
Chapter 1

Probabilities and random variables
Probability theory is a systematic method for describing randomness

and uncertainty. It prescribes a set of mathematical rules for manipulat-
ing and calculating probabilities and expectations. It has been applied in
many areas: gambling, insurance, finance, the study of experimental error,
statistical inference, and more.

One standard approach to probability theory (but not the only approach)
starts from the concept of a sample space, which is an exhaustive list of
possible outcomes in an experiment or other situation where the result is
uncertain. Subsets of the list are called events. For example, in the very
simple situation where 3 coins are tossed, the sample space might be

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

There is an event corresponding to “the second coin landed heads”, namely,

{hhh, hht, thh, tht}.

Each element in the sample space corresponds to a uniquely specified out-
come.

Notice that S contains nothing that would specify an outcome like “the
second coin spun 17 times, was in the air for 3.26 seconds, rolled 23.7 inches
when it landed, then ended with heads facing up”. If we wish to contemplate
such events we need a more intricate sample space S. Indeed, the choice
of S—the detail with which possible outcomes are described—depends on
the sort of events we wish to describe.

In general, a sample space can make it easier to think precisely about
events, but it is not always essential. It often suffices to manipulate events
via a small number of rules (to be specified soon) without explicitly identi-
fying the events with subsets of a sample space.

If the outcome of the experiment corresponds to a point of a sample
space belonging to some event, one says that the event has occurred. For
example, with the outcome hhh each of the events {no tails}, {at least one
head}, {more heads than tails} occurs, but the event {even number of heads}
does not.

The uncertainty is modelled by a probability assigned to each event.
The probabibility of an event E is denoted by PE. One popular interpreta-
tion of P (but not the only one) is as a long run frequency: in a very large
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number (N) of repetitions of the experiment,

(number of times E occurs)/N ≈ PE,

provided the experiments are independent of each other.More about
independence soon. As many authors have pointed out, there is something fishy about this

interpretation. For example, it is difficult to make precise the meaning of
“independent of each other” without resorting to explanations that degener-
ate into circular discussions about the meaning of probability and indepen-
dence. This fact does not seem to trouble most supporters of the frequency
theory. The interpretation is regarded as a justification for the adoption of
a set of mathematical rules, or axioms. See Chapter 2 for an alternative
interpretation, based on fair prices.

The first four rules are easy to remember if you think of probability as
a proportion. One more rule will be added soon.

Rules for probabilities.

(P1) 0 ≤ PE ≤ 1 for every event E.

(P2) For the empty subset ∅ (= the “impossible event”), P∅ = 0,

(P3) For the whole sample space (= the “certain event”), PS = 1.

(P4) If an event E is a disjoint union of a sequence of events E1, E2, . . .
then PE =

∑
i PEi.

<1> Example. Find P{at least two heads} for the tossing of three coins.

Note: The examples are
collected together at the
end of each chapter

Probability theory would be very boring if all problems were solved like
that: break the event into pieces whose probabilities you know, then add.
Things become much more interesting when we recognize that the assign-
ment of probabilities depends on what we know or have learnt (or assume)
about the random situation. For example, in the last problem we could have
written

P{at least two heads | coins fair, “independence,” . . . } = . . .

to indicate that the assignment is conditional on certain information (or
assumptions). The vertical bar stands for the word given; that is, we read
the symbol as probability of at least two heads given that . . .
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If the conditioning information is held fixed throughout a calculation, the
conditional probabilities P

(
. . . | info

)
satisfy rules (P1) through (P4). For

example, P(∅ | info) = 0, and so on. In that case one usually doesn’t bother
with the “given . . . ”, but if the information changes during the analysis the
conditional probability notation becomes most useful.

The final rule for (conditional) probabilities lets us break occurrence of
an event into a succession of simpler stages, whose conditional probabilities
might be easier to calculate or assign. Often the successive stages correspond
to the occurrence of each of a sequence of events, in which case the notation
is abbreviated:

P
(
. . . | event A and event B have occurred and previous info

)
or

P
(
. . . | A ∩B ∩ previous info

)
where ∩ means intersection

or

P
(
. . . | A, B, previous info

)
or

P
(
. . . | A ∩B

)
if the “previous info” is understood.

or

P
(
. . . | AB

)
where AB is an abbreviation for A ∩B.

The commas in the third expression are open to misinterpretation, but con-
venience recommends the more concise notation.

Remark. I must confess to some inconsistency in my use of parentheses
and braces. If the “. . . ” is a description in words, then {. . . } denotes
the subset of S on which the description is true, and P{. . . } or
P{· · · | info} seems the natural way to denote the probability attached
to that subset. However, if the “. . . ” stand for an expression like
A ∩ B, the notation P(A ∩ B) or P(A ∩ B | info) looks nicer to me. It
is hard to maintain a convention that covers all cases. You should not
attribute much significance to differences in my notation involving a
choice between parentheses and braces.

Rule for conditional probability.

(P5) : if A and B are events then

P
(
A ∩B | info

)
= P

(
A | info

)
· P
(
B | A, info

)
.
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The frequency interpretation might make it easier for you to appreciate
this rule. Suppose that in N “independent” repetitions (given the same
initial conditioning information) A occurs NA times and A∩B occurs NA∩B
times. Then, for big N ,

P
(
A | info

)
≈ NA/N and P

(
A ∩B | info

)
≈ NA∩B/N.

If we ignore those repetitions where A fails to occur then we have NA rep-
etitions given the original information and occurrence of A, in NA∩B of
which the event B also occurs. Thus P

(
B | A, info

)
≈ NA∩B/NA. The rest

is division.
In my experience, conditional probabilities provide a more reliable method

for solving problems traditionally handled by counting arguments (Combi-
natorics). I find it hard to be consistent about how I count, to make sure
every case is counted once and only once, to decide whether order should
matter, and so on. The next Example illustrates my point.

<2> Example. What is the probability that a hand of 5 cards contains four of
a kind?

I wrote out many of the gory details to show you how the rules reduce the
calculation to a sequence of simpler steps. In practice, one would be less
explicit, to keep the audience awake.

The statement of the next example is taken verbatim from the delightful
Fifty Challenging Problems in Probability by Frederick Mosteller, one of my
favourite sources for elegant examples. One could learn a lot of probability
by trying to solve all fifty problems. The underlying question has resurfaced
in recent years in various guises. See

http://en.wikipedia.org/wiki/Monty Hall problem

http://en.wikipedia.org/wiki/Marilyn vos Savant#The Monty Hall problem

to understand why probabilistic notation is so valuable. The lesson is: Be
prepared to defend your assignments of conditional probabilities.

<3> Example. Three prisoners, A, B, and C, with apparently equally good
records have applied for parole. The parole board has decided to release
two of the three, and the prisoners know this but not which two. A warder
friend of prisoner A knows who are to be released. Prisoner A realizes that it
would be unethical to ask the warder if he, A, is to be released, but thinks of
asking for the name of one prisoner other than himself who is to be released.
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He thinks that before he asks, his chances of release are 2/3. He thinks that
if the warder says “B will be released,” his own chances have now gone down
to 1/2, because either A and B or B and C are to be released. And so A
decides not to reduce his chances by asking. However, A is mistaken in his
calculations. Explain.

You might have the impression at this stage that the first step towards
the solution of a probability problem is always an explicit listing of the
sample space specification of a sample space. In fact that is seldom the
case. An assignment of (conditional) probabilities to well chosen events is
usually enough to set the probability machine in action. Only in cases of
possible confusion (as in the last Example), or great mathematical precision,
do I find a list of possible outcomes worthwhile to contemplate. In the next
Example construction of a sample space would be a nontrivial exercise but
conditioning helps to break a complex random mechanism into a sequence
of simpler stages.

<4> Example. Imagine that I have a fair coin, which I toss repeatedly. Two
players, M and R, observe the sequence of tosses, each waiting for a partic-
ular pattern on consecutive tosses: M waits for hhh, and R waits for tthh.
The one whose pattern appears first is the winner. What is the probability
that M wins?

In both Examples <3> and <4> we had situations where particular
pieces of information could be ignored in the calculation of some conditional
probabilities,

P
(
A | B∗

)
= P(A),

P
(
next toss a head | past sequence of tosses

)
= 1/2.

Both situations are instances of a property called independence.

Definition. Call events E and F conditionally independent given a par-
ticular piece of information if

P
(
E | F , information

)
= P

(
E | information

)
.

If the “information” is understood, just call E and F independent.
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The apparent asymmetry in the definition can be removed by an appeal
to rule P5, from which we deduce that

P(E ∩ F | info) = P(E | info)P(F | info)

for conditionally independent events E and F . Except for the conditioning
information, the last equality is the traditional definition of independence.
Some authors prefer that form because it includes various cases involving
events with zero (conditional) probability.

Conditional independence is one of the most important simplifying as-
sumptions used in probabilistic modeling. It allows one to reduce considera-
tion of complex sequences of events to an analysis of each event in isolation.
Several standard mechanisms are built around the concept. The prime ex-
ample for these notes is independent “coin-tossing”: independent repetition
of a simple experiment (such as the tossing of a coin) that has only two pos-
sible outcomes. By establishing a number of basic facts about coin tossing
I will build a set of tools for analyzing problems that can be reduced to a
mechanism like coin tossing, usually by means of well-chosen conditioning.

<5> Example. Suppose a coin has probability p of landing heads on any par-
ticular toss, independent of the outcomes of other tosses. In a sequence of
such tosses, show that the probability that the first head appears on the kth
toss is (1− p)k−1p for k = 1, 2, . . . .

The discussion for the Examples would have been slightly neater if I had
had a name for the toss on which the first head occurs. Define

X = the position at which the first head occurs.

Then I could write

P{X = k} = (1− p)k−1p for k = 1, 2, . . . .

The X is an example of a random variable.
Formally, a random variable is just a function that attaches a number

to each item in the sample space. Typically we don’t need to specify the
sample space precisely before we study a random variable. What matters
more is the set of values that it can take and the probabilities with which
it takes those values. This information is called the distribution of the
random variable.
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For example, a random variable Z is said to have a geometric(p) dis-
tribution if it can take values 1, 2, 3, . . . with probabilities

P{Z = k} = (1− p)k−1p for k = 1, 2, . . . .

The result from the last example asserts that the number of tosses required
to get the first head has a geometric(p) distribution.

Remark. Be warned. Some authors use geometric(p) to refer to
the distribution of the number of tails before the first head, which
corresponds to the distribution of Z − 1, with Z as above.

Why the name “geometric”? Recall the geometric series,∑∞

k=0
ark = a/(1− r) for |r| < 1.

Notice, in particular, that if 0 < p ≤ 1, and Z has a geometric(p) distribu-
tion, ∑∞

k=1
P{Z = k} =

∑∞

j=0
p(1− p)j = 1.

What does that tell you about coin tossing?
The final example for this Chapter, whose statement is also borrowed

verbatim from the Mosteller book, is built around a “geometric” mechanism.

<6> Example. A, B, and C are to fight a three-cornered pistol duel. All know
that A’s chance of hitting his target is 0.3, C’s is 0.5, and B never misses.
They are to fire at their choice of target in succession in the order A, B, C,
cyclically (but a hit man loses further turns and is no longer shot at) until
only one man is left unhit. What should A’s strategy be?

Things to remember.

• , , and the five rules for manipulating (condi-
tional) probabilities.

• Conditioning is often easier, or at least more reliable, than counting.

• Conditional independence is a major simplifying assumption of prob-
ability theory.

• What is a random variable? What is meant by the distribution of a
random variable?

• What is the geometric(p) distribution?
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Example 1.

Find P{at least two heads} for the tossing of three coins. Use the sample
space

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.
If we assume that each coin is fair and that the outcomes from the coins don’t
affect each other (“independence”), then we must conclude by symmetry
(“equally likely”) that

P{hhh} = P{hht} = · · · = P{ttt}.

By rule P4 these eight probabilities add to PS = 1; they must each equal
1/8. Again by P4,

P{at least two heads} = P{hhh}+ P{hht}+ P{hth}+ P{thh} = 1/2.

�

Example 2.

What is the probability that a hand of 5 cards contains four of a kind?
Let us assume everything fair and aboveboard, so that simple probabil-

ity calculations can be carried out by appeals to symmetry. The fairness
assumption could be carried along as part of the conditioning information
but it would just clog up the notation to no useful purpose.

I will consider the ordering of the cards within the hand as signif-
icant. For example, (7♣, 3♦, 2♥,K♥, 8♥) will be a different hand from
(K♥, 7♣, 3♦, 2♥, 8♥).

Start by breaking the event of interest into 13 disjoint pieces:

{four of a kind} =
⋃13

i=1
Fi

where

F1 = {four aces, plus something else},
F2 = {four twos, plus something else},

...

F13 = {four kings, plus something else}.
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By symmetry each Fi has the same probability, which means we can con-
centrate on just one of them.

P{four of a kind} =
∑13

1
PFi = 13PF1 by rule P4.

Now break F1 into simpler pieces, F1 = ∪5j=1F1j , where

F1j = {four aces with jth card not an ace}.

Again by disjointness and symmetry, PF1 = 5PF1,1.
Decompose the event F1,1 into five “stages”, F1,1 = N1∩A2∩A3∩A4∩A5,

where

N1 = {first card is not an ace} and A1 = {first card is an ace}

and so on. To save on space, I will omit the intersection signs, writing
N1A2A3A4 instead of N1 ∩A2 ∩A3 ∩A4, and so on. By rule P5,

PF1,1 = PN1 P(A2 | N1)P(A3 | N1A2) . . . P(A5 | N1A2A3A4)

=
48

52
× 4

51
× 3

50
× 2

49
× 1

48
.

Thus

P{four of a kind} = 13× 5× 48

52
× 4

51
× 3

50
× 2

49
× 1

48
≈ .00024.

Can you see any hidden assumptions in this analysis?
Which sample space was I using, implicitly? How would the argument

be affected if we took S as the set of all of all
(
52
5

)
distinct subsets of size 5,

with equal probability on each sample point? That is, would it matter if we
ignored ordering of cards within hands? �

Example 3.

(The Prisoner’s Dilemma—borrowed from Mosteller, 1987)
It is quite tricky to argue through this problem without introducing any

notation, because of some subtle distinctions that need to be maintained.
The interpretation that I propose requires a sample space with only four

items, which I label suggestively

aB = both A and B to be released, warder must say B

aC = both A and C to be released, warder must say C

Bc = both B and C to be released, warder says B

bC = both B and C to be released, warder says C.
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There are three events to be considered

A = {A to be released} =
{

aB , aC
}

B = {B to be released} =
{

aB , Bc , bC
}

B∗ = {warder says B to be released} =
{

aB , Bc
}
.

Apparently prisoner A thinks that P
(
A | B∗

)
= 1/2.

How should we assign probabilities? The words “equally good records”
suggest (compare with Rule P4)

P{A and B to be released}
= P{B and C to be released}
= P{C and A to be released}
= 1/3

That is,
P{ aB } = P{ aC } = P{ Bc }+ P{ bC } = 1/3.

What is the split between Bc and bC ? I think the poser of the problem
wants us to give 1/6 to each outcome, although there is nothing in the
wording of the problem requiring that allocation. (Can you think of another
plausible allocation that would change the conclusion?)

With those probabilities we calculate

PA ∩B∗ = P{ aB } = 1/3

PB∗ = P{ aB }+ P{ Bc } = 1/3 + 1/6 = 1/2,

from which we deduce (via rule P5) that

P
(
A | B∗

)
=

PA ∩B∗

PB∗
=

1/3

1/2
= 2/3 = PA.

The extra information B∗ should not change prisoner A’s perception of his
probability of being released.

Notice that

P
(
A | B

)
=

PA ∩B

PB
=

1/3

1/2 + 1/6 + 1/6
= 1/2 6= PA.

Perhaps A was confusing P
(
A | B∗

)
with P

(
A | B

)
.
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The problem is more subtle than you might suspect. Reconsider the
conditioning argument from the point of view of prisoner C, who overhears
the conversation between A and the warder. With C denoting the event

{C to be released} =
{

aC , Bc , bC
}
,

he would calculate a conditional probability

P
(
C | B∗

)
=

P{ Bc }
PB∗

=
1/6

1/2
6= PC.

The warder might have nominated C as a prisoner to be released. The fact
that he didn’t do so conveys some information to C. Do you see why A
and C can infer different information from the warder’s reply? �

Example 4.

Here is a coin tossing game that illustrates how conditioning can break a
complex random mechanism into a sequence of simpler stages. Imagine that
I have a fair coin, which I toss repeatedly. Two players, M and R, observe
the sequence of tosses, each waiting for a particular pattern on consecutive
tosses:

M waits for hhh and R waits for tthh.

The one whose pattern appears first is the winner. What is the probability
that M wins?

For example, the sequence ththhttthh . . . would result in a win for R,
but ththhthhh . . . would result in a win for M.

You might imagine that M has the advantage. After all, surely it must
be easier to get a pattern of length 3 than a pattern of length 4. You’ll
discover that the solution is not that straightforward.

The possible states of the game can be summarized by recording how
much of his pattern each player has observed (ignoring false starts, such as
hht for M, which would leave him back where he started, although R would
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have matched the first t of his pattern.).

States M partial pattern R partial pattern

S – –

H h –

T – t

TT – tt

HH hh –

TTH h tth

M wins hhh ?

R wins ? tthh

By claiming that these states summarize the game I am tacitly assuming
that the coin has no “memory”, in the sense that the conditional probability
of a head given any particular past sequence of heads and tails is 1/2 (for
a fair coin). The past history leading to a particular state does not matter;
the future evolution of the game depends only on what remains for each
player to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented
by little boxes joined by arrows that indicate the probabilities of transition
from one state to another. Only transitions with a nonzero probability are
drawn. In this problem each nonzero probability equals 1/2. The solid
arrows correspond to transitions resulting from a head, the dotted arrows
to a tail.

H M winsHH

TTH R wins

S

M winsHH

T

TT
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For example, the arrows leading from S to H to HH to M wins cor-
respond to heads; the game would progress in exactly that way if the first
three tosses gave hhh. Similarly the arrows from S to T to TT correspond
to tails.

The arrow looping from TT back into itself corresponds to the situation
where, after . . . tt, both players progress no further until the next head.
Once the game progresses down the arrow T to TT the step into TTH

becomes inevitable. Indeed, for the purpose of calculating the probability
that M wins, we could replace the side branch by:

T TTH

The new arrow from T to TTH would correspond to a sequence of tails
followed by a head. With the state TT removed, the diagram would become
almost symmetric with respect to M and R. The arrow from HH back to
T would show that R actually has an advantage: the first h in the tthh
pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game.
The problem becomes one of following the path of a mouse that moves
between the states according to the transition probabilities on the arrows.
The original game has S as its starting state, but it is just as easy to solve the
problem for a particle starting from any of the states. The method that I will
present actually solves the problems for all possible starting states by setting
up equations that relate the solutions to each other. Define probabilities for
the mouse:

PS = P{reach M wins | start at S }
PT = P{reach M wins | start at T }

and so on. I’ll still refer to the solid arrows as “heads”, just to distinguish
between the two arrows leading out of a state, even though the coin tossing
interpretation has now become irrelevant.

Calculate the probability of reaching M wins , under each of the different
starting circumstances, by breaking according to the result of the first move,
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and then conditioning.

PS = P{reach M wins , heads | start at S }
+ P{reach M wins , tails | start at S }

= P{heads | start at S }P{reach M wins | start at S , heads}
+ P{tails | start at S }P{reach M wins | start at S , tails}.

The assumed lack of memory for the fair coin reduces the last expression to
1
2PH + 1

2PT . Notice how the conditioning information “start at S , heads”
has been replaced by “start at H ”, and so on. We have our first equation:

PS = 1
2PH + 1

2PT .

Similar splitting and conditioning arguments for each of the other starting
states give

PH = 1
2PT + 1

2PHH

PHH = 1
2 + 1

2PT

PT = 1
2PH + 1

2PTT

PTT = 1
2PTT + 1

2PTTH

PTTH = 1
2PT + 0.

We could use the fourth equation to substitute for PTT , leaving

PT = 1
2PH + 1

2PTTH .

This simple elimination of the PTT contribution corresponds to the excision
of the TT state from the diagram. If we hadn’t noticed the possibility for
excision the algebra would have effectively done it for us. The six split-
ting/conditioning arguments give six linear equations in six unknowns. If
you solve them you should get PS = 5/12, PH = 1/2, PT = 1/3, PHH = 2/3,
and PTTH = 1/6. For the original problem, M has probability 5/12 of win-
ning. �

There is a more systematic way to carry out the analysis in the last
problem without drawing the diagram. The transition probabilities can be
installed into an 8 by 8 matrix whose rows and columns are labeled by the
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states:

P =



S H T HH TT TTH M wins R wins

S 0 1/2 1/2 0 0 0 0 0
H 0 0 1/2 1/2 0 0 0 0
T 0 1/2 0 0 1/2 0 0 0
HH 0 0 1/2 0 0 0 1/2 0
TT 0 0 0 0 1/2 1/2 0 0
TTH 0 0 1/2 0 0 0 0 1/2
M wins 0 0 0 0 0 0 1 0
R wins 0 0 0 0 0 0 0 1


If we similarly define a column vector,

π = (PS , PH , PT , PHH , PTT , PTTH , PM wins, PR wins)
′,

then the equations that we needed to solve could be written as

Pπ = π,

with the boundary conditions PM wins = 1 and PR wins = 0.

Remark. Write e′M and e′R for the last two rows of P and Q for the
6× 8 matrix made up of the first 6 rows of I −P . Then π is the unique
solution to the equation  Qe′M

e′R

π = eM

The matrix P is called the transition matrix. The element in row i
and column j gives the probability of a transition from state i to state j. For
example, the third row, which is labeled T , gives transition probabilities
from state T . If we multiply P by itself we get the matrix P 2, which gives
the “two-step” transition probabilities. For example, the element of P 2 in
row T and column TTH is given by∑

j

PT,jPj,TTH =
∑
j

P{step to j | start at T }P{step to TTH | start at j}.

Here j runs over all states, but only j = H and j = TT contribute nonzero
terms. Substituting

P{reach TTH in two steps | start at T , step to j}
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for the second factor in the sum, we get the splitting/conditioning decom-
position for

P{reach TTH in two steps | start at T },

a two-step transition possibility.

Remark. What do the elements of the matrix Pn represent? What
happens to this matrix as n tends to infinity? If you are interested in
computation, look at the file HHH.TTHH.R, or try similar calculations
with Matlab or Mathematica.

The name Markov chain is given to any process representable as the
movement of a mouse (or a particle) between states (boxes) according to
transition probabilities attached to arrows connecting the various states.
The sum of the probabilities for arrows leaving a state should add to one.
All the past history except for identification of the current state is regarded
as irrelevant to the next transition; given the current state, the past is
conditionally independent of the future.

Example 5.

Suppose a coin has probability p of landing heads on any particular toss,
independent of outcomes of other tosses. In a sequence of such tosses, what is
the probability that the first head appears on the kth toss (for k = 1, 2, . . . )?

Write Hi for the event {head on the ith toss}. Then, for a fixed k (an
integer greater than or equal to 1),

P{first head on kth toss}
= P(Hc

1H
c
2 . . . H

c
k−1Hk)

= P(Hc
1)P(Hc

2 . . . H
c
k−1Hk | Hc

1) by rule P5.

By the independence assumption, the conditioning information is irrelevant.
Also PHc

1 = 1− p because PHc
1 + PH1 = 1. Why? Thus

P{first head on kth toss} = (1− p)P(Hc
2 . . . H

c
k−1Hk).

Similar conditioning arguments let us strip off each of the outcomes for tosses
2 to k − 1, leaving

P{first head on kth toss} = (1− p)k−1p for k = 1, 2, . . . .

�
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Example 6.

(The Three-Cornered Duel—also borrowed from Mosteller, 1987) A, B, and
C are to fight a three-cornered pistol duel. All know that A’s chance of
hitting his target is 0.3, C’s is 0.5, and B never misses. They are to fire at
their choice of target in succession in the order A, B, C, cyclically (but a hit
man loses further turns and is no longer shot at) until only one man is left
unhit. What should A’s strategy be?

What could A do? If he shoots at C and hits him, then he receives a
bullet between the eyes from B on the next shot. Not a good strategy:

P
(
A survives | he kills C first

)
= 0.

If he shoots at C and misses then B naturally would pick off his more dan-
gerous oppenent, C, leaving A one shot before B finishes him off too. That
single shot from A at B would have to succeed:

P
(
A survives | he misses first shot

)
= 0.3.

If A shoots first at B and misses the result is the same. What if A shoots
at B first and succeeds? Then A and C would trade shots until one of them
was hit, with C taking the first shot. We could solve this part of the problem
by setting up a Markov chain diagram, or we could argue as follows: For A
to survive, the fight would have to continue,

{C misses, A hits}
or

{C misses, A misses, C misses, A hits}
or

{C misses, (A misses, C misses) twice, A hits}

and so on. The general piece in the decomposition consists of some number
of repetitions of (A misses, C misses) sandwiched between the initial “C
misses” and the final “A hits.” The repetitions are like coin tosses with
probability (1 − 0.3)(1 − 0.5) = .35 for the double miss. Independence
between successive shots (or should it be conditional independence, given
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the choice of target?) allows us to multiply together probabilities to get

P
(
A survives | he first shoots B

)
=
∞∑
k=0

P{C misses, (A misses, C misses) k times, A hits}

=
∞∑
k=0

(.5)(.35)k(.3)

= .15/(1− 0.35) by the rule of sum of geometric series

≈ .23

In summary:

P
(
A survives | he kills C first

)
= 0

P
(
A survives | he kills B first

)
≈ .23

P
(
A survives | he misses with first shot

)
= .3

Somehow A should try to miss with his first shot. Is that allowed? �



Chapter 2

Expectations
Recall from Chapter 1 that a random variable is just a function that

attaches a number to each item in the sample space. Less formally, a random
variable corresponds to a numerical quantity whose value is determined by
some chance mechanism.

Just as events have (conditional) probabilities attached to them, with
possible interpretation as a long-run frequency, so too do random variables
have a number interpretable as a long-run average attached to them. Given
a particular piece of information, the symbol

E
(
X | information

)
denotes the (conditional) expected value or (conditional) expectation
of the random variable X (given that information). When the information
is taken as understood, the expected value is abbreviated to EX.

Expected values are not restricted to lie in the range from zero to one.
For example, if the info forces a random variable X to always take values
larger than 16 then E

(
X | info

)
will be larger than 16.

As with conditional probabilities, there are convenient abbreviations
when the conditioning information includes something like {event F has
occurred}:

E
(
X | information and “F has occurred”

)
E
(
X | information, F

)
Unlike many authors, I will take the expected value as a primitive concept,
not one to be derived from other concepts. All of the methods that those
authors use to define expected values will be derived from a small number
of basic rules. I will provide an interpretation for just one of the rules, using
long-run averages of values generated by independent repetitions of random
experiments. You should provide analogous interpretations for the other
rules.

Remark. See the Appendix to this Chapter for another interpretation,
which does not depend on a preliminary concept of independent
repetitions of an experiment. The expected value EX can be interpreted
as a“fair price” to pay up-front, in exchange for a random return X
later—something like an insurance premium.

version: Sept2011
printed: 5 September 2011
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c©David Pollard



Chap 2: Expectations 2

Rules for (conditional) expectations.

Let X and Y be random variables, c and d be constants, and F1, F2, . . . be
events. Then:

(E1) E
(
cX + dY | info

)
= cE

(
X | info

)
+ dE

(
Y | info

)
;

(E2) if X can only take the constant value c under the given “info” then
E
(
X | info

)
= c;

(E3) if the given “info” forces X ≤ Y then E
(
X | info

)
≤ E

(
Y | info

)
;

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole
sample space then

E
(
X | info

)
=
∑

i
E
(
X | Fi, info

)
P
(
Fi | info

)
.

Rule (E4) combines the power of both rules (P4) and (P5) for condi-
tional probabilities. Here is the frequency interpretation for the case of two
disjoint events F1 and F2 with union S: Repeat the experiment a very large
number (n) of times, noting for each repetition the value taken by X and
which of F1 or F2 occurs.

1 2 3 4 . . . n− 1 n total

F1 occurs X X X . . . X X n1
F2 occurs X . . . X X X n2

X x1 x2 x3 x4 . . . xn−1 xn

By the frequency interpretation of probabilities, P
(
F1 | info

)
≈ n1/n and

P
(
F2 | info

)
≈ n2/n. Those trials where F1 occurs correspond to condition-

ing on F1:

E
(
X | F1, info

)
≈ 1

n1

∑
F1 occurs

xi.

Similarly,

E
(
X | F2, info

)
≈ 1

n2

∑
F2 occurs

xi
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Thus

E
(
X | F1, info

)
P
(
F1 | info

)
+ E

(
X | F2, info

)
P
(
F2 | info

)
≈

 1

n1

∑
F1 occurs

xi

(n1
n

)
+

 1

n2

∑
F2 occurs

xi

(n2
n

)

=
1

n

n∑
i=1

xi

≈ E
(
X | info

)
.

As n gets larger and larger all approximations are supposed to get better
and better, and so on.

Modulo some fine print regarding convergence of infinite series, rule (E1)
extends to sums of infinite sequences of random variables,

(E1)′ E(X1 +X2 + . . . ) = E(X1) + E(X2) + . . .

(For mathematical purists: the asserted equality holds if
∑

i E|Xi| <∞.)

Remark. The rules for conditional expectations actually include all
the rules for conditional probabilities as special cases. This delightfully
convenient fact can be established by systematic use of particularly
simple random variables. For each event A the indicator function
of A is defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

Each IA is a random variable.
Rule (E4) with F1 = A and F2 = Ac gives

E (IA | info) = E (IA | A, info)P (A | info) +

+ E (IA | Ac, info)P (Ac | info)

= 1× P (A | info) + 0× P (Ac | info) by (E2).

That is, E (IA | info) = P (A | info).
If an event A is a disjoint union of events A1, A2, . . . then

IA = IA1
+ IA2

+ . . . . (Why?) Taking expectations then invoking the
version of (E1) for infinite sums we get rule (P4).

As an exercise, you might try to derive the other probability rules,
but don’t spend much time on the task or worry about it too much.
Just keep buried somewhere in the back of your mind the idea that
you can do more with expectations than with probabilities alone.
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You will find it useful to remember that E (IA | info) = P (A | info),
a result that is easy to recall from the fact that the long-run frequency
of occurrence of an event, over many repetitions, is just the long-run
average of its indicator function.

Rules (E2) and (E4) can be used to calculate expectations from prob-
abilities for random variables that take values in “discrete” set. Consider
the case of a random variable Y expressible as a function g(X) of another
random variable, X, which takes on only a discrete set of values c1, c2, . . . .
Let Fi be the subset of S on which X = ci, that is, Fi = {X = ci}. Then
by E2,

E
(
Y | Fi, info

)
= g(ci),

and by E5,

E
(
Y | info

)
=
∑

i
g(ci)P

(
Fi | info

)
.

More succinctly,

(E5) E
(
g(X) | info

)
=
∑

i
g(ci)P

(
X = ci | info

)
.

In particular,

(E5)′ E
(
X | info

)
=
∑

i
ciP
(
X = ci | info

)
.

Both (E5) and (E5)’ apply to random variables that take values in the
“discrete set” {c1, c2, . . . }.

Remark. For random variables that take a continuous range of values
an approximation argument (see Chapter 7) will provide us with an
analog of (E5) with the sum replaced by an integral.

You will find it helpful to remember expectations for a few standard
mechanisms, such as coin tossing, rather than have to rederive them repeat-
edly.

<1> Example. Expected value for the geometric(p) distribution is 1/p.

The calculation of an expectation is often a good way to get a rough feel
for the behaviour of a random process, but it doesn’t tell the whole story.
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<2> Example. Expected number of tosses to get tthh with fair coin is 16.

By similar arguments (see HW2), you can show that the expected num-
ber of tosses needed to get hhh, without competition, is 14. Doesn’t that
seem strange? On average it takes longer to reach tthh than hhh, but also
on average the pattern tthh appears first.

Remark. You should also be able to show that the expected number
of tosses for the completion of the game with competition between hhh
and tthh is 91/3. Notice that the expected value for the game with
competition is smaller than the minimum of the expected values for
the two games. Why must it be smaller?

Probabilists study standard mechanisms, and establish basic results for
them, partly in the hope that they will recognize those same mechanisms
buried in other problems. In that way, unnecessary calculation can be
avoided, making it easier to solve more complex problems. It can, how-
ever, take some work to find the hidden mechanism.

<3> Example. [Coupon collector problem] In order to encourage consumers to
buy many packets of cereal, a manufacurer includes a Famous Probabilist
card in each packet. There are 10 different types of card: Chung, Feller,
Lévy, Kolmogorov, . . . , Doob. Suppose that I am seized by the desire to
own at least one card of each type. What is the expected number of packets
that I need to buy in order to achieve my goal?

For the coupon collectors problem I assumed large numbers of cards
of each type, in order to justify the analogy with coin tossing. Without
that assumption the depletion of cards from the population would have
a noticeable effect on the proportions of each type remaining after each
purchase. The next example illustrates the effects of sampling from a finite
population without replacement, when the population size is not assumed
very large.

The example will also provides an illustration of the method of in-
dicators, whereby a random variable is expressed as a sum of indicator
variables IA1 + IA2 + . . . , in order to reduce calculation of an expected value
to separate calculation of probabilities PA1, PA2, . . . via the formula

E
(
IA1 + IA2 + . . . | info

)
= E

(
IA1 | info

)
+ E

(
IA2 | info

)
+ . . .

= P
(
A1 | info

)
+ P

(
A2 | info

)
+ P

(
A2 | info

)
+ . . .
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<4> Example. Suppose an urn contains r red balls and b black balls, all iden-
tical except for color. Suppose you remove one ball at a time, without
replacement, at each step selecting at random from the urn: if k balls re-
main then each has probability 1/k of being chosen.Show that the expected
number of red balls removed before the firstblack ball equals r/(b+ 1).

Compare the solution r/(b+1) with the result for sampling with replace-
ment, where the number of draws required to get the first black would have
a geometric(b/(r+b)) distribution. With replacement, the expected number
of reds removed before the first black would be

(b/(r + b))−1 − 1 = r/b.

Replacement of balls after each draw increases the expected value slightly.
Does that make sense?

The conditioning property (E5) can be used in a subtle way to solve
the classical gambler’s ruin problem. The method of solution invented by
Abraham de Moivre, over two hundred years ago, has grown into one of the
main technical tools of modern probability.

<5> Example. Suppose two players, Alf and Betamax, bet on the tosses of a
fair coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax pays
Alf one dollar. The stop playing when one player runs out of money. If Alf
starts with α dollar bills, and Betamax starts with β dollars bills (both α
and β whole numbers), what is the probability that Alf ends up with all the
money?

De Moivre’s method also works with biased coins, if we count profits in a
different way—an even more elegant application of conditional expectations.
The next Example provides the details. You could safely skip it if you
understand the tricky idea behind Example <5>.

<6> Example. Same problem as in Example <5>, except that the coin they
toss has probability p 6= 1/2 of landing heads. (Could be skipped.)

You could also safely skip the final Example. It contains a discussion of
a tricky little problem, that can be solved by conditioning or by an elegant
symmetry argument.
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<7> Example. Big pills, little pills. (Tricky. Should be skipped.)

Things to remember.

• Expectations (and conditional expectations) are linear (E1), increas-
ing (E3) functions of random variables, which can be calculated as
weighted averages of conditional expectations,

E
(
X | info

)
=
∑

i
E
(
X | Fi, info

)
P
(
Fi | info

)
,

where the disjoint events F1, F2, . . . cover all possibilities (the weights
sum to one).

• The indicator function of an event A is the random variable defined
by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

The expected value of an indicator variable, E (IA | info), is the same
as the probability of the corresponding event, P (A | info).

• As a consequence of the rules,

E
(
g(X) | info

)
=
∑

i
g(ci)P

(
X = ci | info

)
,

if X can take only values c1, c2, . . . .

Example 1.

For independent coin tossing, what is the expected value of X, the number
of tosses to get the first head?

Suppose the coin has probability p > 0 of landing heads. (So we are
actually calculating the expected value for the geometric(p) distribution.) I
will present two methods.

Method A: a Markov argument without the picture.

Condition on whether the first toss lands heads (H1) or tails (T1).

EX = E(X | H1)PH1 + E(X | T1)PT1
= (1)p+ (1 + EX)(1− p).
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The reasoning behind the equality

E(X | T1) = 1 + EX

is: After a tail we are back where we started, still counting the number of
tosses until a head, except that the first tail must be included in that count.

Solving the equation for EX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it decrease
as p increases? What happens as p tends to zero or one?)

Method B.

By the formula (E5),

EX =
∑∞

k=1
k(1− p)k−1p.

There are several cute ways to sum this series. Here is my favorite. Write
q for 1 − p. Write the kth summand as a a column of k terms pqk−1, then
sum by rows:

EX = p+ pq + pq2 + pq3 + . . .

+pq + pq2 + pq3 + . . .

+pq2 + pq3 + . . .

+pq3 + . . .

...

Each row is a geometric series.

EX = p/(1− q) + pq/(1− q) + pq2/(1− q) + . . .

= 1 + q + q2 + . . .

= 1/(1− q)
= 1/p,

same as before. �

Example 2.

The “HHH versus TTHH” Example in Chapter 1 solved the following prob-
lem:
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Imagine that I have a fair coin, which I toss repeatedly. Two
players, M and R, observe the sequence of tosses, each waiting
for a particular pattern on consecutive tosses: M waits for hhh,
and R waits for tthh. The one whose pattern appears first is the
winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly sur-
prising, because, at first sight, a pattern of four appears harder to achieve
than a pattern of three.

A calculation of expected values will add to the puzzlement. As you will
see, if the game is continued until each player sees his pattern, it takes tthh
longer (on average) to appear than it takes hhh to appear. However, when
the two patterns are competing, the tthh pattern is more likely to appear
first. How can that be?

For the moment forget about the competing hhh pattern: calculate the
expected number of tosses needed before the pattern tthh is obtained with
four successive tosses. That is, if we let X denote the number of tosses
required then the problem asks for the expected value EX.

S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the start-
ing state (labelled S) to the state TTHH where the pattern is achieved.
Each arrow in the diagram corresponds to a transition between states with
probability 1/2. The corresponding transition matrix is:

P =



S T TT TTH TTHH

S 1/2 1/2 0 0 0
T 1/2 0 1/2 0 0
TT 0 0 1/2 1/2 0
TTH 0 1/2 0 0 1/2
TTHH 0 0 0 0 1

.
Once again it is easier to solve not just the original problem, but a set

of problems, one for each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)

...
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Then the original problem is asking for the value of ES .
Condition on the outcome of the first toss, writing H for the event {first

toss lands heads} and T for the event {first toss lands tails}. From rule E4
for expectations,

ES = E(X | start at S,T)P(T | start at S)

+ E(X | start at S,H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does
not depend on the state). For the first of the conditional expectations,
count 1 for the first toss, then recognize that the remaining tosses are just
those needed to reach TTHH starting from the state T :

E(X | start at S,T) = 1 + E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an
analogous expression for the second conditional expectation. Substitution
into the expression for ES then gives

ES = 1
2(1 + ET ) + 1

2(1 + ES)

Similarly,

ET = 1
2(1 + ETT ) + 1

2(1 + ES)

ETT = 1
2(1 + ETT ) + 1

2(1 + ETTH)

ETTH = 1
2(1 + 0) + 1

2(1 + ET )

What does the zero in the last equation represent?
The four linear equations in four unknowns have the solution ES = 16,

ET = 14, ETT = 10, ETTH = 8. Thus, the solution to the original problem
is that the expected number of tosses to achieve the tthh pattern is 16. �

Example 3.

In order to encourage consumers to buy many packets of cereal, a
manufacurer includes a Famous Probabilist card in each packet.
There are 10 different types of card: Chung, Feller, Lévy, Kol-
mogorov, . . . , Doob. Suppose that I am seized by the desire to
own at least one card of each type. What is the expected number
of packets that I need to buy in order to achieve my goal?
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Assume that the manufacturer has produced enormous numbers of cards,
the same number for each type. (If you have ever tried to collect objects
of this type, you might doubt the assumption about equal numbers. But,
without it, the problem becomes exceedingly difficult.) The assumption
ensures, to a good approximation, that the cards in different packets are
independent, with probability 1/10 for a Chung, probability 1/10 for a Feller,
and so on.

The high points in my life occur at random “times” T1, T1 + T2, . . . ,
T1 + T2 + · · ·+ T10, when I add a new type of card to my collection: After
one card (that is, T1 = 1) I have my first type; after another T2 cards I will
get something different from the first card; after another T3 cards I will get
a third type; and so on.

The question asks for E(T1 + T2 + · · · + T10), which rule E1 (applied
repeatedly) reexpresses as ET1 + ET2 + · · ·+ ET10.

The calculation for ET1 is trivial because T1 must equal 1: we get ET1 = 1
by rule (E2). Consider the mechanism controlling T2. For concreteness
suppose the first card was a Doob. Each packet after the first is like a coin
toss with probability 9/10 of getting a head (= a nonDoob), with T2 like
the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example <1> that ET2 = 10/9, a value slightly larger than 1.
Now consider the mechanism controlling T3. Condition on everything

that was observed up to time T1 +T2. Under the assumption of equal abun-
dance and enormous numbers of cards, most of this conditioning information
is acually irrelevent; the mechanism controlling T3 is independent of the past
information. (Hard question: Why would the T2 and T3 mechanisms not be
independent if the cards were not equally abundant?) So what is that T3
mechanism? I am waiting for any one of the 8 types I have not yet collected.
It is like coin tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thus ET3 = 10/8.

Remark. More precisely, T3 is independent of T2 with conditional
probability distribution geometric (8/10). That is, with p = 8/10,

P{T3 = k | T2 = `} = (1− p)k−1p for k = 1, 2, . . .

for every possible `.
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And so on, leading to

ET1 + ET2 + · · ·+ ET10 = 1 + 10/9 + 10/8 + ...+ 10/1 ≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards. �
Note: The independence between packets was not needed to justify

the appeal to rule (E1), to break the expected value of the sum into a
sum of expected values. It did allow me to recognize the various geometric
distributions without having to sort through possible effects of large T2 on
the behavior of T3, and so on.

You might appreciate better the role of independence if you try to solve
a similar (but much harder) problem with just two sorts of card, not in equal
proportions.

Example 4.

Suppose an urn contains r red balls and b black balls, all iden-
tical except for color. Suppose you remove one ball at a time,
without replacement, at each step selecting at random from the
urn: if k balls remain then each has probability 1/k of being cho-
sen.Show that the expected number of red balls removed before
the firstblack ball equals r/(b+ 1).

The problem might at first appear to require nothing more than a simple
application of rule (E5)’ for expectations. We shall see. Let T be the
number of reds removed before the first black. Find the distribution of T ,
then appeal to E5′ to get

ET =
∑

k
kP{T = k}.

Sounds easy enough. We have only to calculate the probabilities P{T = k}.
Define Ri = {ith ball red} and Bi = {ith ball black}. The possible

values for T are 0, 1, . . . , r. For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1R2 . . . RkBk+1)

= (PR1)P(R2 | R1)P(R3 | R1R2) . . .P(Bk+1 | R1 . . . Rk)

=
r

r + b
.
r − 1

r + b− 1
. . .

b

r + b− k
.

The dependence on k is fearsome. I wouldn’t like to try multiplying by k
and summing. If you are into pain you might try to continue this line of
argument. Good luck.
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There is a much easier way to calculate the expectation, by breaking T
into a sum of much simpler random variables for which (E5)’ is trivial to
apply. This approach is sometimes called the method of indicators.

Suppose the red balls are labelled 1, . . . , r. Let Ti equal 1 if red ball
number i is sampled before the first black ball, zero otherwise. That is, Ti
is the indicator for the event

{red ball number i is removed before any of the black balls}.

(Be careful here. The black balls are not thought of as numbered. The
first black ball is not a ball bearing the number 1; it might be any of the
b black balls in the urn.) Then T = T1 + · · · + Tr. By symmetry—it is
assumed that the numbers have no influence on the order in which red balls
are selected—each Ti has the same expectation. Thus

ET = ET1 + · · ·+ ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event
{T1 = 1} occurs if and only if red ball number 1 is drawn before all b of
the black balls. By symmetry, the event has probability 1/(b+ 1). (If b+ 1
objects are arranged in random order, each object has probability 1/(1 + b)
of appearing first in the order.)

Remark. If you are not convinced by the appeal to symmetry, you
might find it helpful to consider a thought experiment where all r + b
balls are numbered and they are removed at random from the urn.
That is, treat all the balls as distinguishable and sample until the
urn is empty. (You might find it easier to follow the argument in a
particular case, such as all 120 = 5! orderings for five distinguishable
balls, 2 red and 3 black.) The sample space consists of all permutations
of the numbers 1 to r + b. Each permutation is equally likely. For
each permutation in which red 1 precedes all the black balls there is
another equally likely permutation, obtained by interchanging the red
ball with the first of the black balls chosen; and there is an equally
likely permutation in which it appears after two black balls, obtained
by interchanging the red ball with the second of the black balls chosen;
and so on. Formally, we are partitioning the whole sample space into
equally likely events, each determined by a relative ordering of red 1
and all the black balls. There are b+ 1 such equally likely events, and
their probabilities sum to one.

Now it is easy to calculate the expected value for red 1.

ET1 = 0P{T1 = 0}+ 1P{T1 = 1} = 1/(b+ 1)
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The expected number of red balls removed before the first black ball is equal
to r/(b+ 1). �

Example 5.

Suppose two players, Alf (A for short) and Betamax (B for
short), bet on the tosses of a fair coin: for a head, Alf pays Be-
tamax one dollar; for a tail, Betamax pays Alf one dollar. They
stop playing when one player runs out of money. If Alf starts
with α dollar bills, and Betamax starts with β dollars bills (both
α and β whole numbers), what is the probability that Alf ends
up with all the money?

Write Xn for the number of dollars held by A after n tosses. (Of course,
once the game ends the value of Xn stays fixed from then on, at either a+ b
or 0, depending on whether A won or not.) It is a random variable taking
values in the range {0, 1, 2, . . . , a + b}. We start with X0 = α. To solve
the problem, calculate EXn, for very large n in two ways, then equate the
answers. We need to solve for the unknown θ = P{A wins}.

First calculation.

Invoke rule (E4) with the sample space broken into three pieces,

An = {A wins at, or before, the nth toss},
Bn = {B wins at, or before, the nth toss},
Cn = {game still going after the nth toss}.

For very large n the game is almost sure to be finished, with PAn ≈ θ,
PBn ≈ 1− θ, and PCn ≈ 0. Thus

EXn = E(Xn | An)PAn + E(Xn | Bn)PBn + E(Xn | Cn)PCn
≈
(
(α+ β)× θ

)
+
(
0× (1− θ)

)
+
(
(something)× 0

)
.

The error in the approximation goes to zero as n goes to infinity.

Second calculation.

Calculate conditionally on the value of Xn−1. That is, split the sample
space into disjoint events Fk = {Xn−1 = k}, for k = 0, 1, . . . , a + b, then
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work towards another appeal to rule (E4). For k = 0 or k = a+ b, the game
will be over, and Xn must take the same value as Xn−1. That is,

E(Xn | F0) = 0 and E(Xn | Fα+β) = α+ β.

For values of k between the extremes, the game is still in progress. With
the next toss, A’s fortune will either increase by one dollar (with probability
1/2) or decrease by one dollar (with probability 1/2). That is, for k =
1, 2, . . . , α+ β − 1,

E(Xn | Fk) = 1
2(k + 1) + 1

2(k − 1) = k.

Now invoke (E4).

E(Xn) = (0× PF0) + (1× PF1) + · · ·+ (α+ β)PFα+β.

Compare with the direct application of (E5)’ to the calculation of EXn−1:

E(Xn−1) =
(
0× P{Xn−1 = 0}

)
+
(
1× P{Xn−1 = 1}

)
+

· · ·+
(
(α+ β)× P{Xn−1 = α+ β}

)
,

which is just another way of writing the sum for EXn derived above. Thus
we have

EXn = EXn−1

The expected value doesn’t change from one toss to the next.
Follow this fact back through all the previous tosses to get

EXn = EXn−1 = EXn−2 = · · · = EX2 = EX1 = EX0.

But X0 is equal to α, for certain, which forces EX0 = α.

Putting the two answers together.

We have two results: EXn = α, no matter how large n is; and EXn gets
arbitrarily close to θ(α + β) as n gets larger. We must have α = θ(α + β).
That is, Alf has probability α/(α+ β) of eventually winning all the money.
�

Remark. Twice I referred to the sample space, without actually having
to describe it explicitly. It mattered only that several conditional
probabilities were determined by the wording of the problem.
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Danger: The next two Examples are harder. They can be skipped.

Example 6.

Same problem as in Example <5>, except that the coin they toss has prob-
ability p 6= 1/2 of landing heads.

The cases p = 0 and p = 1 are trivial. So let us assume that 0 < p < 1
(and p 6= 1/2). Essentially De Moivre’s idea was that we could use almost
the same method as in Example <5> if we kept track of A’s fortune on a
geometrically expanding scaled. For some number s, to be specified soon,
consider a new random variable Zn = sXn .

Xn scale

Zn scale

0 1 α+β

sα+β

s= s1
1=s0

s2

Once again write θ for P{A wins}, and give the events An, Bn, and Cn
the same meaning as in Example <5>.

As in the first calculation for the other Example, we have

EZn = E(sXn | An)PAn + E(sXn | Bn)PBn + E(sXn | Cn)PCn

≈
(
sα+β × θ

)
+
(
s0 × (1− θ)

)
+
(
(something)× 0

)
if n is very large.

For the analog of the second calculation, in the cases where the game
has ended by at or before the (n− 1)st toss we have

E(Zn | Xn−1 = 0) = s0 and E(Zn | Xn−1 = α+ β) = sα+β.
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For 0 < k < α+ β, the result of the calculation is slightly different.

E(Zn | Xn−1 = k) = psk+1 + (1− p)sk−1 =
(
ps+ (1− p)s−1

)
sk.

If we choose s = (1−p)/p, the factor
(
ps+ (1− p)s−1

)
becomes 1. Invoking

rule E4 we then get

EZn = E(Zn | Xn−1 = 0)× P(Xn−1 = 0) + E(Zn | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(Zn | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1)

+ · · ·+ sα+β × P(Xn−1 = α+ β)

Compare with the calculation of EZn−1 via (E5).

EZn−1 = E(sXn−1 | Xn−1 = 0)× P(Xn−1 = 0)

+ E(sXn−1 | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(sXn−1 | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . .

+ sα+β × P(Xn−1 = α+ β)

Once again we have a situation where EZn stays fixed at the initial value
EZ0 = sα, but, with very large n, it can be made arbitrarily close to θsα+β+
(1− θ)s0. Equating the two values, we deduce that

P{Alf wins} = θ =
1− sα

1− sα+β
where s = (1− p)/p.

What goes wrong with this calculation if p = 1/2? As a check we could
let p tend to 1/2, getting

1− sα

1− sα+β
=

(1− s)(1 + s+ · · ·+ sα−1)

(1− s)(1 + s+ · · ·+ sα+β−1)
for s 6= 1

=
1 + s+ · · ·+ sα−1

1 + s+ · · ·+ sα+β−1

→ α

α+ β
as s→ 1.

Comforted? �

Example 7.

My interest in the calculations in Example <4> was kindled by a prob-
lem that appeared in the August-September 1992 issue of the American
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Mathematical Monthly. My solution to the problem—the one I first came
up with by application of a straightforward conditioning argument—reduces
the calculation to several applications of the result from the previous Ex-
ample. The solution offered by two readers of the Monthly was slicker.

E 3429 [1991, 264]. Proposed by Donald E. Knuth and John McCarthy,
Stanford University, Stanford, CA.

A certain pill bottle contains m large pills and n small pills initially, where each
large pill is equivalent to two small ones. Each day the patient chooses a pill at
random; if a small pill is selected, (s)he eats it; otherwise (s)he breaks the selected
pill and eats one half, replacing the other half, which thenceforth is considered to
be a small pill.

(a) What is the expected number of small pills remaining when the last large pill
is selected?

(b) On which day can we expect the last large pill to be selected?

Solution from AMM:.

Composite solution by Walter Stromquist, Daniel H. Wagner, Associates,
Paoli, PA and Tim Hesterberg, Franklin & Marshall College, Lancaster,
PA. The answers are (a) n/(m+1)+

∑m
k=1(1/k), and (b) 2m+n− (n/(m+

1))−
∑m

k=1(1/k). The answer to (a) assumes that the small pill created by
breaking the last large pill is to be counted. A small pill present initially
remains when the last large pill is selected if and only if it is chosen last
from among the m+1 element set consisting of itself and the large pills—an
event of probability 1/(m+1). Thus the expected number of survivors from
the original small pills is n/(m + 1). Similarly, when the kth large pill is
selected (k = 1, 2, . . . ,m), the resulting small pill will outlast the remaining
large pills with probability 1/(m−k+1), so the expected number of created
small pills remaining at the end is

∑m
k=1(1/k). Hence the answer to (a) is as

above. The bottle will last 2m+n days, so the answer to (b) is just 2m+n
minus the answer to (a), as above.

I offer two alternative methods of solution for the problem. The first
method uses a conditioning argument to set up a recurrence formula for the
expected numbers of small pills remaining in the bottle after each return of
half a big pill. The equations are easy to solve by repeated substitution.
The second method uses indicator functions to spell out the Hesterberg-
Stromquist method in more detail. Apparently the slicker method was not
as obvious to most readers of the Monthly (and me):

Editorial comment. Most solvers derived a recurrence relation, guessed
the answer, and verified it by induction. Several commented on the
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origins of the problem. Robert High saw a version of it in the MIT
Technology Review of April, 1990. Helmut Prodinger reports that
he proposed it in the Canary Islands in 1982. Daniel Moran at-
tributes the problem to Charles MacCluer of Michigan State Uni-
versity, where it has been known for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect

solution was received.

Conditioning method..

Invent random variables to describe the depletion of the pills. Initially
there are L0 = n small pills in the bottle. Let S1 small pills be consumed
before the first large pill is broken. After the small half is returned to the
bottle let there be L1 small pills left. Then let S2 small pills be consumed
before the next big pill is split, leaving L2 small pills in the bottle. And so
on.

S
1
 small S

2
 small S

i 
small

L
1
 small left L

i
 small left

first big broken ith big brokenith big brokenfirst big broken last big broken

With this notation, part (a) is asking for ELm. Part (b) is asking for
2m+n−ELm: If the last big pill is selected on day X then it takes X+Lm
days to consume the 2m+n small pill equivalents, so EX +ELm = 2m+n.

The random variables are connected by the equation

Li = Li−1 − Si + 1,

the −Si representing the small pills consumed between the breaking of the
(i − 1)st and ith big pill, and the +1 representing the half of the big pill
that is returned to the bottle. Taking expectations we get

ELi = ELi−1 − ESi + 1.<8>

The result from Example <4> will let us calculate ESi in terms of ELi−1,
thereby producing the recurrence formula for ELi.

Condition on the pill history up to the (i− 1)st breaking of big pill (and
the return of the unconsumed half to the bottle). At that point there are
Li−1 small pills and m − (i − 1) big pills in the bottle. The mechanism
controlling Si is just like the urn problem of Example <4>, with

r = Li−1 red balls (= small pills)

b = m− (i− 1) black balls (= big pills).
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From that Example,

E{Si |history to (i− 1)st breaking of a big pill} = Li−11 +m− (i− 1).

To calculate ESi we would need to average out using weights equal to the
probability of each particular history:

ESi =
1

1 +m− (i− 1)

∑
histories

P{history}(value of Li−1 for that history).

The sum on the right-hand side is exactly the sum we would get if we
calculated ELi−1 using rule E4, partitioning the sample space according to
possible histories up to the (i− 1)st breaking of a big pill. Thus

ESi =
1

2 +m− i
ELi−1.

Now we can eliminate ESi from equality <8> to get the recurrence for-
mula for the ELi values:

ELi =

(
1− 1

2 +m− i

)
ELi−1 + 1.

If we define θi = ELi/(1 +m− i) the equation becomes

θi = θi−1 +
1

1 +m− i
for i = 1, 2, . . . ,m,

with initial condition θ0 = EL0/(1+m) = n/(1+m). Repeated substitution
gives

θ1 = θ0 +
1

m

θ2 = θ1 +
1

m− 1
= θ0 +

1

m
+

1

m− 1

θ3 = θ2 +
1

m− 2
= θ0 +

1

m
+

1

m− 1
+

1

m− 2
...

θm = · · · = θ0 +
1

m
+

1

m− 1
+ · · ·+ 1

2
+

1

1
.

That is, the expected number of small pills left after the last big pill is
broken equals

ELm = (1 +m−m)θm

=
n

1 +m
+ 1 +

1

2
+ · · ·+ 1

m
.
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Rewrite of the Stromquist-Hesterberg solution..

Think in terms of half pills, some originally part of big pills. Number the
original half pills 1, . . . , n. Define

Hi =
{

+1 if original half pill i survives beyond last big pill
0 otherwise.

Number the big pills 1, . . . ,m. Use the same numbers to refer to the half
pills that are created when a big pill is broken. Define

Bj =
{

+1 if created half pill j survives beyond last big pill
0 otherwise.

The number of small pills surviving beyond the last big pill equals

H1 + · · ·+Hn +B1 + · · ·+Bm.

By symmetry, each Hi has the same expected value, as does each Bj . The
expected value asked for by part (a) equals

nEH1 +mEB1 = nP{H1 = 1}+mP{B1 = 1}.<9>

For the calculation of P{H1 = +1} we can ignore all except the relative
ordering of the m big pills and the half pill described by H1. By symmetry,
the half pill has probability 1/(m + 1) of appearing in each of the m + 1
possible positions in the relative ordering. In particular,

P{H1 = +1} =
1

m+ 1
.

For the created half pills the argument is slightly more complicated. If
we are given that big pill number 1 the kth amongst the big pills to be
broken, the created half then has to survive beyond the remaining m−k big
pills. Arguing again by symmetry amongst the (m−k+ 1) orderings we get

P{B1 = +1 | big number 1 chosen as kth big} =
1

m− k + 1
.

Also by symmetry,

P{big 1 chosen as kth big} =
1

m
.
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Average out using the conditioning rule E4 to deduce

P{B1 = +1} =
1

m

m∑
k=1

1

m− k + 1
.

Notice that the summands run through the values 1/1 to 1/m in reversed
order.

When the values for P{H1 = +1} and P{B1 = +1} are substituted
into <9>, the asserted answer to part (a) results. �
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Appendix: The fair price interpretation of expectations.

Consider a situation—a bet if you will—where you stand to receive an un-
certain return X. You could think of X as a random variable, a real-valued
function on a sample space S. For the moment forget about any probabili-
ties on the sample space S. Suppose you consider p(X) the fair price to pay
in order to receive X. What properties must p(·) have?

Your net return will be the random quantity X−p(X), which you should
consider to be a fair return. Unless you start worrying about the utility
of money you should find the following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y )
fair for Y then you should be prepared to make both bets, paying
p(X) + p(Y ) to receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you
pay 2p(X) to receive 2X (actually, that particular example is a special
case of (i)) or 3.76p(X) to receive 3.76X, or −p(X) to receive −X. The
last example corresponds to willingness to take either side of a fair bet.
In general, to receive cX you should pay cp(X), for constant c.

(iii) There is no fair bet whose return X − p(X) is always ≥ 0 (except for
the trivial situation where X − p(X) is certain to be zero).

If you were to declare a bet with returnX−p(X) ≥ 0 under all circumstances
to be fair, I would be delighted to offer you the opportunity to receive the
“fair” return −C (X − p(X)), for an arbitrarily large positive constant C. I
couldn’t lose.

Fact 1: Properties (i), (ii), and (iii) imply that p(αX + βY ) = αp(X) +
βp(Y ) for all random variables X and Y , and all constants α and β.

Consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY )− αp(X)− βp(Y ).
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If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii).
The asserted equality follows.

Fact 2: Properties (i), (ii), and (iii) imply that p(Y ) ≤ p(X) if the random
variable Y is always ≤ the random variable X.

If you claim that p(X) < p(Y ) then I would be happy for you to accept
the bet that delivers

(Y − p(Y ))− (X − p(X)) = −(X − Y )− (p(Y )− p(X)) ,

which is always < 0.
The two Facts are analogous to rules E1 and E3 for expectations. You

should be able to deduce the analog of E2 from (iii).
As a special case, consider the bet that returns 1 if an event F occurs,

and 0 otherwise. If you identify the event F with the random variable taking
the value 1 on F and 0 on F c (that is, the indicator of the event F ), then it
follows directly from Fact 1 that p(·) is additive: p(F1∪F2) = p(F1) + p(F2)
for disjoint events F1 and F2, an analog of rule P4 for probabilities.

Contingent bets.

Things become much more interesting if you are prepared to make a bet
to receive an amount X, but only when some event F occurs. That is, the
bet is made contingent on the occurrence of F . Typically, knowledge of
the occurrence of F should change the fair price, which we could denote by
p(X | F ). Let me write Z for the indicator function of the event F , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is (X − p(X | F ))Z. The
indicator function Z ensures that money changes hands only when F occurs.

By combining various bets and contingent bets, we can deduce that an
analog of rule E4 for expectations: if S is partitioned into disjoint events
F1, . . . , Fk, then

p(X) =
k∑
i=1

p(Fi)p(X | Fi).

Make the following bets. Write ci for p(X | Fi).

(a) For each i, pay cip(Fi) in order to receive ci if Fi occurs.

ritem[(b)] Pay −p(X) in order to receive −X.
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(c) For each i, make a bet contingent on Fi: pay ci (if Fi occurs) to receive
X.

If event Fk occurs, your net profit will be

−
∑
i

cip(Fi) + ck + p(X)−X − ck +X = p(X)−
∑
i

cip(Fi),

which does not depend on k. Your profit is always the same constant value.
If the constant were nonzero, requirement (iii) for fair bets would be vio-
lated.

If you rewrite p(X) as the expected value EX, and p(F ) as PF for an
event F , and E(X | F ) for p(X | F ), you will see that the properties of fair
prices are completely analogous to the rules for probabilities and expecta-
tions. Some authors take the bold step of interpreting probability theory
as a calculus of fair prices. The interpretation has the virtue that it makes
sense in some situations where there is no reasonable way to imagine an un-
limited sequence of repetions from which to calculate a long-run frequency
or average.

See de Finetti (1974) for a detailed discussion of expectations as fair
prices.
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Things binomial
The standard coin-tossing mechanism drives much of classical probabil-

ity. It generates several standard distributions, the most important of them
being the Binomial. The name comes from the binomial coefficient,

(
n
k

)
,

which is defined as the number of subsets of size k for a set of size n. (Read
the symbol as “n choose k”.) By convention,

(
n
0

)
= 1.

There is a quick probabilistic way to determine
(
n
k

)
, for integers 1 ≤ k ≤

n. Suppose k balls are sampled at random, without replacement, from an
urn containing k red balls and n − k black balls. Each of the

(
n
k

)
different

subsets of size k has probability 1/
(
n
k

)
of being selected. In particular, there

is probabilty 1/
(
n
k

)
that the sample consists of the red balls. We can also

calculate this probability using a conditioning argument. Given that the
first i balls are red, the probability that the (i+ 1)st is red is (k− i)/(n− i).
Thus

k

n
.
k − 1

n− 1
.
k − 2

n− 2
. . .

1

n− k + 1

Equating the two values for P{sample consists of all red balls}, we get(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!

The formula also holds for k = 0 if we interpret 0! as 1.

Remark. The symbol
(
n
k

)
is called a binomial coefficient because of its

connection with the binomial expansion: (a + b)n =
∑n
k=0

(
n
k

)
akbn−k.

The expansion can be generalized to fractional and negative powers by
means of Taylor’s theorem. For general real α define(
α

0

)
= 1 and

(
α

k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
for k = 1, 2, . . .

Then

(1 + x)α =

∞∑
k=0

(
α

k

)
xk at least for |x| < 1.

Definition. (Binomial distribution) A random variable is said to have a
Bin(n, p) distribution, for a parameter p in the range 0 ≤ p ≤ 1, if can take
values 0, 1, . . . , n− 1, n with probabilities

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n
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Compare with the binomial expansion,

1 = (p+ q)n =
∑n

k=0

(
n

k

)
pkqn−k where q = 1− p.

<1> Example. For n independent tosses of a coin that lands heads with prob-
ability p, show that the total number of heads has a Bin(n, p) distribution,
with expected value np.

The Binomial distribution arises in any situation where one is interested
in the number of successes in a fixed number of independent trials (or ex-
periments), each of which can result in either success or failure.

<2> Example. An unwary visitor to the Big City is standing at the corner of
1st Street and 1st Avenue. He wishes to reach the railroad station, which
actually occupies the block on 6th Street from 3rd to 4th Avenue. (The
Street numbers increase as one moves north; the Avenue numbers increase
as one moves east.) He is unaware that he is certain to be mugged as soon
as he steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor
lets himself be guided by the tosses of a fair coin: at each intersection he
goes east, with probability 1/2, or north, with probability 1/2. What is the
probability that he is mugged outside the railroad station?

The following problem is an example of Bayesian inference, based on
the probabilistic result known as Bayes’s rule. You need not memorize
the rule, because it is just an application of the conditioning method you
already know.

<3> Example. Suppose a multiple-choice exam consists of a string of unrelated
questions, each having three possible answers. Suppose there are two types
of candidate who will take the exam: guessers, who make a blind stab
on each question, and skilled candidates, who can always eliminate one
obviously false alternative, but who then choose at random between the
two remaining alternatives. Suppose 70% of the candidates who take the
exam are skilled and the other 30% are guessers. A particular candidate has
gotten 4 of the first 6 question correct. What is the probability that he will
also get the 7th question correct?
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As a method of solving statistical problems, Bayesian inference is advo-
cated devoutly by some Statisticians, and derided by others. There is no
disagreement regarding the validity of Bayes’s rule; it is the assignment of
prior probabilities—such as the PS and PG of the previous Example—that
is controversial in a general setting.

The Bayesian message comes through more strongly in the next Example.

<4> Example. Suppose we have three coins, which land heads with proba-
bilities p1, p2, and p3. Choose a coin according to the prior distribu-
tion θi = P{ choose coin i }, for i = 1, 2, 3, then toss that coin n times.
Find the posterior probabilities P{ chose coin i | k heads with n tosses },
for k = 0, 1, . . . , n.

To retain a neutral statistical position, I should also give an example of
a different approach to statistical inference. The example just happens to
involve the Binomial distribution again.

<5> Example. Members of the large governing body of a small country are
given special banking privileges. Unfortunately, some members appear to
be abusing the privilege by writing bad checks. The royal treasurer declares
the abuse to be a minor aberration, restricted to fewer than 5% of the
members. An investigative reporter manages to expose the bank records of
20 members, showing that 4 of them have been guilty. How credible is the
treasurer’s assertion?

We will meet the Binomial again.

Example 1.

For n independent tosses of a coin that lands heads with prob-
ability p, show that the total number of heads has a Bin(n, p)
distribution, with expected value np.

Clearly X can take only values 0, 1, 2, . . . , n. For a fixed a k in this range,
break the event {X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}

...
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Here i runs from 1 to
(
n
k

)
, because each Fi corresponds to a different choice

of the k positions for the heads to occur. (The indexing on the Fi is most
uninformative; it gives no indication of the corresponding pattern of heads
and tails. Maybe you can think of something better.) Write Hj for {jth toss
is a head}. Then

PF1 = P
(
H1H2 . . . HkH

c
k+1 . . . H

c
n

)
= (PH1)(PH2) . . . (PHc

n) by independence

= pk(1− p)n−k.

A similar calculation gives PFi = pk(1 − p)n−k for every other i; all that
changes is the order in which the p and (1− p) factors appear. Thus

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n,

which is the asserted Binomial distribution.
It is possible to calculate EX by the summation formula

EX =
∑n

k=0
E(X|X = k)P{X = k}

=
∑n

k=0
k

(
n

k

)
pk(1− p)n−k

=
∑n

k=1

n(n− 1)!

(k − 1)!(n− k)!
pk(1− p)n−k

= np
∑n−1

k−1=0

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np cf. binomial expansion of (p+ (1− p))n−1.

The manipulations of the sums was only slightly tedious, but why endure
even a little tedium when the method of indicators is so much simpler?
Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.

Then X = X1 + . . . Xn, which gives EX = EX1 + . . .EXn = nEX1. Calcu-
late.

EX1 = 0P{X1 = 0}+ 1P{X1 = 1} = p.

Thus EX = np.

Remark. The calculation made no use of the independence. If each Xi

has marginal distribution Bin(1, p), that is, if

P{Xi = 1} = p = 1− P{Xi = 0} for each i,
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then E(X1 + . . . Xn) = np, regardless of possible dependence between
the tosses. The expectation of a sum is the sum of the expectations,
no matter how dependent the summands might be.

�

Example 2.

An unwary visitor to the Big City is standing at the corner of 1st
Street and 1st Avenue. He wishes to reach the railroad station,
which actually occupies the block on 6th Street from 3rd to 4th
Avenue. (The Street numbers increase as one moves north; the
Avenue numbers increase as one moves east.) He is unaware that
he is certain to be mugged as soon as he steps onto 6th Street or
6th Avenue.

Being unsure of the exact location of the railroad station, the
visitor lets himself be guided by the tosses of a fair coin: at each
intersection he goes east, with probability 1/2, or north, with
probability 1/2. What is the probability that he is mugged outside
the railroad station?1

6

3 4

To get mugged at (3,6) or (4,6) the visitor must proceed north from
either the intersection (3,5) or the intersection (4,5)—we may assume that
if he gets mugged at (2,6) and then moves east, he won’t get mugged again
at (3,6), which would be an obvious waste of valuable mugging time for no
return. The two possibilities correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north}+ P{reach (4,5), move north}
= 1

2P{reach (3,5)}+ 1
2P{reach (4,5)}

= 1
2P{move east twice during first 6 blocks}

+ 1
2P{move east 3 times during first 7 blocks}.

A better way to describe the last event might be “move east 3 times and
north 4 times, in some order, during the choices governed by the first 7
tosses of the coin.” The Bin(7, 1/2) lurks behind the calculation. The other
calculation involves the Bin(6, 1/2).

P{mugged at railroad} =
1

2

(
6

2

)(
1

2

)2(1

2

)4

+
1

2

(
7

3

)(
1

2

)3(1

2

)4

=
65

256
.



Chap 3: Things binomial 6

Remark. Notice that the events {reach (3,5)} and {reach (4,5)} are
not disjoint. We need to include the part about moving north to get a
clean break.

�

Example 3.

Suppose a multiple-choice exam consists of a string of unrelated
questions, each having three possible answers. Suppose there are
two types of candidate who will take the exam: guessers, who
make a blind stab on each question, and skilled candidates, who
can always eliminate one obviously false alternative, but who then
choose at random between the two remaining alternatives. Sup-
pose 70% of the candidates who take the exam are skilled and the
other 30% are guessers. A particular candidate has gotten 4 of
the first 6 question correct. What is the probability that he will
also get the 7th question correct?

Interpret the assumptions to mean that a guesser answers questions inde-
pendently, with probability 1/3 of being correct, and that a skilled candidate
also answers independently, but with probability 1/2 of being correct. Let X
denote the number of questions answered correctly from the first six. Let C
denote the event {question 7 answered correctly}, G denote the event {the
candidate is a guesser}, and S denote the event {the candidate is skilled}.
Then

(i) for a guesser, X has (conditional) distribution Bin(6,1/3)

(ii) for a skilled candidate, X has (conditional) distribution Bin (6,1/2).

(iii) PG = 0.3 and PS = 0.7.

The question asks for P(C | X = 4).
Split according to the type of candidate, then condition.

P(C | X = 4) = P{CS | X = 4}+ P{CG | X = 4}
= P(S | X = 4)P(C | X = 4, S)

+ P(G | X = 4)P(C | X = 4, G).

If we know the type of candidate, the {X = 4} information becomes irrele-
vant. The last expression simplifies to

1
2P(S | X = 4) + 1/3P(G | X = 4).
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Notice how the success probabilities are weighted by probabilities that sum-
marize our current knowledge about whether the candidate is skilled or
guessing. If the roles of {X = 4} and type of candidate were reversed we
could use the conditional distributions for X to calculate conditional prob-
abilities:

P(X = 4 | S) =
(
6
4

)
(12)4(12)2 =

(
6
4

)
1/64

P(X = 4 | G) =
(
6
4

)
(1/3)

4(2/3)
2 =

(
6
4

)
4/729.

I have been lazy with the binomial coefficients because they will later cancel
out.

Apply the usual splitting/conditioning argument.

P(S | X = 4) =
PS{X = 4}
P{X = 4}

=
P(X = 4 | S)PS

P(X = 4 | S)PS + P(X = 4 | G)PG

=

(
6
4

)
1/64(.7)(

6
4

)
1/64(.7) +

(
6
4

)
4/729(.3)

≈ .869.

There is no need to repeat the calculation for the other conditional proba-
bility, because

P(G | X = 4) = 1− P(S | X = 4) ≈ .131.

Thus, given the 4 out of 6 correct answers, the candidate has conditional
probability of approximately

1
2(.869) + 1/3(.131) ≈ .478

of answering the next question correctly.

Remark. Some authors prefer to summarize the calculations by means
of the odds ratios:

P(S | X = 4)

P(G | X = 4)
=

PS
PG
· P(X = 4 | S)

P(X = 4 | G)
.

The initial odds ratio, PS/PG, is multiplied by a factor that reflects
the relative support of the data for the two competing explanations
“skilled” and “guessing”.
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�

Example 4.

Suppose we have three coins, which land heads with probabili-
ties p1, p2, and p3. Choose a coin according to the prior dis-
tribution θi = P{ chose coin i }, for i = 1, 2, 3, then toss that
coin n times. Find the posterior probabilities

P{ chose coin i | k heads with n tosses } for k = 0, 1, . . . , n.

Let Ci denote the event { choose coin i } and Dk denote the event that
we get k heads from the n tosses. Then PCi = θi and

P(Dk | Ci) =

(
n

k

)
pki (1− pi)n−k for k = 0, 1, . . . , n.

Condition.

P(Ci | Dk) =
P(CiDk)

PDk

=
P(Dk | Ci)P(Ci)∑3
j=1 P(Dk | Cj)P(Cj)

=
pki (1− pi)n−kθi∑3
j=1 p

k
j (1− pj)n−kθj

Notice that the
(
n
k

)
factors have cancelled. In fact, we would get the same

posterior probabilities if we conditioned on any particular pattern of k heads
and n− k tails.

The R-script Bayes.R defines functions to plot the posterior probabilities
as a function of k/n, for various choices of the pi’s and the θi’s and n. The
small circles in the plots correspond to the values P(C1 | Dk), the small
triangles to P(C2 | Dk), and the small + signs to P(C3 | Dk). For the
pictures I chose p1 = 0.45, p2 = 0.5 and p3 = 0.55 with prior probabilities
θ1 = 0.5, θ2 = 0.3, and θ3 = 0.2.

draw.posterior(p=c(0.45,0.5,0.55),prior=c(0.5,0.3,0.2),

tosses=c(10,50))
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When n gets large, the posterior probability P(Ci | Dk) gets closer to 1
for values of k/n close to pi. Is that a comforting fact? �

Example 5.

Members of the large governing body of a small country are given
special banking privileges. Unfortunately, some members appear
to be abusing the privilege by writing bad checks. The royal trea-
surer declares the abuse to be a minor aberration, restricted to
fewer than 5% of the members. An investigative reporter man-
ages to expose the bank records of 20 members, showing that 4 of
them have been guilty. How credible is the treasurer’s assertion?

Suppose a fraction p of the members are guilty. If the sample size 20
is small relative to the size of the legislature, and if the reporter samples
at random from its members, the number of guilty in the sample should
be distributed Bin(20, p). You should be able to think of many ways in
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which these assumptions could be violated, but I’ll calculate as if the simple
Binomial model were correct.

Write X for the number of guilty in the sample, and add a subscript p
to the probabilities to show that they refer to the Bin(20, p) distribution.
Also write q for 1− p. Before the sample is taken we could assert

Pp{X ≥ 4}
=
(
20
4

)
p4q16 +

(
20
5

)
p5q14 + · · ·+

(
20
4

)
p20q0

= 1−
[(

20
0

)
p0q20 +

(
20
1

)
p1q19 +

(
20
2

)
p2q18 +

(
20
3

)
p3q17

]
.

The second form makes it easier to calculate by hand when p = .05:

P.05{X ≥ 4} ≈ .02.

For values of p less than 0.05 the probability is even smaller.
After the sample is taken we are faced with a choice: either the trea-

surer is right, and we have just witnessed something very unusual; or maybe
we should disbelieve the 5% upper bound. This dichotomy illustrates the
statistical procedure called hypothesis testing. One chooses an event that
should be rare under one model (the so-called null hypothesis), but more
likely under an alternative model. If the event occurs, it casts doubt on the
validity of the null hypothesis. For the present example the event {X ≥ 4}
would have been much more likely under alternative explanations involving
larger proportions of bad-check writers amongst the members of the legisla-
ture. �



Chapter 4

Variances and covariances
The expected value of a random variable gives a crude measure for the

“center of location” of the distribution of that random variable. For instance,
if the distribution is symmetric about a value µ then the expected value
equals µ. To refine the picture of a distribution distributed about its “center
of location” we need some measure of spread (or concentration) around
that value. The simplest measure to calculate for many distributions is the
variance (or, more precisely, the square root of the variance).

Definition. The variance of a random variable X with expected value
EX = µ is defined as var(X) = E

(
(X − µ)2

)
. The square root of the

variance of a random variable is called its standard deviation, sometimes
denoted by sd(X).

The variance of a random variable X is unchanged by an added constant:
var(X +C) = var(X) for every constant C, because (X +C)−E(X +C) =
X − EX, the C’s cancelling. It is a desirable property that the spread
should not be affected by a change in location. However, it is also desirable
that multiplication by a constant should change the spread: var(CX) =
C2var(X) and sd(CX) = |C|sd(X), because (CX − E(CX))2 = C2(X −
EX)2. In summary: for constants a and b,

var(a+ bX) = b2var(X) and sd(a+ bX) = |b|sd(X).

Remark. Try not to confuse properties of expected values with
properties of variances: for constants a and b we have var(a + bX) =
b2var(X) but E(a + bX) = a + bEX. Measures of location (expected
value) and spread (standard deviation) should react differently to linear
transformations of the variable. As another example: if a given piece of
“information” implies that a random variable X must take the constant
value C then E(X | information) = C, but var(X | information) = 0.

It is a common blunder to confuse the formula for the variance of
a difference with the formula E(Y − Z) = EY − EZ. If you ever find
yourself wanting to assert that var(Y −Z) is equal to var(Y )− var(Z),
think again. What would happen if var(Z) were larger than var(Y )?
Variances can’t be negative.

version: Sept2011
printed: 18 September 2011
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There is an enormous body of probability literature that deals with ap-
proximations to distributions, and bounds for probabilities, expressible in
terms of expected values and variances. One of the oldest and simplest ex-
amples, the Tchebychev inequality, is still useful, even though it is rather
crude by modern standards.

<1> Example. The Tchebychev inequality: P{|X−µ| ≥ ε} ≤ var(X)/ε2, where
µ = EX and ε > 0.

Remark. In the Chapter on the normal distribution you will find more
refined probability approximations involving the variance.

The Tchebychev inequality gives the right insight when dealing with
sums of random variables, for which variances are easy to calculate. Sup-
pose EY = µY and EZ = µZ . Then

var(Y + Z) = E [Y − µY + Z − µZ ]2

= E
[
(Y − µY )2 + 2(Y − µY )(Z − µZ) + (Z − µZ)2

]
= var(Y ) + cov(Y,Z) + var(Z)

where cov(Y,Z) denotes the covariance between Y and Z:

cov(Y, Z) := E [(Y − µY )(Z − µZ)] .

Remark. Notice that cov(X,X) = var(X). Results about covariances
contain results about variances as special cases.

More generally, for constants a, b, c, d, and random variables U, V, Y, Z,

cov(aU + bV, cY + dZ)

= ac cov(U, Y ) + bc cov(V, Y ) + ad cov(U,Z) + bd cov(V,Z).

It is easier to see the pattern if we work with the centered random variables
U ′ = U − µU , . . . , Z ′ = Z − µZ . For then the left-hand side becomes

E
[
(aU ′ + bV ′)(cY ′ + dZ ′)

]
= E

[
acU ′Y ′ + bc V ′Y ′ + adU ′Z ′ + bd V ′Z ′

]
= acE(U ′Y ′) + bcE(V ′Y ′) + adE(U ′Z ′) + bdE(V ′Z ′).

pollard
Sticky Note
missing 2
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The expected values in the last line correspond to the four covariances.
Sometimes it is easier to subtract off the expected values at the end of

the calculation, by means of the formulae cov(Y, Z) = E(Y Z) − (EY )(EZ)
and, as a particular case, var(X) = E(X2) − (EX)2. Both formulae follow
via an expansion of the product:

cov(Y,Z) = E (Y Z − µY Z − µZY + µY µZ)

= E(Y Z)− µY EZ − µZEY + µY µZ

= E(Y Z)− µY µZ .

Rescaled covariances define correlations, a concept that is much abused
by those who do not understand probability.

Definition. The correlation between Y and Z is defined as

corr(Y, Z) =
cov(Y,Z)√

var(Y )var(Z)

The random variables Y and Z are said to be uncorrelated if corr(Y, Z) = 0.

Remark. Strictly speaking, the variance of a random variable is not
well defined unless it has a finite expectation. Similarly, we should not
talk about corr(Y,Z) unless both random variables have well defined
variances for which 0 < var(Y ) <∞ and 0 < var(Z) <∞.

<2> Example. When well defined, correlations always lie between +1 and −1.

Variances for sums of uncorrelated random variables grow more slowly
than might be anticipated. If Y and Z are uncorrelated, the covariance
term drops out from the expression for the variance of their sum, leaving
var(Y +Z) = var(Y )+var(Z). Similarly, if X1, . . . , Xn are random variables
for which cov(Xi, Xj) = 0 for each i 6= j then

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn)

You should check the last assertion by expanding out the quadratic in the
variables Xi − EXi, observing how all the cross-product terms disappear
because of the zero covariances. These facts lead to a useful concentration
property.
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<3> Example. Concentration of averages around expected value

Zero correlation is often deduced from independence. A pair of random
variables X and Y is said to be independent if every event determined by X
is independent of every event determined by Y . For example, independence
implies that events such as {X ≤ 5} and {7 ≤ Y ≤ 18} are independent,
and so on. Independence of the random variables also implies independence
of functions of those random variables. For example, sin(X) would be inde-
pendent of eY , and so on. For the purposes of Stat241, you should not fret
about the definition of independence: Just remember to explain why you re-
gard some pieces of information as irrelevant when you calculate conditional
probabilities and conditional expectations.

For example, suppose a random variable X can take values x1, x2, . . .
and that X is independent of another random variable Y . Consider the
expected value of a product g(X)h(Y ), for any functions g and h. Calculate
by conditioning on the possible values taken by X:

Eg(X)h(Y ) =
∑

i
P{X = xi}E(g(X)h(Y ) | X = xi).

Given that X = xi, we know that g(X) = g(xi) but we get no help with
understanding the behavior of h(Y ). Thus, independence implies

E(g(X)h(Y ) | X = xi) = g(xi)E(h(Y ) | X = xi) = g(xi)Eh(Y ).

Deduce that

Eg(X)h(Y ) =
∑

i
P{X = xi}g(xi)Eh(Y ) = Eg(X)Eh(Y ).

Put another way, if X and Y are independent random variables

cov
(
g(X), h(Y )

)
= E

(
g(X)h(Y )

)
− (Eg(X)) (Eh(Y )) = 0.

That is, each function of X is uncorrelated with each function of Y . In
particular, if X and Y are independent then they are uncorrelated. The
converse is not usually true: uncorrelated random variables need not be
independent.

<4> Example. An example of uncorrelated random variables that are depen-
dent

The concentration phenomenon can also hold for averages of dependent
random variables.
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<5> Example. Comparison of spread in sample averages for sampling with and
without replacement: the Decennial Census.

As with expectations, variances and covariances can also be calculated
conditionally on various pieces of information. The conditioning formula in
the final Example has the interpretation of a decomposition of “variability”
into distinct sources, a precursor to the statistical technique know as the
“analysis of variance”.

<6> Example. An example to show how variances can sometimes be decom-
posed into components attributable to difference sources. (Can be skipped.)

Things to remember.

• Eg(X)h(Y ) = Eg(X)Eh(Y ) if X and Y are independent random vari-
ables

• the initial definitions of variance and covariance, and their expanded
forms cov(Y,Z) = E(Y Z)− (EY )(EZ) and var(X) = E(X2)− (EX)2

• var(a + bX) = b2var(X) and sd(a + bX) = |b|sd(X) for constants a
and b.

• For constants a, b, c, d, and random variables U, V, Y, Z,

cov(aU + bV, cY + dZ)

= ac cov(U, Y ) + bc cov(V, Y ) + ad cov(U,Z) + bd cov(V,Z).

• Sampling without replacement gives smaller variances than sampling
with replacement.
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Examples for Chapter 4

Example 1.

The Tchebychev inequality asserts: for a random variable X with expected
value µ,

P{|X − µ| > ε} ≤ var(X)/ε2 for each ε > 0.

The inequality becomes obvious if we write F for the event {|X − µ| > ε}.
First note that IF ≤ |X−µ|2/ε2: when IF = 0 the inequality holds for trivial
reasons; and when IF takes the value one, the random variable |X−µ|2 must
be larger than ε2. It follows that

P{|X − µ| > ε} = PF = EIF ≤ E|X − µ|2/ε2.

�

Example 2.

When well defined, correlations always lies between +1 and −1.

Suppose

EY = µY and var(Y ) = σ2Y

EZ = µY and var(Z) = σ2Z

Define standardized variables

Y ′ =
Y − µY
σY

and Z ′ =
Z − µZ
σZ

.

Note that EY ′ = EZ ′ = 0 and var(Y ′) = var(Z ′) = 1. Also

corr(Y,Z) = cov(Y ′Z ′) = E(Y ′Z ′).

Use the fact that variances are always nonnegative to deduce that

0 ≤ var(Y ′ + Z ′) = var(Y ′) + 2cov(Y ′, Z ′) + var(Z ′) = 2 + 2cov(Y ′, Z ′),

which rearranges to cov(Y ′, Z ′) ≥ −1. Similarly

0 ≤ var(Y ′ − Z ′) = var(Y ′)− 2cov(Y ′, Z ′) + var(Z ′) = 2− 2cov(Y ′, Z ′),

which rearranges to cov(Y ′, Z ′) ≤ +1. �
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Example 3.

Suppose X1, . . . , Xn are uncorrelated random variables, each with expected
value µ and variance σ2. By repeated application of the formulae for the
variance of a sum of variables with zero covariances,

var (X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn) = nσ2.

Typically the Xi would come from repeated independent measurements of
some unknown quantity. The random variable X = (X1 + · · · + Xn)/n is
then called the sample mean.

The variance of the sample mean decreases like 1/n,

var(X) = (1/n)2var (X1 + · · ·+Xn) = σ2/n.

From the Tchebychev inequality,

P{|X − µ| > ε} ≤ (σ2/n)/ε2 for each ε > 0.

In particular, for each positive constant C,

P{|X − µ| > Cσ/
√
n} ≤ 1/C2.

For example, there is at most a 1% chance that X lies more than 10σ/
√
n

away from µ. (A normal approximation will give a much tighter bound.)
Note well the dependence on n. �

Example 4.

Consider two independent rolls of a fair die. Let X denote the value rolled
the first time and Y denote the value rolled the second time. The random
variables X and Y are independent, and they have the same distribution.
Consequently cov(X,Y ) = 0, and var(X) = var(Y ).

The two random variables X + Y and X − Y are uncorrelated:

cov(X + Y,X − Y )

= cov(X,X) + cov(X,−Y ) + cov(Y,X) + cov(Y,−Y )

= var(X)− cov(X,Y ) + cov(Y,X)− var(Y )

= 0.

Nevertheless, the sum and difference are not independent. For example,

P{X + Y = 12} = P{X = 6}P{Y = 6} =
1

36

but

P{X + Y = 12 | X − Y = 5} = P{X + Y = 12 | X = 6, Y = 1} = 0.

�



Chap 4: Variances and covariances 8

Example 5.

Until quite recently, in the Decennial Census of Housing and Population the
Census Bureau would obtain some more detailed about the population via
imformation from a more extensive list of questions sent to only a random
sample of housing units. For an area like New Haven, about 1 in 6 units
would receive the so-called “long form”.

For example, one question on the long form asked for the number of
rooms in the housing unit. We could imagine the population of all units
numbered 1, 2, . . . , N , with the ith unit containing yi rooms. Complete
enumeration would reveal the value of the population average,

ȳ =
1

N
(y1 + y2 + · · ·+ yN ) .

A sample can provide a good estimate of ȳ with less work.
Suppose a sample of n housing units are selected from the population

without replacement. (For the Decennial Census, n ≈ N/6.) The answer
from each unit is a random variable that could take each of the values
y1, y2, . . . , yN , each with probability 1/N .

Remark. It might be better to think of a random variable that takes
each of the values 1, 2, . . . , N with probability 1/N , then take the
corresponding number of rooms as the value of the random variable
that is recorded. Otherwise we can fall into verbal ambiguities when
many of the units have the same number of rooms.

That is, the sample consists of random variables Y1, Y2, . . . , Yn, for each of
which

P{Yi = yj} =
1

N
for j = 1, 2, . . . , N.

Notice that

EYi =
1

N

∑N

j=1
yj = ȳ,

and consequently, the sample average Ȳ = (Y1+· · ·+Yn)/n also has expected
value ȳ. Notice also that each Yi has the same variance,

var(Yi) =
1

N

∑N

j=1
(yj − ȳ)2 ,

a quantity that I will denote by σ2.
If the sample is taken without replacement—which, of course, the Census

Bureau had to do, if only to avoid media ridicule—the random variables are
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dependent. For example, in the extreme case where n = N , we would
necessarily have

Y1 + Y2 + · · ·+ YN = y1 + y2 + · · ·+ yN ,

so that YN would be a function of the other Yi’s, a most extreme form of
dependence. Even if n < N , there is still some dependence, as you will soon
see.

Sampling with replacement would be mathematically simpler, for then
the random variables Yi would be independent, and, as in Example <3>, we
would have var

(
Ȳ
)

= σ2/n. With replacement, it is possible that the same
unit might be sampled more than once, especially if the sample size is an
appreciable fraction of the population size. There is also some inefficiciency
in sampling with replacement, as shown by a calculation of variance for
sampling without replacement:

var
(
Ȳ
)

= E
(
Ȳ − ȳ

)2
= E

(
1

n

∑n

i=1
(Yi − ȳ)

)2

=
1

n2
E
(∑n

i=1
(Yi − ȳ)2 + 2

∑
1≤i<j≤n

(Yi − ȳ)(Yj − ȳ)
)

=
1

n2

(∑n

i=1
E (Yi − ȳ)2 + 2

∑
1≤i<j≤n

E ((Yi − ȳ)(Yj − ȳ))
)

=
1

n2

(∑n

i=1
var(Yi) +

∑
1≤i 6=j≤n

cov(Yi, Yj)
)

There are n variance terms and n(n − 1) covariance terms. We know thatWhat formula did
I just rederive? each Yi has variance σ2, regardless of the dependence between the variables.

The effect of the dependence shows up in the covariance terms. By symme-
try, cov(Yi, Yj) is the same for each pair i < j, a value that I will denote
by c. Thus, for sampling without replacement,

(∗) var
(
Ȳ
)

=
1

n2
(
nσ2 + n(n− 1)c

)
=
σ2

n
+

(n− 1)c

n
.

We can calculate c directly, from the fact that the pair (Y1, Y2) takes
each of N(N − 1) pairs of values (yi, yj) with equal probability. Thus

c = cov(Y1, Y2) =
1

N(N − 1)

∑
i 6=j

(yi − ȳ)(yj − ȳ).

If we added the “diagonal” terms (yi − ȳ)2 to the sum we would have the
expansion for the product∑N

i=1
(yi − ȳ)

∑N

j=1
(yj − ȳ) ,
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which equals zero because Nȳ =
∑N

i=1 yi. The expression for the covariance
simplifies to

c = cov(Y1, Y2) =
1

N(N − 1)

(
02 −

∑N

i=1
(yi − ȳ)2

)
= − σ2

N − 1
.

Substitution in formula (∗) then gives

var(Ȳ ) =
σ2

n

(
1− n− 1

N − 1

)
=
σ2

n

N − n
N − 1

.

Compare with the σ2/n for var(Y ) under sampling with replacement.
The correction factor (N −n)/(N − 1) is close to 1 if the sample size n is
small compared with the population size N , but it can decrease the variance
of Y appreciably if n/N is not small. For example, if n ≈ N/6 (as with the
Census long form) the correction factor is approximately 5/6.

If n = N , the correction factor is zero. That is, var(Y ) = 0 if the
whole population is sampled. Indeed, when n = N we know that Ȳ equals
the population mean, ȳ, a constant. A random variable that always takes
the same constant value has zero variance. Thus the right-hand side of (∗)
must reduce to zero when we put n = N , which gives a quick method for
establishing the equality c = −σ2/(N − 1), without all the messing around
with sums of products and products of sums. �

Example 6.

Consider a two stage method for generating a random variable Z. Suppose
we have k different random variables Y1, . . . , Yk, with EYi = µi and var(Yi) =
σ2i . Suppose also that we have a random method for selecting which variable
to choose: a random variable X that is independent of all the Yi’s, with
P{X = i} = pi for i = 1, 2, . . . , k, where p1 + p2 + · · · + pk = 1. If X takes
the value i, define Z to equal Yi.

The variability in Z is due to two effects: the variability of each Yi; and
the variability of X. Conditional on X = i, we have Z equal to Yi, and

E (Z | X = i) = E(Yi) = µi

var (Z | X = i) = E
(
(Z − µi)2 | X = i

)
= var(Yi) = σ2i .

From the first formula we get

EZ =
∑

i
P{X = i}E (Z | X = i) =

∑
i
piµi,
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a weighted average of the µi’s that I will denote by µ̄. A similar conditioning
exercise gives

var(Z) = E (Z − µ̄)2 =
∑

i
piE

(
(Z − µ̄)2 | X = i

)
.

If we could replace the µ̄ in the ith summand by µi, the sum would become a
weighted average of conditional variances. To achieve such an effect, rewrite
(Z − µ̄)2 as

(Z − µi + µi − µ̄)2 = (Z − µi)2 + 2(µi − µ̄)(Zi − µi) + (µi − µ̄)2.

Taking conditional expectations, we then get

E
(

(Z − µ̄)2 | X = i
)

= E
(

(Z − µ̄i)2 | X = i
)

+ 2(µi − µ̄)E (Z − µi | X = i) + (µi − µ̄)2.

On the right-hand side, the first term equals σ2i , and the middle term disap-
pears because E(Z | X = i) = µi. With those simplifications, the expression
for the variance becomes

var(Z) =
∑

i
piσ

2
i +

∑
i
pi(µi − µ̄)2.

If we think of each Yi as coming from a separate “population”, the first
sum represents the component of variability within the populations, and the
second sum represents the variability between the populations.

The formula is sometimes written symbolically as

var(Z) = E (var(Z | X)) + var (E(Z | X)) ,

where E(Z | X) denotes the random variable that takes the value µi when
X takes the value i, and var(Z | X) denotes the random variable that takes
the value σ2i when X takes the value i. �



Chapter 5

Normal approximation to the Binomial
In 1733, Abraham de Moivre presented an approximation to the Bi-

nomial distribution. He later (de Moivre, 1756, page 242) appended the
derivation of his approximation to the solution of a problem asking for the
calculation of an expected value for a particular game. He posed the rhetor-
ical question of how we might show that experimental proportions should
be close to their expected values:

From this it follows, that if after taking a great number of Experi-
ments, it should be perceived that the happenings and failings have
been nearly in a certain proportion, such as of 2 to 1, it may safely
be concluded that the Probabilities of happening or failing at any
one time assigned will be very near in that proportion, and that the
greater the number of Experiments has been, so much nearer the
Truth will the conjectures be that are derived from them.

But suppose it should be said, that notwithstanding the reason-
ableness of building Conjectures upon Observations, still considering
the great Power of Chance, Events might at long run fall out in a
different proportion from the real Bent which they have to happen
one way or the other; and that supposing for Instance that an Event
might as easily happen as not happen, whether after three thousand
Experiments it may not be possible it should have happened two thou-
sand times and failed a thousand; and that therefore the Odds against
so great a variation from Equality should be assigned, whereby the
Mind would be the better disposed in the Conclusions derived from
the Experiments.

In answer to this, I’ll take the liberty to say, that this is the
hardest Problem that can be proposed on the Subject of Chance, for
which reason I have reserved it for the last, but I hope to be forgiven
if my Solution is not fitted to the capacity of all Readers; however
I shall derive from it some Conclusions that may be of use to every
body: in order thereto, I shall here translate a Paper of mine which
was printed November 12, 1733, and communicated to some Friends,
but never yet made public, reserving to myself the right of enlarging
my own Thoughts, as occasion shall require.

Novemb. 12, 1733

De Moivre then stated and proved what is now known as the normal
approximation to the Binomial distribution. The approximation itself has
subsequently been generalized to give normal approximations for many other
distributions. Nevertheless, de Moivre’s elegant method of proof is still
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worth understanding. This Chapter will explain de Moivre’s approximation,
using modern notation.

A Method of approximating the Sum of the Terms of the Binomial
a+ b\n expanded into a Series, from whence are deduced some
practical Rules to estimate the Degree of Assent which is to
be given to Experiments.

Altho’ the Solution of problems of Chance often requires that
several Terms of the Binomial a+ b\n be added together, never-
theless in very high Powers the thing appears so laborious, and
of so great difficulty, that few people have undertaken that Task;
for besides James and Nicolas Bernouilli, two great Mathemati-
cians, I know of no body that has attempted it; in which, tho’
they have shown very great skill, and have the praise that is due
to their Industry, yet some things were further required; for what
they have done is not so much an Approximation as the deter-
mining very wide limits, within which they demonstrated that the
Sum of the Terms was contained. Now the method . . .

Suppose Xn has a Bin(n, p) distribution. That is,

bn(k) := P{Xn = k} =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n, where q = 1− p,

Recall that we can think of Xn as a sum of independent random variables
Y1+· · ·+Yn with P{Yi = 1} = p and P{Yi = 0} = q. From this representation
it follows that

EXn =
∑

i
EYi = nEY1 = np

var(Xn) =
∑

i
var(Yi) = nvar(Y1) = npq

Recall that Tchebychev’s inequality suggests the distribution should be
clustered around np, with a spread determined by the standard devia-
tion, σn :=

√
npq.

What does the Binomial distribution look like? The plots in the next
display, for the Bin(n, 0.4) distribution with n = 20, 50, 100, 150, 200, are
typical. Each plot on the left shows bars of height bn(k) and width 1,
centered at k. The maxima occur near n×0.4 for each plot. As n increases,
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the spread also increases, reflecting the increase in the standard deviations
σn =

√
npq for p = 0.4. Each of the shaded regions on the left has area∑n

k=0
bn(k) = 1 for various n.
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The plots on the right show represent the distributions of the standard-
ized random variables Zn = (Xn − np)/σn. The location and scaling effects
of the increasing expected values and standard deviations (with p = 0.4 and
various n) are now removed. Each plot is shifted to bring the location of the
maximum close to 0 and the horizontal scale is multiplied by a factor 1/σn.
A bar of height σn× bn(k) with width 1/σn is now centered at (k− np)/σn.
The plots all have similar shapes. Each shaded region still has area 1.

Notice how the plots on the right settle down to a symmetric ‘bell-
shaped’ curve. The shape of the “standardized” Binomial quickly stablizes
as n increases.
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You can understand this effect by looking at the ratio of successive terms:

bn(k)/bn(k − 1)

=

(
n!

k!(n− k)!
pkqn−k

)
/

(
n!

(k − 1)!(n− k + 1)!
pk−1qn−k+1

)
=

(n− k + 1)p

kq
for k = 1, 2, . . . , n.

As a consequence, bn(k) ≥ bn(k − 1) if and only if (n − k + 1)p ≥ kq, that
is, iff (n + 1)p ≥ k. For fixed n, the probability bn(k) achieves its largest
value at kmax = b(n+1)pc ≈ np. In the following I will ignore the difference
between kmax and np. The probabilities bn(k) increase with k for k ≤ kmax

then decrease for k > kmax.
That explains why each plot on the left has a peak near np.
Now for the shape. At least for k = kmax + i near kmax we get a good

approximation for the logarithm of the ratio of successive terms using the
Taylor approximation

log(1 + x) ≈ x for x near 0.

Indeed,

b(kmax + i)/b(kmax + i− 1)

=
(n− kmax − i+ 1)p

(kmax + i)q

≈ (nq − i)p
(np+ i)q

=
1− i/(nq)
1 + i/(np)

after dividing through by npq.

The logarithm of the last ratio equals

log

(
1− i

nq

)
− log

(
1 +

i

np

)
≈ − i

nq
− i

np
= − i

npq
.

By taking a product of successive ratios we get an approximation for
the logarithm of the ratio of the individual Binomial probabilities to their
largest term. On a log scale the calculation is even simpler. For example, if
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m ≥ 1 and kmax +m ≤ n,

log
b(kmax +m)

b(kmax)

= log

(
b(kmax + 1)

b(kmax)
× b(kmax + 2)

b(kmax + 1)
× · · · × b(kmax +m)

b(kmax +m− 1)

)
= log

b(kmax + 1)

b(kmax)
+ log

b(kmax + 2)

b(kmax + 1)
+ · · ·+ log

b(kmax +m)

b(kmax +m− 1)

≈ −1− 2− · · · −m
npq

≈ −1
2

m2

npq
.

The last line used the fact that

1 + 2 + 3 + · · ·+m = 1
2m(m+ 1) ≈ 1

2m
2.

In summary,

P{X = kmax +m} ≈ b(kmax) exp

(
− m2

2npq

)
for m not too large.

An analogous approximation holds for 0 ≤ kmax +m ≤ kmax.
Using the fact that the probabilities sum to 1, for p = 1/2 de Moivre was

able to show that the b(kmax) should decrease like 2/(B
√
n), for a constant B

that he was initially only able to express as an infinite sum. Referring to his
calculation of the ratio of the maximum term in the expansion of (1 + 1)n

to the sum, 2n, he wrote (de Moivre, 1756, page 244)

When I first began that inquiry, I contented myself to deter-
mine at large the Value of B, which was done by the addition
of some Terms of the above-written Series; but as I perceived
that it converged but slowly, and seeing at the same time that
what I had done answered my purpose tolerably well, I desisted
from proceeding further till my worthy and learned Friend Mr.
James Stirling, who had applied himself after me to that inquiry,
found that the Quantity B did denote the Square-root of the Cir-
cumference of a Circle whose Radius is Unity, so that if that
Circumference be called c, the Ratio of the middle Term to the
Sum of all the Terms will be expressed by 2

√
nc.
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In modern notation, the vital fact discovered by the learned Mr. James
Stirling asserts that

n! ≈
√

2π nn+1/2e−n for n = 1, 2, . . .

in the sense that the ratio of both sides tends to 1 (very rapidly) as n goes
to infinity. See Feller (1968, pp52-53) for an elegant, modern derivation of
the Stirling formula.

Consequently, for k ≈ np,

bn(k) =
n!

k!(n− k)!
pkqn−k

≈ 1√
2π

nn+1/2

(np)np+1/2(nq)nq+1/2
pnpqnq

=
1√

2πnpq
.

De Moivre’s approximation becomes

P{Xn = kmax +m} ≈ 1√
2πnpq

exp

(
− m2

2npq

)
,

or, substituting np for kmax and writing k for kmax +m,

P{Xn = k} ≈ 1√
2πnpq

exp

(
−(k − np)2

2npq

)
=

1√
2πσn

exp

(
−(k − np)2

2σ2n

)
.

That is, P{Xn = k} is approximately equal to the area under the smooth
curve

f(x) =
1√

2πσn
exp

(
−(x− np)2

2σ2n

)
,

for the interval k − 1/2 ≤ x ≤ k + 1/2. (The length of the interval is 1, so
it does not appear in the previous display.)

Similarly, for each pair of integers with 0 ≤ a < b ≤ n,

P{a ≤ Xn ≤ b} =
∑b

k=a
bn(k) ≈

∑b

k=a

∫ k+1/2

k−1/2
f(x) dx =

∫ b+1/2

a−1/2
f(x) dx.

A change of variables, y = (x− np)/σn, simplifies the last integral to

1√
2π

∫ β

α
e−y

2/2dy where α =
a− np− 1/2

σn
and β =

−np+ 1/2

σn
.
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Remark. It usually makes little difference to the approximation if we
omit the ±1/2 terms from the definitions of α and β.

How does one actually perform a normal approximation? Back in the
olden days, I would have interpolated from a table of values for the function

Φ(x) :=
1√
2π

∫ x

−∞
e−y

2/2dy,

which was found in most statistics texts. For example, ifX has a Bin(100, 1/2)
distribution,

P{45 ≤ X ≤ 55} ≈ Φ

(
55.5− 50

5

)
− Φ

(
44.5− 50

5

)
≈ 0.8643− 0.1356 = 0.7287

These days, I would just calculate in R:

> pnorm(55.5, mean = 50, sd = 5) - pnorm(44.5, mean = 50, sd = 5)

[1] 0.7286679

or use another very accurate, built-in approximation:

> pbinom(55,size = 100, prob = 0.5) - pbinom(44,size = 100, prob = 0.5)

[1] 0.728747

zzzzzzzzz

At this point, the integral in the definition of Φ(x) is merely a reflection
of the Calculus trick of approximating a sum by an integral. Probabilists
have taken a leap into abstraction by regarding Φ, or its derivative φ(y) :=
exp(−y2/2)/

√
2π, as a way to define a probability distribution

<1> Definition. A random variable Y is said to have a continuous distribu-
tion (on R) with density function f(·) if

P{a ≤ Y ≤ b} =

∫ b

a
f(y) dy for all intervals [a, b] ⊆ R.

Equivalently, for each subset A of the real line,

P{Y ∈ A} =

∫
A
f(y) dy =

∫ ∞
−∞

I{y ∈ A}f(y) dy
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Notice that f should be a nonnegative function, for otherwise it might
get awkward when calculating P{Y ∈ A} for the set A = {y ∈ R : f(y) < 0}:

0 ≤ P{Y ∈ A} =

∫
A
f(y) dy ≤ 0.

Remark. By putting A equal to R we get

1 = P{−∞ < Y < +∞} =

∫ ∞
−∞

f(y) dy

That is, the integral of a density function over the whole real line
equals one.

I prefer to think of densities as being defined on the whole real line,
with values outside the range of the random variable being handled by
setting the density function equal to zero in appropriate places. If a
range of integration is not indicated explicitly, it can then always be
understood as −∞ to ∞, with the zero density killing off unwanted
contributions.

Distributions defined by densities have both similarities with and differ-
ences from the sort of distributions I have been considering up to this point
in Stat 241/541. All the distributions before now were discrete. They were
described by a (countable) discrete set of possible values {xi : i = 1, 2, . . . }
that could be taken by a random variable X and the probabilities with
which X took those values:

P{X = xi} = pi for i = 1, 2, . . . .

For any subset A of the real line

P{X ∈ A} =
∑

i
I{xi∈A}P{X = xi} =

∑
i
I{xi∈A}pi

Expectations, variances, and things like Pg(X) could all be calculated by
conditioning on the possible values for X.

For a random variable X with a continuous distribution defined by a
density f , we have

P{X = x} =

∫ x

x
f(y) dy = 0

for every x ∈ R. We cannot hope to calculate a probability by adding up
(an uncountable set of) zeros. Instead we must pass to a limit and replace
sums by integrals.

As you will see in the next Chapter, expected values, variances and things
like Pg(X) can all be recovered as integrals after a passage to a limit when
a random variable X has a continuous distribution.
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Appendix: The mysterious
√
2π

Notice that, for the Binomial(n, 1/2) distribution with n very large,

1 = P{0 ≤ Xn ≤ n}

= P{−
√
n ≤ Xn − n/2√

n/4
≤
√
n}

≈ Φ(
√
n)− Φ(−

√
n) ≈ 1√

2π

∫ +∞

−∞
e−y

2/2dy.

In fact, the constant C :=
∫∞
−∞ exp(−x2/2) dx is exactly equal to

√
2π, as I

now explain.
Equivalently, the constant C2 =

∫∫
exp(−(x2 +y2)/2) dx dy equal to 2π.

(Here, and subsequently, the double integral runs over the whole plane.) We
can evaluate this double integral by using a small Calculus trick.

Using the fact that∫ ∞
0

I{r ≤ z}e−z dz = e−r for r > 0,

we may rewrite C2 as a triple integral: replace r by (x2 + y2)/2, then
substitute into the double integral to get

C2 =

∫∫ (∫ ∞
0

I{x2 + y2 ≤ 2z}e−z dz
)
dx dy

=

∫ ∞
0

(∫∫
I{x2 + y2 ≤ 2z} dx dy

)
e−z dz.

With the change in the order of integration, the double integral is now
calculating the area of a circle centered at the origin and with radius

√
2z.

The triple integral reduces to∫ ∞
0

π
(√

2z
)2
e−z dz =

∫ ∞
0

π2ze−z dz = 2π.

That is, C =
√

2π, as asserted.
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Chapter 6

Continuous Distributions
In Chapter 5 you met your first example of a continuous distribution, the normal.

Recall the general definition.

Definition. A random variable X is said to have a continuous distribution (on
R) with density function f(·) if

(i) f is a nonnegative function on the real line for which
∫ +∞
−∞ f(x) dx = 1

(ii) for each subset A of the real line,

P{X ∈ A} =

∫
A
f(x) dx =

∫ ∞
−∞

I{x ∈ A}f(x) dy

As a special case of (ii),

P{a ≤ X ≤ b} =

∫ b

a
f(x) dx for all intervals [a, b] ⊆ R.

For the normal approximation to the Bin(n, p) the density was

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

with µ = np and σ2 = npq.

Remark. Later this distribution will be denoted by N(µ, σ2), the normal
distribution with parameters µ and σ2. As you will soon learn, the distribution
has expected value µ and variance σ2.

Notice that a change of variable y = (x− µ)/σ gives∫ ∞
−∞

f(x) dx =
1√
2π

∫ ∞
−∞

e−y
2/2 dy,

which (see Chapter 5) equals 1.
The simplest example of a continuous distribution is the Uniform[0, 1], the

distribution of a random variable U that takes values in the interval [0, 1], with

P{a ≤ U ≤ b} = b− a for all 0 ≤ a ≤ b ≤ 1.
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Equivalently,

P{a ≤ U ≤ b} =

∫ b

a
f(x) dx for all real a, b,

where
f(x) =

{
1 if 0 < x < 1
0 otherwise.

I will use the Uniform to illustrate several general facts about continuous distribu-
tions.

Remark. Of course, to actually simulate a Uniform[0, 1] distribution on a
computer one would work with a discrete approximation. For example, if
numbers were specified to only 7 decimal places, one would be approximating
Uniform[0,1] by a discrete distribution placing probabilities of about 10−7 on
a fine grid of about 107 equi-spaced points in the interval. You might think of
the Uniform[0, 1] as a convenient idealization of the discrete approximation.

Be careful not to confuse the density f(x) with the probabilities p(y) = P{Y = y}
used to specify discrete distributions, that is, distributions for random variables
that can take on only a finite or countably infinite set of different values. The
Bin(n, p) and the geometric(p) are both discrete distributions. Continuous distri-
butions smear the probability out over a continuous range of values. In particular,
if X has a continuous distribution with density f then

P{X = t} =

∫ t

t
f(x) dx = 0 for each fixed t.

The value f(x) does not represent a probability. Instead, the values taken by the
density function could be thought of as constants of proportionality. At least at
points where the density function f is continuous and when δ is small,

P{t ≤ X ≤ t+ δ} =

∫ t+δ

t
f(x) dy = f(t)δ + terms of order o(δ).

Remark. Remember that g(δ) = o(δ) means that g(δ)/δ → 0 as δ → 0.

Equivalently,

lim
δ→0

1

δ
P{t ≤ X ≤ t+ δ} = f(t).

The density function must be non-negative, for otherwise some tiny interval would
receive a negative probability.

Some texts define the density as the derivative of the cumulative distribution
function

F (t) = P{−∞ < X ≤ t} for −∞ < t <∞.
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That is,

f(t) = lim
δ→0

1

δ

(
F (t+ δ)− F (t)

)
This approach works because

P{t ≤ X ≤ t+ δ}
= P{X ≤ t+ δ} − P{X < t}
= F (t+ δ)− F (t) because P{X = t} = 0.

When we are trying to determine a density function, the trick is to work with
very small intervals, so that higher order terms in the lengths of the intervals can be
ignored. (More formally, the errors in approximation tend to zero as the intervals
shrink.)

<1> Example. Functions of a random variable with a continuous distribution.

I recommend that you remember the method used in the previous Example,
rather than trying to memorize the result for various special cases. In each particular
application, rederive. That way, you will be less likely to miss multiple contributions
to a density.

Calculations with continuous distributions typically involve integrals or deriva-
tives where discrete distribution involve sums or probabilities attached to individual
points. The formulae developed in previous chapters for expectations and variances
of random variables have analogs for continuous distributions.

<2> Example. Expectation of a random variable with a continuous distribution: if the
distribution of X has density f then EH(X) =

∫ +∞
−∞ H(x)f(x) dx.

You should be very careful not to confuse the formulae for expectations in the
discrete and continuous cases. Think again if you find yourself integrating proba-
bilities or summing expressions involving probability densities.

<3> Example. Expected value and variance for the N(µ, σ2).

Calculations for continuous distributions are often simpler than analogous cal-
culations for discrete distributions because we are able to ignore some pesky cases.
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<4> Example. Zero probability for ties with continuous distributions.

Calculations are greatly simplified by the fact that we can ignore contributions
from higher order terms when working with continuous distributions and small in-
tervals.

ed out so smoothly that none of it can pile up

<5> Example. The distribution of the order statistics from the uniform distribution.

The distribution from the previous Example is a member of a family whose name
is derived from the beta function, defined by

B(α, β) :=

∫ 1

0
tα−1(1− t)β−1dt for α > 0, β > 0.

The equality ∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,

noted at the end of the Example, gives the value for B(k, n− k + 1).
In general, if we divide tα−1(1−t)β−1 by B(α, β) we get a candidate for a density

function: non-negative and integrating to 1.

Definition. For α > 0 and β > 0 the Beta(α, β) distribution is defined by the density
function

xα−1(1− x)β−1

B(α, β)
for 0 < x < 1.

The density is zero outside (0, 1).

As you just saw in Example <5>, the kth order statistic from a sample of n
independently generated random variables with Uniform[0, 1] distributions has a
Beta(k, n− k + 1) distribution.

The function beta() in R calculates the value of the beta function:

> beta(5.5,2.7)

[1] 0.01069162

> ?beta # get help for the beta() function

Also, there is a set of R functions that gives useful results for the beta density. For
example, the pictures on the next page could be drawn by a series of R commands
like:
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> jj=(1:1000)/1000

> plot(jj,dbeta(jj,2,3),type="l")

The functions dbeta() calculates the values of the beta density at a fine grid of points.
The plot() function is called with the option of joining the points by a smooth curve.

β 
= 

5
β 

= 
4

β 
= 

3
β 

= 
2

α = 1

β 
= 

1

α = 2

Beta densities: tα-1 (1-t) β-1 /B(α,β) for 0 < t <1 and vertical range (0,5)

α = 3 α = 4 α = 5

There is an interesting exact relationship between the tails of the beta and
Binomial distributions.

<6> Example. Binomial tail probabilities from beta distributions.

Things to remember.

• The density function f(·) gives the constants of proportionality, and not prob-
abilities: f(x) is not the same as P{X = 0}, which is zero for every x if X has
a continuous distribution.

• A density function, f , must be non-negative and it must integrate to one over
the whole line, 1 =

∫∞
−∞ f(t) dt.
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• Expected value of a function of a random variable with a continuous distribu-
tion: if the distribution of X has density f then

EH(X) =

∫ ∞
−∞

H(x)f(x) dx

• Be very careful not to confuse the formulae for expectations in the discrete and
continuous cases. Think again if you find yourself integrating probabilities or
summing expressions involving probability densities.

Examples for Chapter 6

Example 1.

Functions of a random variable with a continuous distribution.

Suppose X has a uniform distribution on the interval (−π/2, π/2). That is, it
has a continuous distribution given by the density function

f(x) =
{

1/π for −π/2 < x < π/2
0 elsewhere

Let a new random variable be defined by Y = tan(X). It takes values over the
whole real line. For a fixed real y, and a positive δ, we have

(∗) y ≤ Y ≤ y + δ if and only if x ≤ X ≤ x+ ε,

where x and ε are related to y and δ by the equalities

y = tan(x) and y + δ = tan(x+ ε).

By Calculus, for small δ,

δ = ε× tan(x+ ε)− tan(x)

ε
≈ ε

cos2 x
.

Compare with the definition of the derivative:

lim
ε→0

tan(x+ ε)− tan(x)

ε
=
d tan(x)

dx
=

1

cos2 x
.

Thus

P{y ≤ Y ≤ y + δ} = P{x ≤ X ≤ x+ ε}
≈ εf(x)

≈ δ cos2 x

π
.
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We need to express cos2 x as a function of y. Note that

1 + y2 = 1 +
sin2 x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
.

Thus Y has a continuous distribution with density

g(y) =
1

π(1 + y2)
for −∞ < y <∞.

Remark. The distribution defined by this density is called the Cauchy.

For functions that are not one-to-one, the analog of (∗) can require a little more
work. In general, we can consider a random variable Y defined as H(X), a function
of another random variable. If X has a continous distribution with density f , and
if H is a smooth function with derivative H ′, then we can calculate a density for Y
by an extension of the method above.

A small interval [y, y + δ] in the range of values taken by Y can correspond to
a more complicated range of values for X. For instance, it might consist of a union
of several intervals [x1, x1 + ε1], [x2, x2 + ε2], . . . . The number of pieces in the X
range might be different for different values of y.

H( . )

y

y+δ

x1 x1+ε1
x3 x3+ε3

x5 x5+ε5

From the representation of {y ≤ Y ≤ y + δ} as a disjoint union of events

{x1 ≤ X ≤ x1 + ε1} ∪ {x2 ≤ X ≤ x2 + ε2} ∪ . . . ,

we get, via the defining property of the density f for X,

P{y ≤ Y ≤ y + }. = P{x1 ≤ X ≤ x1 + ε1}+ P{x2 ≤ X ≤ x2 + ε2}+ . . .

≈ ε1f(x1) + ε2f(x2) + . . . .

For each small interval, the ratio of δ to εi is close to the derivative of the function H
at the corresponding xi. That is, εi ≈ δ/H ′(xi).
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y

y+δ

xi xi+εi

δ
εi

Adding the contributions from each such interval, we then have an approximation
that tells us the density for Y ,

P{y ≤ Y ≤ y + δ} ≈ δ
(
f(x1)

H ′(x1)
+

f(x2)

H ′(x2)
+ . . .

)
That is, the density for Y at the particular point y in its range equals

f(x1)

H ′(x1)
+

f(x2)

H ′(x2)
+ . . .

Of course we should reexpress each xi as a function of y, to get the density in a
more tractable form. �

Example 2.

Expectation of a random variable with a continuous distribution: if the distribution of X

has density f then EH(X) =
∫ +∞
−∞ H(x)f(x) dx.

Let Y = H(X) be a new random variable, defined as a function of X. Calculate
EY by an approximation argument similar to the one used in Example <1>.

H( . )

nδ

(n+1)δ

An

Cut the range of values that might be taken by Y into disjoint intervals of the
form nδ ≤ y < (n + 1)δ, for an arbitrarily small, positive δ. Write An for the
corresponding set of x values. That is, for each x in R,

nδ ≤ H(x) < (n+ 1)δ if and only if x ∈ An.
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We now have simple upper and lower bounds for H:

Hδ(x) ≤ H(x) ≤ δ +Hδ(x) for every real x

where Hδ(x) =
∑

n
nδI{x ∈ An}.

(You should check the inequalities when x ∈ An, for each possible integer n.) Con-
sequently

EHδ(X) ≤ EH(X) ≤ δ + EHδ(X)

and ∫ +∞

−∞
Hδ(x)f(x) dx ≤

∫ +∞

−∞
H(x)f(x) dx ≤ δ +

∫ +∞

−∞
Hδ(x)f(x) dx.

More concisely,

(?) |EHδ(X)−EH(X)| ≤ δ and |
∫ +∞

−∞
Hδ(x)f(x) dx−

∫ +∞

−∞
H(x)f(x) dx| ≤ δ.

The random variable Hδ(X) has a discrete distribution whose expectation you
know how to calculate:

EHδ(X) = E
∑

n
nδI{X ∈ An} expectation of a countable sum

=
∑

n
nδP{X ∈ An} because EI{X ∈ An} = P{X ∈ An}

=
∑

n
nδ

∫ +∞

−∞
I{x ∈ An}f(x) dx definition of f

=

∫ +∞

−∞
Hδ(x)f(x) dx take sum inside integral.

From the inequalities (?) and the last equality deduce that

|EH(X) =

∫ +∞

−∞
H(x)f(x) dx| ≤ 2δ

for arbitrarily small δ > 0. The asserted representation for EH(X) follows. �

Remark. Compare with the formula for a random variable X∗ taking only a
discrete set of values x1, x2, . . . ,

EH(X∗) =
∑

i
H(xi)P{X∗ = xi}

In the passage from discrete to continuous distributions, discrete probabilities
get replaced by densities and sums get replaced by integrals.
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Example 3.

Expected value and variance N(µ, σ2).

If X ∼ N(µ, σ2) its density function is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

=
1

σ
φ

(
x− µ
σ

)
where φ(y) := (2π)−1/2 exp(−y2/2)

Calculate, using a change of variable y = (x− µ)/σ.

EX =

∫ +∞

−∞
xf(x) dx

=

∫ +∞

−∞
(µ+ σy)φ(y) dy

= µ

∫ +∞

−∞
φ(y) dy + σ

∫ +∞

−∞
yφ(y) dy

= µ.

The second integral vanishes because yφ(y) = −(−y)φ(−y).
Similarly

var(X) = E(X − µ)2

=

∫ +∞

−∞
(x− µ)2f(x) dx

= σ2
∫ +∞

−∞
y2φ(y) dy

= σ2

using integration by parts and d
dyφ(y) = −yφ(y).

�

Example 4.

Suppose X and Y are independent random variables, each with a Uniform[0, 1]
distribution. Show that P{X = Y } = 0.

The event {X = Y = 1} is a subset of {X = 1}, which has zero probability. The
other possibilities are almost as easy to dispose of: for each positive integer n,

{X = Y < 1} ⊂ ∪n−1i=0 {i/n ≤ X < (i+ 1)/n and i/n ≤ Y < (i+ 1)/n}
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a disjoint union of events each with probability 1/n2, by independence. Thus

P{X = Y < 1} ≤ n(1/n2) = 1/n for every n.

It follows that P{X = Y } = 0.
A similar calculation shows that P{X = Y } = 0 for independent random vari-

ables with any pair of continuous distributions. �

Example 5.

The distribution of the order statistics from the uniform distribution.

Suppose U1, U2, . . . , Un are independent random variables, each with distribution
Uniform[0, 1]. That is,

P{a ≤ Ui ≤ b} =

∫ b

a
h(x) dx for all real a, b,

where
h(x) =

{
1 if 0 < x < 1
0 otherwise.

The Ui’s define n points in the unit interval. If we measure the distance of each
point from 0 we obtain random variables 0 ≤ T1 < T2 < · · · < Tn ≤ 1, the values
U1, . . . , Un rearranged into increasing order. (Example <4> lets me ignore ties.)
For n = 6, the picture (with T5 and T6 not shown) looks like:

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

If we repeated the process by generating a new sample of Ui’s, we would probably
not have U4 as the smallest, U1 as the second smallest, and so on. That is, T1 might
correspond to a different Ui.

The random variable Tk, the kth smallest of the ordered values, is usually called
the kth order statistic. It takes a continuous range of values. It has a continuous
distribution. What is its density function?
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For a very short interval [t, t + δ], with 0 < t < t + δ < 1 and δ very small, we
need to show that P{t ≤ Tk ≤ t + δ} is roughly proportional to δ, then determine
f(t), the constant of proportionality.

Write N for the number of Ui points that land in [t, t+ δ]. To get t ≤ Tk ≤ t+ δ
we must have N ≥ 1. If N = 1 then we must have exactly k − 1 points in [0, t)
to get t ≤ Tk ≤ t + δ. If N ≥ 2 then it becomes more complicated to describe all
the ways that we would get t ≤ Tk ≤ t + δ. Luckily for us, the contributions from
all those complicated expressions will turn out to be small enough to ignore if δ is
small. Calculate.

P{t ≤ Tk ≤ t+ δ} = P{N = 1 and exactly k − 1 points in [0, t)}
+ P{N ≥ 2 and t ≤ Tk ≤ t+ δ}.

Let me first dispose of the second contribution, where N ≥ 2. The event

F2 = {N ≥ 2} ∩ {t ≤ Tk ≤ t+ δ}

is a subset of the union

∪1<i<j≤n{Ui, Uj both in [t, t+ δ] }

Put another way,

IF2 ≤
∑

1≤i<j≤n
I{Ui, Uj both in [t, t+ δ] }.

Take expectations of both sides to deduce that

PF2 ≤
∑

1≤i<j≤n
P{Ui, Uj both in [t, t+ δ]}.

By symmetry, all
(
n
2

)
terms in the sum are equal to

P{U1, U2 both in [t, t+ δ]}
= P{t ≤ U1 ≤ t+ δ}P{t ≤ U2 ≤ t+ δ} by independence

= δ2.

Thus PF2 ≤
(
n
2

)
δ2, which tends to zero much faster than δ as δ → 0. (The value

of n stays fixed throughout the calculation.)
Next consider the contribution from the event

F1 = {N = 1} ∩ {exactly k − 1 points in [0, t)}.
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Break F1 into disjoint events like

{U1, . . . , Uk−1 in [0, t), Uk in [t, t+ δ], Uk+1, . . . , Un in (t+ δ, 1]}.

Again by virtue of the independence between the {Ui}, this event has probability

P{U1 < t}P{U2 < t} . . .P{Uk−1 < t}P{Uk in [t, t+δ]}P{Uk+1 > t+δ} . . .P{Un > t+δ},

Invoke the defining property of the uniform distribution to factorize the probability
as

tk−1δ(1− t− δ)n−k = tk−1(1− t)n−kδ + terms of order δ2 or smaller.

How many such pieces are there? There are
(
n
k−1
)

ways to choose the k − 1 of the
Ui’s to land in [0, t), and for each of these ways there are n− k + 1 ways to choose
the single observation to land in [t, t + δ]. The remaining observations must go in
(t+ δ, 1]. We must add up(

n

k − 1

)
× (n− k + 1) =

n!

(k − 1)!(n− k)!

contributions with the same probability to calculate PF1.
Consolidating all the small contributions from PF1 and PF2 we then get

P{t ≤ Tk ≤ t+ δ} =
n!

(k − 1)!(n− k)!
tk−1(1− t)n−kδ+ terms of order δ2 or smaller.

That is, the distribution of Tk is continuous with density function

f(t) =
n!

(k − 1)!(n− k)!
tk−1(1− t)n−k for 0 < t < 1.

Outside (0, 1) the density is zero. �

Remark. It makes no difference how we define f(t) at t = 0 and t = 1, because

it can have no effect on integrals
∫ b

a
f(t) dt.

From the fact that the density must integrate to 1, we get

1 =

∫ 0

−∞
0dt+

n!

(k − 1)!(n− k)!

∫ 1

0
tk−1(1− t)n−kdt+

∫ ∞
1

0dt

That is, ∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,
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a fact that you might try to prove by direct calculation.

Example 6.

Binomial tail probabilities from beta distributions.

In principle it is easy to calculate probabilities such as P{Bin(30, p) ≥ 17} for
various values of p: one has only to sum the series(

30

17

)
p17(1− p)13 +

(
30

18

)
p18(1− p)12 + · · ·+ (1− p)30

With a computer (using R, for example) such a task would not be as arduous
as it used to be back in the days of hand calculation. We could also use a normal
approximation. However, there is another method based on the facts about the order
statistics, which gives an exact integral expression for the Binomial tail probability.

The relationship becomes clear from a special method for simulating coin tosses.
For a fixed n (such as n = 30), generate independently n random variables U1, . . . , Un,
each distributed uniformly on [0, 1]. Fix a p in [0, 1]. Then the independent events

{U1 ≤ p}, {U2 ≤ p}, . . . , {Un ≤ p}

are like n independent flips of a coin that lands heads with probability p. The
number, Xn, of such events that occur has a Bin(n, p) distribution.

As in Example <5>, write Tk for the kth smallest value when the Ui’s are sorted
into increasing order.

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

p

The random variables Xn and Tk are related by an equivalence,

Xn ≥ k if and only if Tk ≤ p.

That is, there are k or more of the Ui’s in [0, p] if and only if the kth smallest of all
the Ui’s is in [0, p]. Thus

P{Xn ≥ k} = P{Tk ≤ p} =
n!

(k − 1)!(n− k)!

∫ p

0
tk−1(1− t)n−k dt.

The density for the distribution of Tk comes from Example <5>. �



Chapter 7

Conditioning on a random variable
with a continuous distribution

At this point in the course I hope you understand the importance of the condi-
tioning formula

E
(
Y
)

=
∑

i
P
(
Fi

)
E
(
Y | Fi

)
for finite or countably infinite collections of disjoint events Fi for which

∑
i PFi = 1.

As a particular case, if X is a random variable that takes only a discrete set of values
{x1, x2, . . . } then

E
(
Y
)

=
∑

i
P{X = xi}E

(
Y | X = xi

)
.

This formula can be made to look simpler by the introduction of the function

h(x) = E
(
Y | X = x

)
.

For then

(∗) E
(
Y
)

=
∑

i
P{X = xi}h(xi) = E

(
h(X)

)
.

Throughout the course I have been working with examples where you could
figure out things like E(Y | X = x) or P(A | F ) by identifying the probabilistic
mechanism corresponding to the probability P(· | X = x} or P(· | F ). In a few
cases, you could also have calculated directly from

(∗∗) P(A | F ) =
P(AF )

PF
=

P(F | A)PA
PF

Of course this formula only makes sense if PF 6= 0.
If the random variable X has a continuous distribution, you still have the pos-

sibility of calculating things like E(Y | X = x) and P(A | X = x) by recognizing an
appropriate probabilistic mechanism corresponding to P(· | X = x). But you won’t
have much luck in putting F = {X = x} in (∗∗) because P{X = x} = 0 for a con-
tinuous distribution. Nevertheless, as I will soon explain, there is a formula similar
to (∗) that works when X has a continuous distribution with density function f . As
before write h(x) for E(Y | X = x). I will explain why

(z) E
(
Y
)

= E
(
h(X)

)
=

∫ ∞
−∞

h(x)f(x) dx.

version: 10Oct2011
printed: 11 October 2011

Stat241/541
c©David Pollard



Chap 7: Continuous conditioning 2

Remark. As a special case, when Y equals the indicator function of an event B,
the formula reduces to

PB =

∫ ∞
−∞

P(B | X = x)f(x) dx.

There are several ways to arrive at formula (z). The most direct relies on the
plausible assertion that

E
(
Y | X ∈ J

)
≈ h(x) if J is a small interval with x ∈ J.

When P{X ∈ J} > 0 we are effectively back in the discrete setting (∗∗).
Condition to get a formula analogous to (∗). For each ε > 0 the intervals

Ji = [iε, iε+ ε) provide a partition of the real line into countably many disjoint sets
as i ranges over all integers (both positive and negative). If ε is very small,

EY =
∑

i
P{X ∈ Ji}E(Y | X ∈ Ji} ≈

∑
i
εf(iε)h(iε) ≈

∫ ∞
−∞

h(x)f(x) dx.

We can hope that the combined errors of all the approximation will disappear in
the limit as ε tends to zero.

Alternatively, I could start from a slightly less intuitive assumption that EY
should be nonnegative if E(Y | X = x) ≥ 0 for every x. First replace Y by Y −h(X)
to get

E
(
Y − h(X) | X = x

)
= E

(
Y | X = x

)
− h(x) = 0,

which, by the assumed nonnegativity property, gives E(Y − h(X)) ≥ 0. A similar
argument applied to h(X)− Y gives E

(
h(X)− Y

)
≥ 0. Equality (z) follows.

Remark. Notice that formula (z) also implies that

(zz), E (Y g(X)) = E
(
g(X)h(X)

)
at least for bounded functions g

because E
(
Y g(X) | X = x

)
= g(x)h(x). In advanced probability theory, the

treatment of conditional expectations starts by taking (zz) as a desirable
property. One then shows that there exists a random variable of the form h(X),
which is uniquely determined up to trivial changes on sets of zero probability,
for which the desired property holds. Essentially h(X) becomes the best
approximation to Y , in some sense, using only information given by X.

If (shudder!) I had started with this abstract approach, I would have needed
to show that conditional expectations have the properties that I have taken as
axiomatic for Stat 241/541.

Formula (z) is crucial in finding the distribution for a sum of two independent
random variables, each with a continuous distribution.
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<1> Example. Suppose X has a continuous distribution with density f and Y has a
continuous distribution with density g. If X and Y are independent then the random
variable Z = X + Y has a continuous distribution with density

h(z) =

∫ ∞
−∞

g(z − x)f(x) dx for all real z.

The integral expression for the density h in terms of f and g is called the con-
volution formula. The next Example shows the formula in action. It also serves
as an advertisement for indicator functions.

<2> Example. If X and Y are independent, each with the Uniform(0, 1) distribution,
find the distribution of X + Y .

The convolution formula also establishes a vital fact about sums of independent
normals.

<3> Example. If X1 and X2 are independent random variables with X1 ∼ N(µ1, σ
2
1)

and X2 ∼ N(µ2, σ
2
2), then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ22).

This fact lurks behind the central limit, a general approximation theorem for
sums of independent random variables, which will be discussed in the next Chapter.

Examples for Chapter 7

Example 1
Suppose X has a continuous distribution with density f and Y has a continuous distribution
with density g. If X and Y are independent show that the random variable Z = X + Y has
a continuous distribution with density

h(z) =

∫ ∞
−∞

g(z − x)f(x) dx for all real z.
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As usual, consider a small, positive δ. Then

P{z ≤ Z ≤ z + δ}

=

∫ +∞

−∞
P{z ≤ X + Y ≤ z + δ | X = x}f(x) dx by (z)

=

∫ +∞

−∞
P{z ≤ x+ Y ≤ z + δ | X = x}f(x) dx conditioning on X = x

=

∫ +∞

−∞
P{z − x ≤ Y ≤ z − x+ δ | X = x}f(x) dx

=

∫ +∞

−∞
P{z − x ≤ Y ≤ z − x}f(x) dx independence

≈
∫ +∞

−∞
δg(z − x)f(x) dx density for Y

That is,

P{z ≤ Z ≤ z + δ} ≈ δh(x)

as asserted. �

Example 2
If X and Y are independent, each with the Uniform(0, 1) distribution, find the distribution

of X + Y .

The Uniform(0, 1) has density function f(x) = I{0 < x < 1}, that is,

f(x) =
{

1 if x ∈ (0, 1)
0 otherwise

The density function h for the distribution of X + Y is given by

h(z) =

∫ ∞
−∞

I{0 < z − x < 1}I{0 < x < 1} dx

=

∫ ∞
−∞

I{x < z, x > z − 1, 0 < x < 1} dx

=

∫ ∞
−∞

I{max(0, z − 1) < x < min(1, z)} dx.

If z ≤ 0 or z ≥ 2 there are no values of x that satisfy the pair of inequalities in the
final indicator function; for those cases the indicator function is zero. If 0 < z ≤ 1
the indicator becomes I{0 < x < z}, so that the corresponding integral equals∫ ∞

−∞
I{0 < x < z} dx =

∫ z

0
1 dx = z.
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Similarly, if 1 < z < 2 the integral becomes∫ ∞
−∞

I{z − 1 < x < 1} dx =

∫ 1

z−1
1 dx = 2− z.

In summary,

h(z) =

{
0 if z ≤ 0 or z ≥ 2
z if 1 < z ≤ 1
2− z if 1 < z < 2

.

More succinctly, h(z) = max
(
0,min(z, 2− z)

)
.

z

0 1

1

2

h(z)

�

Example 3
If X1 and X2 are independent random variables with X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2),

then X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Let me simplify the algebra by writing Xi = µi + σiZi, where Z1 and Z2 are
independent standard normals. Then we have X1 + X2 = µ1 + µ2 + σ1Z1 + σ2Z2.
It will suffice we show that W = σ1Z1 + σ2Z2 has a N(0, σ21 + σ22) distribution.

The convolution formula gives the density for the distribution of W ,

h(z) =
1

σ1σ22π

∫ ∞
−∞

exp

(
− (z − x)2

2σ21
− x2

2σ22

)
dx.

The exponent expands to

−1
2x

2
(
σ−21 + σ−22

)
+ zx/σ21 − 1

2z
2/σ21.

Make the change of variable y = x/c, with

c = 1/

√
σ−21 + σ−22 = σ1σ2/τ where τ =

√
σ21 + σ22.

The exponent becomes

− 1
2

(
y2 − 2zcy/σ21 + c2z2/σ41

)
+ 1

2c
2z2/σ41 − 1

2z
2/σ21

= −1
2

(
y − zc/σ21

)2 − 1
2z

2/τ2.

The expression for h(z) simplifies to

1

τ2π
exp

(
− z2

2τ2

)∫ ∞
−∞

exp
(
− 1

2(y − zc/σ21)2
)
dy.
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The change of variable w = y − zc/σ21 then leaves an integral that equals
√

2π.
All the sneaky changes of variable might leave you feeling that the argument is

difficult. In fact I didn’t have to be so careful. In the original convolution integral I
had an exponent of the form −C1x

2 + C2xz − C3z
2 for some constants C1, C2, C3.

I completed the square to rewrite the exponent as −C4(y − C5z)
2 − C6z

2, where
y a linear function of x and C4, C5, C6 were new constants. A change of variable
allowed me to integrate out the y, leaving an expression of the form C7 exp(−C6z

2),
which is clearly a N(0, τ2) density for some τ . I could have calculated τ directly by
τ2 = var(W ) = σ21var(Z1) + σ22var(Z2). �



Chapter 8

Central limit theorems
Recall that a random variable is said to have a normal distribution with

expected value µ and standard deviation σ if it has a continuous distribution with
density

fµ,σ(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞.

The normal distribution is denoted by N(µ, σ2). The special case where µ = 0
and σ = 1 is called the standard normal. The density function for this N(0, 1)
distribution is usually denoted by φ(x) := (2π)−1/2e−x

2/2.
Remember that X has a N(µ, σ2) distribution if and only if (X − µ)/σ has a

standard normal distribution. That is, we can write X = µ + σZ where Z has a
standard normal distribution.

The normal approximation to the binomial is just one example of a general
phenomenon corresponding to the mathematical result known as the central limit
theorem. Roughly stated, the theorem asserts:

If X can be written as a sum of a large number of relatively small, inde-
pendent random variables, then it has approximately a N(µ, σ2) distri-
bution, where µ = EX and σ2 = var(X). Equivalently, the standardized
variable (X − µ)/σ has approximately a standard normal distribution.

See the Appendix for an outline of a proof of a central limit theorem, if you are
interested. You can safely ignore the Appendix.

Part of the reason for the ubiquity of the normal as an an approximation is
an important stability property that was established in Chapter 7: If X1 and X2

are independent random variables with X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), then

X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ22).

The normal distribution has many agreeable properties that make it easy to
work with. Many statistical procedures have been developed under normality as-
sumptions, with occasional offhand references to the central limit theorem to mol-
lify anyone who doubts that all distributions are normal. That said, let me note
that modern theory has been much concerned with possible harmful effects of un-
warranted assumptions such as normality. The modern fix often substitutes huge
amounts of computing for neat, closed-form, analytic expressions; but normality still
lurks behind some of the modern data analytic tools.
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<1> Example. A hidden normal approximation—the boxplot

The normal approximation is heavily used to give an estimate of variability for
the results from sampling.

<2> Example. Normal approximations for sample means

Examples for Chapter 8

Example 1
The boxplot provides a convenient way of summarizing data (such as grades in
Statistics 241/541). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ = upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ + (1.5× IQR) and LQ− (1.5× IQR), but then trim
them back to the most extreme data point in those ranges

(vi) draw dots for each individual data point outside the box and whiskers (There
are various ways to deal with cases where the number of observations is not a
multiple of four, or where there are ties, or . . . )
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LQ UQM

Where does the 1.5×IQR come from? Consider n independent observations from
a N(µ, σ2) distribution. The proportion of observations smaller than any fixed x
should be approximately equal to P{W ≤ x}, where W has a N(µ, σ2) distribution.
From normal tables (or a computer),

P{W ≤ µ+ .675σ} ≈ .75 and P{W ≤ µ− .675σ} ≈ .25

and, of course, P{W ≤ µ} = .5. For the sample we should expect

LQ ≈ µ− .675σ and UQ ≈ µ+ .675σ and M ≈ µ

and consequently, IQR ≈ 1.35σ. Check that 0.675 + (1.5 × 1.35) = 2.70. Before
trimming, the whiskers should approximately reach to the ends of the range µ ±
2.70σ. From computer (or tables),

P{W ≤ µ− 2.70σ} = P{W ≥ µ+ 2.70σ} = .003

Only about 0.6% of the sample should be out beyond the whiskers. �

Example 2
Chapter 4 gave the expected value and variance of a sample mean Ȳ for a sample
of size n from a population {y1, y2, . . . , yN}:

EY = y =
1

N

∑N

i=1
yi

and, for sampling with replacement,

var(Y ) = σ2/n where σ2 =
∑N

i=1 (yi − y)2 /N.

If Z has a N(0, 1) distribution,

P{−1.96 ≤ Z ≤ 1.96} ≈ 0.95.
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The standardized random variable (Y − y)/
√
σ2/n is well approximated by the

N(0, 1). Thus

P
{
−1.96σ√

n
≤ Y − y ≤ 1.96σ√

n

}
≈ 0.95.

Before we sample, we can assert that we have about a 95% chance of getting a
value of Y in the range y ± 1.96σ/

√
n. (For the post-sampling interpretation of the

approximation, you should take Statistics 242/542.)
Of course, we would not know the value σ, so it must be estimated.
For sampling without replacement, the variance of the sample mean is multiplied

by the correction factor (N −n)/(N − 1). The sample mean is no longer an average
of many independent summands, but the normal approximation can still be used.
(The explanation would take me too far beyond 241/541.) �

Appendix: Lindeberg’s method for the Central Limit Theorem

We have X = X1 +X2 + · · ·+Xn, a sum of a lot of small, independent contribu-
tions. If all the Xi’s are normally distributed, repeated appeals to Example <??>
show that X is also normally distributed.

If the Xi’s are not normal, we replace them one at a time by new independent
random variables Yi for which EYi = EXi and var(Yi) = var(Xi). It is easy to
use Taylor’s theorem to track the effect of the replacement if we consider smoooth
functions of the sum.

For example, suppose h has a lot of bounded, continuous derivatives. Write S
for X1 + · · ·+Xn−1. Then

Eh(X) = Eh(S +Xn)

= E
[
h(S) +Xnh

′(S) + 1
2X

2
nh
′′(S) + 1

6X
3
nh
′′′(S) + . . .

]
= Eh(S) + EXnEh′(S) + 1

2E(X2
n)Eh′′(S) + 1

6E(X3
n)E(h′′′(S)) + . . .

In the last line, I have used the independence to factorize a bunch of products.
Exactly the same idea works for h(S + Yn). That is,

Eh(S + Yn) = Eh(S) + EYnEh′(S) + 1
2E(Y 2

n )Eh′′(S) + 1
6E(Y 3

n )E(h′′′(S)) + . . .

Subtract the two expansions, noting the cancellations caused by the matching of
first and second moments for Xn and Yn.

Eh(S +Xn)− Eh(S + Yn) = 1
6E(X3

n)E(h′′′(S)) + · · · − 1
6E(Y 3

n )E(h′′′(S)) + . . .
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A similar argument works if we replace the Xn−1 in Eh(S + Yn) by its compan-
ion Yn−1. And so on. After we swap out all the Xi’s we are left with

Eh(X)− Eh(Y1 + Y2 + . . . Yn) = a sum of quantities of third, or higher order.

A formal theorem would give a precise meaning to how small the Xi’s have to
be in order to make the “sum of quantities of third, or higher order” small enough
to ignore.

If you were interested in expectations Eh(X) for functions that are not smooth,
as happens with P{X ≤ x}, you would need to approximate the non-smooth h by a
smooth function for which Lindeberg’s method can be applied.



Chapter 9

Poisson approximations
The Bin(n, p) can be thought of as the distribution of a sum of independent

indicator random variables X1 + · · · + Xn, with {Xi = 1} denoting a head on
the ith toss of a coin. The normal approximation to the Binomial works best
when the variance np(1 − p) is large, for then each of the standardized summands
(Xi−p)/

√
np(1− p) makes a relatively small contribution to the standardized sum.

When n is large but p is small, in such a way that λ := np is not too large, a
different type of approximation to the Binomial is better. The traditional explana-
tion uses an approximation to P{X = k} for a fixed k. Consider two contributions
separately. If k is small compared with n,(

n

k

)
pk =

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k
= 1×

(
1− 1

n

)
× . . .

(
1− k − 1

n

)
λk

k!

≈ λk

k!

and

log(1− p)n−k = (n− k) log

(
1− λ

n

)
≈ n

(
−λ
n

)
.

That is, (1− p)n−k ≈ e−λ. Together the two approximations give(
n

k

)
pk(1− p)n−k ≈ λk

k!
e−λ.

We have an approximation.

Definition. A random variable Y is said to have a Poisson distribution with
parameter λ if it can take values in N0, the set of nonnegative integers, with prob-
abilities

P{Y = k} =
e−λλk

k!
for k = 0, 1, 2, . . .

The parameter λ must be positive. The distribution is denoted by Poisson(λ).

version: 11Oct2011
printed: 20 October 2011

Stat241/541
c©David Pollard



Chap 9: Poisson approximations 2

That is , for λ = np not too large, the Bin(n, p) is (well?) approximated by the
Poisson(λ).

Modern probability methods have improved this rough approximation of the
Binomial by the Poisson by giving useful bounds for the error of approximation.
Moreover, the method of approximation also works in situations where the rare
events do not all have the same probability of occurrence. For example, suppose
S = X1 + X2 + · · · + Xn, a sum of independent random variables where Xi has
a Bin(1, pi) distribution, for constants p1, p2, . . . , pn that are not necessarily all the
same. If the pi’s are not all the same then S does not have a Binomial distribution.
Nevertheless, the Chen-Stein method can be used to show that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣
≤ 1− e−λ

λ

∑n

i=1
p2i where λ = p1 + · · ·+ pn

≤ min

(
1,

1

λ

)∑n

i=1
p2i by Mean Value theorem

≤ min(1, λ) maxi pi.

The method of proof is elementary—in the sense that it makes use of probabilistic
techniques at the level of Statistics 241—but extremely subtle. See Barbour et al.
(1992) for an extensive discussion of the method.

When all the pi are equal to some small p, Chen-Stein shows the error in ap-
proximating the Binomial(n, p) by the Poisson(np) is smaller than min(p, np2). This
bound makes precise the traditional advice that the Poisson approximation is good
“when p is small and np is not too big”. (In fact, the tradition was a bit conserva-
tive.)

Remark. Counts of rare events—such as the number of atoms undergoing
radioactive decay during a short period of time, or the number of aphids
on a leaf—are often modeled by Poisson distributions, at least as a first
approximation.

The Poisson inherits several properties from the Binomial. For example, the
Bin(n, p) has expected value np and variance np(1 − p). One might suspect that
the Poisson(λ) should therefore have expected value λ = n(λ/n) and variance λ =
limn→∞ n(λ/n)(1 − λ/n). Also, the coin-tossing origins of the Binomial show that
if X has a Bin(m, p) distribution and Y has a Bin(n, p) distribution independent
of X, then X + Y has a Bin(n + m, p) distribution. Putting λ = mp and µ = np
one might then suspect that the sum of independent Poisson(λ) and Poisson(µ)
distributed random variables is Poisson(λ + µ) distributed. These suspicions are
correct.
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<1> Example. If X has a Poisson(λ) distribution, then EX = var(X) = λ. If also
Y has a Poisson(µ) distribution, and Y is independent of X, then X + Y has a
Poisson(λ+ µ) distribution.

The Poisson approximation also applies in many settings where the trials are
“almost independent”, but not quite. Again the Chen-Stein method delivers im-
pressively good bounds on the errors of approximation. For example, the method
works well in two cases where the dependence takes an a simple form.

Once again suppose S = X1 + X2 + · · · + Xn, where Xi has a Bin(1, pi) dis-
tribution, for constants p1, p2, . . . , pn that are not necessarily all the same. Define
S−i = S − Xi =

∑
1≤j≤n I{j 6= i}Xj . I will call the random variables X1, . . . , Xn

positively associated if

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and each k = 0, 1, 2, . . .

and negatively associated if

P{S−i ≥ k | Xi = 1} ≤ P{S−i ≥ k | Xi = 0} for each i and each k = 0, 1, 2, . . . .

With some work it can be shown that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣
≤ (1− e−λ)/λ

{
2
∑n

i=1 p
2
i + 2

(
var(S)− λ

)
under positive association

λ− var(S) under negative association
.

These bounds take advantage of the fact that var(S) would be exactly equal to λ
if S had a Poisson(λ) distribution.

The next Example illustrates both the classical approach and the Chen-Stein ap-
proach (via positive association) to deriving a Poisson approximation for a matching
problem.

<2> Example. Poisson approximation for a matching problem: assignment of n letters
at random to n envelopes, one per envelope.

The Appendix to this Chapter provides a more detailed introduction to the
Chen-Stein method, as applied to another aspect of the matching problem. (I have
taken advantage of a few special features of the matching problem to simplify the ex-
position.) You could safely skip this Appendix. For more details, see the monograph
by Barbour et al. (1992).
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Examples for Chapter 9

Example 1
If X has a Poisson(λ) distribution, then EX = var(X) = λ. If also Y has a Poisson(µ)

distribution, and Y is independent of X, then X + Y has a Poisson(λ+ µ) distribution.

Assertion (i) comes from a routine application of the formula for the expectation
of a random variable with a discrete distribution.

EX =
∑∞

k=0
kP{X = k} =

∑∞

k=1
k
e−λλk

k!
What happens to k = 0?

= e−λλ

∞∑
k−1=0

λk−1

(k − 1)!

= e−λλeλ

= λ.

Notice how the k cancelled out one factor from the k! in the denominator.
If I were to calculate E(X2) in the same way, one factor in the k2 would cancel

the leading k from the k!, but would leave an unpleasant k/(k−1)! in the sum. Too
bad the k2 cannot be replaced by k(k − 1). Well, why not?

E(X2 −X) =

∞∑
k=0

k(k − 1)P{X = k}

= e−λ
∞∑
k=2

k(k − 1)
λk

k!
What happens to k = 0 and k = 1?

= e−λλ2
∞∑

k−2=0

λk−2

(k − 2)!

= λ2.
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Now calculate the variance.

var(X) = E(X2)− (EX)2 = E(X2 −X) + EX − (EX)2 = λ.

For assertion (iii), first note that X + Y can take only values 0, 1, 2 . . . . For a
fixed k in this range, decompose the event {X + Y = k} into disjoint pieces whose
probabilities can be simplified by means of the independence between X and Y .

P{X + Y = k} =

P{X = 0, Y = k}+ P{X = 1, Y = k − 1}+ · · ·+ P{X = k, Y = 0}
= P{X = 0}P{Y = k}+ P{X = 1}P{Y = k − 1}+ · · ·+ P{X = k}P{Y = 0}

=
e−λλ0

0!

e−µµk

k!
+ · · ·+ e−λλk

k!

e−µµ0

0!

=
e−λ−µ

k!

(
k!

0!k!
λ0µk +

k!

1!(k − 1)!
λ1µk−1 + · · ·+ k!

k!0!
λkµ0

)
=
e−λ−µ

k!
(λ+ µ)k.

The bracketed sum in the second last line is just the binomial expansion of (λ+µ)k.
�

Remark. How do you interpret the notation in the last calculation when k = 0?
I always feel slightly awkward about a contribution from k − 1 if k = 0.

There is a sneakier way to calculate EXm for m = 1, 2, . . . when X has a
Poisson(λ) distribution. Code the whole distribution into a function (the probabil-
ity generating function) of a dummy variable s:

g(s) := EsX =
∑

k≥0
ske−λ

λk

k!
= e−λ

∑
k≥0

(sλ)k

k!
= e−λeλs.

Given g, the individual probabilities P{X = k} could be recovered by expanding
the function as a power series in s.

Other facts about the distribution can also be obtained from g. For example,

d

ds
g(s) = lim

h→0
E
(

(s+ h)X − sX

h

)
= E

∂

∂s
sX = EXsX−1

and, by direct calculation, g′(s) = e−λλeλs. Put s = 1 in both expressions to deduce
that EX = g′(1) = λ.

Similarly, repeated differentiation inside the expectation sign gives

g(m)(s) =
∂m

∂sm
E(sX) = E

(
X(X − 1) . . . (X −m+ 1)sX−m

)
,
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and direct differentiation of g gives g(m)(s) = e−λλmeλs. Again put s = 1 to deduce
that

λm = g(m)(1) = E
(
X(X − 1) . . . (X −m+ 1)

)
for m = 1, 2, . . .

Example 2
Suppose n letters are placed at random into n envelopes, one letter per envelope.
The total number of correct matches, S, can be written as a sum X1 + · · ·+Xn of
indicators,

Xi =
{

1 if letter i is placed in envelope i,
0 otherwise.

The Xi are dependent on each other. For example, symmetry implies that

pi = P{Xi = 1} = 1/n for each i

and

P{Xi = 1 | X1 = X2 = · · · = Xi−1 = 1} =
1

n− i+ 1

I could eliminate the dependence by relaxing the requirement of only one letter per
envelope. The number of letters placed in the correct envelope (possibly together
with other, incorrect letters) would then have a Bin(n, 1/n) distribution, which is
approximated by Poisson(1) if n is large.

We can get some supporting evidence for S having something close to a Poisson(1)
distribution under the original assumption (one letter per envelope) by calculating
some moments.

ES =
∑

i≤n
EXi = nP{Xi = 1} = 1

and

ES2 = E

X2
1 + · · ·+X2

n + 2
∑
i<j

XiXj


= nEX2

1 + 2

(
n

2

)
EX1X2 by symmetry

= nP{X1 = 1}+ (n2 − n)P{X1 = 1, X2 = 1}

=

(
n× 1

n

)
+ (n2 − n)× 1

n(n− 1)

= 2.

Thus var(S) = ES2− (ES)2 = 1. Compare with Example <1>, which gives EY = 1
and var(Y ) = 1 for a Y distributed Poisson(1).
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Using the method of inclusion and exclusion, it is possible (Feller, 1968,
Chapter 4) to calculate the exact distribution of the number of correct matches,

(?) P{S = k} =
1

k!

(
1− 1

1!
+

1

2!
− 1

3!
− · · · ± 1

(n− k)!

)
for k = 0, 1, . . . , n.

For fixed k, as n→∞ the probability converges to

1

k!

(
1− 1 +

1

2!
− 1

3!
− . . .

)
=
e−1

k!
,

which is the probability that Y = k if Y has a Poisson(1) distribution.
The Chen-Stein method is also effective in this problem. I claim that it is intu-

itively clear (although a rigorous proof might be tricky) that the Xi’s are positively
associated:

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and each k ∈ N0.

I feel that if Xi = 1, then it is more likely for the other letters to find their matching
envelopes than if Xi = 0, which makes things harder by filling one of the envelopes
with the incorrect letter i. Positive association gives

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ 2
∑n

i=1
p2i + var(S)− 1 = 2/n.

As n gets large, the distribution of S does get close to the Poisson(1) in the strong,
total variation sense. However, it is possible (see Barbour et al. (1992), page 73) to
get a better bound by working directly from (?). �
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Appendix: The Chen-Stein method for the matching problem

You might actually find the argument leading to the final bound of Example <2>
more enlightening than the condensed exposition that follows. In any case, you
can safely stop reading this chapter right now without suffering major probabilistic
deprivation.

You were warned.
Consider once more the matching problem described in Example <2>. Use the

Chen-Stein method to establish the approximation

P{S = k} ≈ e−1

k!
for k = 0, 1, 2, . . .

The starting point is a curious connection between the Poisson(1) and the function
g(·) defined by g(0) = 0 and

g(j) =

∫ 1

0
e−ttj−1dt for j = 1, 2, . . .

Notice that 0 ≤ g(j) ≤ 1 for all j. Also, integration by parts shows that

g(j + 1) = jg(j)− e−1 for j = 1, 2, . . .

and direct calculation gives
g(1) = 1− e−1

More succinctly,

g(j + 1)− jg(j) = 1{j = 0} − e−1 for j = 0, 1, . . .<3>

Actually the definition of g(0) has no effect on the validity of the assertion when
j = 0; you could give g(0) any value you liked.

Suppose Y has a Poisson(1) distribution. Substitute Y for j in <3>, then take
expectations to get

E (g(Y + 1)− Y g(Y )) = E1{Y = 0} − e−1 = P{Y = 0} − e−1 = 0.

A similar calculation with S in place of Y gives

P{S = 0} − e−1 = E (g(S + 1)− Sg(S)) .<4>
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If we can show that the right-hand side is close to zero then we will have

P{S = 0} ≈ e−1,

which is the desired Poisson approximation for P{S = k} when k = 0. A simple
symmetry argument will then give the approximation for other k values.

There is a beautiful probabilistic trick for approximating the right-hand side
of <4>. Write the Sg(S) contribution as

ESg(S) = E
∑n

i=1
Xig(S) =

∑n

i=1
EXig(S) = nEX1g(S)<5>

The trick consists of a special two-step method for allocating letters at random
to envelopes, which initially gives letter 1 a special role.

(i) (1) Put letter 1 in envelope 1, then allocate letters 2, . . . , n to envelopes 2, . . . , n
in random order, one letter per envelope. Write 1 +Z for the total number of
matches of letters to correct envelopes. (The 1 comes from the forced matching
of letter 1 and envelope 1.) Write Yj for the letter that goes into envelope j.
Notice that EZ = 1, as shown in Example <2>.

(ii) (2) Choose an envelope R at random (probability 1/n for each envelope), then
swap letter 1 with the letter in the chosen envelope.

Notice that X1 is independent of Z, because of step 2. Indeed,

P{X1 = 1 | Z = k} = P{R = 1 | Z = k} = 1/n for each k.

Notice also that

S =


1 + Z if R = 1
Z − 1 if R ≥ 2 and YR = R
Z if R ≥ 2 and YR 6= R

Thus

P{S 6= Z | Z = k} = P{R = 1}+
∑

j ≥ 2P{R = j, Yj = j | Z = k}

=
1

n
+

1

n

∑
j ≥ 2P{Yj = j | Z = k}

=
k + 1

n

and

P{S 6= Z} =
∑

k

k + 1

n
P{Z = k} =

EZ + 1

n
=

2

n
.
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That is, the construction gives S = Z with high probability.
From the fact that when X1 = 1 (that is, R = 1) we have S = Z + 1, deduce

that

X1g(S) = X1g(1 + Z)<6>

The same equality holds trivially when X1 = 0. Take expectations. Then argue
that

ESg(S) = nEX1g(S) by <5>

= nEX1g(1 + Z) by <6>

= nEX1Eg(1 + Z) by independence of X1 and Z

= Eg(1 + Z)

Thus the right-hand side of <4> equals E (g(S + 1)− g(Z + 1)). On the event
{S = Z} the two terms cancel; on the event {S 6= Z}, the difference g(S+1)−g(Z+1)
lies between ±1 because 0 ≤ g(j) ≤ 1 for j = 1, 2, . . . . Combining these two
contributions, we get

|P (g(S + 1)− g(Z + 1)) | ≤ 1× P{S 6= Z} ≤ 2

n

and

|P{S = 0} − e−1| = |P (g(S + 1)− Sg(S)) | ≤ 2/n.<7>

The exact expression for P{S = 0} from (?) shows that 2/n greatly overestimates
the error of approximation, but at least it tends to zero as n gets large.

After all that work to justify the Poisson approximation to P{S = k} for k = 0,
you might be forgiven for shrinking from the prospect of extending the approxima-
tion to larger k. Fear not! The worst is over.

For k = 1, 2, . . . the event {S = k} specifies exactly k matches. There are
(
n
k

)
choices for the matching envelopes. By symmetry, the probability of matches only
in a particular set of k envelopes is the same for each specific choice of the set of k
envelopes. It follows that

P{S = k} =

(
n

k

)
P{envelopes 1, . . . , k match; the rest don’t}

The probability of getting matches in envelopes 1, . . . , k equals

1

n(n− 1) . . . (n− k + 1)
.



Chap 9: Poisson approximations 11

The conditional probability

P{envelopes k + 1, . . . , n don’t match | envelopes 1, . . . , k match}

is equal to the probability of zero matches when n− k letters are placed at random
into their envelopes. If n is much larger than k, this probability is close to e−1, as
shown above. Thus

P{S = k} ≈ n!

k!(n− k)!

1

n(n− 1)(n− 2) . . . (n− k + 1)
e−1 =

e−1

k!
.

More formally, for each fixed k,

P{S = k} → e−1

k!
= P{Y = k} as n→∞,

where Y has the Poisson(1) distribution. �



Chapter 10

Poisson processes
The Binomial distribution and the geometric distribution describe the behavior

of two random variables derived from the random mechanism that I have called
coin tossing. The name coin tossing describes the whole mechanism; the names
Binomial and geometric refer to particular aspects of that mechanism. If we increase
the tossing rate to n tosses per second and decrease the probability of heads to a
small p, while keeping the expected number of heads per second fixed at λ = np,
the number of heads in a t second interval will have approximately a Bin(nt, p)
distribution, which is close to the Poisson(λt). Also, the numbers of heads tossed
during disjoint time intervals will still be independent random variables. In the
limit, as n→∞, we get an idealization called a Poisson process.

Remark. The double use of the name Poisson is unfortunate. Much confusion
would be avoided if we all agreed to refer to the mechanism as “idealized-
very-fast-coin-tossing”, or some such. Then the Poisson distribution would
have the same relationship to idealized-very-fast-coin-tossing as the Binomial
distribution has to coin-tossing. Conversely, I could create more confusion by
renaming coin tossing as “the binomial process”. Neither suggestion is likely to
be adopted, so you should just get used to having two closely related objects
with the name Poisson.

Definition. A Poisson process with rate λ on [0,∞) is a random mechanism that
generates “points” strung out along [0,∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random variable
with a Poisson(λt) distribution

(ii) the numbers of points landing in disjoint (= non-overlapping) intervals are
independent random variables.

Note that, for a very short interval of length δ, the number of points X in the
interval has a Poisson(λδ) distribution, with

P{X = 0} = e−λδ = 1− λδ + terms of order δ2 or smaller

P{X = 1} = λδe−λδ = λδ + terms of order δ2 or smaller

P{X ≥ 2} = 1− e−λδ − λδe−λδ = quantity of order δ2.

When we pass to the idealized mechanism of points generated in continuous
time, several awkward details of discrete-time coin tossing disappear.

version: 22Oct2011
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<1> Example. (Gamma distribution from Poisson process) The waiting time Wk to
the kth point in a Poisson process with rate λ has a continuous distribution, with
density gk(w) = λkwk−1e−λw/(k − 1)! for w > 0, zero otherwise.

It is easier to remember the distribution if we rescale the process, defining Tk =
λWk. The new Tk has a continuous distribution with a gamma(k) density,

fk(t) =
tk−1e−t

(k − 1)!
I{t > 0}

Remark. Notice that gk = fk when λ = 1. That is, Tk is the waiting time
to the kth point for a Poisson process with rate 1. Put another way, we can
generate a Poisson process with rate λ by taking the points appearing at times
0 < T1 < T2 < T3 < . . . from a Poisson process with rate 1, then rescaling to
produce a new process with points at

0 <
T1
λ
<
T2
λ
<
T3
λ
< . . .

You could verify this assertion by checking the two defining properties for a
Poisson process with rate λ. Doesn’t it makes sense that, as λ gets bigger, the
points appear more rapidly?

More generally, for each α > 0,

fα(t) =
tα−1e−t

Γ(α)
I{t > 0}.

is called the gamma(α) density. The scaling constant, Γ(α), which ensures that
the density integrates to one, is given by

Γ(α) =

∫ ∞
0

xα−1e−xdx for each α > 0.

The function Γ(·) is called the gamma function. Don’t confuse the gamma density
(or the gamma distribution that it defines) with the gamma function.

<2> Example. Facts about the gamma function: Γ(k) = (k − 1)! for k = 1, 2, . . . , and
Γ(1/2) =

√
π.

The change of variable used in Example <2> to prove Γ(1/2) =
√
π is essentially

the same piece of mathematics as the calculation on HW6 used to find the density
for the distribution of Y = Z2/2 when Z ∼ N(0, 1). The random variable Y has a
gamma (1/2) distribution.
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<3> Example. Moments of the gamma distribution

The special case of the gamma distribution when the parameter α equals 1 is
called the (standard) exponential distribution, with density f1(t) = e−t for
t > 0, and zero elsewhere. From Example <3>, if T1 has a standard exponential
distribution then ET1 = 1. The waiting time W1 to the first point in a Poisson pro-
cess with rate λ has the same distribution as T1/λ, that is, a continuous distribution
with density λe−λt for t > 0, an exponential distribution with expected value
1/λ. Don’t confuse the exponential density (or the exponential distribution that it
defines) with the exponential function.

Notice the parallels between the negative binomial distribution (in discrete time)
and the gamma distribution (in continuous time). Each distribution corresponds
to the waiting time to the kth occurrence of something, for various values of k.
The negative binomial (see HW6) can be written as a sum of independent random
variables, each with a geometric distribution. The gamma(k) can be written as a
sum of k independent random variables,

Tk = T1 + (T2 − T1) + (T3 − T2) + · · ·+ (Tk − Tk−1),

each with a standard exponential distribution. (For a Poisson process, the indepen-
dence between the counts in disjoint intervals ensures that the mechanism deter-
mining the time W2 −W1 between the first and the second points is just another
Poisson process started off at time W1. And so on.) The times between points in a
Poisson process are independent, exponentially distributed random variables.

Poisson Processes can also be defined for sets other than the half-line.

<4> Example. A Poisson Process in two dimensions.

Things to remember

Analogies between coin tossing, as a discrete time mechanism, and the Poisson
process, as a continuous time mechanism:
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discrete time ↔ continuous time

coin tossing, prob p of heads ↔ Poisson process with rate λ

Bin(n, p) ↔ Poisson(λt)
X = #heads in n tosses X = # points in [a, a+ t]

P{X = i} =
(
n
i

)
piqn−i P{X = i} = e−λt(λt)i/i!

for i = 0, 1, . . . , n for i = 0, 1, 2 . . .

geometric(p) ↔ (standard) exponential
N1 = # tosses to first head; T1/λ = time to first point;

P{N1 = 1 + i} = qip T1 has density f1(t) = e−t

for i = 0, 1, 2, . . . for t > 0

negative binomial ↔ gamma
Nk = # tosses to kth head; Tk/λ = time to kth point;

P{Nk = k + i} =
(
k+i−1
k−1

)
qipk Tk has density

=
(−k
i

)
(−q)ipk for i = 0, 1, 2, . . . fk(t) = tk−1e−t/k! for t > 0

negative binomial as sum of gamma(k) as sum of
independent geometrics independent exponentials

Examples for Chapter 10

Example 1
Let Wk denote the waiting time to the kth point in a Poisson process on [0,∞)
with rate λ. It has a continuous distribution, whose density gk we can find by an
argument similar to the one used in Chapter 6 to find the distribution of an order
statistic for a sample from the Uniform(0, 1).

For a given w > 0 and small δ > 0, write M for the number of points landing in
the interval [0, w), and N for the number of points landing in the interval [w,w+ δ].
From the definition of a Poisson process, M and N are independent random variables
with

M ∼ Poisson(λw) and N ∼ Poisson(λδ).

To have Wk lie in the interval [w,w + δ] we must have N ≥ 1. When N = 1, we
need exactly k − 1 points to land in [0, w). Thus

P{w ≤Wk ≤ w + δ} = P{M = k − 1, N = 1}+ P{w ≤Wk ≤ w + δ, N ≥ 2}.
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The second term on the right-hand side is of order δ2. Independence of M and N
lets us factorize the contribution from N = 1 into

P{M = k − 1}P{N = 1} =
e−λw(λw)k−1

(k − 1)!

e−λδ(λδ)1

1!

=
e−λwλk−1wk−1

(k − 1)!

(
λδ + smaller order terms

)
,

Thus

P{w ≤Wk ≤ w + δ} =
e−λwλkwk−1

(k − 1)!
δ + smaller order terms,

which makes

gk(w) =
e−λwλkwk−1

(k − 1)!
I{w > 0}

the density function for Wk. �

Example 2
The gamma function is defined for α > 0 by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

By direct integration, Γ(1) =
∫∞
0 e−xdx = 1. Also, a change of variable y =

√
2x

gives

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx

=

∫ ∞
0

√
2e−y

2/2dy

=

√
2

2

√
2π√
2π

∫ ∞
−∞

e−y
2/2dy

=
√
π cf. integral of N(0, 1) density.

For each α > 0, an integration by parts gives

Γ(α+ 1) =

∫ ∞
0

xαe−xdx

=
[
−xαe−x

]∞
0

+ α

∫ ∞
0

xα−1e−xdx

= αΓ(α).
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Repeated appeals to the same formula, for α > 0 and each positive integer m, give

(∗) Γ(α+m) = (α+m− 1)(α+m− 2) . . . (α)Γ(α).

In particular,

Γ(k) = (k − 1)(k − 2)(k − 3) . . . (2)(1)Γ(1) = (k − 1)! for k = 1, 2, . . . .

�

Example 3
For parameter value α > 0, the gamma(α) distribution is defined by its density

fα(t) =

{
tα−1e−t/Γ(α) for t > 0
0 otherwise

If a random variable T has a gamma(α) distribution then, for each positive integerm,

ETm =

∫ ∞
0

tmfα(t) dt

=

∫ ∞
0

tmtα−1e−t

Γ(α)
dt

=
Γ(α+m)

Γ(α)

= (α+m− 1)(α+m− 2) . . . (α) by equality (∗) in Example <2>.

In particular, ET = α and

var(T ) = E
(
T 2
)
− (ET )2 = (α+ 1)α− α2 = α.

�

Example 4
A Poisson process with rate λ on R2 is a random mechanism that generates “points”
in the plane in such a way that

(i) the number of points landing in any region of area A is a random variable with
a Poisson(λA) distribution

(ii) the numbers of points landing in disjoint regions are independent random
variables.
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Suppose mold spores are distributed across the plane as a Poisson process with
intensity λ. Around each spore, a circular moldy patch of radius r forms. Let S be
some bounded region. Find the expected proportion of the area of S that is covered
by mold.

S

Write x = (x, y) for the typical point of R2. If B is a subset of R2,

area of S ∩B =

∫∫
x∈S

I{x ∈ B} dx

If B is a random set then

E
(

area of S ∩B
)

=

∫∫
x∈S

EI{x ∈ B} dx =

∫∫
x∈S

P{x ∈ B} dx

If B denotes the moldy region of the plane,

1− P{x ∈ B} = P{ no spores land within a distance r of x }
= P{ no spores in circle of radius r around x }
= exp

(
− λπr2

)
Notice that the probability does not depend on x. Connsequently,

E
(

area of S ∩B
)

=

∫∫
x∈S

1−exp
(
− λπr2

)
dx =

(
1− exp

(
− λπr2

))
× area of S

The expected proportion of the area of S that is covered by mold is 1−exp
(
− λπr2

)
.

�
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Addendum to Chapter 10

<1> Example. Suppose an office receives two different types of inquiry: persons who
walk in off the street, and persons who call by telephone. Suppose the two types of
arrival are described by independent Poisson processes, with rate λw for the walk-
ins, and rate λc for the callers. What is the distribution of the number of telephone
calls received before the first walk-in customer?

Write T for the arrival time of the first walk-in, and let N be the number of calls
in [0, T ). The time T has a continuous distribution, with the exponential density
f(t) = λwe

−λwt for t > 0. We need to calculate P{N = i} for i = 0, 1, 2, . . . .
Condition on T :

P{N = i} =

∫ ∞
0

P{N = i | T = t}f(t) dt.

The conditional distribution of N is affected by the walk-in process only insofar as
that process determines the length of the time interval over which N counts. Given
T = t, the random variable N has a Poisson(λct) conditional distribution. Thus

P{N = i} =

∫ ∞
0

e−λct(λct)
i

i!
λwe

−λwt dt

= λw
λic
i!

∫ ∞
0

(
x

λc + λw

)i
e−x

dx

λc + λw
putting x = (λc + λw)t

=
λw

λc + λw

(
λc

λc + λw

)i 1

i!

∫ ∞
0

xie−xdx

The 1/i! and the last integral cancel. (Compare with Γ(i + 1).) Writing p for
λw/(λc + λw) we have

P{N = i} = p(1− p)i for i = 0, 1, 2, . . .

That is, 1 + N has a geometric(p) distribution. The random variable N has the
distribution of the number of tails tossed before the first head, for independent
tosses of a coin that lands heads with probability p.

Such a clean result couldn’t happen just by accident. HW9 will give you a neater
way to explain how the geometric got into the Poisson process.

�
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Joint densities
Consider the general problem of describing probabilities involving two random

variables, X and Y . If both have discrete distributions, with X taking values
x1, x2, . . . and Y taking values y1, y2, . . . , then everything about the joint behavior
of X and Y can be deduced from the set of probabilities

P{X = xi, Y = yj} for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs of random
variables, but we have not needed to formalize the concept of a joint distribution.
When both X and Y have continuous distributions, it becomes more important to
have a systematic way to describe how one might calculate probabilities of the form
P{(X,Y ) ∈ B} for various subsets B of the plane. For example, how could one
calculate P{X < Y } or P{X2 + Y 2 ≤ 9} or P{X + Y ≤ 7}?

Definition. Say that random variables X and Y have a jointly continuous distribu-
tion with joint density function f(·, ·) if

P{(X,Y ) ∈ B} =

∫∫
B
f(x, y) dx dy.

for each subset B of R2.

Remark. To avoid messy expressions in subscripts, I will sometimes write∫∫
I{(x, y) ∈ B} . . . instead of

∫∫
B
. . . .

The density function defines a surface, via the equation z = f(x, y). The prob-
ability that the random point (X,Y ) lands in B is equal to the volume of the
“cylinder”

{(x, y, z) ∈ R3 : 0 ≤ z ≤ f(x, y) and (x, y) ∈ B}.
In particular, if ∆ is small region in R2 around a point (x0, y0) at which f is continu-
ous, the cylinder is close to a thin column with cross-section ∆ and height f(x0, y0),
so that

P{(X,Y ) ∈ ∆} = (area of ∆)f(x0, y0) + smaller order terms.

More formally,

lim
∆↓{x0,y0)

P{(X,Y ) ∈ ∆}
area of ∆

= f(x0, y0).

The limit is taken as ∆ shrinks to the point (x0, y0).

height = f(x0,y0)

part of surface
     z=f(x,y)

base Δ
 in plane z=0
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Remark. For a rigorous treatment, ∆ is not allowed to be too weirdly shaped.
One can then show that the limit exists and equals f(x0, y0) except for (x0, y0)
in a region with zero area.

To calculate P{(X,Y ) ∈ B} for a larger region B, we could partition B into
small regions ∆1, ∆2, . . . , then add up the contributions to the probability from
each region: P{(X,Y ) ∈ B} =

∑
i P{(X,Y ) ∈ ∆i}. The sum is approximately equal

to the volume of the entire region bounded by the surface and the plane z = 0, and
lying above the set B, a volume given precisely by the double integral. As we
make the partitions finer, the errors of approximation go to zero. In the limit,
P{(X,Y ) ∈ B} is recovered as the double integral.

Apart from the replacement of single integrals by double integrals and the re-
placement of intervals of small length by regions of small area, the definition of a
joint density is essentially the same as the definition for densities on the real line in
Chapter 6.

To ensure that P{(X,Y ) ∈ B} is nonnegative and that it equals one when B is
the whole of R2, we must require

f ≥ 0 and

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1.

The joint density for (X,Y ) includes information about the marginal dis-
tributions of the random variables. To see why, write A × R for the subset
{(x, y) ∈ R2 : x ∈ A, y ∈ R} for a subset A of the real line. Then

P{X ∈ A}
= P{(X,Y ) ∈ A× R}

=

∫∫
I{x ∈ A, y ∈ R}f(x, y) dx dy

=

∫ +∞

−∞
I{x ∈ A}

(∫ +∞

−∞
I{y ∈ R}f(x, y) dy

)
dx

=

∫ +∞

−∞
I{x ∈ A}h(x) dx where h(x) =

∫ +∞

−∞
f(x, y) dy.

It follows that X has a continuous distribution with (marginal) density h. Simi-
larly, Y has a continuous distribution with (marginal) density g(y) =

∫ +∞
−∞ f(x, y) dx.

Remark. The word marginal is used here to distinguish the joint density
for (X,Y ) from the individual densities g and h.

When we wish to calculate a density, the small region ∆ can be chosen in many
ways—small rectangles, small disks, small blobs, and even small shapes that don’t
have any particular name—whatever suits the needs of a particular calculation.
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<1> Example. (Joint densities for independent random variables) Suppose X has a
continuous distribution with density g and Y has a continuous distribution with
density h. Then X and Y are independent if and only if they have a jointly contin-
uous distribution with joint density f(x, y) = g(x)h(y) for all (x, y) ∈ R2.

When pairs of random variables are not independent it takes more work to find a
joint density. The prototypical case, where new random variables are constructed as
linear functions of random variables with a known joint density, illustrates a general
method for deriving joint densities.

<2> Example. Suppose X and Y have a jointly continuous distribution with density
function f . Define S = X + Y and T = X − Y . Show that (S, T ) has a jointly

continuous distribution with density ψ(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
.

For instance, suppose the X and Y from Example <2> are independent and
each is N(0, 1) distributed. From Example <1>, the joint density for (X,Y ) is

f(x) =
1

2π
exp

(
1
2(x2 + y2)

)
.

The joint density for S = X + Y and T = X − Y is

ψ(s, t) =
1

4π
exp

(
1
8((s+ t)2 + (s− t)2)

)
=

1

σ
√

2π
exp(−s2/(2σ2))

1

σ
√

2π
exp(−t2/(2σ2)) where σ2 = 2.

It follows that S and T are independent, each with a N(0, 2) distribution.
Example <2> also implies the convolution formula from Chapter 7. For if X

and Y are independent, with densities g and h, then their joint density is f(x, y) =
g(x)h(y) and the joint density for S = X + Y and T = X − Y is

ψ(s, t) = 1
2hg

(
s+ t

2

)
h

(
s− t

2

)
Integrate over t to get the marginal density for S:∫ +∞

−∞
ψ(s, t) dt =

∫ +∞

−∞

1
2g

(
s+ t

2

)
h

(
s− t

2

)
dt

=

∫ +∞

−∞
g(x)h(s− x) dx putting x = (s+ t)/2.
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The argument for general linear combinations is slightly more complicated. The
next Example could be skipped.

<3> Example. Suppose X and Y have a jointly continuous distribution with joint den-
sity f(x, y). For constants a, b, c, d, define U = aX + bY and V = cX + dY . Find
the joint density function ψ(u, v) for (U, V ), under the assumption that the quantity
κ = ad− bc is nonzero.

The method used in Example <3>, for linear transformations, extends to give
a good approximation for more general smooth transformations when applied to
small regions. Densities describe the behaviour of distributions in small regions; in
small regions smooth transformations are approximately linear; the density formula
for linear transformations gives a good approximation to the density for smooth
transformations in small regions.

For example, from class you know that for independent random variables X and
Y with X ∼ gamma(α) and Y ∼ gamma(β), we have X +Y ∼ gamma(α+β). The
next Example provides an alternative way to derive this results, plus a little more.

<4> Example. SupposeX and Y are independent random variables, withX ∼ gamma(α)
and Y ∼ gamma(β). Show that the random variables U = X/(X + Y ) and
V = X + Y are independent, with U ∼ beta(α, β) and V ∼ gamma(α+ β).

The conclusion about X + Y from Example <4> extends to sums of more than
two independent random variables, each with a gamma distribution. The result has
a particularly important special case, involving the sums of squares of independent
standard normals.

<5> Example. Sums of independent gamma random variables.

Examples for Chapter 11

Example 1
(Joint densities for independent random variables) Suppose X has a continuous distribution

with density g and Y has a continuous distribution with density h. Then X and Y are

independent if and only if they have a jointly continuous distribution with joint density

f(x, y) = g(x)h(y) for all (x, y) ∈ R2.
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When X has density g(x) and Y has density h(y), and X is independent of Y ,
the joint density is particularly easy to calculate. Let ∆ be a small rectangle with
one corner at (x0, y0) and small sides of length δ > 0 and ε > 0,

∆ = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + δ, y0 ≤ y ≤ y0 + ε}.

By independence,

P{(X,Y ) ∈ ∆} = P{x0 ≤ X ≤ x0 + δ}P{y0 ≤ Y ≤ y0 + ε}
≈ δg(x0)εh(y0) =

(
area of ∆

)
× g(x0)h(y0).

Thus X and Y have a joint density that takes the value f(x0, y0) = g(x0)h(y0) at
(x0, y0).

Conversely, if X and Y have a joint density f that factorizes, f(x, y) = g(x)h(y),
then, for some constant K, for each pair of subsets C,D of the real line,

P{X ∈ C, Y ∈ D} =

∫∫
I{x ∈ C, y ∈ D}f(x, y) dx dy

=

∫∫
I{x ∈ C}I{y ∈ D}g(x)h(y)dx dy

=

(∫
I{x ∈ C}g(x) dx

)(∫
I{y ∈ D}h(y) dy

)

In particular, if we take C = D = R then we get∫ ∞
−∞

g(x) dx = K and

∫ ∞
−∞

h(y) dy = 1/K

If we take only D = R we get

P{X ∈ C} = P{X ∈ C, Y ∈ R} =

∫
C
g(x)/K dx

from which it follows that g(x)/K is the marginal density for X. Similarly, Kh(y)
is the marginal density for Y . Moreover, provided P{Y ∈ D} 6= 0,

P{X ∈ C | Y ∈ D} =
P{X ∈ C, Y ∈ D}

P{Y ∈ D}
=

P{X ∈ C}P{Y ∈ D}
P{Y ∈ D}

= P{X ∈ C}.

The random variables X and Y are independent.
Of course, if we know that g and h are the marginal densities then we have K =

1. The argument in the previous paragraph actually shows that any factoriza-
tion f(x, y) = g(x)h(y) of a joint density (even if we do not know that the factors
are the marginal densities) implies independence. �
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Example 2
Suppose X and Y have a jointly continuous distribution with density function f . Define

S = X + Y and T = X − Y . Show that (S, T ) has a jointly continuous distribution with

density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
.

Consider a small ball ∆ of radius ε centered at a point (s0, t0) in the plane. The
area of ∆ equals πε2. The point (s0, t0) in the (S, T )-plane (the region where (S, T )
takes its values) corresponds to the point (x0, y0) in the (X,Y )-plane for which
s0 = x0 + y + 0 and t0 = x0 − y0. That is, x0 = (s0 + t0)/2 and y0 = (s0 − t0)/2.

We need to identify {(S, T ) ∈ ∆} with some set {(X,Y ) ∈ D}.

enalp-)T,S(enalp-)Y,X(

s

t

x

y

s0

t0

x0

y0

∆
D

By great luck (or by a clever choice for ∆) the region D in the (X,Y )-plane
turns out to be another ball:

{(S, T ) ∈ ∆} = {(S − s0)2 + (T − t0)2 ≤ ε2}
= {(X + Y − x0 − y0)2 + (X − Y − x0 + y0)2 ≤ ε2}
= {2(X − x0)2 + 2(Y − y0)2 ≤ ε2}

(Notice the cancellation of (X−x0)(Y −y0) terms.) That is D is a ball of radius ε/
√

2
centered at (x0, y0), with area πε2/2, which is half the area of ∆. Now we can
calculate.

P{(S, T ) ∈ ∆} = P{(X,Y ) ∈ D}
≈ area of D × f(x0, y0)

= 1
2area of ∆× f

(
s0 + t0

2
,
s0 − t0

2

)

It follows that (S, T ) has joint density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
. �
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Example 3
(Can be skipped.) Suppose X and Y have a jointly continuous distribution with joint

density f(x, y). For constants a, b, c, d, define U = aX + bY and V = cX + dY . Find the

joint density function ψ(u, v) for (U, V ), under the assumption that the quantity κ = ad−bc
is nonzero.

In matrix notation,

(U, V ) = (X, Y )A where A =

(
a c
b d

)
.

Notice that detA = ad− bc = κ. The assumption that κ 6= 0 ensures that A has an
inverse:

A−1 =
1

κ

(
d −c
−b a

)
That is, if (u, v) = (x, y)A then

du− bv
κ

= x and
−cu+ av

κ
= y.

Notice that det
(
A−1

)
= 1/κ = 1/(detA).

Consider a small rectangle ∆ = {u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}, for (u0, v0)
in the (U, V )-plane and small, positive δ and ε. The joint density function ψ(u, v)
is characterized by the property that

P{(U, V ) ∈ ∆} ≈ ψ(u0, v0)δε

The event {(U, V ) ∈ ∆} is equal to some event {(X,Y ) ∈ D}. The linear
transformation A−1 maps parallel straight lines in the (U, V )-plane into parallel
straight lines in the (X,Y )-plane. The region D must be a parallelogram. We
have only to determine its vertices, which correspond to the four vertices of the
rectangle ∆. Define vectors α1 = (d,−c)/κ and α2 = (−b, a)/κ, which correspond
to the two rows of the matrix A−1. Then D has vertices:

(x0, y0) = (u0, v0)A−1 = u0α1 + v0α2

(x0, y0) + δα1 = (u0 + δ, v0)A−1 = (u0 + δ)α1 + v0α2

(x0, y0) + εα2 = (u0, v0 + ε)A−1 = u0α1 + (v0 + ε)α2

(x0, y0) + δα1 + εα2 = (u0 + δ, v0 + ε)A−1 = (u0 + δ)α1 + (v0 + ε)α2
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(u0+δ,v0+ε)

(x0,y0)
(u0,v0)

(U,V)-plane(X,Y)-plane

Δ
D (x0,y0)+δα1

(x0,y0)+εα2

(x0,y0)+δα1+εα2

From the formula in the Appendix to this Chapter, the parallelogram D has area
equal to δε times the absolute value of the determinant of the matrix with rows α1

and α2. That is,

area of D = δε| det(A−1)| = δε

| detA|
.

In summary: for small δ > 0 and ε > 0,

ψ(u0, v0)δε ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ D}
≈ (area of D)f(x0, y0)

≈ δεf(x0, y0)/|det(A)|.

It follows that (U, V ) have joint density

ψ(u, v) =
1

| detA|
f(x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du− bv) /κ for x and (−cu+ av) /κ
for y, in order to get an expresion involving only u and v. �

Remark. In effect, I have calculated a Jacobian by first principles.

Example 4
Suppose X and Y are independent random variables, with X ∼ gamma(α) and Y ∼
gamma(β). Show that the random variables U = X/(X + Y ) and V = X + Y are in-

dependent, with U ∼ beta(α, β) and V ∼ gamma(α+ β).

The random variables X and Y have marginal densities

g(x) = xα−1e−xI{x > 0}/Γ(α) and h(y) = yβ−1e−yI{y > 0}/Γ(β)

From Example <1>, they have a jointly continuous distribution with joint density

f(x, y) = g(x)h(y) =
xα−1e−xyβ−1e−y

Γ(α)Γ(β)
I{x > 0, y > 0}.
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We need to find the joint density function ψ(u, v) for the random variables
U = X/(X + Y ) and V = X + Y . The pair (U, V ) takes values in the strip defined
by {(u, v) ∈ R2 : 0 < u < 1, 0 < v < ∞}. The joint density function ψ can be
determined by considering corresponding points (x0, y0) in the (x, y)-quadrant and
(u0, v0) in the (u, v)-strip for which

u0 = x0/(x0 + y0) and v0 = x0 + y0,

that is,

x0 = u0v0 and y0 = (1− u0)v0.

u0 u0+δ

(x0,y0)

v0+ε

v0
ΔD

(X,Y)-quadrant (U,V)-strip

1

When (U, V ) lies near (u0, v0) then (X,Y ) lies near (x0, y0) = (u0v0, v0(1−u0)).
More precisely, for small positive δ and ε, there is a small region D in the (X,Y )-
quadrant corresponding to the small rectangle

∆ = {(u, v) : u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}

in the (U, V )-strip. That is, {(U, V ) ∈ ∆} = {(X,Y ) ∈ D}. The set D is not a
parallelogram but it is well approximated by one. For small perturbations, the map
from (u, v) to (x, y) is approximately linear. First locate the points corresponding
to the corners of ∆, under the maps x = uv and y = v(1− u):

(u0 + δ, v0)↔ (x0, y0) + (δv0,−δv0)

(u0, v0 + ε)↔ (x0, y0) + (εu0, ε(1− u0))

(u0 + δ, v0 + ε)↔ (x0, y0) + (δv0 + εu0 + δε,−δv0 + ε(1− u0)− δε)
= (x0, y0) + (δv0 + εu0,−δv0 + ε(1− u0)) + (δε,−δε).
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In matrix notation,

(u0, v0) + (δ, 0) 7→ (x0, y0) + (δ, 0)J

(u0, v0) + (0, ε) 7→ (x0, y0) + (0, ε)J

(u0, v0) + (δ, ε) 7→ (x0, y0) + (δ, ε)J + smaller order terms.

where

J =

(
v0 −v0

u0 1− u0

)
You might recognize J as the Jacobian matrix of partial derivatives

∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v


evaluated at (u0, v0).

The region D is approximately a parallelogram, with the edges oblique to the
coordinate axes. To a good approximation, the area of D is equal to δε times the
area of the parallelogram with corners at

(0, 0) and a = (v0,−v0) and b = (u0, 1− u0) and a + b,

which, from the Appendix to this Chapter, equals |det(J)| = v0.
The rest of the calculation of the joint density ψ for (U, V ) is easy:

δεψ(u0, v0) ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ R}

≈ f(x0, y0)(area of D) ≈ xα−1
0 e−x0

Γ(α)

yβ−1
0 e−y0

Γ(β)
δ ε v0

Substitute x0 = u0v0 and y0 = (1− u0)v0 to get the joint density at (u0, v0):

ψ(u0, v0) =
uα−1

0 vα−1
0 e−u0v0

Γ(α)

(1− u0)β−1vβ−1
0 e−v0+u0v0

Γ(β)
v0

=
uα−1

0 (1− u0)β−1

B(α, β)
× vα+β−1

0 e−v0

Γ(α+ β)
× Γ(α+ β)B(α, β)

Γ(α)Γ(β)

Once again the final constant must be equal to 1, which gives the identity

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

The joint density factorizes into a product of the marginal densities: the random
variables U and V are independent. �
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Remark. The fact that Γ(1/2) =
√
π also follows from the equality

Γ(1/2)Γ(1/2)

Γ(1)
= B(1/2, 1/2) =

∫ 1

0

t−1/2(1− t)−1/2 dt put t = sin2(θ)

=

∫ π/2

0

1

sin(θ) cos(θ)
2 sin(θ) cos(θ) dθ = π.

Example 5
If X1, X2, . . . , Xk are independent random variables, with Xi distributed gamma(αi)
for i = 1, . . . , k, then

X1 +X2 ∼ gamma(α1 + α2),

X1 +X2 +X3 = (X1 +X2) +X3 ∼ gamma(α1 + α2 + α3)

X1 +X2 +X3 +X4 = (X1 +X2 +X3) +X4 ∼ gamma(α1 + α2 + α3 + α4)

. . .

X1 +X2 + · · ·+Xk ∼ gamma(α1 + α2 + · · ·+ αk)

A particular case has great significance for Statistics. Suppose Z1, . . . Zk are
independent random variables, each distributed N(0,1). From HW6, the random
variables Z2

1/2, . . . , Z
2
k/2 are independent gamma(1/2) distributed random variables.

The sum
(Z2

1 + · · ·+ Z2
k)/2

must have a gamma(k/2) distribution with density tk/2−1e−tI{0 < t}/Γ(k/2). It
follows that the sum Z2

1 + · · ·+ Z2
k has density

(t/2)k/2−1e−t/2I{0 < t}
2Γ(k/2)

.

This distribution is called the chi-squared on k degrees of freedom, usually denoted
by χ2

k. The letter χ is a lowercase Greek chi. �
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Appendix: area of a parallelogram

Let R be a parallelogram in the plane with corners at 0 = (0, 0), and a = (a1, a2),
and b = (b1, b2), and a + b. The area of R is equal to the absolute value of the
determinant of the matrix

J =

(
a1 a2

b1 b2

)
=

(
a
b

)
.

That is, the area of R equals |a1b2 − a2b1|.

Proof Let θ denotes the angle between a and b. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b

With the side from 0 to a, which has length ‖a‖, as the base, the vertical height is
‖b‖× | sin θ|. The absolute value of the area equals ‖a‖× ‖b‖× | sin θ|. The square
of the area equals

‖a‖2 ‖b‖2 sin2(θ) = ‖a‖2 ‖b‖2 − ‖a‖2 ‖b‖2 cos2(θ)

= (a · a)(b · b)− (a · b)2

= det

(
a · a a · b
a · b b · b

)
= det

(
JJ ′
)

= (det J)2 .

If you are not sure about the properties of determinants used in the last two lines,0

a

b

a+b

θ

you should check directly that

(a2
1 + a2

2)(b21 + b22)− (a1b1 + a2b2)2 = (a1b2 − a2b1)2

�
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Addenda to Chapter 11

I made a horrible mess of the algebra during my discussion in class of Exam-
ple 11.4. (I plead Monday morning insanity.) Here is the setting: The random
variables X and Y have marginal densities

g(x) = xα−1e−xI{x > 0}/Γ(α) and h(y) = yβ−1e−yI{y > 0}/Γ(β)

They have a jointly continuous distribution with joint density

f(x, y) = g(x)h(y) =
xα−1e−xyβ−1e−y

Γ(α)Γ(β)
I{x > 0, y > 0}.

We need to find the joint density function ψ(u, v) for the random variables U =
X/(X + Y ) and V = X + Y .

In class I broke the calculations into two steps:

(i) Define W = X + Y . Then (X,Z) has joint density

ψ1(x,w) = f(x,w − x)

=
xα−1e−x(w − x)β−1e−w+x

Γ(α)Γ(β)
I{x > 0, w − x > 0}

=
xα−1(w − x)β−1e−w

Γ(α)Γ(β)
I{w > x > 0}

(ii) Define V = X/W . Find the joint densety ψ2(v, w) for (V,W ).

v0
x0

x0+εv0

x0+δw0

x0+δw0+εv0+εδ
v0+δ

w0+ε

w0

w0+ε

w0
ΔD

(X,W)-plane (V,W)-plane

1

Contrary to what I said in class, the region D does not have curvy sides. Even
though the transformation (x,w) 7→ (v, w), where v = x/w, is nonlinear, the edges
of the region D are all straight. The equation for the left edge is x = v0w for w0 ≤
w ≤ w0 + ε and the equation for the right edge is x = (v0 +δ)w for w0 ≤ w ≤ w0 + ε.
The region D is a quadrilateral but not a parallelogram: the red ? vertex is εδ too
far to the right to make the left and right edges parallel.
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Remark. For general nonlinear maps, the edges of the region D would be curvy.
I got a bit carried away with the nonlinearity thing in class.

The area of D is

1

2
(δw0 + δw0 + δε)× ε = δεw0 +

1

2
δ2ε ≈ δεw0.

The final approximation is what you would get if you approximated D by a paral-
lelogram with height ε and base δw0. The smaller-order term δ2ε does not matter
for the calculation of the joint density.

Now approximate in the usual way to get

δεψ2(v0, w0) ≈ P{(V,W ) ∈ ∆} = P{(X,W ) ∈ D} ≈ δεw0ψ1(x0, w0),

which implies

ψ2(v, w) = wψ1(vw,w)

=
(vw)α−1(w − vw)β−1e−w

Γ(α)Γ(β)
I{w > vw > 0}

= C × wα+β−1e−wI{w > 0}
Γ(α+ β)

× vα−1(1− v)β−1I{0 < v < 1}
B(α, β)

where C =
Γ(α+ β)B(α, β)

Γ(α)Γ(β)
.

Once again we discover the expression for the beta function from the fact that C
must equal 1 (Why?) and also (from the factorization of the joint density) that
V has a beta(α, β) distribution independently of W , which has a gamma(α + β)
distribution.

And now for something different.

How to make independent standard normals
Here are the bare bones of the polar coordinates way of manufacturing two indepen-
dent N(0, 1)’s. Start with independent random variables U ∼ Uniform(0, 2π) and
W ∼ gamma(1) (a.k.a. standard exponential). Define R =

√
2W and X = R cos(U)

and Y = R sin(U). Calculate the density for R as

g(r) = r exp(−r2/2)I{r > 0}.

For 0 < θ0 < 1 and r0 > 0, and very small δ > 0 and ε > 0, check that the region

D = {(u, r) ∈ (0, 1)× (0,∞) : θ0 ≤ U ≤ θ0 + δ, r0 ≤ r ≤ r0 + ε}

7 November 2011 Statistics 241/541 fall 2011
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corresponds to the region ∆ in the (X,Y )-plane that is bounded by circles of ra-
dius r0 and r0 + ε and by radial lines from the origin at angles θ0 and θ0 + δ to the
horizontal axis. The area of ∆ is approximately 2πr0εδ.

Deduce that the joint density f for (X,Y ) satisfies

2πr0εδf(x0, y0) ≈ εg(r0)
δ

2π
where x0 = r0 cos(θ0), y0 = r0 sin(θ0)

That is,

f(x, y) =
g(r)

2πr
where x = r cos(θ), y = r sin(θ)

=
1

2π
exp

(
−1

2
(x2 + y2)

)
.

7 November 2011 Statistics 241/541 fall 2011
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Addenda to Chapter 11

I made a horrible mess of the algebra during my discussion in class of Exam-
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2
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Γ(α)Γ(β)
.

Once again we discover the expression for the beta function from the fact that C
must equal 1 (Why?) and also (from the factorization of the joint density) that
V has a beta(α, β) distribution independently of W , which has a gamma(α + β)
distribution.

And now for something different.

How to make independent standard normals
Here are the bare bones of the polar coordinates way of manufacturing two indepen-
dent N(0, 1)’s. Start with independent random variables U ∼ Uniform(0, 2π) and
W ∼ gamma(1) (a.k.a. standard exponential). Define R =

√
2W and X = R cos(U)

and Y = R sin(U). Calculate the density for R as

g(r) = r exp(−r2/2)I{r > 0}.

For 0 < θ0 < 1 and r0 > 0, and very small δ > 0 and ε > 0, check that the region

D = {(u, r) ∈ (0, 1)× (0,∞) : θ0 ≤ U ≤ θ0 + δ, r0 ≤ r ≤ r0 + ε}

7 November 2011 Statistics 241/541 fall 2011



3

corresponds to the region ∆ in the (X,Y )-plane that is bounded by circles of ra-
dius r0 and r0 + ε and by radial lines from the origin at angles θ0 and θ0 + δ to the
horizontal axis. The area of ∆ is approximately 2πr0εδ.

Deduce that the joint density f for (X,Y ) satisfies

2πr0εδf(x0, y0) ≈ εg(r0)
δ

2π
where x0 = r0 cos(θ0), y0 = r0 sin(θ0)

That is,

f(x, y) =
g(r)

2πr
where x = r cos(θ), y = r sin(θ)

=
1

2π
exp

(
−1

2
(x2 + y2)

)
.
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Chapter 12

Conditional densities
Density functions determine continuous distributions. If a continuous distri-

bution is calculated conditionally on some information, then the density is called a
conditional density. When the conditioning information involves another random
variable with a continuous distribution, the conditional density can be calculated
from the joint density for the two random variables.

Suppose X and Y have a jointly continuous distribution with joint density
f(x, y). From Chapter 11, you know that the marginal distribution of X has density

g(y) =

∫ ∞
−∞

f(x, y) dx.

The conditional distribution for Y given X = x has a (conditional) density, which
I will denote by h(y | X = x), or just h(y | x) if the conditioning variable is
unambiguous, for which

P{y ≤ Y ≤ y + δ | X = x} ≈ δh(y | X = x), for small δ > 0.

Conditioning on X = x should be almost the same as conditioning on x ≤ X ≤ x+ε
for a very small ε > 0. That is, provided x is such that g(x) > 0,

P{y ≤ Y ≤ y + δ | X = x} ≈ P{y ≤ Y ≤ y + δ | x ≤ X ≤ x+ ε}

=
P{y ≤ Y ≤ y + δ, x ≤ X ≤ x+ ε}

P{x ≤ X ≤ x+ ε}

≈ δεf(x, y)

εg(x)
.

In the limit, as ε tends to zero, we are left with δh(y | X = x) ≈ δf(x, y)/g(x).
That is,

h(y | X = x) = f(x, y)/g(x) for each x with g(x) > 0.

Symbolically,

conditional density for Y given X = x =
joint (X,Y ) density at (x, y)

marginal X density at x

version: 8Nov2011
printed: 8 November 2011
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Chap 12: Conditional densities 2

<1> Example. Let X and Y be independent random variables, each distributed N(0, 1).
Define R =

√
X2 + Y 2. Show that, for each r > 0, the conditional distribution of X

given R = r has density

h(x | R = r) =
1

π
√
r2 − x2

for |x| < r and r > 0.

The calculation of the conditional density fom Example <1> is easier when ex-
pressed in polar coordinates. From Chapter 11, you know that the random variable
R2/2 = (X2 +Y 2)/2 has a gamma(1) distribution, which is also known as the stan-
dard exponential distribution. Building on this connection, in class I showed how to
build a pair of independent standard normals (X,Y ) their from polar coordinates,
starting from a Θ ∼ Uniform(0, 2π) independently of R =

√
2W , where W has a

standard exponential distribution: just put X = R cos(Θ) and Y = R sin(Θ).
For the question posed in Example <1> we may suppose that X and Y have

been constructed from such an (R,Θ) pair. Thus, for |x| < r,

δh(x | R = r) ≈ P{x ≤ R cos(Θ) ≤ x+ δ | R = r}
= P{x ≤ r cos(Θ) ≤ x+ δ} by independence of R and Θ

= P{θ0 − ε ≤ Θ ≤ θ0}+ P{θ0 − ε+ π ≤ Θ ≤ θ0 + π}

where θ0 is the unique value in [0, π] for which

0

1

π
x / r

(x+δ) / r

θ0-ε
θ0

x/r = cos(θ0) and (x+ δ)/r = cos(θ0 − ε) ≈ cos(θ0) + ε sin(θ0).

Solve (approximately) for ε then substitute into the expression for δh(x | R = r).

δh(x | R = r) ≈ 2ε

2π
≈ δ

πr sin(θ0)
=

δ

πr
√

1− (x/r)2
, for |x| < r,

the same as in Example <1>.
The final two Examples will demonstrate yet another connection between Poisson

processes and order statistics from a uniform distribution. The arguments make use
of the obvious generalizations of joint densities and conditional densities to more
than two dimensions.

Definition. Say that random variables X,Y, Z have a jointly continuous distribution
with joint density f(x, y, z) if

P{(X,Y, Z) ∈ A} =

∫∫∫
I{(x, y, z) ∈ A}f(x, y, z) dx dy dz for each A ⊆ R3.
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As in one and two dimensions, joint densities are typically calculated by looking
at small regions: for a small region ∆ around (x0, y0, z0)

P{(X,Y, Z) ∈ ∆} ≈ (volume of ∆)× f(x0, y0, z0).

Similarly, the joint density for (X,Y ) conditional on Z = z is defined as the func-
tion h(x, y | Z = z) for which

P{(X,Y ) ∈ B | Z = z} =

∫∫∫
I{(x, y) ∈ B}h(x, y | Z = z) dx dy

for each subset B of R2. It can be calculated, at z values where the marginal density
for Z,

g(z) =

∫∫
R2

f(x, y, z) dx dy,

is strictly positive, by yet another small-region calculation. If ∆ is a small subset
containing (x0, y0), then

P{(X,Y ) ∈ ∆ | Z = z0} ≈ P{(X,Y ) ∈ ∆ | z0 ≤ Z ≤ z0 + ε} for small ε > 0

=
P{(X,Y ) ∈ ∆, z0 ≤ Z ≤ z0 + ε}

P{z0 ≤ Z ≤ z0 + ε}

≈ ((area of ∆) × ε) f(x0, y0, z0)

εg(z0)

= (area of ∆)
f(x0, y0, z0)

g(z0)
.

Remark. Notice the identification of {(x, y, z) ∈ R3 : (x, y) ∈ ∆, z0 ≤ z ≤ z0+ε}
as a small region with volume equal to (area of ∆) × ε.

That is, the conditional (joint) distribution of (X,Y ) given Z = z has density

(?) h(x, y | Z = z) =
f(x, y, z)

g(z)
provided g(z) > 0.

Remark. Many authors (me included) like to abbreviate h(x, y | Z = z) to
h(x, y | z). Many others run out of symbols and write f(x, y | z) for the
conditional (joint) density of (X,Y ) given Z = z. This notation is defensible
if one can somehow tell which values are being conditioned on. In a problem
with lots of conditioning it can get confusing to remember which f is the
joint density and which is conditional on something. To avoid confusion, some
authors write things like fX,Y |Z(x, y | z) for the conditional density and fX(x)
for the X-marginal density, at the cost of more cumbersome notation.
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<2> Example. Let Ti denote the time to the ith point in a Poisson process with rate λ
on [0,∞). Find the joint distribution of (T1, T2) conditional on T3.

From the result in the previous Example, you should be able to deduce that,
conditional on T3 = t3 for a given t3 > 0, the random variables (T1/T3, T2/T3) are
uniformly distributed over the triangular region {(u1u2) ∈ R2 : 0 < u1 < u2 < 1}.
HW11 will step you through an analogous result for order statistics.

<3> Example. Let U(i) for i = 1, . . . , n denote the order statistics for a sample of
size n fom the Uniform(0, 1) distribution. Find the joint distribution of (U(1), U(2))
conditional on U(3).

Examples for Chapter 12

Example 1
Let X and Y be independent random variables, each distributed N(0, 1). Define R =√
X2 + Y 2. For each r > 0, find the density for the conditional distribution of X given

R = r.

The joint density for (X,Y ) equals

f(x, y) =
1

2π
exp

(
−x

2 + y2

2

)
To find the joint density for X and R, calculate P{x0 ≤ X ≤ x0+δ, r0 ≤ R ≤ r0+ε}
for small, positive δ and ε. For |x0| < r0, the event corresponds to the two small
regions in the (X,Y )-plane lying between the lines x = x0 and x = x0 + δ, and
between the circles centered at the origin with radii r0 and r0 + ε.

radius r0+ε

radius r0

x0+δx0

x0 x0+δ

y0+η =   (r0+ε)
2
-x0

2

y0 =   r0
2
-x0

2
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By symmetry, both regions contribute the same probability. Consider the upper
region. For small δ and ε, the region is approximately a parallelogram, with side
length η =

√
(r0 + ε)2 − x20−

√
r20 − x20 and width δ. We could expand the expression

for η as a power series in ε by multiple applications of Taylor’s theorem. It is easier
to argue less directly, starting from the equalities

x20 + (y0 + η)2 = (r0 + ε)2 and x20 + y20 = r20.

Expand the square on both sides of the first equality, discarding terms (η2 and ε2)
of smaller order, to get

x20 + y20 + 2ηy0 ≈ r20 + 2r0ε,

then invoke the second equality to deduce that η ≈ (r0ε/y0). The upper region has
approximate area r0εδ/y0, which implies

P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε} = 2
r0εδ

y0
f(x0, y0) + smaller order terms

≈ 2r0√
r20 − x20

exp(−r20/2)

2π
εδ.

The random variables X and R have joint density

ψ(x, r) =
r exp(−r2/2)

π
√
r2 − x2

for |x| ≤ r and r > 0.

Once again I have omitted the subscript on the dummy variables, to indicate that
the argument works for every x, r in the specified range.

The random variable R has marginal density

g(r) =

∫ r

−r
ψ(x, r) dx =

r exp(−r2/2)

π

∫ r

−r

dx√
r2 − x2

put x = r cos θ

=
r exp(−r2/2)

π

∫ 0

π

−r sin θ

r sin θ
dθ = r exp(−r2/2) for r > 0.

The conditional density for X given R = r equals

h(x | R = r) =
ψ(x, r)

g(r)
=

1

π
√
r2 − x2

for |x| < r and r > 0.

�
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Example 2
Let Ti denote the time to the ith point in a Poisson process with rate λ on [0,∞). Find the
joint distribution of (T1, T2) conditional on T3.

For fixed 0 < t1 < t2 < t3 < ∞ and suitably small positive δ1, δ2, δ3 define
disjoint intervals

I1 = [0, t1) I2 = [t1, t1 + δ1] I3 = (t1 + δ1, t2),

I4 = [t2, t2 + δ2], I5 = (t2 + δ2, t3), I6 = [t3, t3 + δ3].

Write Nj for the number of points landing in Ij . The random variables N1, . . . , N6

are independent Poissons, with expected values

λt1, λδ1, λ(t2 − t1 − δ1), λδ2, λ(t3 − t2 − δ2), λδ3.

To calculate the joint density for (T1, T2, T3) start from

P{t1 ≤ T1 ≤ t1 + δ1, t2 ≤ T2 ≤ t2 + δ2, t3 ≤ T3 ≤ t3 + δ3}
= P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
+ smaller order terms.

Here the “smaller order terms” involve probabilities of subsets of events such as
{N2 ≥ 2, N4 ≥ 1, N6 ≥ 1}, which has probability equal to

P{N2 ≥ 2}P{N4 ≥ 1}P{N6 ≥ 1} = O(δ21)O(δ2)O(δ3).

Remark. The “big-oh” notation indicates terms that are bounded by constant
multiples of the arguments. For example, the O(δ21) term, which is bounded by
a constant multiple of δ21 , accounts for various events involving N2 ≥ 2.

Independence also gives a factorization of the main contribution:

P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
= P{N1 = 0}P{N2 = 1}P{N3 = 0}P{N4 = 1}P{N5 = 0}P{N6 = 1}
= (e−λt1)[λδ1 +O(δ21)](e−λ(t2−t1−δ1))[λδ2 +O(δ22)](e−λ(t3−t2−δ2))[λδ3 +O(δ23)].

Here I have used the expansion P{X = 1} = µe−µ = µ + O(µ2) if X ∼ Poisson(µ)
with µ near 0. While I am at it, I should also replace eλδj by 1 +O(δj), for j = 1, 2.
The point of this notation is to simplify the expansion of all the products, leaving

λ3δ1δ2δ3 e
−λt3 +O(δ21δ2δ3) +O(δ1δ

2
2δ3) +O(δ1δ2δ

2
3).



Chap 12: Conditional densities 7

If you think of ∆ as a small shoebox (hyperrectangle) with sides δ1, δ2, and δ3,
with all three δj ’s of comparable magnitude (you could even take δ1 = δ2 = δ3), the
preceding calculations reduce to

P{(T1, T2, T3) ∈ ∆} = (volume of ∆)λ3e−λt3 + smaller order terms

where the “smaller order terms” are small relative to the volume of ∆. Thus the
joint density for (T1, T2, T3) is

f(t1, t2, t3) = λ3e−λt3I{0 < t1 < t2 < t3}.

Remark. The indicator function is very important. Without it you would be
unpleasantly surprised to find

∫∫∫
R3 f =∞.

Just as a check, calculate the marginal density for T3 as

g(t3) =

∫∫
R2

f(t1, t2, t3) dt1 dt2

= λ3e−λt3
∫∫

I{0 < t1 < t2 < t3} dt1 dt2.

The double integral equals∫
I{0 < t2 < t3}

(∫ t2

0
1 dt1

)
=

∫ t3

0
t2 dt2 = 1

2 t
2
3.

That is, T3 has marginal density

g(t3) = 1
2λ

3t23e
−λt3I{t3 > 0},

which agrees with the result calculated in Example 10.1.
Now, arguing as for (?), calculate the conditional density for a given t3 > 0 as

h(t1, t2 | T3 = t3) =
f(t1, t2, t3)

g(t3)

=
λ3e−λt3I{0 < t1 < t2 < t3}

1
2λ

3t23e
−λt3

=
2

t23
I{0 < t1 < t2 < t3}.

That is, conditional on T3 = t3, the pair (T1, T2) is uniformly distributed in a
triangular region of area t23/2. �



Chapter 13

Multivariate normal distributions
The multivariate normal is the most useful, and most studied, of the standard

joint distributions. A huge body of statistical theory depends on the properties of
families of random variables whose joint distributions are at least approximately
multivariate normal. The bivariate case (two variables) is the easiest to understand,
because it requires a minimum of notation. Vector notation and matrix algebra
becomes necessities when many random variables are involved: for random variables
X1, . . . , Xn write X for the random vector (X1, . . . , Xn), and x for the generic
point (x1, . . . , xn) in Rn.

Remark. In general, if W = (Wij) is an m × n matrix whose elements are
random variables, the m×n matrix EW is defined to have (i, j)th element EWij .
That is, expectations are taken element-wise. If B is an n × p matrix of
constants then WB has (i, j)th element

∑n
k=1WikBkj whose expected value

equals
∑n

k=1(EWik)B`j , the (i, j)th element of the matrix (EW )B. That is,
E(WB) = (EW )B. Similarly, for an `×m matrix of constants A, the expected
value of AW equals A(EW ).

For a 1 × n vector of random variables X = (X1, . . . , Xn), with expected
value µ = EX, the variance matrix var(X) is defined to be the n × n
matrix E(X−µ)′(X−µ), whose (i, j)th element equals E(Xi−µi)(Xj −µj) =
cov(Xi, Xj).

For random vectors x and Y with expected values µX and µY , the covariance
matrix equals E(X−µX)′(Y−µY ), whose (i, j)th elements equals cov(Xi, Yj).

As an exercise you should check that, for an n × p matrix B of constants,
var(XB) = B′var(X)B. Other results for variance (and covariance matrices)
can be derived similarly.

Be careful when checking these definitions against Wikipedia. I have made
my random vectors row vectors; some authors use column vectors.

Definition. Random variables X1, X2, . . . , Xn are said to have a jointly continuous
distribution with joint density function f(x1, x2, . . . , xn) if, for each subset A of Rn,

P{X ∈ A} =

∫∫
. . .

∫
{(x1, x2, . . . xn) ∈ A}f(x1, x2, . . . , xn) dx1 dx2 . . . dxn

=

∫
{x ∈ A}f(x) dx,

where
∫
. . . dx is an abbreviation for the n-fold integral.

version: 12Nov2011
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For small regions ∆ containing a point x,

P{X ∈ ∆}
vol(∆)

→ f(x) as ∆ shrinks down to x.

Here vol(∆) denotes the n-dimensional volume of ∆.
The density f must be nonnegative and integrate to one over Rn. If the random

variables X1, . . . , Xn are independent, the joint density function is equal to the
product of the marginal densities for each Xi, and conversely. The proof is similar
to the proof for the bivariate case. For example, if Z1, . . . , Zn are independent and
each Zi has a N(0, 1) distribution, the joint density is

f(z1, . . . , zn) = (2π)−n/2 exp
(
−
∑

i≤n
z2i /2

)
for all z1, . . . , zn

= (2π)−n/2 exp(−‖z‖2 /2) for all z.

This joint distribution is denoted by N(0, In). It is often referred to as the spher-
ical normal distribution, because of the spherical symmetry of the density.
The N(0, In) notation refers to the vector of means and the variance matrix,

EZ = (EZ1, . . . ,EZn) = 0 and var(Z) = In.

Remark. More generally, if X = µ + ZA, where µ is a constant vector in Rn

and A is a matrix of constants and Z = N(0, In), then

EX = µ and var(X) = V = A′A.

If the variance matrix V is non-singular, the n-dimensional analog of the
methods in Chapter 11 show that X has joint density

f(x) = (2π)
−n/2 |det(V )|−1/2 exp

(
−1

2
(x− µ)V −1(x− µ)′

)
This distribution is denoted by N(µ, V ).

You don’t really need to know about the general N(µ, V ) density for this
course.

The distance of the random vector Z from the origin is ‖Z‖ =
√
Z2
1 + · · ·+ Z2

n.
From Chapter 11, if Z ∼ N(0, In) you know that ‖Z‖2 /2 has a gamma(n/2) distri-
bution. The distribution of ‖Z‖2 is given another special name, because of its great
importance in the theory of statistics.

Definition. Let Z = (Z1, Z2, . . . , Zn) have a spherical normal distribution, N(0, In).
The chi-square, χ2

n, is defined as the distribution of ‖Z‖2 = Z2
1 + · · ·+ Z2

n.
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The methods for finding (bivariate) joint densities for functions of two random
variables with jointly continuous distributions extend to multivariate distributions.
Admittedly there is a problem with the drawing of pictures in n dimensions, to
keep track of the transformations, and one must remember to say “n-dimensional
volume” instead of area, but otherwise calculations are not much more complicated
than in two dimensions.

The spherical symmetry of the N(0, In) makes some arguments particularly easy.
Let me start with the two-dimensional case. Suppose Z1 and Z2 have independent
N(0, 1) distributions, defining a random point Z = (Z1, Z2) in the plane. You could
also write Z as Z1e1+Z2e2, where e1 = (1, 0) and e2 = (0, 1). Rotate the coordinate
axes through an angle α, writing W = (W1,W2) for the coordinates of the random
point in the new coordinate system.

z1

z2

w 1

w 2 α

The new axes are defined by the unit vectors

q1 = (cosα, sinα) and q2 = (− sinα, cosα).

Remark. Note that q1 and q2 are orthogonal because q1 · q2 = 0.

The representation Z = (Z1, Z2) = W1q1 +W2q2 gives

W1 = Z · q1 = Z1 cosα+ Z2 sinα

W2 = Z · q2 = −Z1 sinα+ Z2 cosα.

That is, W1 and W2 are both linear functions of Z1 and Z2. The random variables
W = (W1,W2) have a multivariate normal distribution with EW = 0 and

var(W1) = cos2 α+ sin2 α = 1

var(W2) = sin2 α+ cos2 α = 1

cov(W1,W2) = (cosα)(− sinα) + (sinα)(cosα) = 0.
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More succinctly, var(W) = I2, a property that you could check more cleanly us-
ing the representation W = ZQ′, where Q is the orthogonal matrix with rows q1

and q2. In fact, the random variables W1 and W2 are independent and each is dis-
tributed N(0, 1). I won’t give all the details for the two-dimensional case because
the argument in higher dimensions also works for R2.

<1> Example. Suppose Z ∼ N(0, In). Let q1, . . . ,qn be a new orthonormal basis for
Rn, and let Z = W1q1 + · · · + Wnqn be the representation for Z in the new basis.
Then the W1, . . . ,Wn are also independent N(0, 1) distributed random variables.

To prove results involving the spherical normal it is often merely a matter of
transforming to an appropriate orthonormal basis. This technique greatly simplifies
the study of statistical problems based on multivariate normal models.

<2> Example. Suppose Z1, Z2, . . . , Zn are independent, each distributed N(0, 1). De-
fine Z̄ = (Z1 + · · ·+ Zn) /n and T =

∑
i≤n(Zi − Z̄)2. Show that Z̄ has a N(0, 1/n)

distribution independently of T , which has a χ2
n−1 distribution.

Statistical problems often deal with independent random variables Y1, . . . , Yn
each distributed N(µ, σ2), where µ and σ2 are unknown parameters that need to be
estimated. If we define Zi = (Yi−µ)/σ then the Zi are as in the previous Example.
Moreover,

Ȳ =
1

n

∑
i≤n

Yi = µ+ σZ̄ ∼ N(µ, σ2/n)∑
i≤n

(Yi − Ȳ )2/σ2 =
∑

i≤n
(Zi − Z̄)2 ∼ χ2

n−1,

from which it follows that Ȳ and σ̂2 :=
∑

i≤n(Yi − Ȳ )2/(n− 1) are independent.

Remark. It is traditional to use Ȳ to estimate µ and σ̂2 to estimate σ2. The

random variable
√
n(Ȳ − µ)/σ̂ has the same distribution as U/

√
V/(n− 1),

where U ∼ N(0, 1) independently of V ∼ χ2
n−1. By definition, such a ratio is

said to have a t distribution on n− 1 degrees of freedom .

<3> Example. Distribution of least squares estimators for regression.
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Examples for Chapter 13

Example 1
We have Z ∼ N(0, In) and q1, . . . ,qn a new orthonormal basis for Rn. In the new
coordinate system, Z = W1q1 + · · ·+Wnqn We need to show that the W1, . . . ,Wn

are also independent N(0, 1) distributed random variables.

z1

z2

w 1

w 2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)


The picture shows only two of the n coordinates; the other n−2 coordinates are
sticking out of the page. I have placed the pictures for the w- and z-spaces on top
of each other, so that you can see how the balls B and B∗ line up.

For a small ball B centered at z,

P{Z ∈ B} ≈ f(z)(volume of B) where f(z) = (2π)−n/2 exp(−‖z‖2 /2).

The corresponding region for W is B∗, a ball of the same radius, but centered at
the point w = (w1, . . . , wn) for which w1q1 + · · ·+ wnqn = z. Thus

P{W ∈ B∗} = P{Z ∈ B} ≈ (2π)−n/2 exp(−1
2 ‖x‖

2)(volume of B).

From the equalities

‖w‖ = ‖z‖ and volume of B = volume of B∗,

we get
P{W ∈ B∗} ≈ (2π)−n/2 exp(−1

2 ‖w‖
2)(volume of B∗).

That is, W has the asserted N(0, In) density. �
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Example 2
Suppose Z1, Z2, . . . , Zn are independent, each distributed N(0, 1). Define

Z̄ =
Z1 + · · ·+ Zn

n
and T =

∑
i≤n

(Zi − Z̄)2

Show that Z̄ has a N(0, 1/n) distribution independently of T , which has a χ2
n−1 distribution.

Choose the new orthonormal basis with q1 = (1, 1, . . . , 1)/
√
n. Choose q2, . . . ,qn

however you like, provided they are orthogonal unit vectors, all orthogonal to q1.
In the new coordinate system,

Z = W1q1 + · · ·+Wnqn where Wi = Z · qi for each i.

In particular,

W1 = Z · q1 =
Z1 + · · ·+ Zn√

n
=
√
nZ̄

From Example <1> you know that W1 has a N(0, 1) distribution. It follows that Z̄
has a N(0, 1/n) distribution.

The random variable T equals the squared length of the vector

(Z1 − Z̄, . . . , Zn − Z̄) = Z− Z̄(
√
nq1) = Z−W1q1 = W2q2 + · · ·+Wnqn.

That is,
T = ‖W2q2 + · · ·+Wnqn‖2 = W 2

2 + · · ·+W 2
n ,

a sum of squares of n− 1 independent N(0, 1) random variables, which has a χ2
n−1-

distribution.
Finally, notice that Z̄ is a function of W1, whereas T is a function of the in-

dependent random variables W2, . . . ,Wn. The independence of Z̄ and T follows.
�

Example 3
Suppose Y1, . . . Yn are independent random variables, with Yi ∼ N(µi, σ

2) for an
unknown σ2. Suppose also that µi = α+βxi, for unknown parameters α and β and
observed constants x1, . . . , xn with average x̄ =

∑
i≤n xi/n.

The method of least squares estimates the parameters α and β by the values â
and b̂ that minimize

S2(a, b) =
∑

i≤n

(
Yi − a− bxi

)2
over all (a, b) in R2. One then estimates σ2 by the value σ̂2 = S2(â, b̂)/(n− 2).

In what follows I will assume that T :=
∑n

i=1(xi− x̄)2 > 0. (If T were zero then
all the xi would be equal, which would make x = x̄1.)
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Define Y = (Y1, . . . , Yn) and x = (x1, . . . , xn) and 1 = (1, 1, . . . , 1). Then

EY = µ = α1 + βx and Y = µ + σZ where Z ∼ N(0, In)

and
S2(a, b) = ‖Y − a1− bx‖2 .

Create a new orthonormal basis for Rn by taking

q1 = (1, 1, . . . , 1)/
√
n and q2 =

x− x̄1

‖x− x̄1‖

Choose q3, . . . ,qn however you like, provided they are orthogonal unit vectors, all
orthogonal to q1.

Remark. You should check that q1 · q2 = 0 and ‖q1‖ = ‖q2‖ = 1. Also note
that ‖x− x̄1‖ =

√
T .

The vectors 1,x and q1,q2 span the same two-dimensional subspace of R2. That
is, any vector that can be written as a linear combination of 1 and x can also be
written as a linear combination of q1 and q2; and any vector that can be written
as a linear combination of q1 and q2 can also be written as a linear combination
of 1 and x. Put another way, for each pair a, b there is a unique pair c, d for which
a1 + bx = cq1 + dq2.

Remark. In matrix form, (a, b)X = (c, d)Q, where X is the 2 × 2 matrix with
rows 1 and x, and Q is the 2× 2 orthogonal matrix with rows q1 and q2. The
two matrices are related by X = RQ and Q = R−1X where

R =

( √
n 0√
nx̄

√
T

)
and R−1 =

(
1/
√
n 0

−x̄/
√
T 1/

√
T

)
.

Thus (a, b)X = (c, d)Q if and only if (a, b)R = (c, d) if and only if (a, b) =
(c, d)R−1. That is,

c =
√
n(a+ bx̄), d =

√
T b

a = c/
√
n− dx̄/

√
T , b = d/

√
T .

The calculations for transforming between coordinate systems are easier if you
work with matrix notation.

The least squares problem
Write all the vectors in the new basis:

â1 + b̂x = (â+ b̂x̄)1 + b̂(x− x̄1)

= ĉq1 + d̂q2 where ĉ = (â+ b̂x̄)
√
n and d̂ = b̂

√
T ,
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and

Y =
∑

i≤n
giqi where gi := Y · qi.

Remark. By direct calculation, g1 = Y · 1/
√
n = Ȳ

√
n, where Ȳ =

∑
i≤n Yi/n,

and g2 = Y · (x− x̄1)/
√
T =

∑
i≤n Yi(xi − x̄)/

√∑
i≤n(xi − x̄)2.

The quantities ĉ and d̂ minimize, over all (c, d) ∈ R2,

‖Y − cq1 − dq2‖2 =
∥∥∥(g1 − c)q1 + (g2 − d)q2 +

∑
i≥3

giqi

∥∥∥2
= (g1 − c)2 + (g2 − d)2 +

∑n

i=3
g2i

Clearly the solution is ĉ = g1 and d̂ = g2. That is,

b̂ = d̂/
√
T =

∑
i≤n

Yi(xi − x̄)/
∑

i≤n
(xi − x̄)2

â = ĉ/
√
n− d̂x̄/

√
T = Ȳ − b̂x̄

The least squares estimators
By assumption Y = µ + σZ where Z ∼ N(0, In). In the new coordinate system,

Z = W1q1 +W2q2 + · · ·+Wnqn with W ∼ N(0, In)

so that

Y = µ + σ
∑n

i=1
Wiqi

= (γ + σW1)q1 + (δ + σW2)q2 where γ := (α+ βx̄)
√
n and δ := β

√
T .

The representation for µ comes from

µ = α1 + βx = (α+ βx̄)1 + β(x− x̄1) = γq1 + δq2.

Dot both sides of the last equation for Y with qi to get

gi = Y · qi =

{ γ + σW1 for i = 1
δ + σW2 for i = 2
σWi for 3 ≤ i ≤ n.

Thus

ĉ = γ + σW1 ∼ N(γ, σ2)

d̂ = δ + σW2 ∼ N(δ, σ2)

(n− 2)σ̂2/σ2 =
∥∥∥Y − ĉq1 − d̂q2

∥∥∥2 /σ2 =
∑n

i=3
W 2

i ∼ χ2
n−2.
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Moreover, the independence of the Wi’s implies that ĉ, d̂, and σ̂2 are independent
random variables.

More succinctly,

(ĉ, d̂) ∼ N
(
(γ, δ), σ2Ii

)
,

so that

(â, b̂) = (ĉ, d̂)R−1 ∼ N
(
(α, β), σ2(R−1)′R−1

)
.

If you look in a regression textbook you might see the variance matrix rewritten
as σ2(XX ′)−1. �

Remark. All the algebra, including the calculation of matrix inverses and a
possible choice for q1, . . . ,qn is carried out automatically in a statistical package
such as R. There is not much point in memorizing the solutions these days.



Chapter 14

Moment generating functions
Formally the moment generating function is obtained by substituting s = et in

the probability generating function.

Definition. The moment generating function (m.g.f.) of a random variable X as
the function is defined as

M(t) = E(eXt)

for those real t at which the expectation is well defined.

Unfortunately, for some distributions the moment generating function is finite
only at t = 0. The Cauchy distribution, which is defined by the density

f(x) =
1

π(1 + x2)
for all x ∈ R,

is an example.

Remark. The problem with existence and finiteness is avoided if t is replaced
by it, where t is real and i =

√
−1. In probability theory the function EeiXt is

usually called the characteristic function, even though the more standard term
Fourier transform would cause less confusion.

When the m.g.f. is finite in a neighborhood of the origin it can be expanded in
a power series, which gives us some information about the moments (the values of
EXk for k = 1, 2, . . . ) of the distribution:

E(eXt) =

∞∑
k=0

E(Xt)k

k!

The coefficient of tk/k! in the series expansion of M(t) equals the kth moment, EXk.

<1> Example. Suppose X has a standard normal distribution. Its moment generating
function equals exp(t2/2), for all real t, because∫ ∞

−∞
ext

e−x
2/2

√
2π

dx =
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2
+
t2

2

)
dx = exp

(
t2

2

)
(For the last equality, compare with the fact that the N(t, 1) density integrates to 1.)
The exponential expands to

∞∑
m=0

1

m!

(
t2

2

)m
=
∞∑
m=0

(
(2m)!

m!2m

)
t2m

(2m)!
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Pick off coefficients.

EX2 =
2!

1!21
= 1 (you knew that)

EX4 =
4!

2!22
= 3

and so on. The coefficient for each odd power of t equals zero, which reflects the
fact that EXk = 0, by anti-symmetry, if k is odd.

�

Approximations via moment generating functions
If X has a Bin(n, p) then (X−np)/

√
np(1− p) is approximately N(0, 1) distributed.

The moment generating function Mn(t) for the standardized variable suggests such
an approximation. Write q for 1− p and σ2 for npq. Then

Mn(t) = Eet(X−np)/σ

= e−npt/σEeX(t/σ)

= e−npt/σ
(
q + pet/σ

)n
=
(
qe−pt/σ + peqt/σ

)n
The power series expansion for qe−pt/σ + peqt/σ simplifies:

q

(
1− pt

σ
+
p2t2

2!σ2
− p3t3

3!σ3
+ . . .

)
+ p

(
1 +

qt

σ
+
q2t2

2!σ2
− q3t3

3!σ3
+ . . .

)
= 1 +

pqt

2σ2
+
pq(p− q)t3

6σ3
+ . . .

For large n use the series expansion log(1 + z)n = n(z − z2/2 + . . . ) to deduce that

logMn(t) =
t2

2
+

(q − p)t3

6
√
npq

+ terms of order
1

n
or smaller

The t2/2 term agree with the logarithm of the moment generating function for the
standard normal. As n tends to infinity, the remainder terms tend to zero.

The convergence of Mn(t) to et
2/2 can be used to prove rigorously that the

distribution of the standardized Binomial “converges to the standard normal” as n
tends to infinity. In fact the series expansion for logMn(t) is the starting point for
a more precise approximation result—but for that story you will have to take the
more advanced probability course Statistics 330.
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