin is ‖Z‖ =
√

Z2
1 + . . . + Z2

n . From

Example 51, we know that ‖Z‖2/2 has a gamma(n/2) distribution. The distribution of ‖Z‖2

is given a special name, because of its great importance in the theory of statistics.
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Chapter 12 Multivariate normal distributions

Definition. Let Z = (Z1, Z2, . . . , Zn) have a spherical normal distribution N (0, In). The
chi-square, χ2

n , is defined as the distribution of ‖Z‖2 = Z2
1 + . . . + Z2

n .

The methods for finding joint densities for random variables defined as functions of
other random variables with jointly continuous distributions—as explained in the last two
Chapters—extend to multivariate distributions. There is a problem with the drawing of pic-
tures in n dimensions, to keep track of the transformations, and one must remember to say
“n-dimensional volume” instead of area, but otherwise calculations are not much more com-
plicated than in two dimensions.

The spherical symmetry of the density f (·) is responsible for an important property of
multivariate normals, the obvious analog of Example 56.

Example 57: Let q1, . . . , qn be a new orthonormal basis for R
n , and let

Z = W1q1 + . . . + Wnqn

be the representation for Z in the new basis. Then the W1, . . . , Wn are also inde-
pendent N (0, 1) distributed random variables.

To prove results about the spherical normal it is often merely a matter of transforming
to an appropriate orthonormal basis.

Example 58: Suppose Z1, Z2, . . . , Zn are independent, each distributed N (0, 1).
Define Z̄ = (Z1 + . . . + Zn) /n and T = ∑

i≤n(Zi − Z̄)2. Show that Z̄ has a
N (0, 1/n) distribution independently of T , which has a χ2

n−1 distribution.
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Example 54: The standard bivariate normal with correlation ρ

The most general bivariate normal can be built from a pair of independent random vari-
ables, X and Y , each distributed N (0, 1). For a constant ρ with −1 < ρ < 1, define random
variables

U = X and V = ρX +
√

1 − ρ2 Y.

That is,

(U, V ) = (X, Y )A where A =
(

1 ρ

0
√

1 − ρ2

)
.

Notice that EU = EV = 0, and

var(V ) = ρ2var(X) + (1 − ρ2)var(Y ) = 1 = var(U ),

and
cov(U, V ) = ρcov(X, X) +

√
1 − ρ2 cov(X, Y ) = ρ.

Consequently,
correlation(U, V ) = cov(U, V )/

√
var(U )var(V ) = ρ.

From Example 48, the joint density for (U, V ) is

ψ(u, v) = 1

| det A| f
(
(u, v)A−1

)
,

where

f (x, y) = 1

2π
exp

(
− x2 + y2

2

)
all x, y.

The matrix A has determinant
√

1 − ρ2 and inverse

A−1 =
( √

1 − ρ2 −ρ

0 1

)
/
√

1 − ρ2

If (x, y) = (u, v)A−1 then

x2 + y2 = (u, v)A−1(A−1)′(u, v)′

= (u, v)

(
1 −ρ

−ρ 0

)
(u, v)′/(1 − ρ2)

= u2 − 2ρuv + v2

1 − ρ2
.

Thus U and V have joint density

ψ(u, v) = 1

2π
√

1 − ρ2
exp

(
−u2 − 2ρuv + v2

2(1 − ρ2)

)
for all u, v.

The joint distribution is often called the standard bivariate normal distribution with corre-
lation ρ.

The symmetry of ψ in u and v implies that V has the same marginal distribution as U ,
that is, V is also N (0, 1) distributed. The calculation of the marginals densities involves the
same integration for both variables. �

Remark. When ρ equals zero, the joint density for U and V factorizes into
1√
2π

exp(−u2/2)
1√
2π

exp(−v2/2)

which implies independence of U and V . That is, for random variables with a bivari-
ate normal distribution, zero correlation is equivalent to independence. This equiva-
lence for bivariate normals probably accounts for the widespread confusion between
the properties of independence and zero correlation. In general, independence implies
zero correlation, but not conversely.
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Example 55: Regression to the mean

Let S denote the height (in inches) of a randomly chosen father, and T denote the
height (in inches) of his son at maturity. Suppose each of S and T has a N (µ, σ 2)

distribution with µ = 69 and σ = 2. Suppose also that S and T have a bivariate
normal distribution with correlation ρ = .3.

If Ulysses has a height of 74 inches, what would one predict about the ulti-
mate height of his son Victor?

In standardized units, Ulysses has height U = (S − µ)/σ , which we are given to
equal 2.5. Victor’s ultimate standardized height is V = (T − µ)/σ . By assumption, be-
fore the value of U was known, the pair (U, V ) has a standard bivariate normal distribution
with correlation ρ. The conditional distribution of V given that U = 2.5 is

V | U = 2.5 ∼ N (2.5ρ, 1 − ρ2)

In the original units, the conditional distribution of T given S = 74 is normal with mean
µ + 2.5ρσ and variance (1 − ρ2)σ 2, that is,

Victor’s ultimate height | Ulysses’s height = 74 inches ∼ N (70.5, 3.64)

If I had to make a guess, I would predict that Victor would ultimately reach a height of 70.5
inches. �

Remark. Notice that Victor’s expected height (given that Ulysses is 74 inches) is
less than his father’s height. This fact is an example of a general phenomenon called
“regression towards the mean”. The term regression, as a synonym for conditional
expectation, has become commonplace in Statistics.
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Example 56: Rotation of coordinate axes

Let Z1 and Z2 have independent N (0, 1) distributions, defining a random point
Z = (Z1, Z2) in the plane. Rotate the coordinate axes through an angle α, writing
(W1, W2) for the coordinates of the random point in the new coordinate system.
Show that W1 and W2 are also independent N (0, 1) distributed random variables.

z1

z2

w1

w2 α

The new axes are defined by the unit vectors

q1 = (cos α, sin α) and q2 = (− sin α, cos α).

From the representation
Z = (Z1, Z2) = W1q1 + W2q2

we get

W1 = Z · q1 = Z1 cos α + Z2 sin α and W2 = Z · q2 = −Z1 sin α + Z2 cos α.

More succinctly,

(W1, W2) = (Z1, Z2)Aα where Aα =
(

cos α − sin α

sin α cos α

)
.

The joint density for W1 and W2 again comes from the formula derived in Example 48.
The matrix Aα has determinant 1 and inverse A−α . It is an orthogonal matrix; it preserves
lengths. The joint density of (W1, W2) is

1

2π
exp

(−‖(w1, w2)A−1‖2/2
) = 1

2π
exp

(−(w2
1 + w2

2)/2
)
,

the product of two marginal N (0, 1) densities.
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Example 57: Rotation to new coordinates: multivariate case

Let q1, . . . , qn be a new orthonormal basis for R
n, and let

Z = W1q1 + . . . + Wnqn

be the representation for Z in the new basis. Then the W1, . . . , Wn are also inde-
pendent N (0, 1) distributed random variables.

The picture shows only two of the n coordinates:

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

For a small ball B centered at z,

P{Z ∈ B} ≈ f (z)(volume of B) .

The corresponding region for W is B∗, a ball of the same radius, but centered at the point
w = (w1, . . . , wn) for which w1q1 + . . . + wnqn = z. Thus

P{W ∈ B∗} = P{Z ∈ B} ≈ (2π)−n/2 exp(− 1
2‖x‖2)(volume of B).

From the equalities

‖w‖ = ‖z‖ and volume of B = volume of B∗,

we get
P{W ∈ B∗} ≈ (2π)−n/2 exp(− 1

2‖w‖2)(volume of B∗).

That is, W has the asserted spherical normal density.
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Example 58: Independence of sample mean and sample variance

Suppose Z1, Z2, . . . , Zn are independent, each distributed N (0, 1). Define

Z̄ = Z1 + . . . + Zn

n
and T =

∑
i≤n

(Zi − Z̄)2

Show that Z̄ has a N (0, 1/n) distribution independently of T , which has a χ2
n−1

distribution.

Choose the new orthonormal basis with q1 = (1, 1, . . . , 1)/
√

n. Choose q2, . . . , qn

however you like, provided they are orthogonal unit vectors, all orthogonal to q1. In the new
coordinate system,

Z = W1q1 + . . . + Wnqn where Wi = Z · qi for each i .

In particular,

W1 = Z · q1 = Z1 + . . . + Zn√
n

= √
n Z̄

From Example 57 we know that W1 has a N (0, 1) distribution. It follows that Z̄ has a
N (0, 1/n) distribution.

The random variable T equals the squared length of the vector

(Z1 − Z̄ , . . . , Zn − Z̄) = Z − Z̄(
√

nq1) = Z − W1q1 = W2q2 + . . . + Wnqn.

That is,
T = ‖W2q2 + . . . + Wnqn‖2 = W 2

2 + . . . + W 2
n ,

a sum of squares of n − 1 independent N (0, 1) random variables, which has a χ2
n−1-

distribution.

Finally, notice that Z̄ is a function of W1, whereas T is a function of the independent
random variables W2, . . . , Wn . The independence of Z̄ and T follows. �
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Chapter 13

Brownian motion

Apparently, when little particles suspended in water are observed under a microscope,
they are seen to jiggle around in an irregular motion. The British botanist Robert Brown
discovered the phenomenon in the early nineteenth century. Three quarters of a century later,
Albert Einstein explained the motion as the consequence of large number of random impacts
from molecules; the displacement over time is the accumulation of a large number of small,
independent nudges from molecules that are miniscule in size compared with the particle.

To give you the idea of the sort of irregular motion that results from a large number of
small independent increments, I have simulated (four times) the process using sequences of
independent observations �i on the Uniform(0, 2π) distribution, taking the δ cos(�i ) as the
increments in the x-direction, and the δ sin(�i ) as the increments in the y-direction, for a
small δ. That is, after n steps the particle is at position (Xn, Yn), where Xn = δ cos(�1) +
δ cos(�2) + . . . + δ cos(�n) and Yn = δ sin(�1) + δ sin(�2) + . . . + δ sin(�n).
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Simulated 2-d Brownian Motions with 1000 steps

In general, symmetry of the directions in which the small increments act, and a cen-
tral limit effect (via the bivariate form of the CLT) suggest that the displacement (Xt , Yt ) of
the particle after time t should have a N (0, σ 2

t I2) bivariate normal distribution. That is, Xt

should be distributed N (0, σ 2
t ) independently of Yt , which also has a N (0, σ 2

t ) distribution.
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Chapter 13 Brownian motion

Homogeneity and independence arguments will show that σ 2
t must be proportional

to t . The increment Xt+s − Xt represents the change in x-coordinate over a time inter-
val of length s, and therefore it should have the same normal distribution as Xs . That is,
Xt+s − Xt ∼ N (0, σ 2

s ) independently of Xt ∼ N (0, σ 2
t ). By independence,

σ 2
s+t = var (Xt+s) = var (Xt+s − Xt ) + var (Xt ) = σ 2

s + σ 2
t .

For such an equality to hold for all s ≥ 0 and t ≥ 0 we must have σ 2
t = ct for some positive

constant c.

A family of random variables indexed by a parameter t that ranges over a continuous
interval is usually called a stochastic process (in continuous time).

Definition. A stochastic process {Bt : t ≥ 0} is called a Brownian motion (started from
zero) if

(i) B0 = 0

(ii) Bt+s − Bt ∼ N (0, s) for each t ≥ 0 and s ≥ 0

(iii) the increments of the process over disjoint time intervals are independent

(iv) the process changes continuously with t

The symmetric random walk process is obtained by repeated tosses of a fair coin, with
a move of one unit to the right for each head, and a move of one unit to the left for each
tail. Brownian motion can be thought of as a continuous time analog of the symmetric ran-
dom walk.

Example 59: For positive constants α and β, what is the probability that a Brown-
ian motion started at zero reaches β before it reaches −α?

Many interesting stochastic processes have been built from Brownian motion. In recent
years, perhaps the most famous example has been a model for the changes in a stock price
over time. Interpretation of the model brings out a surprising property about the increments
of Brownian motion.

Example 60: A model for stock prices

Under the model from the previous Example, it is possible to reduce problems in the
pricing of options to the solution of partial differential equations. The method depends heav-
ily on the properties of Brownian motion.

Example 61: The Black-Scholes differential equation
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Example 59: Continuous analog of gambler’s ruin problem

The following problem was solved in Example 12:

Suppose two players, Alf (A for short) and Betamax (B for short), bet on the tosses of a fair coin:

for a head, Alf pays Betamax one dollar; for a tail, Betamax pays Alf one dollar. They stop playing

when one player runs out of money. If Alf starts with α dollar bills, and Betamax starts with β

dollars bills (both α and β whole numbers), what is the probability that Alf ends up with all the

money?

The solution was: P{Alf wins} = α/(α + β). There is an analogous problem for Brownian
motion, with an analogous solution:

For positive constants α and β, what is the probability that a Brownian motion
started at zero reaches β before it reaches −α?

For the picture, I take α = 10 and β = 5, even though there was no need for either of
them to be integers.

0 500 100 0 1500 2000

-10

-5

5

0

For each x in [−α, β], consider the analogous problem for a Brownian motion started
at x (that is, for the process x + Bt ). Define

f (x) = P{x + Bt hits β before −α}
That is, if we define two hitting times

τβ = min{t : x + Bt = β} and τ−α = min{t : x + Bt = −α},
then f (x) = P{τβ < τ−α}.

For trivial reasons, f (β) = 1 and f (−α) = 0. For a small δ > 0, write F for the event
{x + Bt hits x + δ before x − δ}. By symmetry, PF = PFc = 1/2. Conditioning on whether
F or Fc occurs, we get

f (x) = P{x + Bt hits β before −α | F} 1
2 + P{x + Bt hits β before −α | Fc} 1

2 .

The conditional given F corresponds to starting the Brownian motion at x + δ; the condi-
tional probability equals f (x + δ). Similarly, the conditional probability given Fc equals
f (x − δ). Thus

f (x) = 1
2 f (x + δ) + 1

2 f (x − δ),

for arbitrarily small δ. The right-hand side equals
1
2

(
f (x) + δ f ′(x) + 1

2δ2 f ′′(x) + . . .
) + 1

2

(
f (x) − δ f ′(x) + 1

2δ2 f ′′(x) − . . .
)

= f (x) + 1

2
δ2 f ′′(x) + . . .
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That is, the function f satisfies the differential equation f ′′(x) = 0 for −α < x < β, with
boundary conditions f (−α) = 0 and f (β) = 1, which has solution

f (x) = x + α

β + α
for −α ≤ x ≤ β.

In particular, for the problem as originally posed, there is probability α/(β + α) that the
Brownian motion reaches β before it reaches −α.

�
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Example 60: A model for stock prices

Let St denote the price at time t ≥ 0 of one share in a particular company, starting from
a given price S0 at time t = 0. One standard theory models the process {St : t ≥ 0} by
means of an underlying Brownian motion {Bt : t ≥ 0} and two parameters, µ and σ > 0,

St = S0 exp
((

µ − 1
2σ 2

)
t + σ Bt

)
for t ≥ 0.

The strange form of the parametrization will make more sense if we consider the incre-
ment �S = St+δ − St in the stock price over a small time interval [t, t + δ] as a proportion
of the price at time t .

Write �B for the corresponding increment Bt+δ − Bt in the underlying Brownian mo-

tion. Remember that �B ∼ N (0, δ), so that E (�B)2 = δ and E
(
(�B)2 − δ

)2 = 2δ2. (You
should check these calculations.)

Recall the Taylor expansion

ex = 1 + x + 1
2 x2 + . . .

As you will see, when dealing with Brownian motion we must carry the expansion out to the
quadratic term. Temporarily write κ for µ − 1

2σ 2. From the equality

St+δ = S0 exp (κ(t + δ) + σ (Bt + �B))

= St exp (κδ + σ�B)

and the expansion for ex with x replaced by κδ + σ�B we get

�S

St
= exp (κδ + σ�B) − 1

= κδ + σ�B + 1
2 (κδ + σ�B)2 + . . .

= µδ + σ�B + 1
2σ 2((�B)2 − δ) + 1

2κ2δ2 + κσδ�B + . . .

Notice how the − 1
2σ 2δ has contributed the term to “center” the (�B)2 by subtracting

off its expected value. The centered quantity (�B)2 − δ, which I will write as �Q, has zero
expected value and variance 2δ2. The increment σ�B also has zero expected value, but its
variance equals σ 2δ.

To determine the change in the stock price between two times, t0 and t1, we could di-
vide [t0, t1] into small subintervals of length δ, then add up the �S increments as a weighted
sum of terms like

µStδ + σ St�B + 1
2σ 2St�Q + . . .

Both the σ St�B and the 1
2σ 2St�Q contribute sums with zero expected value. For the sec-

ond sum the variance goes to zero as δ is made smaller, but the variance for the first sum
does not go to zero. (A similar argument kills off the other random contributions.) In the
limit, only the sum of the µStδ + σ St�B terms survives.

In summary: When dealing with approximations over short time intervals, we may ig-
nore all except the drift term µδ and the noise term σ�B,

�S

St
≈ µδ + σ�B.

Conditional on St , the relative increment has approximately a N (µδ, σ 2δ) distribution.
Moreover, when adding up increments (and then pasing to a limit), we may replace terms
(�B)2 by their expected values. �

Remark. The model is sometimes written in symbolic form as d St = µdt + σd Bt .
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Example 61: The Black-Scholes differential equation

Consider a stock whose price St at time t , for 0 ≤ t ≤ 1, is driven by the process
described in Example 60, that is, �S ≈ St (µδ + σ�B). Assume that σ is known, but µ is
not. That is, assume we know the volatility but not the drift.

Suppose Y is a random quantity determined by the stock price S1 at time t = 1. I will
give you the option of receiving the amount Y at time t = 1 if you pay me an amount y0 at
time 0. More adventurously, I specify the fair price Yt to pay at time t , for 0 ≤ t ≤ 1, in
order to receive the amount Y at time t = 1. The price is given by a function Yt = f (St , t)
of the stock price at time t and of t (or, equivalently, of St and 1 − t , the time remaining
before the payoff). How should I determine the function f ?

There are various reasonable properties to require of f . For example, as t increases
to 1, the price Yt should converge to Y , for otherwise someone stands to make a nearly risk-
less profit by trading one blink of an eye before time t = 1. How?

There is another constraint that is less obvious. It comes from the Taylor expansion

f (x + ε, t + δ) ≈ δh(x, t) + εg1(x, t) + 1
2ε2g2(x, t),

where, for simplicity of notation, I write h(x, t) for ∂ f/∂t , and g1(x, t) for ∂ f/∂x , and
g2(x, t) for ∂2 f/∂2x . First consider how the option price responds to a small change in the
stock price between time t and t + δ.

Yt+δ = f (St + �S, t + δ) ≈ f (St , t) + δh(St , t) + (�S) g1(St , t) + 1
2 (�S)2 g2(St , t)

From the model,
(�S)2 ≈ S2

t (µδ + σ�B)2 ≈ S2
t σ

2(�B)2 + . . .

Remember that we may replace the (�B)2 by a δ when adding up the effect of changes over
many small time intervals. That is, we may calculate as if

�Y ≈ h(St , t)δ + (�S) g1(St , t) + 1
2σ 2S2

t g2(St , t)δ

= F(St , t)δ + (�S) g1(St , t),

where F(x, t) = h(x, t) + 1
2σ 2x2g2(x, t).

The function F plays an important role in determining the profit from a trading scheme
designed to exploit any inconsistency in the pricing of the option. The scheme involves con-
tinuous trading, defined by some function p(St , t) (to be specified soon) of the stock price
and time. Carry out the following trades:

(i) purchase p(St , t) options at the price p(St , t)Yt at time t then sell them at time t + δ

for the return p(St , t) (Yt + �Y )

(ii) purchase −p(St , t)g1(St , t) stocks at the price −p(St , t)g1(St , t)St at time t then sell
them at time t + δ for the return −p(St , t)g1(St , t) (St + �S).

The net profit (possibly negative) from the trades is

p(St , t)�Y − p(St , t)g1(St , t) (�S) ≈ p(St , t)F(St , t)δ.

Notice how the stock trade cancels out the noisy part of the option trade.

If we choose |p(x, t)| large and with same sign as F(x, t), we slowly accumulate risk
free profit over the times when F(St , t) �= 0. To avoid such exploitation, I should ensure that
my option pricing function f (x, t) is such that F(x, t) = 0. That is, I should be careful that

∂ f

∂t
+ 1

2σ 2x2 ∂2 f

∂2x
= 0.

Together with various boundary conditions designed to eliminate other schemes for making
a riskless profit at my expense, this differential equation can be used to find the function f
that defines the option prices. �

To learn more about this story, you could take Statistics 251/551, Stochastic Processes.
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