
Chapter 1

Probabilities and random
variables

1.1 Overview

Probability theory provides a systematic method for describing randomness
and uncertainty. It prescribes a set of mathematical rules for manipulat-
ing and calculating probabilities and expectations. It has been applied in
many areas: gambling, insurance, finance, the study of experimental error,
statistical inference, and more.

One standard approach to probability theory (but not the only one)
starts from the concept of a sample space, which is an exhaustive list of
possible outcomes in an experiment or other situation where the result is
uncertain. Subsets of the list are called events. For example, in the very
simple situation where 3 coins are tossed, the sample space might be

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

There is an event corresponding to “the second coin landed heads”, namely,

{hhh, hht, thh, tht}.

Each element in the sample space corresponds to a uniquely specified out-
come.

Notice that S contains nothing that would specify an outcome like “the
second coin spun 17 times, was in the air for 3.26 seconds, rolled 23.7 inches
when it landed, then ended with heads facing up”. If we wish to contemplate
such events we need a more intricate sample space S. Indeed, the choice
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1. Probabilities and random variables 2

of S—the detail with which possible outcomes are described—depends on
the sort of events we wish to study.

In general, a sample space can make it easier to think precisely about
events, but it is not always essential. It often suffices to manipulate events
via a small number of rules (to be specified soon) without explicitly identi-
fying the events with subsets of a sample space.

If the outcome of the experiment corresponds to a point of a sample
space belonging to some event, one says that the event has occurred. For
example, with the outcome hhh each of the events {no tails}, {at least one
head}, {more heads than tails} occurs, but the event {even number of heads}
does not.

The uncertainty is modelled by a probability assigned to each event.
The probabibility of an event E is denoted by PE. One popular interpreta-
tion of P (but not the only one) is as a long run frequency: in a very large
number (N) of repetitions of the experiment,

(number of times E occurs)/N ≈ PE,

provided the experiments are independent of each other.More about
independence soon. As many authors have pointed out, there is something fishy about this

interpretation. For example, it is difficult to make precise the meaning of
“independent of each other” without resorting to explanations that degener-
ate into circular discussions about the meaning of probability and indepen-
dence. This fact does not seem to trouble most supporters of the frequency
theory. The interpretation is regarded as a justification for the adoption of
a set of mathematical rules, or axioms. See the Appendix to Chapter 2 for
an alternative interpretation, based on fair prices.

The first four rules are easy to remember if you think of probability as
a proportion. One more rule will be added soon.

Rules for probabilities

(P1) 0 ≤ PE ≤ 1 for every event E.

(P2) For the empty subset ∅ (= the “impossible event”), P∅ = 0,

(P3) For the whole sample space (= the “certain event”), PS = 1.

(P4) If an event E is a disjoint union of a sequence of events E1, E2, . . .
then PE =

∑
i PEi.
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1. Probabilities and random variables 3

Example <3.4> Find P{at least two heads} for the tossing of three coins.

Probability theory would be very boring if all problems were solved likeNote: The examples are
collected together at the
end of each chapter

that: break the event into pieces whose probabilities you know, then add.
Things become much more interesting when we recognize that the assign-
ment of probabilities depends on what we know or have learnt (or assume)
about the random situation. For example, in the last problem we could have
written

P{at least two heads | coins fair, “independence,” . . . } = . . .

to indicate that the assignment is conditional on certain information (or
assumptions). The vertical bar stands for the word given; that is, we read
the symbol as probability of at least two heads given that . . .

Remark. If A = {at least two heads} and info denotes the assumptions
(coins fair, “independence,” . . . ) the last display makes an assertion
about P(A | info). The symbol P· | info) denotes the conditional
probability given the information; it is NOT the probability of a
conditional event. I regard “A | info” without the P as meaningless.

If the conditioning information is held fixed throughout a calculation, the
conditional probabilities P (. . . | info) satisfy rules (P1) through (P4). For
example, P(∅ | info) = 0, and so on. In that case one usually doesn’t bother
with the “given . . . ”, but if the information changes during the analysis the
conditional probability notation becomes most useful.

The final rule for (conditional) probabilities lets us break occurrence of
an event into a succession of simpler stages, whose conditional probabilities
might be easier to calculate or assign. Often the successive stages correspond
to the occurrence of each of a sequence of events, in which case the notation
is abbreviated in any of the following ways:

P (. . . | event A and event B have occurred and previous info)

P (. . . | A ∩B and previous info) where ∩ means intersection

P (. . . | A, B, previous info)

P (. . . | A ∩B) or P (. . . | AB) if “previous info” is understood.

if the “previous info” is understood. I often write AB instead of A ∩B for
an intersection of two sets. The commas in the third expression are open to
misinterpretation, but convenience recommends the more concise notation.
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Remark. I must confess to some inconsistency in my use of parentheses
and braces. If the “. . . ” is a description in words, then {. . . } denotes
the subset of S on which the description is true, and P{. . . } or
P{· · · | info} seems the natural way to denote the probability attached
to that subset. However, if the “. . . ” stand for an expression like
A ∩ B, the notation P(A ∩ B) or P(A ∩ B | info) looks nicer to me. It
is hard to maintain a convention that covers all cases. You should not
attribute much significance to differences in my notation involving a
choice between parentheses and braces.

Rule for conditional probability

(P5) : if A and B are events then

P (A ∩B | info) = P (A | info) · P (B | A, info) .

The frequency interpretation might make it easier for you to appreciate
this rule. Suppose that in N “independent” repetitions (given the same
initial conditioning information) A occurs NA times and A∩B occurs NA∩B
times. Then, for N large,

P (A | info) ≈ NA/N and P (A ∩B | info) ≈ NA∩B/N.

If we ignore those repetitions where A fails to occur then we have NA repeti-
tions given the original information and occurrence of A, in NA∩B of which
the event B also occurs. Thus P (B | A, info) ≈ NA∩B/NA. The rest is
division.

Remark. Many textbooks define P(B | A) as the ratio P(BA)/PA,
which is just a rearrangement of (P5) without the info. That definition,
not surprisingly, gives students the idea that conditional probabilities
are always determined by taking ratios, which is not true. Often the
assignment of conditional probabilities is part of the modelling. See
Example <1.3> for example.

In my experience, conditional probabilities provide a more reliable method
for solving problems traditionally handled by counting arguments (Combi-
natorics). I find it hard to be consistent about how I count, to make sure
every case is counted once and only once, to decide whether order should
matter, and so on. The next Example illustrates my point.

Statistics 241/541 fall 2014 c©David Pollard, Aug2014



1. Probabilities and random variables 5

Example <1.2> What is the probability that a hand of 5 cards contains
four of a kind?

I wrote out many of the gory details to show you how the rules reduce the
calculation to a sequence of simpler steps. In practice, one would be less
explicit, to keep the audience awake.

The statement of the next example is taken verbatim from the delightful
Fifty Challenging Problems in Probability by Frederick Mosteller, one of my
favourite sources for elegant examples. One could learn a lot of probability
by trying to solve all fifty problems. The underlying question has resurfaced
in recent years in various guises. See

http://en.wikipedia.org/wiki/Monty Hall problem

http://en.wikipedia.org/wiki/Marilyn vos Savant#The Monty Hall problem

to understand why probabilistic notation is so valuable. The lesson is: Be
prepared to defend your assignments of conditional probabilities.

Example <1.3> Three prisoners, A, B, and C, with apparently equally
good records have applied for parole. The parole board has decided to release
two of the three, and the prisoners know this but not which two. A warder
friend of prisoner A knows who are to be released. Prisoner A realizes that it
would be unethical to ask the warder if he, A, is to be released, but thinks of
asking for the name of one prisoner other than himself who is to be released.
He thinks that before he asks, his chances of release are 2/3. He thinks that
if the warder says “B will be released,” his own chances have now gone down
to 1/2, because either A and B or B and C are to be released. And so A
decides not to reduce his chances by asking. However, A is mistaken in his
calculations. Explain.

You might have the impression at this stage that the first step towards
the solution of a probability problem is always an explicit listing of the
sample space specification of a sample space. In fact that is seldom the
case. An assignment of (conditional) probabilities to well chosen events is
usually enough to set the probability machine in action. Only in cases of
possible confusion (as in the last Example), or great mathematical precision,
do I find a list of possible outcomes worthwhile to contemplate. In the next
Example construction of a sample space would be a nontrivial exercise but
conditioning helps to break a complex random mechanism into a sequence
of simpler stages.
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1. Probabilities and random variables 6

Example <1.4> Imagine that I have a fair coin, which I toss repeatedly.
Two players, M and R, observe the sequence of tosses, each waiting for a
particular pattern on consecutive tosses: M waits for hhh, and R waits
for tthh. The one whose pattern appears first is the winner. What is the
probability that M wins?

In both Examples <1.3> and <1.4> we had situations where particular
pieces of information could be ignored in the calculation of some conditional
probabilities,

P (A | B∗) = P(A),

P (next toss a head | past sequence of tosses) = 1/2.

Both situations are instances of a property called independence.

Definition. Call events E and F conditionally independent given a par-
ticular piece of information if

P (E | F , information) = P (E | information) .

If the “information” is understood, just call E and F independent.

The apparent asymmetry in the definition can be removed by an appeal
to rule P5, from which we deduce that

P(E ∩ F | info) = P(E | info)P(F | info)

for conditionally independent events E and F . Except for the conditioning
information, the last equality is the traditional definition of independence.
Some authors prefer that form because it includes various cases involving
events with zero (conditional) probability.

Conditional independence is one of the most important simplifying as-
sumptions used in probabilistic modeling. It allows one to reduce considera-
tion of complex sequences of events to an analysis of each event in isolation.
Several standard mechanisms are built around the concept. The prime ex-
ample for these notes is independent “coin-tossing”: independent repetition
of a simple experiment (such as the tossing of a coin) that has only two pos-
sible outcomes. By establishing a number of basic facts about coin tossing
I will build a set of tools for analyzing problems that can be reduced to a
mechanism like coin tossing, usually by means of well-chosen conditioning.
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1. Probabilities and random variables 7

Example <1.5> Suppose a coin has probability p of landing heads on any
particular toss, independent of the outcomes of other tosses. In a sequence
of such tosses, show that the probability that the first head appears on the
kth toss is (1− p)k−1p for k = 1, 2, . . . .

The discussion for the Examples would have been slightly neater if I had
had a name for the toss on which the first head occurs. Define

X = the position at which the first head occurs.

Then I could write

P{X = k} = (1− p)k−1p for k = 1, 2, . . . .

The X is an example of a random variable.
Formally, a random variable is just a function that attaches a number

to each item in the sample space. Typically we don’t need to specify the
sample space precisely before we study a random variable. What matters
more is the set of values that it can take and the probabilities with which
it takes those values. This information is called the distribution of the
random variable.

For example, a random variable Z is said to have a geometric(p) dis-
tribution if it can take values 1, 2, 3, . . . with probabilities

P{Z = k} = (1− p)k−1p for k = 1, 2, . . . .

The result from the last example asserts that the number of tosses required
to get the first head has a geometric(p) distribution.

Remark. Be warned. Some authors use geometric(p) to refer to
the distribution of the number of tails before the first head, which
corresponds to the distribution of Z − 1, with Z as above.

Why the name “geometric”? Recall the geometric series,∑∞

k=0
ark = a/(1− r) for |r| < 1.

Notice, in particular, that if 0 < p ≤ 1, and Z has a geometric(p) distribu-
tion, ∑∞

k=1
P{Z = k} =

∑∞

j=0
p(1− p)j = 1.

What does that tell you about coin tossing?
The final example for this Chapter, whose statement is also borrowed

verbatim from the Mosteller book, is built around a “geometric” mechanism.
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1. Probabilities and random variables 8

Example <1.6> A, B, and C are to fight a three-cornered pistol duel.
All know that A’s chance of hitting his target is 0.3, C’s is 0.5, and B never
misses. They are to fire at their choice of target in succession in the order
A, B, C, cyclically (but a hit man loses further turns and is no longer shot
at) until only one man is left unhit. What should A’s strategy be?

1.2 Things to remember

• , , and the five rules for manipulating (conditional)
probabilities.

• Conditioning is often easier, or at least more reliable, than counting.

• Conditional independence is a major simplifying assumption of prob-
ability theory.

• What is a random variable? What is meant by the distribution of a
random variable?

• What is the geometric(p) distribution?

1.3 The examples

<1.1> Example. Find P{at least two heads} for the tossing of three coins. Use
the sample space

S = {hhh, hht, hth, htt, thh, tht, tth, ttt}.

If we assume that each coin is fair and that the outcomes from the coins don’t
affect each other (“independence”), then we must conclude by symmetry
(“equally likely”) that

P{hhh} = P{hht} = · · · = P{ttt}.
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1. Probabilities and random variables 9

By rule P4 these eight probabilities add to PS = 1; they must each equal
1/8. Again by P4,

P{at least two heads} = P{hhh}+ P{hht}+ P{hth}+ P{thh} = 1/2.

�

<1.2> Example. What is the probability that a hand of 5 cards contains four of a
kind?

Let us assume everything fair and aboveboard, so that simple probabil-
ity calculations can be carried out by appeals to symmetry. The fairness
assumption could be carried along as part of the conditioning information
but it would just clog up the notation to no useful purpose.

I will consider the ordering of the cards within the hand as signif-
icant. For example, (7♣, 3♦, 2♥,K♥, 8♥) will be a different hand from
(K♥, 7♣, 3♦, 2♥, 8♥).

Start by breaking the event of interest into 13 disjoint pieces:

{four of a kind} =
⋃13

i=1
Fi

where

F1 = {four aces, plus something else},
F2 = {four twos, plus something else},

...

F13 = {four kings, plus something else}.

By symmetry each Fi has the same probability, which means we can con-
centrate on just one of them.

P{four of a kind} =
∑13

1
PFi = 13PF1 by rule P4.

Now break F1 into simpler pieces, F1 = ∪5
j=1F1j , where

F1j = {four aces with jth card not an ace}.

Again by disjointness and symmetry, PF1 = 5PF1,1.
Decompose the event F1,1 into five “stages”, F1,1 = N1∩A2∩A3∩A4∩A5,

where

N1 = {first card is not an ace} and A1 = {first card is an ace}
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1. Probabilities and random variables 10

and so on. To save on space, I will omit the intersection signs, writing
N1A2A3A4 instead of N1 ∩A2 ∩A3 ∩A4, and so on. By rule P5,

PF1,1 = PN1 P(A2 | N1)P(A3 | N1A2) . . . P(A5 | N1A2A3A4)

=
48

52
× 4

51
× 3

50
× 2

49
× 1

48
.

Thus

P{four of a kind} = 13× 5× 48

52
× 4

51
× 3

50
× 2

49
× 1

48
≈ .00024.

Can you see any hidden assumptions in this analysis?
Which sample space was I using, implicitly? How would the argument

be affected if we took S as the set of all of all
(

52
5

)
distinct subsets of size 5,

with equal probability on each sample point? That is, would it matter if we
ignored ordering of cards within hands? �

<1.3> Example. (The Prisoner’s Dilemma—verbatim from Mosteller, 1987)

Three prisoners, A, B, and C, with apparently equally good
records have applied for parole. The parole board has decided
to release two of the three, and the prisoners know this but not
which two. A warder friend of prisoner A knows who are to be
released. Prisoner A realizes that it would be unethical to ask
the warder if he, A, is to be released, but thinks of asking for the
name of one prisoner other than himself who is to be released.
He thinks that before he asks, his chances of release are 2/3.
He thinks that if the warder says “B will be released,” his own
chances have now gone down to 1/2, because either A and B or
B and C are to be released. And so A decides not to reduce his
chances by asking. However, A is mistaken in his calculations.
Explain. It is quite tricky to argue through this problem without
introducing any notation, because of some subtle distinctions
that need to be maintained.

The interpretation that I propose requires a sample space with only four
items, which I label suggestively

aB = both A and B to be released, warder must say B

aC = both A and C to be released, warder must say C

Bc = both B and C to be released, warder says B

bC = both B and C to be released, warder says C.
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1. Probabilities and random variables 11

There are three events to be considered

A = {A to be released} =
{

aB , aC
}

B = {B to be released} =
{

aB , Bc , bC
}

B∗ = {warder says B to be released} =
{

aB , Bc
}
.

Apparently prisoner A thinks that P (A | B∗) = 1/2.
How should we assign probabilities? The words “equally good records”

suggest (compare with Rule P4)

P{A and B to be released}
= P{B and C to be released}
= P{C and A to be released}
= 1/3

That is,
P{ aB } = P{ aC } = P{ Bc }+ P{ bC } = 1/3.

What is the split between Bc and bC ? I think the poser of the problem
wants us to give 1/6 to each outcome, although there is nothing in the
wording of the problem requiring that allocation. (Can you think of another
plausible allocation that would change the conclusion?)

With those probabilities we calculate

PA ∩B∗ = P{ aB } = 1/3

PB∗ = P{ aB }+ P{ Bc } = 1/3 + 1/6 = 1/2,

from which we deduce (via rule P5) that

P (A | B∗) =
PA ∩B∗

PB∗
=

1/3

1/2
= 2/3 = PA.

The extra information B∗ should not change prisoner A’s perception of his
probability of being released.

Notice that

P (A | B) =
PA ∩B

PB
=

1/3

1/2 + 1/6 + 1/6
= 1/2 6= PA.

Perhaps A was confusing P (A | B∗) with P (A | B).
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The problem is more subtle than you might suspect. Reconsider the
conditioning argument from the point of view of prisoner C, who overhears
the conversation between A and the warder. With C denoting the event

{C to be released} =
{

aC , Bc , bC
}
,

he would calculate a conditional probability

P (C | B∗) =
P{ Bc }
PB∗

=
1/6

1/2
6= PC.

The warder might have nominated C as a prisoner to be released. The fact
that he didn’t do so conveys some information to C. Do you see why A
and C can infer different information from the warder’s reply? �

<1.4> Example. Here is a coin tossing game that illustrates how conditioning
can break a complex random mechanism into a sequence of simpler stages.
Imagine that I have a fair coin, which I toss repeatedly. Two players, M and
R, observe the sequence of tosses, each waiting for a particular pattern on
consecutive tosses:

M waits for hhh and R waits for tthh.

The one whose pattern appears first is the winner. What is the probability
that M wins?

For example, the sequence ththhttthh . . . would result in a win for R,
but ththhthhh . . . would result in a win for M.

You might imagine that M has the advantage. After all, surely it must
be easier to get a pattern of length 3 than a pattern of length 4. You’ll
discover that the solution is not that straightforward.

The possible states of the game can be summarized by recording how
much of his pattern each player has observed (ignoring false starts, such as
hht for M, which would leave him back where he started, although R would
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have matched the first t of his pattern.).

States M partial pattern R partial pattern

S – –

H h –

T – t

TT – tt

HH hh –

TTH h tth

M wins hhh ?

R wins ? tthh

By claiming that these states summarize the game I am tacitly assuming
that the coin has no “memory”, in the sense that the conditional probability
of a head given any particular past sequence of heads and tails is 1/2 (for
a fair coin). The past history leading to a particular state does not matter;
the future evolution of the game depends only on what remains for each
player to achieve his desired pattern.

The game is nicely summarized by a diagram with states represented
by little boxes joined by arrows that indicate the probabilities of transition
from one state to another. Only transitions with a nonzero probability are
drawn. In this problem each nonzero probability equals 1/2. The solid
arrows correspond to transitions resulting from a head, the dotted arrows
to a tail.

H M winsHH

TTH R wins

S

M winsHH

T

TT
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1. Probabilities and random variables 14

For example, the arrows leading from S to H to HH to M wins cor-
respond to heads; the game would progress in exactly that way if the first
three tosses gave hhh. Similarly the arrows from S to T to TT correspond
to tails.

The arrow looping from TT back into itself corresponds to the situation
where, after . . . tt, both players progress no further until the next head.
Once the game progresses down the arrow T to TT the step into TTH

becomes inevitable. Indeed, for the purpose of calculating the probability
that M wins, we could replace the side branch by:

T TTH

The new arrow from T to TTH would correspond to a sequence of tails
followed by a head. With the state TT removed, the diagram would become
almost symmetric with respect to M and R. The arrow from HH back to
T would show that R actually has an advantage: the first h in the tthh
pattern presents no obstacle to him.

Once we have the diagram we can forget about the underlying game.
The problem becomes one of following the path of a mouse that moves
between the states according to the transition probabilities on the arrows.
The original game has S as its starting state, but it is just as easy to solve the
problem for a particle starting from any of the states. The method that I will
present actually solves the problems for all possible starting states by setting
up equations that relate the solutions to each other. Define probabilities for
the mouse:

PS = P{reach M wins | start at S }
PT = P{reach M wins | start at T }

and so on. I’ll still refer to the solid arrows as “heads”, just to distinguish
between the two arrows leading out of a state, even though the coin tossing
interpretation has now become irrelevant.

Calculate the probability of reaching M wins , under each of the different
starting circumstances, by breaking according to the result of the first move,
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and then conditioning.

PS = P{reach M wins , heads | start at S }
+ P{reach M wins , tails | start at S }

= P{heads | start at S }P{reach M wins | start at S , heads}
+ P{tails | start at S }P{reach M wins | start at S , tails}.

The assumed lack of memory for the fair coin reduces the last expression to
1
2PH + 1

2PT . Notice how the conditioning information “start at S , heads”
has been replaced by “start at H ”, and so on. We have our first equation:

PS = 1
2PH + 1

2PT .

Similar splitting and conditioning arguments for each of the other starting
states give

PH = 1
2PT + 1

2PHH

PHH = 1
2 + 1

2PT

PT = 1
2PH + 1

2PTT

PTT = 1
2PTT + 1

2PTTH

PTTH = 1
2PT + 0.

We could use the fourth equation to substitute for PTT , leaving

PT = 1
2PH + 1

2PTTH .

This simple elimination of the PTT contribution corresponds to the excision
of the TT state from the diagram. If we hadn’t noticed the possibility for
excision the algebra would have effectively done it for us. The six split-
ting/conditioning arguments give six linear equations in six unknowns. If
you solve them you should get PS = 5/12, PH = 1/2, PT = 1/3, PHH = 2/3,
and PTTH = 1/6. For the original problem, M has probability 5/12 of win-
ning. �

There is a more systematic way to carry out the analysis in the last
problem without drawing the diagram. The transition probabilities can be
installed into an 8 by 8 matrix whose rows and columns are labeled by the
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states:

P =



S H T HH TT TTH M wins R wins

S 0 1/2 1/2 0 0 0 0 0
H 0 0 1/2 1/2 0 0 0 0
T 0 1/2 0 0 1/2 0 0 0
HH 0 0 1/2 0 0 0 1/2 0
TT 0 0 0 0 1/2 1/2 0 0
TTH 0 0 1/2 0 0 0 0 1/2
M wins 0 0 0 0 0 0 1 0
R wins 0 0 0 0 0 0 0 1


If we similarly define a column vector,

π = (PS , PH , PT , PHH , PTT , PTTH , PM wins, PR wins)
′,

then the equations that we needed to solve could be written as

Pπ = π,

with the boundary conditions PM wins = 1 and PR wins = 0.

Remark. Write e′M and e′R for the last two rows of P and Q for the
6× 8 matrix made up of the first 6 rows of I −P . Then π is the unique
solution to the equation  Qe′M

e′R

π = eM

The matrix P is called the transition matrix. The element in row i
and column j gives the probability of a transition from state i to state j. For
example, the third row, which is labeled T , gives transition probabilities
from state T . If we multiply P by itself we get the matrix P 2, which gives
the “two-step” transition probabilities. For example, the element of P 2 in
row T and column TTH is given by∑
j

PT,jPj,TTH =
∑
j

P{step to j | start at T }P{step to TTH | start at j}.

Here j runs over all states, but only j = H and j = TT contribute nonzero
terms. Substituting

P{reach TTH in two steps | start at T , step to j}
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for the second factor in the sum, we get the splitting/conditioning decom-
position for

P{reach TTH in two steps | start at T },

a two-step transition possibility.

Remark. What do the elements of the matrix Pn represent? What
happens to this matrix as n tends to infinity? If you are interested in
computation, look at the file HHH.TTHH.R, or try similar calculations
with Matlab or Mathematica.

The name Markov chain is given to any process representable as the
movement of a mouse (or a particle) between states (boxes) according to
transition probabilities attached to arrows connecting the various states.
The sum of the probabilities for arrows leaving a state should add to one.
All the past history except for identification of the current state is regarded
as irrelevant to the next transition; given the current state, the past is
conditionally independent of the future.

<1.5> Example. Suppose a coin has probability p of landing heads on any partic-
ular toss, independent of outcomes of other tosses. In a sequence of such
tosses, what is the probability that the first head appears on the kth toss (for
k = 1, 2, . . . )?

Write Hi for the event {head on the ith toss}. Then, for a fixed k (an
integer greater than or equal to 1),

P{first head on kth toss}
= P(Hc

1H
c
2 . . . H

c
k−1Hk)

= P(Hc
1)P(Hc

2 . . . H
c
k−1Hk | Hc

1) by rule P5.

By the independence assumption, the conditioning information is irrelevant.
Also PHc

1 = 1− p because PHc
1 + PH1 = 1. Why? Thus

P{first head on kth toss} = (1− p)P(Hc
2 . . . H

c
k−1Hk).

Similar conditioning arguments let us strip off each of the outcomes for tosses
2 to k − 1, leaving

P{first head on kth toss} = (1− p)k−1p for k = 1, 2, . . . .

�
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1. Probabilities and random variables 18

<1.6> Example. (The Three-Cornered Duel—also borrowed from Mosteller, 1987)
A, B, and C are to fight a three-cornered pistol duel. All know that A’s
chance of hitting his target is 0.3, C’s is 0.5, and B never misses. They are
to fire at their choice of target in succession in the order A, B, C, cyclically
(but a hit man loses further turns and is no longer shot at) until only one
man is left unhit. What should A’s strategy be?

What could A do? If he shoots at C and hits him, then he receives a
bullet between the eyes from B on the next shot. Not a good strategy:

P (A survives | he kills C first) = 0.

If he shoots at C and misses then B naturally would pick off his more dan-
gerous oppenent, C, leaving A one shot before B finishes him off too. That
single shot from A at B would have to succeed:

P (A survives | he misses first shot) = 0.3.

If A shoots first at B and misses the result is the same. What if A shoots
at B first and succeeds? Then A and C would trade shots until one of them
was hit, with C taking the first shot. We could solve this part of the problem
by setting up a Markov chain diagram, or we could argue as follows: For A
to survive, the fight would have to continue,

{C misses, A hits}
or

{C misses, A misses, C misses, A hits}
or

{C misses, (A misses, C misses) twice, A hits}

and so on. The general piece in the decomposition consists of some number
of repetitions of (A misses, C misses) sandwiched between the initial “C
misses” and the final “A hits.” The repetitions are like coin tosses with
probability (1 − 0.3)(1 − 0.5) = .35 for the double miss. Independence
between successive shots (or should it be conditional independence, given
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the choice of target?) allows us to multiply together probabilities to get

P (A survives | he first shoots B)

=
∞∑
k=0

P{C misses, (A misses, C misses) k times, A hits}

=

∞∑
k=0

(.5)(.35)k(.3)

= .15/(1− 0.35) by the rule of sum of geometric series

≈ .23

In summary:

P (A survives | he kills C first) = 0

P (A survives | he kills B first) ≈ .23

P (A survives | he misses with first shot) = .3

Somehow A should try to miss with his first shot. Is that allowed? �

References

Mosteller, F. (1987). Fifty Challenging Problems in Probability with Solu-
tions. New York: Dover.
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Chapter 2

Expectations

2.1 Overview

Recall from Chapter 1 that a random variable is just a function that attaches
a number to each item in the sample space. Less formally, a random variable
corresponds to a numerical quantity whose value is determined by some
chance mechanism.

Just as events have (conditional) probabilities attached to them, with
possible interpretation as a long-run frequency, so too do random variables
have a number interpretable as a long-run average attached to them. Given
a particular piece of information (info), the symbol

E (X | info)

denotes the (conditional) expected value or (conditional) expectation
of the random variable X (given that information). When the information
is taken as understood, the expected value is abbreviated to EX.

Expected values are not restricted to lie in the range from zero to one.
For example, if the info forces a random variable X to always take values
larger than 16 then E (X | info) will be larger than 16.

As with conditional probabilities, there are convenient abbreviations
when the conditioning information includes something like {event F has
occurred}:

E (X | info and “F has occurred” )

E (X | info, F )

Unlike many authors, I will take the expected value as a primitive concept,
not one to be derived from other concepts. All of the methods that those
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authors use to define expected values will be derived from a small number
of basic rules. I will provide an interpretation for just one of the rules, using
long-run averages of values generated by independent repetitions of random
experiments. You should provide analogous interpretations for the other
rules.

Remark. See the Appendix to this Chapter for another interpretation,
which does not depend on a preliminary concept of independent
repetitions of an experiment. The expected value EX can be interpreted
as a“fair price” to pay up-front, in exchange for a random return X
later—something like an insurance premium.

Rules for (conditional) expectations
Let X and Y be random variables, c and d be constants, and F1, F2, . . . be
events. Then:

(E1) E (cX + dY | info) = cE (X | info) + dE (Y | info );

(E2) if X can only take the constant value c under the given “info” then
E (X | info ) = c;

(E3) if the given “info” forces X ≤ Y then E (X | info) ≤ E (Y | info );

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole
sample space then

E (X | info) =
∑

i
E (X | Fi, info)P (Fi | info ) .

Rule (E4) combines the power of both rules (P4) and (P5) for conditional
probabilities. Here is the frequency interpretation for the case of two disjoint
events F1 and F2 with union equal to the whole sample space: Repeat the
experiment (independently) a very large number (n) of times, each time
with the same conditioning info, noting for each repetition the value taken
by X and which of F1 or F2 occurs.

1 2 3 4 . . . n− 1 n total

F1 occurs X X X . . . X X n1

F2 occurs X . . . X X X n2

X x1 x2 x3 x4 . . . xn−1 xn
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By the frequency interpretation of probabilities, P (F1 | info) ≈ n1/n and
P (F2 | info) ≈ n2/n. Those trials where F1 occurs correspond to condition-
ing on F1:

E (X | F1, info ) ≈ 1

n1

∑
F1 occurs

xi.

Similarly,

E (X | F2, info ) ≈ 1

n2

∑
F2 occurs

xi

Thus

E (X | F1, info)P (F1 | info ) + E (X | F2, info)P (F2 | info )

≈

 1

n1

∑
F1 occurs

xi

(n1

n

)
+

 1

n2

∑
F2 occurs

xi

(n2

n

)

=
1

n

n∑
i=1

xi

≈ E (X | info ) .

As n gets larger and larger all approximations are supposed to get better
and better, and so on.

Modulo some fine print regarding convergence of infinite series, rule (E1)
extends to sums of infinite sequences of random variables,

(E1)′ E(X1 +X2 + . . . ) = E(X1) + E(X2) + . . .

(For mathematical purists: the asserted equality holds if
∑

i E|Xi| <∞.)

Remark. The rules for conditional expectations actually include all
the rules for conditional probabilities as special cases. This delightfully
convenient fact can be established by systematic use of particularly
simple random variables. For each event A the indicator function
of A is defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

Each IA is a random variable.
Rule (E4) with F1 = A and F2 = Ac gives

E (IA | info) = E (IA | A, info)P (A | info) +

+ E (IA | Ac, info)P (Ac | info)

= 1× P (A | info) + 0× P (Ac | info) by (E2).
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That is, E (IA | info) = P (A | info).
If an event A is a disjoint union of events A1, A2, . . . then

IA = IA1
+ IA2

+ . . . . (Why?) Taking expectations then invoking the
version of (E1) for infinite sums we get rule (P4).

As an exercise, you might try to derive the other probability rules,
but don’t spend much time on the task or worry about it too much.
Just keep buried somewhere in the back of your mind the idea that
you can do more with expectations than with probabilities alone.

You will find it useful to remember that E (IA | info) = P (A | info),
a result that is easy to recall from the fact that the long-run frequency
of occurrence of an event, over many repetitions, is just the long-run
average of its indicator function.

Rules (E2) and (E4) can be used to calculate expectations from prob-
abilities, for random variables that take values in “discrete” set. Consider
the case of a random variable Y expressible as a function g(X) of another
random variable, X, which takes on only a discrete set of values c1, c2, . . . .
Let Fi be the subset of S on which X = ci, that is, Fi = {X = ci}. Then
by E2,

E (Y | Fi, info ) = g(ci),

and by E5,

E (Y | info) =
∑

i
g(ci)P (Fi | info ) .

More succinctly,

(E5) E (g(X) | info) =
∑

i
g(ci)P (X = ci | info ) .

In particular,

(E5)′ E (X | info) =
∑

i
ciP (X = ci | info ) .

Both (E5) and (E5)’ apply to random variables X that take values in the
“discrete set” {c1, c2, . . . }.

Remark. For random variables that take a continuous range of values
an approximation argument (see Chapter 7) will provide us with an
analog of (E5) with the sum replaced by an integral.

You will find it helpful to remember expectations for a few standard
mechanisms, such as coin tossing, rather than have to rederive them repeat-
edly.
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Example <2.1> Expected value for the geometric(p) distribution is 1/p.

The calculation of an expectation is often a good way to get a rough feel
for the behaviour of a random process, but it doesn’t tell the whole story.

Example <2.2> Expected number of tosses to get tthh is 16 with fair
coin.

Compare with the next Example.

Example <2.3> Expected number of tosses to get hhh is 14 with fair
coin.

Don’t the last two results seem strange? On average it takes longer to
reach tthh than hhh, but also on average the pattern tthh appears first.

Remark. You should also be able to show that the expected number
of tosses for the completion of the game with competition between hhh
and tthh is 91/3. Notice that the expected value for the game with
competition is smaller than the minimum of the expected values for
the two games. Why must it be smaller?

Probabilists study standard mechanisms, and establish basic results for
them, partly in the hope that they will recognize those same mechanisms
buried in other problems. In that way, unnecessary calculation can be
avoided, making it easier to solve more complex problems. It can, how-
ever, take some work to find the hidden simplification.

Example <2.8> [Coupon collector problem] In order to encourage con-
sumers to buy many packets of cereal, a manufacurer includes a Famous
Probabilist card in each packet. There are 10 different types of card: Chung,
Feller, Lévy, Kolmogorov, . . . , Doob. Suppose that I am seized by the de-
sire to own at least one card of each type. What is the expected number of
packets that I need to buy in order to achieve my goal?

For the coupon collectors problem I assumed large numbers of cards
of each type, in order to justify the analogy with coin tossing. Without
that assumption the depletion of cards from the population would have
a noticeable effect on the proportions of each type remaining after each
purchase. The next example illustrates the effects of sampling from a finite
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population without replacement, when the population size is not assumed
very large.

The example will also provides an illustration of the method of in-
dicators, whereby a random variable is expressed as a sum of indicator
variables IA1 + IA2 + . . . , in order to reduce calculation of an expected value
to separate calculation of probabilities PA1, PA2, . . . via the formula

E (IA1 + IA2 + . . . | info )

= E (IA1 | info) + E (IA2 | info ) + . . .

= P (A1 | info) + P (A2 | info) + P (A2 | info) + . . .

Example <2.9> Suppose an urn contains r red balls and b black balls, all
identical except for color. Suppose you remove one ball at a time, without
replacement, at each step selecting at random from the urn: if k balls re-
main then each has probability 1/k of being chosen.Show that the expected
number of red balls removed before the firstblack ball equals r/(b+ 1).

Compare the solution r/(b+1) with the result for sampling with replace-
ment, where the number of draws required to get the first black would have
a geometric(b/(r+b)) distribution. With replacement, the expected number
of reds removed before the first black would be

(b/(r + b))−1 − 1 = r/b.

Replacement of balls after each draw increases the expected value slightly.
Does that make sense?

The conditioning property (E5) can be used in a subtle way to solve
the classical gambler’s ruin problem. The method of solution invented by
Abraham de Moivre, over two hundred years ago, has grown into one of the
main technical tools of modern probability.

Example <2.10> Suppose two players, Alf and Betamax, bet on the
tosses of a fair coin: for a head, Alf pays Betamax one dollar; for a tail,
Betamax pays Alf one dollar. The stop playing when one player runs out of
money. If Alf starts with α dollar bills, and Betamax starts with β dollars
bills (both α and β whole numbers), what is the probability that Alf ends
up with all the money?
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De Moivre’s method also works with biased coins, if we count profits in a
different way—an even more elegant application of conditional expectations.
The next Example provides the details. You could safely skip it if you
understand the tricky idea behind Example <2.10>.

Example <2.11> Same problem as in Example <2.10>, except that
the coin they toss has probability p 6= 1/2 of landing heads. (Could be
skipped.)

You could also safely skip the final Example. It contains a discussion of
a tricky little problem, that can be solved by conditioning or by an elegant
symmetry argument.

Example <2.12> Big pills, little pills. (Tricky. Should be skipped.)

2.2 Things to remember

• Expectations (and conditional expectations) are linear (E1), increas-
ing (E3) functions of random variables, which can be calculated as
weighted averages of conditional expectations,

E (X | info) =
∑

i
E (X | Fi, info)P (Fi | info ) ,

where the disjoint events F1, F2, . . . cover all possibilities (the weights
sum to one).

• The indicator function of an event A is the random variable defined
by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

The expected value of an indicator variable, E (IA | info), is the same
as the probability of the corresponding event, P (A | info).

• As a consequence of the rules,

E (g(X) | info) =
∑

i
g(ci)P (X = ci | info ) ,

if X can take only values c1, c2, . . . .
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2.3 The examples

<2.1> Example. For independent coin tossing, what is the expected value of X,
the number of tosses to get the first head?

Suppose the coin has probability p > 0 of landing heads. (So we are
actually calculating the expected value for the geometric(p) distribution.) I
will present two methods.

Method A: a Markov argument without the picture
Condition on whether the first toss lands heads (H1) or tails (T1).

EX = E(X | H1)PH1 + E(X | T1)PT1

= (1)p+ (1 + EX)(1− p).

The reasoning behind the equality

E(X | T1) = 1 + EX

is: After a tail we are back where we started, still counting the number of
tosses until a head, except that the first tail must be included in that count.

Solving the equation for EX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it decrease
as p increases? What happens as p tends to zero or one?)

Method B
By the formula (E5),

EX =
∑∞

k=1
k(1− p)k−1p.

There are several cute ways to sum this series. Here is my favorite. Write
q for 1 − p. Write the kth summand as a a column of k terms pqk−1, then
sum by rows:

EX = p+ pq + pq2 + pq3 + . . .

+pq + pq2 + pq3 + . . .

+pq2 + pq3 + . . .

+pq3 + . . .

...
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Each row is a geometric series.

EX = p/(1− q) + pq/(1− q) + pq2/(1− q) + . . .

= 1 + q + q2 + . . .

= 1/(1− q)
= 1/p,

same as before. �

<2.2> Example. The “HHH versus TTHH” Example in Chapter 1 solved the
following problem:

Imagine that I have a fair coin, which I toss repeatedly. Two
players, M and R, observe the sequence of tosses, each waiting
for a particular pattern on consecutive tosses: M waits for hhh,
and R waits for tthh. The one whose pattern appears first is the
winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly sur-
prising, because, at first sight, a pattern of four appears harder to achieve
than a pattern of three.

A calculation of expected values will add to the puzzlement. As you will
see, if the game is continued until each player sees his pattern, it takes tthh
longer (on average) to appear than it takes hhh to appear. However, when
the two patterns are competing, the tthh pattern is more likely to appear
first. How can that be?

For the moment forget about the competing hhh pattern: calculate the
expected number of tosses needed before the pattern tthh is obtained with
four successive tosses. That is, if we let X denote the number of tosses
required then the problem asks for the expected value EX.

S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the start-
ing state (labelled S) to the state TTHH where the pattern is achieved.
Each arrow in the diagram corresponds to a transition between states with
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probability 1/2. The corresponding transition matrix is:

P =



S T TT TTH TTHH

S 1/2 1/2 0 0 0
T 1/2 0 1/2 0 0
TT 0 0 1/2 1/2 0
TTH 0 1/2 0 0 1/2
TTHH 0 0 0 0 1

.
Once again it is easier to solve not just the original problem, but a set

of problems, one for each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)

...

Then the original problem is asking for the value of ES .
To solve gthe problem, condition on the outcome of the first toss, writing

H for the event {first toss lands heads} and T for the event {first toss lands
tails}. From rule E4 for expectations,

ES = E(X | start at S,T)P(T | start at S)

+ E(X | start at S,H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does
not depend on the state). For the first of the conditional expectations,
count 1 for the first toss, then recognize that the remaining tosses are just
those needed to reach TTHH starting from the state T :

E(X | start at S,T) = 1 + E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an
analogous expression for the second conditional expectation. Substitution
into the expression for ES then gives

ES = 1/2(1 + ET ) + 1/2(1 + ES)

Similarly,

ET = 1/2(1 + ETT ) + 1/2(1 + ES)

ETT = 1/2(1 + ETT ) + 1/2(1 + ETTH)

ETTH = 1/2(1 + 0) + 1/2(1 + ET )
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What does the zero in the last equation represent?
The four linear equations in four unknowns have the solution ES = 16,

ET = 14, ETT = 10, ETTH = 8. Thus, the solution to the original problem
is that the expected number of tosses to achieve the tthh pattern is 16. �
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<2.3> Example. The expected number of tosses to get hhh with fair coin is 14.
For a coin that lands heads with probability p the expected number to get hhh
is p−1 + p−2 + p−3.

I could use the same method as for the tthh problem but I want to show
you a variation on the method that is easier to generalize. It involves a lot
more notation, but it captures better the recursive nature of the problem.

Remark. In the original version of the notes I assumed p = 1/2 but in
class I considered the more general case for which the coin lands heads
with probability p and tails with probability q = 1− p. The general p
makes it easier to recognize a pattern. In class I also presented a slight
variation on the original method.

S H HH HHH

p

qq

q pp

First relabel the states: S0 = S, S1 = H, S2 = HH, and S3 = HHH.
Then write Xk for the number of steps to reach state Sk and define

τk = E(Xk | start at S0).

For each integer i write Hi for the event that the ith toss results in a head
and Ti for Hc

i . I claim that

E(Xk+1 | Xk = m,Hm+1, start at S0) = m+ 1<2.4>

E(Yk+1 | Xk = m,Tm+1, start at S0) = m+ 1 + τk+1.<2.5>

The second equality reflects the fact that the tail sends us right back to the
start: the m comes from the Xk contribution, the 1 from the (m+ 1)st toss,
and the τk+1 from the fact that, given the conditioning information, the rest
of the task to reach Sk+1 is just like starting from state S0.

We need to take a weighted average of these conditional expectations to
get τk+1. The weights are

P{Xk = m,Hm+1 | start at S0}
= P{Xk = m | start at S0}P{Hm+1 | start at S0, Xk = m}
= P{Xk = m | start at S0}p

and

P{Xk = m,Tm+1 | start at S0} = P{Xk = m | start at S0}q.
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By rule (E4),

τk+1 = E(Xk+1 | start at S0)

=
∑

m
E(Xk+1 | Xk = m,Hm+1, start at S0)×

P(Xk = m,Hm+1 | start at S0)

+
∑

m
E(Xk+1 | Xk = m,Tm+1, start at S0)×

P(Xk = m,Tm+1 | start at S0)

=
∑

m
P(Xk = m | start at S0)p(m+ 1)

+
∑

m
P(Xk = m | start at S0)q(m+ 1 + τk+1)

=
∑

m
(m+ 1)P(Xk = m | start at S0)<2.6>

qτk+1

∑
m
P(Xk = m | start at S0).

At this point you need to notice that

τk + 1 = E(Xk + 1 | start at S0)

=
∑

m
E(Xk + 1 | start at S0, Xk = m)P(Xk = m | start at S0)

=
∑

m
(m+ 1)P(Xk = m | start at S0)

and

1 =
∑

m
P(Xk = m | start at S0).

Substitution of these expressions into <2.6> leaves

τk+1 = τk + 1 + qτk+1 or τk+1 =
τk + 1

p

If you are very brave you might use τ0 = 0, otherwise you would appeal
to Example <2.1> to get τ1 = 1/p. The recursive equality then gives τ2 =
1/p+ 1/p2 and τ3 = 1/p+ 1/p2 + 1/p3, as asserted.

In the original version of this Example I was a bit trickier, effectively

Statistics 241/541 fall 2014 c©David Pollard, Aug2014



2. Expectations 33

writing the argument for <2.6> as

E(Xk+1 −Xk | start at S0)

=
∑

m
E(Xk+1 −Xk | Xk = m,Hm+1, start at S0)×

P(Xk = m,Hm+1 | start at S0)

+
∑

m
E(Xk+1 −Xk | Xk = m,Tm+1, start at S0)×

P(Xk = m,Tm+1 | start at S0)

=
∑

m
P(Xk = m | start at S0)p(1)

+
∑

m
P(Xk = m | start at S0)q(1 + τk+1)

= (1 + qτk+1)
∑

m
P(Xk = m | start at S0)

so that

τk+1 − τk = E(Xk+1 −Xk | start at S0) = 1 + qτk+1.

That is, I realized that the m’s on the right-hand sides of <2.4> and <2.5>
were going to end up contributing E(Xk | start at S0). �

<2.7> Example. (Brief summary) Consider a machine that sells tickets for ran-
dom prices M1,M2, . . . where

E(Mi | all available past info } = λ

(More succinctly, the prices have identical distributions independent of all
past information.) The price Mi entitles Sam to a shot at the prize by
tossing a coin that heads with probability p. (A head wins.) Sam keeps
buying tickets until he wins. What is the expected value of T , the total cost
to Sam?

Define Wi as the event that the ith toss gives a head. Argue that

T = M1 +M21W c
1

+M31W c
1W

c
2

+ . . . .

By the linearity rule for expectations,

ET = EM1 + E(M21W c
1
) + E(M31W c

1W
c
2
) + . . . .

To calculate E(M31W c
1W

c
2
) split according to the four possible combinations

W1W2, W c
1W2, W1W

c
2 , and W c

1W
c
2 , only one of which makes a nonzero

contribution to get

E(M31W c
1W

c
2
) = λq2.
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And so on. Eventually,

ET = λ+ λq + λq2 + · · · = λ/p.

�

I asked in class what the last example had to do with the hhh Example.
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<2.8> Example. In order to encourage consumers to buy many packets of cereal,
a manufacurer includes a Famous Probabilist card in each packet. There
are 10 different types of card: Chung, Feller, Lévy, Kolmogorov, . . . , Doob.
Suppose that I am seized by the desire to own at least one card of each type.
What is the expected number of packets that I need to buy in order to achieve
my goal?

Assume that the manufacturer has produced enormous numbers of cards,
the same number for each type. (If you have ever tried to collect objects
of this type, you might doubt the assumption about equal numbers. But,
without it, the problem becomes exceedingly difficult.) The assumption
ensures, to a good approximation, that the cards in different packets are
independent, with probability 1/10 for a Chung, probability 1/10 for a Feller,
and so on.

The high points in my life occur at random “times” T1, T1 + T2, . . . ,
T1 + T2 + · · ·+ T10, when I add a new type of card to my collection: After
one card (that is, T1 = 1) I have my first type; after another T2 cards I will
get something different from the first card; after another T3 cards I will get
a third type; and so on.

The question asks for E(T1 + T2 + · · · + T10), which rule E1 (applied
repeatedly) reexpresses as ET1 + ET2 + · · ·+ ET10.

The calculation for ET1 is trivial because T1 must equal 1: we get ET1 = 1
by rule (E2). Consider the mechanism controlling T2. For concreteness
suppose the first card was a Doob. Each packet after the first is like a coin
toss with probability 9/10 of getting a head (= a nonDoob), with T2 like
the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example <2.1> that ET2 = 10/9, a value slightly larger than 1.
Now consider the mechanism controlling T3. Condition on everything

that was observed up to time T1 +T2. Under the assumption of equal abun-
dance and enormous numbers of cards, most of this conditioning information
is acually irrelevent; the mechanism controlling T3 is independent of the past
information. (Hard question: Why would the T2 and T3 mechanisms not be
independent if the cards were not equally abundant?) So what is that T3

mechanism? I am waiting for any one of the 8 types I have not yet collected.
It is like coin tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thus ET3 = 10/8.
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Remark. More precisely, T3 is independent of T2 with conditional
probability distribution geometric (8/10). That is, with p = 8/10,

P{T3 = k | T2 = `} = (1− p)k−1p for k = 1, 2, . . .

for every possible `.

And so on, leading to

ET1 + ET2 + · · ·+ ET10 = 1 + 10/9 + 10/8 + ...+ 10/1 ≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards. �

Note: The independence between packets was not needed to justify
the appeal to rule (E1), to break the expected value of the sum into a
sum of expected values. It did allow me to recognize the various geometric
distributions without having to sort through possible effects of large T2 on
the behavior of T3, and so on.

You might appreciate better the role of independence if you try to solve
a similar (but much harder) problem with just two sorts of card, not in equal
proportions.

<2.9> Example. Suppose an urn contains r red balls and b black balls, all identical
except for color. Suppose you remove one ball at a time, without replacement,
at each step selecting at random from the urn: if k balls remain then each
has probability 1/k of being chosen.Show that the expected number of red
balls removed before the firstblack ball equals r/(b+ 1).

The problem might at first appear to require nothing more than a simple
application of rule (E5)’ for expectations. We shall see. Let T be the number
of reds removed before the first black. Find the distribution of T , then appeal
to E5′ to get

ET =
∑

k
kP{T = k}.

Sounds easy enough. We have only to calculate the probabilities P{T = k}.
Define Ri = {ith ball red} and Bi = {ith ball black}. The possible

values for T are 0, 1, . . . , r. For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1R2 . . . RkBk+1)

= (PR1)P(R2 | R1)P(R3 | R1R2) . . .P(Bk+1 | R1 . . . Rk)

=
r

r + b
.
r − 1

r + b− 1
. . .

b

r + b− k
.
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The dependence on k is fearsome. I wouldn’t like to try multiplying by k
and summing. If you are into pain you might try to continue this line of
argument. Good luck.

There is a much easier way to calculate the expectation, by breaking T
into a sum of much simpler random variables for which (E5)’ is trivial to
apply. This approach is sometimes called the method of indicators.

Suppose the red balls are labelled 1, . . . , r. Let Ti equal 1 if red ball
number i is sampled before the first black ball, zero otherwise. That is, Ti
is the indicator for the event

{red ball number i is removed before any of the black balls}.

(Be careful here. The black balls are not thought of as numbered. The
first black ball is not a ball bearing the number 1; it might be any of the
b black balls in the urn.) Then T = T1 + · · · + Tr. By symmetry—it is
assumed that the numbers have no influence on the order in which red balls
are selected—each Ti has the same expectation. Thus

ET = ET1 + · · ·+ ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event
{T1 = 1} occurs if and only if red ball number 1 is drawn before all b of
the black balls. By symmetry, the event has probability 1/(b+ 1). (If b+ 1
objects are arranged in random order, each object has probability 1/(1 + b)
of appearing first in the order.)

Remark. If you are not convinced by the appeal to symmetry, you
might find it helpful to consider a thought experiment where all r + b
balls are numbered and they are removed at random from the urn.
That is, treat all the balls as distinguishable and sample until the
urn is empty. (You might find it easier to follow the argument in a
particular case, such as all 120 = 5! orderings for five distinguishable
balls, 2 red and 3 black.) The sample space consists of all permutations
of the numbers 1 to r + b. Each permutation is equally likely. For
each permutation in which red 1 precedes all the black balls there is
another equally likely permutation, obtained by interchanging the red
ball with the first of the black balls chosen; and there is an equally
likely permutation in which it appears after two black balls, obtained
by interchanging the red ball with the second of the black balls chosen;
and so on. Formally, we are partitioning the whole sample space into
equally likely events, each determined by a relative ordering of red 1
and all the black balls. There are b+ 1 such equally likely events, and
their probabilities sum to one.
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Now it is easy to calculate the expected value for red 1.

ET1 = 0P{T1 = 0}+ 1P{T1 = 1} = 1/(b+ 1)

The expected number of red balls removed before the first black ball is equal
to r/(b+ 1). �

<2.10> Example. Suppose two players, Alf (A for short) and Betamax (B for
short), bet on the tosses of a fair coin: for a head, Alf pays Betamax one
dollar; for a tail, Betamax pays Alf one dollar. They stop playing when
one player runs out of money. If Alf starts with α dollar bills, and Beta-
max starts with β dollars bills (both α and β whole numbers), what is the
probability that Alf ends up with all the money?

Write Xn for the number of dollars held by A after n tosses. (Of course,
once the game ends the value of Xn stays fixed from then on, at either a+ b
or 0, depending on whether A won or not.) It is a random variable taking
values in the range {0, 1, 2, . . . , a + b}. We start with X0 = α. To solve
the problem, calculate EXn, for very large n in two ways, then equate the
answers. We need to solve for the unknown θ = P{A wins}.

First calculation
Invoke rule (E4) with the sample space broken into three pieces,

An = {A wins at, or before, the nth toss},
Bn = {B wins at, or before, the nth toss},
Cn = {game still going after the nth toss}.

For very large n the game is almost sure to be finished, with PAn ≈ θ,
PBn ≈ 1− θ, and PCn ≈ 0. Thus

EXn = E(Xn | An)PAn + E(Xn | Bn)PBn + E(Xn | Cn)PCn
≈
(
(α+ β)× θ

)
+
(
0× (1− θ)

)
+
(
(something)× 0

)
.

The error in the approximation goes to zero as n goes to infinity.

Second calculation
Calculate conditionally on the value of Xn−1. That is, split the sample
space into disjoint events Fk = {Xn−1 = k}, for k = 0, 1, . . . , a + b, then
work towards another appeal to rule (E4). For k = 0 or k = a+ b, the game
will be over, and Xn must take the same value as Xn−1. That is,

E(Xn | F0) = 0 and E(Xn | Fα+β) = α+ β.
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For values of k between the extremes, the game is still in progress. With
the next toss, A’s fortune will either increase by one dollar (with probability
1/2) or decrease by one dollar (with probability 1/2). That is, for k =
1, 2, . . . , α+ -

¯
1,

E(Xn | Fk) = 1/2(k + 1) + 1/2(k − 1) = k.

Now invoke (E4).

E(Xn) = (0× PF0) + (1× PF1) + · · ·+ (α+ β)PFα+β.

Compare with the direct application of (E5)’ to the calculation of EXn−1:

E(Xn−1) =
(
0× P{Xn−1 = 0}

)
+
(
1× P{Xn−1 = 1}

)
+

· · ·+
(
(α+ β)× P{Xn−1 = α+ β}

)
,

which is just another way of writing the sum for EXn derived above. Thus
we have

EXn = EXn−1

The expected value doesn’t change from one toss to the next.
Follow this fact back through all the previous tosses to get

EXn = EXn−1 = EXn−2 = · · · = EX2 = EX1 = EX0.

But X0 is equal to α, for certain, which forces EX0 = α.

Putting the two answers together
We have two results: EXn = α, no matter how large n is; and EXn gets
arbitrarily close to θ(α + β) as n gets larger. We must have α = θ(α + β).
That is, Alf has probability α/(α+ β) of eventually winning all the money.
�

Remark. Twice I referred to the sample space, without actually having
to describe it explicitly. It mattered only that several conditional
probabilities were determined by the wording of the problem.

Danger: The next two Examples are harder. They can be skipped.
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<2.11> Example. Same problem as in Example <2.10>, except that the coin they
toss has probability p 6= 1/2 of landing heads.

The cases p = 0 and p = 1 are trivial. So let us assume that 0 < p < 1
(and p 6= 1/2). Essentially De Moivre’s idea was that we could use almost
the same method as in Example <2.10> if we kept track of A’s fortune on
a geometrically expanding scaled. For some number s, to be specified soon,
consider a new random variable Zn = sXn .

Xn scale

Zn scale

0 1 α+β

sα+β

s= s1
1=s0

s2

Once again write θ for P{A wins}, and give the events An, Bn, and Cn
the same meaning as in Example <2.10>.

As in the first calculation for the other Example, we have

EZn = E(sXn | An)PAn + E(sXn | Bn)PBn + E(sXn | Cn)PCn

≈
(
sα+β × θ

)
+
(
s0 × (1− θ)

)
+
(
(something)× 0

)
if n is very large.

For the analog of the second calculation, in the cases where the game
has ended by at or before the (n− 1)st toss we have

E(Zn | Xn−1 = 0) = s0 and E(Zn | Xn−1 = α+ β) = sα+β.

For 0 < k < α+ β, the result of the calculation is slightly different.

E(Zn | Xn−1 = k) = psk+1 + (1− p)sk−1 =
(
ps+ (1− p)s−1

)
sk.

If we choose s = (1−p)/p, the factor
(
ps+ (1− p)s−1

)
becomes 1. Invoking
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rule E4 we then get

EZn = E(Zn | Xn−1 = 0)× P(Xn−1 = 0) + E(Zn | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(Zn | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1)

+ · · ·+ sα+β × P(Xn−1 = α+ β)

Compare with the calculation of EZn−1 via (E5).

EZn−1 = E(sXn−1 | Xn−1 = 0)× P(Xn−1 = 0)

+ E(sXn−1 | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(sXn−1 | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . .

+ sα+β × P(Xn−1 = α+ β)

Once again we have a situation where EZn stays fixed at the initial value
EZ0 = sα, but, with very large n, it can be made arbitrarily close to θsα+β+
(1− θ)s0. Equating the two values, we deduce that

P{Alf wins} = θ =
1− sα

1− sα+β
where s = (1− p)/p.

What goes wrong with this calculation if p = 1/2? As a check we could
let p tend to 1/2, getting

1− sα

1− sα+β
=

(1− s)(1 + s+ · · ·+ sα−1)

(1− s)(1 + s+ · · ·+ sα+β−1)
for s 6= 1

=
1 + s+ · · ·+ sα−1

1 + s+ · · ·+ sα+β−1

→ α

α+ β
as s→ 1.

Comforted? �

<2.12> Example. My interest in the calculations in Example <2.9> was kindled by
a problem that appeared in the August-September 1992 issue of the Amer-
ican Mathematical Monthly. My solution to the problem—the one I first
came up with by application of a straightforward conditioning argument—
reduces the calculation to several applications of the result from the pre-
vious Example. The solution offered by two readers of the Monthly was
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slicker. The following brown paragraphs are taken hyper-verbatim from the
Monthly; I was seeing how closely LATEX could reproduce the original text.

E 3429 [1991, 264]. Proposed by Donald E. Knuth and John McCarthy,
Stanford University, Stanford, CA.

A certain pill bottle contains m large pills and n small pills initially, where each
large pill is equivalent to two small ones. Each day the patient chooses a pill at
random; if a small pill is selected, (s)he eats it; otherwise (s)he breaks the selected
pill and eats one half, replacing the other half, which thenceforth is considered to
be a small pill.

(a) What is the expected number of small pills remaining when the last large pill
is selected?

(b) On which day can we expect the last large pill to be selected?

Solution from AMM:
Composite solution by Walter Stromquist, Daniel H. Wagner, Associates,
Paoli, PA and Tim Hesterberg, Franklin & Marshall College, Lancaster,
PA. The answers are (a) n/(m+1)+

∑m
k=1(1/k), and (b) 2m+n− (n/(m+

1))−
∑m

k=1(1/k). The answer to (a) assumes that the small pill created by
breaking the last large pill is to be counted. A small pill present initially
remains when the last large pill is selected if and only if it is chosen last
from among the m+1 element set consisting of itself and the large pills—an
event of probability 1/(m+1). Thus the expected number of survivors from
the original small pills is n/(m + 1). Similarly, when the kth large pill is
selected (k = 1, 2, . . . ,m), the resulting small pill will outlast the remaining
large pills with probability 1/(m−k+1), so the expected number of created
small pills remaining at the end is

∑m
k=1(1/k). Hence the answer to (a) is as

above. The bottle will last 2m+n days, so the answer to (b) is just 2m+n
minus the answer to (a), as above.

I offer two alternative methods of solution for the problem. The first
method uses a conditioning argument to set up a recurrence formula for the
expected numbers of small pills remaining in the bottle after each return of
half a big pill. The equations are easy to solve by repeated substitution.
The second method uses indicator functions to spell out the Hesterberg-
Stromquist method in more detail. Apparently the slicker method was not
as obvious to most readers of the Monthly (and me):

Editorial comment. Most solvers derived a recurrence relation, guessed
the answer, and verified it by induction. Several commented on the
origins of the problem. Robert High saw a version of it in the MIT
Technology Review of April, 1990. Helmut Prodinger reports that
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he proposed it in the Canary Islands in 1982. Daniel Moran at-
tributes the problem to Charles MacCluer of Michigan State Uni-
versity, where it has been known for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect

solution was received.

Conditioning method.

Invent random variables to describe the depletion of the pills. Initially
there are L0 = n small pills in the bottle. Let S1 small pills be consumed
before the first large pill is broken. After the small half is returned to the
bottle let there be L1 small pills left. Then let S2 small pills be consumed
before the next big pill is split, leaving L2 small pills in the bottle. And so
on.

S
1
 small S

2
 small S

i 
small

L
1
 small left L

i
 small left

first big broken ith big brokenith big brokenfirst big broken last big broken

With this notation, part (a) is asking for ELm. Part (b) is asking for
2m+n−ELm: If the last big pill is selected on day X then it takes X+Lm
days to consume the 2m+n small pill equivalents, so EX +ELm = 2m+n.

The random variables are connected by the equation

Li = Li−1 − Si + 1,

the −Si representing the small pills consumed between the breaking of the
(i − 1)st and ith big pill, and the +1 representing the half of the big pill
that is returned to the bottle. Taking expectations we get

<2.13> ELi = ELi−1 − ESi + 1.

The result from Example <2.9> will let us calculate ESi in terms of ELi−1,
thereby producing the recurrence formula for ELi.

Condition on the pill history up to the (i− 1)st breaking of big pill (and
the return of the unconsumed half to the bottle). At that point there are
Li−1 small pills and m − (i − 1) big pills in the bottle. The mechanism
controlling Si is just like the urn problem of Example <2.9>, with

r = Li−1 red balls (= small pills)

b = m− (i− 1) black balls (= big pills).
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From that Example,

E{Si |history to (i− 1)st breaking of a big pill} = Li−11 +m− (i− 1).

To calculate ESi we would need to average out using weights equal to the
probability of each particular history:

ESi =
1

1 +m− (i− 1)

∑
histories

P{history}(value of Li−1 for that history).

The sum on the right-hand side is exactly the sum we would get if we
calculated ELi−1 using rule E4, partitioning the sample space according to
possible histories up to the (i− 1)st breaking of a big pill. Thus

ESi =
1

2 +m− i
ELi−1.

Now we can eliminate ESi from equality <2.13> to get the recurrence
formula for the ELi values:

ELi =

(
1− 1

2 +m− i

)
ELi−1 + 1.

If we define θi = ELi/(1 +m− i) the equation becomes

θi = θi−1 +
1

1 +m− i
for i = 1, 2, . . . ,m,

with initial condition θ0 = EL0/(1+m) = n/(1+m). Repeated substitution
gives

θ1 = θ0 +
1

m

θ2 = θ1 +
1

m− 1
= θ0 +

1

m
+

1

m− 1

θ3 = θ2 +
1

m− 2
= θ0 +

1

m
+

1

m− 1
+

1

m− 2
...

θm = · · · = θ0 +
1

m
+

1

m− 1
+ · · ·+ 1

2
+

1

1
.

That is, the expected number of small pills left after the last big pill is
broken equals

ELm = (1 +m−m)θm

=
n

1 +m
+ 1 +

1

2
+ · · ·+ 1

m
.
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Rewrite of the Stromquist-Hesterberg solution.
Think in terms of half pills, some originally part of big pills. Number the
original half pills 1, . . . , n. Define

Hi =
{

+1 if original half pill i survives beyond last big pill
0 otherwise.

Number the big pills 1, . . . ,m. Use the same numbers to refer to the half
pills that are created when a big pill is broken. Define

Bj =
{

+1 if created half pill j survives beyond last big pill
0 otherwise.

The number of small pills surviving beyond the last big pill equals

H1 + · · ·+Hn +B1 + · · ·+Bm.

By symmetry, each Hi has the same expected value, as does each Bj . The
expected value asked for by part (a) equals

<2.14> nEH1 +mEB1 = nP{H1 = 1}+mP{B1 = 1}.

For the calculation of P{H1 = +1} we can ignore all except the relative
ordering of the m big pills and the half pill described by H1. By symmetry,
the half pill has probability 1/(m + 1) of appearing in each of the m + 1
possible positions in the relative ordering. In particular,

P{H1 = +1} =
1

m+ 1
.

For the created half pills the argument is slightly more complicated. If
we are given that big pill number 1 the kth amongst the big pills to be
broken, the created half then has to survive beyond the remaining m−k big
pills. Arguing again by symmetry amongst the (m−k+ 1) orderings we get

P{B1 = +1 | big number 1 chosen as kth big} =
1

m− k + 1
.

Also by symmetry,

P{big 1 chosen as kth big} =
1

m
.

Average out using the conditioning rule E4 to deduce

P{B1 = +1} =
1

m

m∑
k=1

1

m− k + 1
.

Notice that the summands run through the values 1/1 to 1/m in reversed
order.

When the values for P{H1 = +1} and P{B1 = +1} are substituted
into <2.14>, the asserted answer to part (a) results. �
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2.4 Appendix: The fair price interpretation of expec-
tations

Consider a situation—a bet if you will—where you stand to receive an un-
certain return X. You could think of X as a random variable, a real-valued
function on a sample space S. For the moment forget about any probabili-
ties on the sample space S. Suppose you consider p(X) the fair price to pay
in order to receive X. What properties must p(·) have?

Your net return will be the random quantity X−p(X), which you should
consider to be a fair return. Unless you start worrying about the utility
of money you should find the following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y )
fair for Y then you should be prepared to make both bets, paying
p(X) + p(Y ) to receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you
pay 2p(X) to receive 2X (actually, that particular example is a special
case of (i)) or 3.76p(X) to receive 3.76X, or −p(X) to receive −X. The
last example corresponds to willingness to take either side of a fair bet.
In general, to receive cX you should pay cp(X), for constant c.

(iii) There is no fair bet whose return X − p(X) is always ≥ 0 (except for
the trivial situation where X − p(X) is certain to be zero).

If you were to declare a bet with returnX−p(X) ≥ 0 under all circumstances
to be fair, I would be delighted to offer you the opportunity to receive the
“fair” return −C (X − p(X)), for an arbitrarily large positive constant C. I
couldn’t lose.
Fact 1:Properties (i), (ii), and (iii) imply that p(αX+βY ) = αp(X)+βp(Y )
for all random variables X and Y , and all constants α and β.

Consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY )− αp(X)− βp(Y ).
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If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii).
The asserted equality follows.
Fact 2:Properties (i), (ii), and (iii) imply that p(Y ) ≤ p(X) if the random
variable Y is always ≤ the random variable X.

If you claim that p(X) < p(Y ) then I would be happy for you to accept
the bet that delivers

(Y − p(Y ))− (X − p(X)) = −(X − Y )− (p(Y )− p(X)) ,

which is always < 0.
The two Facts are analogous to rules E1 and E3 for expectations. You

should be able to deduce the analog of E2 from (iii).
As a special case, consider the bet that returns 1 if an event F occurs,

and 0 otherwise. If you identify the event F with the random variable taking
the value 1 on F and 0 on F c (that is, the indicator of the event F ), then it
follows directly from Fact 1 that p(·) is additive: p(F1∪F2) = p(F1) + p(F2)
for disjoint events F1 and F2, an analog of rule P4 for probabilities.

Contingent bets
Things become much more interesting if you are prepared to make a bet
to receive an amount X, but only when some event F occurs. That is, the
bet is made contingent on the occurrence of F . Typically, knowledge of
the occurrence of F should change the fair price, which we could denote by
p(X | F ). Let me write Z for the indicator function of the event F , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is (X − p(X | F ))Z. The
indicator function Z ensures that money changes hands only when F occurs.

By combining various bets and contingent bets, we can deduce that an
analog of rule E4 for expectations: if S is partitioned into disjoint events
F1, . . . , Fk, then

p(X) =

k∑
i=1

p(Fi)p(X | Fi).

Make the following bets. Write ci for p(X | Fi).

(a) For each i, pay cip(Fi) in order to receive ci if Fi occurs.

ritem[(b)] Pay −p(X) in order to receive −X.
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(c) For each i, make a bet contingent on Fi: pay ci (if Fi occurs) to receive
X.

If event Fk occurs, your net profit will be

−
∑
i

cip(Fi) + ck + p(X)−X − ck +X = p(X)−
∑
i

cip(Fi),

which does not depend on k. Your profit is always the same constant value.
If the constant were nonzero, requirement (iii) for fair bets would be vio-
lated.

If you rewrite p(X) as the expected value EX, and p(F ) as PF for an
event F , and E(X | F ) for p(X | F ), you will see that the properties of fair
prices are completely analogous to the rules for probabilities and expecta-
tions. Some authors take the bold step of interpreting probability theory
as a calculus of fair prices. The interpretation has the virtue that it makes
sense in some situations where there is no reasonable way to imagine an un-
limited sequence of repetions from which to calculate a long-run frequency
or average.

See de Finetti (1974) for a detailed discussion of expectations as fair
prices.

References

de Finetti, B. (1974). Theory of Probability, Volume 1. New York: Wiley.
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Chapter 3

Things binomial

3.1 Overview

The standard coin-tossing mechanism drives much of classical probability. It
generates several standard distributions, the most important of them being
the Binomial. The name comes from the binomial coefficient,

(
n
k

)
, which

is defined as the number of subsets of size k for a set of size n. (Read the
symbol as “n choose k”.) Clearly,

(
n
0

)
= 1 =

(
n
n

)
: there is only one empty

subset and only one subset containing everything.
Here is a neat probabilistic way to determine

(
n
k

)
, for integers 1 ≤ k ≤ n.

Suppose k balls are sampled at random, without replacement, from an urn
containing k red balls and n−k black balls. Each of the

(
n
k

)
different subsets

of size k has probability 1/
(
n
k

)
of being selected. In particular, the event

A = {the sample consists of the red balls}

has probabilty 1/
(
n
k

)
. We can also calculate this probability using a condi-

tioning argument. Given that the first i balls are red, the probability that
the (i+ 1)st is red is (k − i)/(n− i). Thus

PA =
k

n
.
k − 1

n− 1
.
k − 2

n− 2
. . .

1

n− k + 1
=
k!(n− k)!

n!
.

Equating the two values for PA we get(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!

The formula also holds for k = 0 if we interpret 0! as 1.
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Remark. The symbol
(
n
k

)
is called a binomial coefficient because of its

connection with the binomial expansion: (a + b)n =
∑n
k=0

(
n
k

)
akbn−k.

The expansion can be generalized to fractional and negative powers by
means of Taylor’s theorem. For general real α define(
α

0

)
= 1 and

(
α

k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
for k = 1, 2, . . .

Then

(1 + x)α =
∑∞

k=0

(
α

k

)
xk at least for |x| < 1.

Definition. (Binomial distribution) A random variable X is said to have a
Bin(n, p) distribution, for a parameter p in the range 0 ≤ p ≤ 1, if it can
take values 0, 1, . . . , n− 1, n with probabilities

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n

Compare with the binomial expansion,

1 = (p+ q)n =
∑n

k=0

(
n

k

)
pkqn−k where q = 1− p.

Example <3.1> For n independent tosses of a coin that lands heads
with probability p, show that the total number of heads has a Bin(n, p)
distribution, with expected value np.

The Binomial distribution arises in any situation where one is interested
in the number of successes in a fixed number of independent trials (or ex-
periments), each of which can result in either success or failure.

Example <3.2> An unwary visitor to the Big City is standing at the
corner of 1st Street and 1st Avenue. He wishes to reach the railroad station,
which actually occupies the block on 6th Street from 3rd to 4th Avenue.
(The Street numbers increase as one moves north; the Avenue numbers
increase as one moves east.) He is unaware that he is certain to be mugged
as soon as he steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor

1

6

3 4

lets himself be guided by the tosses of a fair coin: at each intersection he
goes east, with probability 1/2, or north, with probability 1/2. What is the
probability that he is mugged outside the railroad station?
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The following problem is an example of Bayesian inference, based on
the probabilistic result known as Bayes’s rule. You need not memorize
the rule, because it is just an application of the conditioning method you
already know.

Example <3.3> Suppose a multiple-choice exam consists of a string
of unrelated questions, each having three possible answers. Suppose also
that there are two types of candidate who will take the exam: guessers,
who make a blind stab on each question, and skilled candidates, who can
always eliminate one obviously false alternative, but who then choose at
random between the two remaining alternatives. Finally, suppose 70% of the
candidates who take the exam are skilled and the other 30% are guessers.
A particular candidate has gotten 4 of the first 6 question correct. What is
the probability that he will also get the 7th question correct?

As a method of solving statistical problems, Bayesian inference is advo-
cated devoutly by some Statisticians, and derided by others. There is no
disagreement regarding the validity of Bayes’s rule; it is the assignment of
prior probabilities—such as the PS and PG of the previous Example—that
is controversial in a general setting.

The Bayesian message comes through more strongly in the next Example.

Example <3.4> Suppose we have three coins, which land heads with
probabilities p1, p2, and p3. Choose a coin according to the prior distri-
bution θi = P{ choose coin i }, for i = 1, 2, 3, then toss that coin n times.
Find the posterior probabilities P{ chose coin i | k heads with n tosses },
for k = 0, 1, . . . , n.

We will meet the Binomial again.

3.2 The examples

<3.1> Example. For n independent tosses of a coin that lands heads with prob-
ability p, show that the total number of heads has a Bin(n, p) distribution,
with expected value np.

Clearly X can take only values 0, 1, 2, . . . , n. For a fixed a k in this range,
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break the event {X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}

...

Here i runs from 1 to
(
n
k

)
, because each Fi corresponds to a different choice

of the k positions for the heads to occur.

Remark. The indexing on the Fi is most uninformative; it gives no
indication of the corresponding pattern of heads and tails. Maybe you
can think of something better.

Write Hj for the event {jth toss is a head}. Then

PF1 = P
(
H1H2 . . . HkH

c
k+1 . . . H

c
n

)
= (PH1)(PH2) . . . (PHc

n) by independence

= pk(1− p)n−k.

A similar calculation gives PFi = pk(1 − p)n−k for every other i; all that
changes is the order in which the p and (1− p) factors appear. Thus

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n,

which is the asserted Binomial distribution.
It is possible to calculate EX by the summation formula

EX =
∑n

k=0
E(X|X = k)P{X = k}

=
∑n

k=0
k

(
n

k

)
pk(1− p)n−k

=
∑n

k=1

n(n− 1)!

(k − 1)!(n− k)!
pk(1− p)n−k

= np
∑n−1

k−1=0

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np cf. binomial expansion of (p+ (1− p))n−1.

The manipulations of the sums was only slightly tedious, but why endure
even a little tedium when the method of indicators is so much simpler?
Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.
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Then X = X1 + . . . Xn, which gives EX = EX1 + . . .EXn = nEX1. Calcu-
late.

EX1 = 0P{X1 = 0}+ 1P{X1 = 1} = p.

Thus EX = np.

Remark. The calculation of the expected value made no use of the
independence. If each Xi has marginal distribution Ber(p), that is, if

P{Xi = 1} = p = 1− P{Xi = 0} for each i,

then E(X1 + . . . Xn) = np, regardless of possible dependence between
the tosses. The expectation of a sum is the sum of the expectations,
no matter how dependent the summands might be.The symbol Ber stands

for “Bernoulli”.
�

<3.2> Example. An unwary visitor to the Big City is standing at the corner of
1st Street and 1st Avenue. He wishes to reach the railroad station, which
actually occupies the block on 6th Street from 3rd to 4th Avenue. (The Street
numbers increase as one moves north; the Avenue numbers increase as one
moves east.) He is unaware that he is certain to be mugged as soon as he
steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor
lets himself be guided by the tosses of a fair coin: at each intersection he
goes east, with probability 1/2, or north, with probability 1/2. What is the
probability that he is mugged outside the railroad station?

To get mugged at (3,6) or (4,6) the visitor must proceed north from

1

6

3 4

either the intersection (3,5) or the intersection (4,5)—we may assume that
if he gets mugged at (2,6) and then moves east, he won’t get mugged again
at (3,6), which would be an obvious waste of valuable mugging time for no
return. The two possibilities correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north}+ P{reach (4,5), move north}
= 1/2P{reach (3,5)}+ 1/2P{reach (4,5)}
= 1/2P{move east twice during first 6 blocks}

+ 1/2P{move east 3 times during first 7 blocks}.

A better way to describe the last event might be “move east 3 times and
north 4 times, in some order, during the choices governed by the first 7
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tosses of the coin.” The Bin(7, 1/2) lurks behind the calculation. The other
calculation involves the Bin(6, 1/2).

P{mugged at railroad} =
1

2

(
6

2

)(
1

2

)2(1

2

)4

+
1

2

(
7

3

)(
1

2

)3(1

2

)4

=
65

256
.

Remark. Notice that the events {reach (3,5)} and {reach (4,5)} are
not disjoint. We need to include the part about moving north to get a
clean break.

�

<3.3> Example. Suppose a multiple-choice exam consists of a string of unrelated
questions, each having three possible answers. Suppose there are two types of
candidate who will take the exam: guessers, who make a blind stab on each
question, and skilled candidates, who can always eliminate one obviously
false alternative, but who then choose at random between the two remaining
alternatives. Suppose 70% of the candidates who take the exam are skilled
and the other 30% are guessers. A particular candidate has gotten 4 of the
first 6 question correct. What is the probability that he will also get the 7th
question correct?

Interpret the assumptions to mean that a guesser answers questions inde-
pendently, with probability 1/3 of being correct, and that a skilled candidate
also answers independently, but with probability 1/2 of being correct. Let X
denote the number of questions answered correctly from the first six. Let C
denote the event {question 7 answered correctly}, G denote the event {the
candidate is a guesser}, and S denote the event {the candidate is skilled}.
Then

(i) conditional on being a guesser, X has a Bin(6, 1/3) distribution (some-
times abbreviated to X | G ∼ Bin(6, 1/3))

(ii) conditional on being a skilled candidate, X has a Bin(6, 1/2) distribu-
tion (sometimes abbreviated to X | S ∼ Bin(6, 1/2)).

(iii) PG = 0.3 and PS = 0.7.

The question asks for P(C | X = 4).
Split according to the type of candidate, then condition.

P(C | X = 4) = P{CS | X = 4}+ P{CG | X = 4}
= P(S | X = 4)P(C | X = 4, S)

+ P(G | X = 4)P(C | X = 4, G).
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If we know the type of candidate, the {X = 4} information becomes irrele-
vant. The last expression simplifies to

1/2P(S | X = 4) + 1/3P(G | X = 4).

Notice how the success probabilities are weighted by probabilities that sum-
marize our current knowledge about whether the candidate is skilled or
guessing. If the roles of {X = 4} and type of candidate were reversed we
could use the conditional distributions for X to calculate conditional prob-
abilities:

P(X = 4 | S) =
(

6
4

)
(1/2)

4(1/2)
2 =

(
6
4

)
1/64

P(X = 4 | G) =
(

6
4

)
(1/3)

4(2/3)
2 =

(
6
4

)
4/729.

Apply the usual splitting/conditioning argument.

P(S | X = 4) =
PS{X = 4}
P{X = 4}

=
P(X = 4 | S)PS

P(X = 4 | S)PS + P(X = 4 | G)PG

=

(
6
4

)
1/64(.7)(

6
4

)
1/64(.7) +

(
6
4

)
4/729(.3)

≈ .869.

There is no need to repeat the calculation for the other conditional proba-
bility, because

P(G | X = 4) = 1− P(S | X = 4) ≈ .131.

Thus, given the 4 out of 6 correct answers, the candidate has conditional
probability of approximately

1/2(.869) + 1/3(.131) ≈ .478

of answering the next question correctly.

Remark. Some authors prefer to summarize the calculations by means
of the odds ratios:

P(S | X = 4)

P(G | X = 4)
=

PS
PG
· P(X = 4 | S)

P(X = 4 | G)
.

The initial odds ratio, PS/PG, is multiplied by a factor that reflects
the relative support of the data for the two competing explanations
“skilled” and “guessing”.

�
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<3.4> Example. Suppose we have three coins, which land heads with probabili-
ties p1, p2, and p3. Choose a coin according to the prior distribution
θi = P{choose coin i}, for i = 1, 2, 3, then toss that coin n times. Find the
posterior probabilities

P{chose coin i | k heads with n tosses } for k = 0, 1, . . . , n.

Let Ci denote the event {chose coin i} and Dk denote the event that we
get k heads from the n tosses. Then PCi = θi and

P(Dk | Ci) =

(
n

k

)
pki (1− pi)n−k for k = 0, 1, . . . , n.

Condition.

P(Ci | Dk) =
P(CiDk)

PDk

=
P(Dk | Ci)P(Ci)∑3
j=1 P(Dk | Cj)P(Cj)

=
pki (1− pi)n−kθi∑3
j=1 p

k
j (1− pj)n−kθj

Notice that the
(
n
k

)
factors have cancelled. In fact, we would get the same

posterior probabilities if we conditioned on any particular pattern of k heads
and n− k tails.

The R-script Bayes.R defines functions to plot the posterior probabilities
as a function of k/n, for various choices of the pi’s and the θi’s and n.
The P(C1 | Dk) are in solid black, the P(C2 | Dk) are in dashed red, and
the P(C3 | Dk) are in dotted blue. For the pictures I chose p1 = 0.45, p2 =
0.5 and p3 = 0.55 with prior probabilities θ1 = 0.5, θ2 = 0.3, and θ3 = 0.2.
The pictures were produced by running:

draw.posterior(

p = c(0.45,0.5,0.55),

tosses=c(10,50,100,250),

prior = c(0.5,0.3,0.2)

)

Statistics 241/541 fall 2014 c©David Pollard, Aug2014



4. Variances and covariances 57

proportion of heads

po
st

er
io

r p
ro

b

0 0.45 0.55 1
0

1

posterior from n =  10 tosses

proportion of heads

po
st

er
io

r p
ro

b

0 0.45 0.55 1

0
1

posterior from n =  50 tosses

proportion of heads

po
st

er
io

r p
ro

b

0 0.45 0.55 1

0
1

posterior from n =  100 tosses

proportion of heads

po
st

er
io

r p
ro

b

0 0.45 0.55 1

0
1

posterior from n =  250 tosses

When n gets large, the posterior probability P(Ci | Dk) gets closer to 1
for values of k/n close to pi, a comforting fact. �
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Chapter 4

Variances and covariances

4.1 Overview

The expected value of a random variable gives a crude measure for the
“center of location” of the distribution of that random variable. For instance,
if the distribution is symmetric about a value µ then the expected value
equals µ. To refine the picture of a distribution about its “center of location”
we need some measure of spread (or concentration) around that value. For
many distributions the simplest measure to calculate is the variance (or,
more precisely, the square root of the variance).

Definition. The variance of a random variable X with expected value
EX = µ is defined as var(X) = E

(
(X − µ)2

)
. The square root of the

variance of a random variable is called its standard deviation, sometimes
denoted by sd(X).

The variance of a random variable X is unchanged by an added constant:
var(X +C) = var(X) for every constant C, because (X +C)−E(X +C) =
X − EX, the C’s cancelling. It is a desirable property that the spread
should not be affected by a change in location. However, it is also desirable
that multiplication by a constant should change the spread: var(CX) =
C2var(X) and sd(CX) = |C|sd(X), because (CX − E(CX))2 = C2(X −
EX)2. In summary: for constants a and b,

var(a+ bX) = b2var(X) and sd(a+ bX) = |b|sd(X).
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Remark. Try not to confuse properties of expected values with
properties of variances: for constants a and b we have var(a + bX) =
b2var(X) but E(a + bX) = a + bEX. Measures of location (expected
value) and spread (standard deviation) should react differently to linear
transformations of the variable. As another example: if a given piece of
“information” implies that a random variable X must take the constant
value C then E(X | information) = C, but var(X | information) = 0.

It is a common blunder to confuse the formula for the variance of
a difference with the formula E(Y − Z) = EY − EZ. If you ever find
yourself wanting to assert that var(Y −Z) is equal to var(Y )− var(Z),
think again. What would happen if var(Z) were larger than var(Y )?
Variances can’t be negative.

There is an enormous probability literature that deals with approxima-
tions to distributions, and bounds for probabilities, expressible in terms of
expected values and variances. One of the oldest and simplest examples,
the Tchebychev inequality, is still useful, even though it is rather crude by
modern standards.

Example <4.1> The Tchebychev inequality: P{|X−µ| ≥ ε} ≤ var(X)/ε2,
where µ = EX and ε > 0.

Remark. In the Chapter on the normal distribution you will find more
refined probability approximations involving the variance.

The Tchebychev inequality gives the right insight when dealing with
sums of random variables, for which variances are easy to calculate. Sup-
pose EY = µY and EZ = µZ . Then

var(Y + Z) = E [Y − µY + Z − µZ ]2

= E
[
(Y − µY )2 + 2(Y − µY )(Z − µZ) + (Z − µZ)2

]
= var(Y ) + 2cov(Y, Z) + var(Z)

where cov(Y,Z) denotes the covariance between Y and Z:

cov(Y,Z) := E [(Y − µY )(Z − µZ)] .

Remark. Notice that cov(X,X) = var(X). Results about covariances
contain results about variances as special cases.
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More generally, for constants a, b, c, d, and random variables U, V, Y, Z,

cov(aU + bV, cY + dZ)

= ac cov(U, Y ) + bc cov(V, Y ) + ad cov(U,Z) + bd cov(V,Z).

It is easier to see the pattern if we work with the centered random variables
U ′ = U − µU , . . . , Z ′ = Z − µZ . For then the left-hand side becomes

E
[
(aU ′ + bV ′)(cY ′ + dZ ′)

]
= E

[
acU ′Y ′ + bc V ′Y ′ + adU ′Z ′ + bd V ′Z ′

]
= acE(U ′Y ′) + bcE(V ′Y ′) + adE(U ′Z ′) + bdE(V ′Z ′).

The expected values in the last line correspond to the four covariances.
Sometimes it is easier to subtract off the expected values at the end of

the calculation, by means of the formulae cov(Y,Z) = E(Y Z) − (EY )(EZ)
and, as a particular case, var(X) = E(X2) − (EX)2. Both formulae follow
via an expansion of the product:

cov(Y,Z) = E (Y Z − µY Z − µZY + µY µZ)

= E(Y Z)− µY EZ − µZEY + µY µZ

= E(Y Z)− µY µZ .

Rescaled covariances define correlations, a concept that is much abused
by those who do not understand probability.

Definition. The correlation between Y and Z is defined as

corr(Y,Z) =
cov(Y,Z)√

var(Y )var(Z)

The random variables Y and Z are said to be uncorrelated if corr(Y, Z) = 0.

Remark. Strictly speaking, the variance of a random variable is not
well defined unless it has a finite expectation. Similarly, we should not
talk about corr(Y,Z) unless both random variables have well defined
variances for which 0 < var(Y ) <∞ and 0 < var(Z) <∞.

Example <4.2> When well defined, correlations always lie between +1
and −1.
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Variances for sums of uncorrelated random variables grow more slowly
than might be anticipated. If Y and Z are uncorrelated, the covariance
term drops out from the expression for the variance of their sum, leaving
var(Y +Z) = var(Y )+var(Z). Similarly, if X1, . . . , Xn are random variables
for which cov(Xi, Xj) = 0 for each i 6= j then

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn)

You should check the last assertion by expanding out the quadratic in the
variables Xi − EXi, observing how all the cross-product terms disappear
because of the zero covariances. These facts lead to a useful concentration
property.

Example <4.3> Concentration of averages around expected value

Zero correlation is often deduced from independence. A pair of random
variables X and Y is said to be independent if every event determined by X
is independent of every event determined by Y . For example, independence
implies that events such as {X ≤ 5} and {7 ≤ Y ≤ 18} are independent,
and so on. Independence of the random variables also implies independence
of functions of those random variables. For example, sin(X) would be inde-
pendent of eY , and so on. For the purposes of Stat241, you should not fret
about the definition of independence: Just remember to explain why you re-
gard some pieces of information as irrelevant when you calculate conditional
probabilities and conditional expectations.

For example, suppose a random variable X can take values x1, x2, . . .
and that X is independent of another random variable Y . Consider the
expected value of a product g(X)h(Y ), for any functions g and h. Calculate
by conditioning on the possible values taken by X:

Eg(X)h(Y ) =
∑

i
P{X = xi}E(g(X)h(Y ) | X = xi).

Given that X = xi, we know that g(X) = g(xi) but we get no help with
understanding the behavior of h(Y ). Thus, independence implies

E(g(X)h(Y ) | X = xi) = g(xi)E(h(Y ) | X = xi) = g(xi)Eh(Y ).

Deduce that

Eg(X)h(Y ) =
∑

i
P{X = xi}g(xi)Eh(Y ) = Eg(X)Eh(Y ).
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Put another way, if X and Y are independent random variables

cov
(
g(X), h(Y )

)
= E

(
g(X)h(Y )

)
− (Eg(X)) (Eh(Y )) = 0.

That is, each function of X is uncorrelated with each function of Y . In
particular, if X and Y are independent then they are uncorrelated. The
converse is not usually true: uncorrelated random variables need not be
independent.

Example <4.4> An example of uncorrelated random variables that are
dependent

The concentration phenomenon can also hold for averages of dependent
random variables.

Example <4.5> Comparison of spread in sample averages for sampling
with and without replacement: the Decennial Census.

As with expectations, variances and covariances can also be calculated
conditionally on various pieces of information. The conditioning formula in
the final Example has the interpretation of a decomposition of “variability”
into distinct sources, a precursor to the statistical technique know as the
“analysis of variance”.

Example <4.6> An example to show how variances can sometimes be
decomposed into components attributable to difference sources. (Can be
skipped.)

4.2 Things to remember

• Eg(X)h(Y ) = Eg(X)Eh(Y ) if X and Y are independent random vari-
ables

• the definitions of variance and covariance, and their expanded forms
cov(Y,Z) = E(Y Z)− (EY )(EZ) and var(X) = E(X2)− (EX)2

• var(a + bX) = b2var(X) and sd(a + bX) = |b|sd(X) for constants a
and b.

Statistics 241/541 fall 2014 c©David Pollard, Sept2014



4. Variances and covariances 63

• For constants a, b, c, d, and random variables U, V, Y, Z,

cov(aU + bV, cY + dZ)

= ac cov(U, Y ) + bc cov(V, Y ) + ad cov(U,Z) + bd cov(V,Z).

• Sampling without replacement gives smaller variances than sampling
with replacement.

4.3 The examples

<4.1> Example. The Tchebychev inequality asserts: for a random variable X
with expected value µ,

P{|X − µ| > ε} ≤ var(X)/ε2 for each ε > 0.

The inequality becomes obvious if we write F for the event {|X − µ| > ε}.
First note that IF ≤ |X−µ|2/ε2: when IF = 0 the inequality holds for trivial
reasons; and when IF takes the value one, the random variable |X−µ|2 must
be larger than ε2. It follows that

P{|X − µ| > ε} = PF = EIF ≤ E|X − µ|2/ε2.

�

<4.2> Example. When well defined, correlations always lies between +1 and −1.
Suppose

EY = µY and var(Y ) = σ2
Y

EZ = µY and var(Z) = σ2
Z

Define standardized variables

Y ′ =
Y − µY
σY

and Z ′ =
Z − µZ
σZ

.

Note that EY ′ = EZ ′ = 0 and var(Y ′) = var(Z ′) = 1. Also

corr(Y,Z) = cov(Y ′Z ′) = E(Y ′Z ′).

Use the fact that variances are always nonnegative to deduce that

0 ≤ var(Y ′ + Z ′) = var(Y ′) + 2cov(Y ′, Z ′) + var(Z ′) = 2 + 2cov(Y ′, Z ′),

which rearranges to cov(Y ′, Z ′) ≥ −1. Similarly

0 ≤ var(Y ′ − Z ′) = var(Y ′)− 2cov(Y ′, Z ′) + var(Z ′) = 2− 2cov(Y ′, Z ′),

which rearranges to cov(Y ′, Z ′) ≤ +1. �

Statistics 241/541 fall 2014 c©David Pollard, Sept2014



4. Variances and covariances 64

<4.3> Example. Suppose X1, . . . , Xn are uncorrelated random variables, each
with expected value µ and variance σ2. By repeated application of the
formula for the variance of a sum of variables with zero covariances,

var (X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn) = nσ2.

Typically the Xi would come from repeated independent measurements of
some unknown quantity. The random variable X = (X1 + · · · + Xn)/n is
then called the sample mean.

The variance of the sample mean decreases like 1/n,

var(X) = (1/n)2var (X1 + · · ·+Xn) = σ2/n.

From the Tchebychev inequality,

P{|X − µ| > ε} ≤ (σ2/n)/ε2 for each ε > 0.

In particular, for each positive constant C,

P{|X − µ| > Cσ/
√
n} ≤ 1/C2.

For example, there is at most a 1% chance that X lies more than 10σ/
√
n

away from µ. (A normal approximation will give a much tighter bound.)
Note well the dependence on n. �

<4.4> Example. Consider two independent rolls of a fair die. Let X denote the
value rolled the first time and Y denote the value rolled the second time.
The random variables X and Y are independent, and they have the same
distribution. Consequently cov(X,Y ) = 0, and var(X) = var(Y ).

The two random variables X + Y and X − Y are uncorrelated:

cov(X + Y,X − Y )

= cov(X,X) + cov(X,−Y ) + cov(Y,X) + cov(Y,−Y )

= var(X)− cov(X,Y ) + cov(Y,X)− var(Y )

= 0.

Nevertheless, the sum and difference are not independent. For example,

P{X + Y = 12} = P{X = 6}P{Y = 6} =
1

36

but

P{X + Y = 12 | X − Y = 5} = P{X + Y = 12 | X = 6, Y = 1} = 0.

�
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<4.5> Example. Until quite recently, in the Decennial Census of Housing and
Population the Census Bureau would obtain some more detailed about the
population via information from a more extensive list of questions sent to
only a random sample of housing units. For an area like New Haven, about
1 in 6 units would receive the so-called “long form”.

For example, one question on the long form asked for the number of
rooms in the housing unit. We could imagine the population of all units
numbered 1, 2, . . . , N , with the ith unit containing yi rooms. Complete
enumeration would reveal the value of the population average,

ȳ =
1

N
(y1 + y2 + · · ·+ yN ) .

A sample can provide a good estimate of ȳ with less work.
Suppose a sample of n housing units is selected from the population

without replacement. (For the Decennial Census, n ≈ N/6.) The answer
from each unit is a random variable that could take each of the values
y1, y2, . . . , yN , each with probability 1/N .

Remark. It might be better to think of a random variable that takes
each of the values 1, 2, . . . , N with probability 1/N , then take the
corresponding number of rooms as the value of the random variable
that is recorded. Otherwise we can fall into verbal ambiguities when
many of the units have the same number of rooms.

That is, the sample consists of random variables Y1, Y2, . . . , Yn, for each of
which

P{Yi = yj} =
1

N
for j = 1, 2, . . . , N.

Notice that

EYi =
1

N

∑N

j=1
yj = ȳ,

and consequently, the sample average Ȳ = (Y1+· · ·+Yn)/n also has expected
value ȳ. Notice also that each Yi has the same variance,

var(Yi) =
1

N

∑N

j=1
(yj − ȳ)2 ,

a quantity that I will denote by σ2.
If the sample is taken without replacement—which, of course, the Census

Bureau had to do, if only to avoid media ridicule—the random variables are
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dependent. For example, in the extreme case where n = N , we would
necessarily have

Y1 + Y2 + · · ·+ YN = y1 + y2 + · · ·+ yN ,

so that YN would be a function of the other Yi’s, a most extreme form of
dependence. Even if n < N , there is still some dependence, as you will soon
see.

Sampling with replacement would be mathematically simpler, for then
the random variables Yi would be independent, and, as in Example <4.3>,
we would have var

(
Ȳ
)

= σ2/n. With replacement, it is possible that the
same unit might be sampled more than once, especially if the sample size is
an appreciable fraction of the population size. There is also some ineffici-
ciency in sampling with replacement, as shown by a calculation of variance
for sampling without replacement:

var
(
Ȳ
)

= E
(
Ȳ − ȳ

)2
= E

(
1

n

∑n

i=1
(Yi − ȳ)

)2

=
1

n2
E
(∑n

i=1
(Yi − ȳ)2 + 2

∑
1≤i<j≤n

(Yi − ȳ)(Yj − ȳ)
)

=
1

n2

(∑n

i=1
E (Yi − ȳ)2 + 2

∑
1≤i<j≤n

E ((Yi − ȳ)(Yj − ȳ))
)

=
1

n2

(∑n

i=1
var(Yi) +

∑
1≤i 6=j≤n

cov(Yi, Yj)
)

There are n variance terms and n(n − 1) covariance terms. We know thatWhat formula did
I just rederive? each Yi has variance σ2, regardless of the dependence between the variables.

The effect of the dependence shows up in the covariance terms. By symme-
try, cov(Yi, Yj) is the same for each pair i < j, a value that I will denote
by c. Thus, for sampling without replacement,

(∗) var
(
Ȳ
)

=
1

n2

(
nσ2 + n(n− 1)c

)
=
σ2

n
+

(n− 1)c

n
.

We can calculate c directly, from the fact that the pair (Y1, Y2) takes
each of N(N − 1) pairs of values (yi, yj) with equal probability. Thus

c = cov(Y1, Y2) =
1

N(N − 1)

∑
i 6=j

(yi − ȳ)(yj − ȳ).

If we added the “diagonal” terms (yi − ȳ)2 to the sum we would have the
expansion for the product∑N

i=1
(yi − ȳ)

∑N

j=1
(yj − ȳ) ,
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which equals zero because Nȳ =
∑N

i=1 yi. The expression for the covariance
simplifies to

c = cov(Y1, Y2) =
1

N(N − 1)

(
02 −

∑N

i=1
(yi − ȳ)2

)
= − σ2

N − 1
.

Substitution in formula (∗) then gives

var(Ȳ ) =
σ2

n

(
1− n− 1

N − 1

)
=
σ2

n

N − n
N − 1

.

Compare with the σ2/n for var(Y ) under sampling with replacement.
The correction factor (N −n)/(N − 1) is close to 1 if the sample size n is
small compared with the population size N , but it can decrease the variance
of Y appreciably if n/N is not small. For example, if n ≈ N/6 (as with the
Census long form) the correction factor is approximately 5/6.

If n = N , the correction factor is zero. That is, var(Y ) = 0 if the
whole population is sampled. Indeed, when n = N we know that Ȳ equals
the population mean, ȳ, a constant. A random variable that always takes
the same constant value has zero variance. Thus the right-hand side of (∗)
must reduce to zero when we put n = N , which gives a quick method for
establishing the equality c = −σ2/(N − 1), without all the messing around
with sums of products and products of sums. �

<4.6> Example. Consider a two stage method for generating a random vari-
able Z. Suppose we have k different random variables Y1, . . . , Yk, with
EYi = µi and var(Yi) = σ2

i . Suppose also that we have a random method
for selecting which variable to choose: a random variable X that is inde-
pendent of all the Yi’s, with P{X = i} = pi for i = 1, 2, . . . , k, where
p1 + p2 + · · ·+ pk = 1. If X takes the value i, define Z to equal Yi.

The variability in Z is due to two effects: the variability of each Yi; and
the variability of X. Conditional on X = i, we have Z equal to Yi, and

E (Z | X = i) = E(Yi) = µi

var (Z | X = i) = E
(
(Z − µi)2 | X = i

)
= var(Yi) = σ2

i .

From the first formula we get

EZ =
∑

i
P{X = i}E (Z | X = i) =

∑
i
piµi,

a weighted average of the µi’s that I will denote by µ̄. A similar conditioning
exercise gives

var(Z) = E (Z − µ̄)2 =
∑

i
piE

(
(Z − µ̄)2 | X = i

)
.
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If we could replace the µ̄ in the ith summand by µi, the sum would become a
weighted average of conditional variances. To achieve such an effect, rewrite
(Z − µ̄)2 as

(Z − µi + µi − µ̄)2 = (Z − µi)2 + 2(µi − µ̄)(Zi − µi) + (µi − µ̄)2.

Taking conditional expectations, we then get

E
(

(Z − µ̄)2 | X = i
)

= E
(

(Z − µ̄i)2 | X = i
)

+ 2(µi − µ̄)E (Z − µi | X = i) + (µi − µ̄)2.

On the right-hand side, the first term equals σ2
i , and the middle term disap-

pears because E(Z | X = i) = µi. With those simplifications, the expression
for the variance becomes

var(Z) =
∑

i
piσ

2
i +

∑
i
pi(µi − µ̄)2.

If we think of each Yi as coming from a separate “population”, the first
sum represents the component of variability within the populations, and the
second sum represents the variability between the populations.

The formula is sometimes written symbolically as

var(Z) = E (var(Z | X)) + var (E(Z | X)) ,

where E(Z | X) denotes the random variable that takes the value µi when X
takes the value i, and var(Z | X) denotes the random variable that takes
the value σ2

i when X takes the value i. �
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Chapter 5

Normal approximation to the
Binomial

5.1 History

In 1733, Abraham de Moivre presented an approximation to the Binomial
distribution. He later (de Moivre, 1756, page 242) appended the derivation
of his approximation to the solution of a problem asking for the calculation
of an expected value for a particular game. He posed the rhetorical question
of how we might show that experimental proportions should be close to their
expected values:

From this it follows, that if after taking a great number of Experi-
ments, it should be perceived that the happenings and failings have
been nearly in a certain proportion, such as of 2 to 1, it may safely
be concluded that the Probabilities of happening or failing at any
one time assigned will be very near in that proportion, and that the
greater the number of Experiments has been, so much nearer the
Truth will the conjectures be that are derived from them.

But suppose it should be said, that notwithstanding the reason-
ableness of building Conjectures upon Observations, still considering
the great Power of Chance, Events might at long run fall out in a
different proportion from the real Bent which they have to happen
one way or the other; and that supposing for Instance that an Event
might as easily happen as not happen, whether after three thousand
Experiments it may not be possible it should have happened two thou-
sand times and failed a thousand; and that therefore the Odds against
so great a variation from Equality should be assigned, whereby the
Mind would be the better disposed in the Conclusions derived from
the Experiments.
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5. Normal approximation to the Binomial 70

In answer to this, I’ll take the liberty to say, that this is the
hardest Problem that can be proposed on the Subject of Chance, for
which reason I have reserved it for the last, but I hope to be forgiven
if my Solution is not fitted to the capacity of all Readers; however
I shall derive from it some Conclusions that may be of use to every
body: in order thereto, I shall here translate a Paper of mine which
was printed November 12, 1733, and communicated to some Friends,
but never yet made public, reserving to myself the right of enlarging
my own Thoughts, as occasion shall require.

De Moivre then stated and proved what is now known as the normal
approximation to the Binomial distribution. The approximation itself has
subsequently been generalized to give normal approximations for many other
distributions. Nevertheless, de Moivre’s elegant method of proof is still
worth understanding. This Chapter will explain de Moivre’s approximation,
using modern notation.

A Method of approximating the Sum of the Terms of the Binomial
a+ b\n expanded into a Series, from whence are deduced some
practical Rules to estimate the Degree of Assent which is to
be given to Experiments.

Altho’ the Solution of problems of Chance often requires that
several Terms of the Binomial a+ b\n be added together, never-
theless in very high Powers the thing appears so laborious, and
of so great difficulty, that few people have undertaken that Task;
for besides James and Nicolas Bernouilli, two great Mathemati-
cians, I know of no body that has attempted it; in which, tho’
they have shown very great skill, and have the praise that is due
to their Industry, yet some things were further required; for what
they have done is not so much an Approximation as the deter-
mining very wide limits, within which they demonstrated that the
Sum of the Terms was contained. Now the method . . .

5.2 Pictures of the binomial

Suppose Xn has a Bin(n, p) distribution. That is,

bn(k) := P{Xn = k} =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n, where q = 1− p,
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Recall that we can think of Xn as a sum of independent random variables
Y1+· · ·+Yn with P{Yi = 1} = p and P{Yi = 0} = q. From this representation
it follows that

EXn =
∑

i
EYi = nEY1 = np

var(Xn) =
∑

i
var(Yi) = n× var(Y1) = npq

Recall also that Tchebychev’s inequality suggests the distribution should
be clustered around np, with a spread determined by the standard devia-
tion, σn :=

√
npq.

What does the Binomial distribution look like? The plots in the next
display, for the Bin(n, 0.4) distribution with n = 20, 50, 100, 150, 200, are
typical. Each plot on the left shows bars of height bn(k) and width 1,
centered at k. The maxima occur near n×0.4 for each plot. As n increases,
the spread also increases, reflecting the increase in the standard deviations
σn =

√
npq for p = 0.4. Each of the shaded regions on the left has area to

one because
∑n

k=0 bn(k) = 1 for each n.

0 20 40 60 80 100 120
0

0.1

0.2

B
in

(2
0

,0
.4

)

-4 -2 0 2 4
0

0.5

0 20 40 60 80 100 120
0

0.1

0.2

B
in

(5
0

,0
.4

)

-4 -2 0 2 4
0

0.5

0 20 40 60 80 100 120
0

0.1

0.2

B
in

(1
0

0
,0

.4
)

-4 -2 0 2 4
0

0.5

0 20 40 60 80 100 120
0

0.1

0.2

B
in

(1
5

0
,0

.4
)

-4 -2 0 2 4
0

0.5

0 20 40 60 80 100 120
0

0.1

0.2

B
in

(2
0

0
,0

.4
)

-4 -2 0 2 4
0

0.5

The plots on the right show represent the distributions of the standard-
ized random variables Zn = (Xn − np)/σn. The location and scaling effects
of the increasing expected values and standard deviations (with p = 0.4 and
various n) are now removed. Each plot is shifted to bring the location of the
maximum close to 0 and the horizontal scale is multiplied by a factor 1/σn.
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A bar of height σn× bn(k) with width 1/σn is now centered at (k− np)/σn.
The plots all have similar shapes. Each shaded region still has area 1.

5.3 De Moivre’s argument

Notice how the standardized plots in the last picture settle down to a sym-
metric ‘bell-shaped’ curve. You can understand this effect by looking at the
ratio of successive terms:

bn(k)/bn(k − 1)

=

(
n!

k!(n− k)!
pkqn−k

)
/

(
n!

(k − 1)!(n− k + 1)!
pk−1qn−k+1

)
= (n− k + 1)p/(kq) for k = 1, 2, . . . , n.

As a consequence, bn(k) ≥ bn(k − 1) if and only if (n − k + 1)p ≥ kq, that
is, iff (n + 1)p ≥ k. For fixed n, the probability bn(k) achieves its largest
value at kmax = b(n+ 1)pc ≈ np. The probabilities bn(k) increase with k for
k ≤ kmax then decrease for k > kmax. That explains why each plot on the
left has a peak near np.

Now for the shape. At least for k = kmax + i near kmax we get a good
approximation for the logarithm of the ratio of successive terms using the
Taylor approximation: log(1 + x) ≈ x for x near 0. Indeed,

b(kmax + i)/b(kmax + i− 1) =
(n− kmax − i+ 1)p

(kmax + i)q

≈ (nq − i)p
(np+ i)q

=
1− i/(nq)
1 + i/(np)

after dividing through by npq.

The logarithm of the last ratio equals

log

(
1− i

nq

)
− log

(
1 +

i

np

)
≈ − i

nq
− i

np
= − i

npq
.

By taking a product of successive ratios we get the ratio of the individual
Binomial probabilities to their largest term. On a log scale the calculation
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is even simpler. For example, if m ≥ 1 and kmax +m ≤ n,

log
b(kmax +m)

b(kmax)

= log

(
b(kmax + 1)

b(kmax)
× b(kmax + 2)

b(kmax + 1)
× · · · × b(kmax +m)

b(kmax +m− 1)

)
= log

b(kmax + 1)

b(kmax)
+ log

b(kmax + 2)

b(kmax + 1)
+ · · ·+ log

b(kmax +m)

b(kmax +m− 1)

≈ −1− 2− · · · −m
npq

≈ −1
2

m2

npq
.

The last line used the fact that 1 + 2 + 3 + · · ·+m = 1
2m(m+ 1) ≈ 1

2m
2.

In summary,

P{X = kmax +m} ≈ b(kmax) exp

(
− m2

2npq

)
for m not too large.

An analogous approximation holds for 0 ≤ kmax +m ≤ kmax.

5.4 The largest binomial probability

Using the fact that the probabilities sum to 1, for p = 1/2 de Moivre was
able to show that the b(kmax) should decrease like 2/(B

√
n), for a constant B

that he was initially only able to express as an infinite sum. Referring to his
calculation of the ratio of the maximum term in the expansion of (1 + 1)n

to the sum, 2n, he wrote (de Moivre, 1756, page 244)

When I first began that inquiry, I contented myself to deter-
mine at large the Value of B, which was done by the addition
of some Terms of the above-written Series; but as I perceived
that it converged but slowly, and seeing at the same time that
what I had done answered my purpose tolerably well, I desisted
from proceeding further till my worthy and learned Friend Mr.
James Stirling, who had applied himself after me to that inquiry,
found that the Quantity B did denote the Square-root of the Cir-
cumference of a Circle whose Radius is Unity, so that if that
Circumference be called c, the Ratio of the middle Term to the
Sum of all the Terms will be expressed by 2

√
nc.
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In modern notation, the vital fact discovered by the learned Mr. James
Stirling asserts that

n! ≈
√

2π nn+1/2e−n for n = 1, 2, . . .

in the sense that the ratio of both sides tends to 1 (very rapidly) as n goes
to infinity. See Feller (1968, pp52-53) for an elegant, modern derivation of
the Stirling formula.

By Stirling’s formula, for k = kmax ≈ np,

bn(k) =
n!

k!(n− k)!
pkqn−k

≈ 1√
2π

nn+1/2

(np)np+1/2(nq)nq+1/2
pnpqnq

=
1√

2πnpq
.

De Moivre’s approximation becomes

P{Xn = kmax +m} ≈ 1√
2πnpq

exp

(
− m2

2npq

)
,

or, substituting np for kmax and writing k for kmax +m,

P{Xn = k} ≈ 1√
2πnpq

exp

(
−(k − np)2

2npq

)
=

1

σn
√

2π
exp

(
−(k − np)2

2σ2
n

)
.

That is, P{Xn = k} is approximately equal to the area under the smooth
curve

f(x) =
1

σn
√

2π
exp

(
−(x− np)2

2σ2
n

)
,

for the interval k − 1/2 ≤ x ≤ k + 1/2. (The length of the interval is 1, so
it does not appear in the previous display.)

Similarly, for each pair of integers with 0 ≤ a < b ≤ n,

P{a ≤ Xn ≤ b} =
∑b

k=a
bn(k) ≈

∑b

k=a

∫ k+1/2

k−1/2
f(x) dx =

∫ b+1/2

a−1/2
f(x) dx.

A change of variables, y = (x− np)/σn, simplifies the last integral to

1√
2π

∫ β

α
e−y

2/2dy where α =
a− np− 1/2

σn
and β =

b− np+ 1/2

σn
.

Remark. It usually makes little difference to the approximation if we
omit the ±1/2 terms from the definitions of α and β.
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5.5 Normal approximations

How does one actually perform a normal approximation? Back in the olden
days, I would have interpolated from a table of values for the function

Φ(x) :=
1√
2π

∫ x

−∞
e−y

2/2dy,

which was found in most statistics texts. For example, ifX has a Bin(100, 1/2)
distribution,

P{45 ≤ X ≤ 55} ≈ Φ

(
55.5− 50

5

)
− Φ

(
44.5− 50

5

)
≈ 0.8643− 0.1356 = 0.7287

These days, I would just calculate in R:

> pnorm(55.5, mean = 50, sd = 5) - pnorm(44.5, mean = 50, sd = 5)

[1] 0.7286679

or use another very accurate, built-in approximation:

> pbinom(55,size = 100, prob = 0.5) - pbinom(44,size = 100, prob = 0.5)

[1] 0.728747

5.6 Continuous distributions

At this point, the integral in the definition of Φ(x) is merely a reflection
of the Calculus trick of approximating a sum by an integral. Probabilists
have taken a leap into abstraction by regarding Φ, or its derivative φ(y) :=
exp(−y2/2)/

√
2π, as a way to define a probability distribution

<5.1> Definition. A random variable Y is said to have a continuous distribu-
tion (on R) with density function f(·) if

P{a ≤ Y ≤ b} =

∫ b

a
f(y) dy for all intervals [a, b] ⊆ R.

Equivalently, for each subset A of the real line,

P{Y ∈ A} =

∫
A
f(y) dy =

∫ ∞
−∞

I{y ∈ A}f(y) dy
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Notice that f should be a nonnegative function, for otherwise it might
get awkward when calculating P{Y ∈ A} for the set A = {y ∈ R : f(y) < 0}:

0 ≤ P{Y ∈ A} =

∫
A
f(y) dy ≤ 0.

Remark. By putting A equal to R we get

1 = P{−∞ < Y < +∞} =

∫ ∞
−∞

f(y) dy

That is, the integral of a density function over the whole real line
equals one.

I prefer to think of densities as being defined on the whole real line,
with values outside the range of the random variable being handled by
setting the density function equal to zero in appropriate places. If a
range of integration is not indicated explicitly, it can then always be
understood as −∞ to ∞, with the zero density killing off unwanted
contributions.

Distributions defined by densities have both similarities to and differ-
ences from the sort of distributions I have been considering up to this point
in Stat 241/541. All the distributions before now were discrete. They were
described by a (countable) discrete set of possible values {xi : i = 1, 2, . . . }
that could be taken by a random variable X and the probabilities with
which X took those values:

P{X = xi} = pi for i = 1, 2, . . . .

For any subset A of the real line

P{X ∈ A} =
∑

i
I{xi∈A}P{X = xi} =

∑
i
I{xi∈A}pi

Expectations, variances, and things like Eg(X) for various functions g, could
all be calculated by conditioning on the possible values for X.

For a random variable X with a continuous distribution defined by a
density f , we have

P{X = x} =

∫ x

x
f(y) dy = 0

for every x ∈ R. We cannot hope to calculate a probability by adding up
(an uncountable set of) zeros. Instead, as you will see in Chapter 7, we must
pass to a limit and replace sums by integrals when a random variable X has
a continuous distribution.
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5.7 Appendix: The mysterious
√
2π

The
√

2π appeared in de Moivre’s approximation by way of Stirling’s for-
mula. It is slightly mysterious why it appears in that formula. The reason
for both appearances is the fact that the constant

C :=

∫ ∞
−∞

exp(−x2/2) dx

is exactly equal to
√

2π, as I now explain.
Equivalently, the constant C2 =

∫∫
exp(−(x2 +y2)/2) dx dy equal to 2π.

(Here, and subsequently, the double integral runs over the whole plane.) We
can evaluate this double integral by using a small Calculus trick.

Using the fact that∫ ∞
0

I{r ≤ z}e−z dz = e−r for r > 0,

we may rewrite C2 as a triple integral: replace r by (x2 + y2)/2, then
substitute into the double integral to get

C2 =

∫∫ (∫ ∞
0

I{x2 + y2 ≤ 2z}e−z dz
)
dx dy

=

∫ ∞
0

(∫∫
I{x2 + y2 ≤ 2z} dx dy

)
e−z dz.

With the change in the order of integration, the double integral is now
calculating the area of a circle centered at the origin and with radius

√
2z.

The triple integral reduces to∫ ∞
0

π
(√

2z
)2
e−z dz =

∫ ∞
0

π2ze−z dz = 2π.

That is, C =
√

2π.
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Chapter 6

Central limit theorems

6.1 Overview

Recall that a random variable Z is said to have a standard normal distri-
bution, denoted by N(0, 1), if it has a continuous distribution with density

φ(z) = (2π)−1/2 exp(−z2/2) for −∞ < z <∞.

That is, for all intervals [a, b],

P{a ≤ Z ≤ b} =

∫ b

a
φ(z) dz,

and, for each subset A of the real line, P{Z ∈ A} =
∫
A φ(z) dz. In particular,

for each fixed b we must have P{Z = b} =
∫ b
b φ(z) dz = 0.

More generally, for µ ∈ R and σ > 0, a random variable X is said to
have a N(µ, σ2) distribution if (X−µ)/σ has a N(0, 1) distribution. That
is,

P{a ≤ X ≤ b} = P{(a− µ)/σ ≤ (X − µ)/σ) ≤ (b− µ)/σ}

=

∫ (b−µ)/σ

(a−µ)/σ
φ(z) dz

=

∫ b

a
fµ,σ(x) dx

where

fµ,σ(x) :=
1

σ
φ

(
x− µ
σ

)
=

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞.

In other words, X has a continuous distribution with density fµ,σ(x).
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Remark. In Chapter 7 you will see that if Z has a N(0, 1) distribution
then EZ = 0 and var(Z) = 1. Consequently, if X has a N(µ, σ2)
distribution then EX = µ and var(X) = σ2.

The normal approximation to the Binomial distribution also implies a
normal approximation for the distribution of some other random variables.

Example <6.1> A normal approximation for a sample median

The normal approximation to the Binomial is just one example of a
general phenomenon corresponding to the mathematical result known as
the central limit theorem. Roughly stated, the theorem asserts:

If X can be written as a sum of a large number of relatively small, independent

random variables, and if EX = µ and var(X) = σ2, then the standardized variable

(X − µ)/σ has approximately a standard normal distribution. Equivalently, X is

approximately N(µ, σ2) distributed.

If you are interested in the reasons behind the success of normal ap-
proximation, see the Appendix to Chapter 8 for an outline of a proof of the
central limit theorem.

The normal distribution has many agreeable properties that make it easy
to work with. Many statistical procedures have been developed under nor-
mality assumptions, with occasional offhand references to the central limit
theorem to mollify anyone who doubts that all distributions are normal.
That said, let me also note that modern theory has been much concerned
with possible harmful effects of unwarranted assumptions such as normal-
ity. The modern fix often substitutes huge amounts of computing for neat,
closed-form, analytic expressions; but normality still lurks behind some of
the modern data analytic tools.

Example <6.2> A hidden normal approximation—the boxplot

The normal approximation is heavily used to give an estimate of vari-
ability for the results from sampling.

Example <6.3> Normal approximations for sample means
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6.2 The examples

<6.1> Example. Suppose U1, . . . , Un are independent random variables each dis-
tributed Uniform(0, 1). That is,

P{a ≤ Ui ≤ b} = b− a for all 0 < a ≤ b < 1.

The corresponding density function is f(z) = 1{0 < z < 1}.
For simplicity suppose n is even, n = 2k. The sample median Mn is

defined as the kth smallest when the Ui’s are arranged in increasing order.

Remark. Some authors would define Mn as the (k + 1)st smallest or
as some value between the kth and (k + 1)st. It doesn’t make much
difference when n is large.

0 1U4 U1 U5 U2 U6 U3

For example, if n = 6 and the Ui’s are as shown then Mn would be equal
to U5. For another realization it would probably be equal to another Ui.

Now consider any fixed y in (0, 1). Write Ny for the number of Ui’s that
are ≤ y. More formally,

Ny =
∑

i≤n
1{Ui ≤ y}.

The random variable Ny counts the number of “successes” (the number
of Ui’s that are ≤ y) in n independent trials; Ny has Bin(n, y) distribution,
with expected value ny and variance ny(1− y). The key thing to notice is:

Ny ≥ k iff “at least k of the Ui’s are ≤ y iff Mn ≤ y.

Thus

P{Mn ≤ y} = P{Ny ≥ k}

= P

{
Ny − ny√
ny(1− y)

≥ k − ny√
ny(1− y)

}
.

Use the normal approximation for the distribution of the standardized vari-
able (Ny − ny)/

√
ny(1− y) to deduce that the last probability is approxi-

mately equal to∫ ∞
γ

φ(y) dy = 1− Φ(γ) where γ := (k − ny)/
√
ny(1− y) .
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Now consider a special value, y = (1 + x/
√
n)/2, for a fixed x. When n

is large enough we certainly have y ∈ (0, 1). This choice also gives

ny(1− y) =
n

4

(
1− x2

n

)
≈ n

4

and

k − ny = −x
√
n /2,

implying γ ≈ −x and

P{Mn ≤ (1 + x/
√
n)/2} ≈ 1− Φ(−x) = Φ(x).

For the last equality I have used the symmetry of φ around zero to deduce
that

∫∞
−x φ(y) dy =

∫ x
−∞ φ(y) dy.

Put another way,

P{2
√
n(Mn − 1/2) ≤ x} ≈ Φ(x)

which shows that 2
√
n(Mn − 1/2) is approximately N(0, 1) distributed.

Remark. It might be more convincing to use the approximation twice,
first with x = b and then with x = a, where a < b, then subtract.

That is, Mn has approximately a N(1/2, 1/(4n)) distribution. �

<6.2> Example. The boxplot provides a convenient way of summarizing data
(such as grades in Statistics 241/541). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ = upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ + (1.5 × IQR) and LQ − (1.5 × IQR), but
then trim them back to the most extreme data point in those ranges
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(vi) draw dots for each individual data point outside the box and whiskers
(There are various ways to deal with cases where the number of ob-
servations is not a multiple of four, or where there are ties, or . . . )

LQ UQM

Where does the 1.5×IQR come from? Consider n independent observa-
tions from a N(µ, σ2) distribution. The proportion of observations smaller
than any fixed x should be approximately equal to P{W ≤ x}, where W has
a N(µ, σ2) distribution. From normal tables (or a computer),

P{W ≤ µ+ .675σ} ≈ .75 and P{W ≤ µ− .675σ} ≈ .25

and, of course, P{W ≤ µ} = .5. For the sample we should expect

LQ ≈ µ− .675σ and UQ ≈ µ+ .675σ and M ≈ µ

and consequently, IQR ≈ 1.35σ. Check that 0.675 + (1.5 × 1.35) = 2.70.
Before trimming, the whiskers should approximately reach to the ends of
the range µ± 2.70σ. From computer (or tables),

P{W ≤ µ− 2.70σ} = P{W ≥ µ+ 2.70σ} = .003

Only about 0.6% of the sample should be out beyond the whiskers. �

<6.3> Example. Chapter 4 gave the expected value and variance of a sample
mean Ȳ for a sample of size n (with replacement) from a finite population
labelled 1, . . . , N with “values of interest” y1, y2, . . . , yN :

EY = y =
1

N

∑N

i=1
yi.

For sampling with replacement,

var(Y ) = σ2/n where σ2 =
∑N

i=1 (yi − y)2 /N.
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The standardized random variable (Y − y)/
√
σ2/n is well approximated by

the N(0, 1). Thus

P
{
−1.96σ√

n
≤ Y − y ≤ 1.96σ√

n

}
≈ Φ(1.96)− Φ(−1.96) ≈ 0.95.

Before we sample, we can assert that we have about a 95% chance of getting a
value of Y in the range y±1.96σ/

√
n. (For the post-sampling interpretation

of the approximation, you should take Statistics 242/542.)
Of course, we would not know the value σ, so it must be estimated.

How?
For sampling without replacement, the variance of the sample mean is

multiplied by the correction factor (N − n)/(N − 1). The sample mean
is no longer an average of many independent summands, but the normal
approximation can still be used. (The explanation would take me too far
beyond 241/541.) �
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Chapter 7

Continuous Distributions

7.1 Overview

In Chapter 5 you met your first example of a continuous distribution, the
normal. Recall the general definition.

Densities
A random variable X is said to have a continuous distribution (on R)
with density function f(·) if

(i) f is a nonnegative function on the real line for which
∫ +∞
−∞ f(x) dx = 1

(ii) for each subset A of the real line,

P{X ∈ A} =

∫
A
f(x) dx =

∫ ∞
−∞

I{x ∈ A}f(x) dy

Assumption (ii) is actually equivalent to its special case:

P{a ≤ X ≤ b} =

∫ b

a
f(x) dx for all intervals [a, b] ⊆ R.

0.
00

0.
05

0.
10

0.
15

0 5 10 15 20 25 30

Bin( 30 , 2/3 ) with normal approximation superimposed
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For the normal approximation to the Bin(n, p) the density was

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

with µ = np and σ2 = npq. That is, f is the N(µ, σ2) density.

Remark. As you will soon learn, the N(µ, σ2) distribution has expected
value µ and variance σ2.

Notice that a change of variable y = (x− µ)/σ gives∫ ∞
−∞

f(x) dx =
1√
2π

∫ ∞
−∞

e−y
2/2 dy,

which (see Chapter 5) equals 1.
The simplest example of a continuous distribution is the Uniform[0, 1],

the distribution of a random variable U that takes values in the interval
[0, 1], with

P{a ≤ U ≤ b} = b− a for all 0 ≤ a ≤ b ≤ 1.

Equivalently,

P{a ≤ U ≤ b} =

∫ b

a
f(x) dx for all real a, b,

where

f(x) =
{

1 if 0 < x < 1
0 otherwise.

I will use the Uniform to illustrate several general facts about continuous
distributions.

Remark. Of course, to actually simulate a Uniform[0, 1] distribution
on a computer one would work with a discrete approximation. For
example, if numbers were specified to only 7 decimal places, one
would be approximating Uniform[0,1] by a discrete distribution placing
probabilities of about 10−7 on a fine grid of about 107 equi-spaced
points in the interval. You might think of the Uniform[0, 1] as a
convenient idealization of the discrete approximation.

Be careful not to confuse the density f(x) with the probabilities p(y) =
P{Y = y} used to specify discrete distributions, that is, distributions
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for random variables that can take on only a finite or countably infinite set
of different values. The Bin(n, p) and the geometric(p) are both discrete
distributions. Continuous distributions smear the probability out over a
continuous range of values. In particular, if X has a continuous distribution
with density f then

P{X = t} =

∫ t

t
f(x) dx = 0 for each fixed t.

The value f(x) does not represent a probability. Instead, the values taken
by the density function could be thought of as constants of proportionality.
At least at points where the density function f is continuous and when δ is
small,

P{t ≤ X ≤ t+ δ} =

∫ t+δ

t
f(x) dy = f(t)δ + terms of order o(δ).

Remark. Remember that g(δ) = o(δ) means that g(δ)/δ → 0 as δ → 0.

Equivalently,

lim
δ→0

1

δ
P{t ≤ X ≤ t+ δ} = f(t).

Some texts define the density as the derivative of the cumulative dis-
tribution function

F (t) = P{−∞ < X ≤ t} for −∞ < t <∞.

That is,

f(t) = lim
δ→0

1

δ

(
F (t+ δ)− F (t)

)
This approach works because

P{t ≤ X ≤ t+ δ}
= P{X ≤ t+ δ} − P{X < t}
= F (t+ δ)− F (t) because P{X = t} = 0.
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Remark. Evil probability books often refer to random variables X that
have continuous distributions as “continuous random variables”, which
is misleading. If you are thinking of a random variable as a function
defined on a sample space, the so-called continuous random variables
need not be continuous as functions.

Evil probability books often also explain that distributions are
called continuous if their distribution functions are continuous. A
better name would be non-atomic: if X has distribution function F
and if F has a jump of size p at x then P{X = x} = p. Continuity
of F (no jumps) implies no atoms, that is, P{X = x} = 0 for all x. It
is sad fact of real analysis life that continuity of F does not imply that
the corresponding distribution is given by a density. Fortunately, you
won’t be meeting such strange beasts in this course.

When we are trying to determine a density function, the trick is to work
with very small intervals, so that higher order terms in the lengths of the
intervals can be ignored. (More formally, the errors in approximation tend
to zero as the intervals shrink.)

Example <7.1> The distribution of tan(X) if X ∼ Uniform(−π/2, π/2)

I recommend that you remember the method used in the previous Ex-
ample, rather than trying to memorize the result for various special cases.
In each particular application, rederive. That way, you will be less likely to
miss multiple contributions to a density.

Example <7.2> Smooth functions of a random variable with a continu-
ous distribution

Calculations with continuous distributions typically involve integrals or
derivatives where discrete distribution involve sums or probabilities attached
to individual points. The formulae developed in previous chapters for ex-
pectations and variances of random variables have analogs for continuous
distributions.

Example <7.3> Expectations of functions of a random variable with a
continuous distribution

You should be very careful not to confuse the formulae for expectations
in the discrete and continuous cases. Think again if you find yourself inte-
grating probabilities or summing expressions involving probability densities.
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Example <7.4> Expected value and variance for the N(µ, σ2).

Calculations for continuous distributions are often simpler than analo-
gous calculations for discrete distributions because we are able to ignore
some pesky cases.

Example <7.5> Zero probability for ties with continuous distributions.

Calculations are also greatly simplified by the fact that we can ignore
contributions from higher order terms when working with continuous distri-
butions and small intervals.

Example <7.6> The distribution of the order statistics from the uniform
distribution.

The distribution from the previous Example is a member of a family
whose name is derived from the beta function, defined by

B(α, β) :=

∫ 1

0
tα−1(1− t)β−1dt for α > 0, β > 0.

The equality∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,

noted at the end of the Example, gives the value for B(k, n− k + 1).
In general, if we divide tα−1(1− t)β−1 by B(α, β) we get a candidate for

a density function: non-negative and integrating to 1.

Definition. For α > 0 and β > 0 the Beta(α, β) distribution is defined by
the density function

xα−1(1− x)β−1

B(α, β)
for 0 < x < 1.

The density is zero outside (0, 1).

As you just saw in Example <7.6>, the kth order statistic from a sample
of n independently generated random variables with Uniform[0, 1] distribu-
tions has a Beta(k, n− k + 1) distribution.
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The function beta() in R calculates the value of the beta function:

> beta(5.5,2.7)

[1] 0.01069162

> ?beta # get help for the beta() function

Also, there is a set of R functions that gives useful results for the beta
density. For example, the pictures on the next page could be drawn by a
series of R commands like:

> jj=(1:1000)/1000

> plot(jj,dbeta(jj,2,3),type="l")

The functions dbeta() calculates the values of the beta density at a fine grid
of points. The plot() function is called with the option of joining the points
by a smooth curve.

β 
= 

5
β 

= 
4

β 
= 

3
β 

= 
2

α = 1

β 
= 

1

α = 2

Beta densities: tα-1 (1-t) β-1 /B(α,β) for 0 < t <1 and vertical range (0,5)

α = 3 α = 4 α = 5

There is an interesting exact relationship between the tails of the beta
and Binomial distributions.

Example <7.7> Binomial tail probabilities from beta distributions.
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7.2 Things to remember

• The density function f(·) gives the constants of proportionality, and
not probabilities: f(x) is not the same as P{X = x}, which is zero for
every x if X has a continuous distribution.

• A density function, f , must be non-negative and it must integrate to
one over the whole line, 1 =

∫∞
−∞ f(t) dt.

• Expected value of a function of a random variable with a continuous
distribution: if the distribution of X has density f then

EH(X) =

∫ ∞
−∞

H(x)f(x) dx

• Be very careful not to confuse the formulae for expectations in the dis-
crete and continuous cases. Think again if you find yourself integrating
probabilities or summing expressions involving probability densities.

7.3 Examples for Chapter 7

<7.1> Example. The distribution of tan(X) if X ∼ Uniform(−π/2, π/2)
The distribution of X is continuous with density

-1.5 -0.5 0.5 1.5

-4
-2

0
2

4

f(x) =
1

π
1{−π/2 < x < π/2} =

{
1/π for −π/2 < x < π/2
0 elsewhere

Let a new random variable be defined by Y = tan(X). It takes values over
the whole real line. For a fixed real y, and a positive δ, we have

(∗) y ≤ Y ≤ y + δ if and only if x ≤ X ≤ x+ ε,

where x and ε are related to y and δ by the equalities

y = tan(x) and y + δ = tan(x+ ε).

By Calculus, for small δ,

δ = (y + δ)− y = ε× tan(x+ ε)− tan(x)

ε
≈ ε

cos2 x
.
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Compare with the definition of the derivative:

lim
ε→0

tan(x+ ε)− tan(x)

ε
=
d tan(x)

dx
=

1

cos2 x
.

Thus

P{y ≤ Y ≤ y + δ} = P{x ≤ X ≤ x+ ε}
≈ εf(x)

≈ δ cos2 x

π
.

We need to express cos2 x as a function of y. Note that

1 + y2 = 1 +
sin2 x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
.

Thus Y has a continuous distribution with density

g(y) =
1

π(1 + y2)
for −∞ < y <∞.

The continuous distribution with this density is called the Cauchy. �

<7.2> Example. For functions that are not one-to-one, the analog of the method
from Example <7.1> can require a little more work. In general, we can
consider a random variable Y defined as H(X), a function of another random
variable. If X has a continous distribution with density f , and if H is a
smooth function with derivative H ′, then we can calculate a density for Y
by an extension of the method for the tan function.

A small interval [y, y+δ] in the range of values taken by Y can correspond
to a more complicated range of values for X. For instance, it might consist
of a union of several intervals [x1, x1 + ε1], [x2, x2 + ε2], . . . . The number of
pieces in the X range might be different for different values of y.

H( . )

y

y+δ

x1 x1+ε1
x3 x3+ε3

x5 x5+ε5
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From the representation of {y ≤ Y ≤ y+ δ} as a disjoint union of events

{x1 ≤ X ≤ x1 + ε1} ∪ {x2 ≤ X ≤ x2 + ε2} ∪ . . . ,

we get, via the defining property of the density f for X,

P{y ≤ Y ≤ y + }. = P{x1 ≤ X ≤ x1 + ε1}+ P{x2 ≤ X ≤ x2 + ε2}+ . . .

≈ ε1f(x1) + ε2f(x2) + . . . .

For each small interval, the ratio of δ/εi is close to the absolute value of
the derivative of the function H at the corresponding xi. That is, εi ≈
δ/|H ′(xi)|.

y

y+δ

xi xi+εi

δ
εi

Adding the contributions from each such interval, we then have an ap-
proximation that tells us the density for Y ,

P{y ≤ Y ≤ y + δ} ≈ δ
(

f(x1)

|H ′(x1)|
+

f(x2)

|H ′(x2)|
+ . . .

)
That is, the density for Y at the particular point y in its range equals

f(x1)

|H ′(x1)|
+

f(x2)

|H ′(x2)|
+ . . .

Of course we should reexpress each xi as a function of y, to get the density
in a more tractable form. �

<7.3> Example. Expectations of functions of a random variable with a continuous
distribution

SupposeX has a continuous distribution with density function f . Let Y =
H(X) be a new random variable, defined as a function of X. We can cal-
culate EY by an approximation argument similar to the one used in Exam-
ple <7.2>. It will turn out that

EH(X) =

∫ +∞

−∞
H(x)f(x) dx.
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H( . )

nδ

(n+1)δ

An

Cut the range of values that might be taken by Y into disjoint intervals of
the form nδ ≤ y < (n + 1)δ, for an arbitrarily small, positive δ. Write An
for the corresponding set of x values. That is, for each x in R,

nδ ≤ H(x) < (n+ 1)δ if and only if x ∈ An.

We now have simple upper and lower bounds for H:

Hδ(x) ≤ H(x) ≤ δ +Hδ(x) for every real x

where Hδ(x) =
∑

n
nδ1{x ∈ An}.

(You should check the inequalities when x ∈ An, for each possible integer n.)
Consequently

EHδ(X) ≤ EH(X) ≤ δ + EHδ(X)

and ∫ +∞

−∞
Hδ(x)f(x) dx ≤

∫ +∞

−∞
H(x)f(x) dx ≤ δ +

∫ +∞

−∞
Hδ(x)f(x) dx.

More concisely,

(?) |EHδ(X)− EH(X)| ≤ δ

and

(??) |
∫ +∞

−∞
Hδ(x)f(x) dx−

∫ +∞

−∞
H(x)f(x) dx| ≤ δ.
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The random variable Hδ(X) has a discrete distribution whose expecta-
tion you know how to calculate:

EHδ(X) = E
∑

n
nδ1{X ∈ An} expectation of a countable sum

=
∑

n
nδP{X ∈ An} because E1{X ∈ An} = P{X ∈ An}

=
∑

n
nδ

∫ +∞

−∞
1{x ∈ An}f(x) dx definition of f

=

∫ +∞

−∞
Hδ(x)f(x) dx take sum inside integral.

From the inequalities (?) and (??), the last equality deduce that

|EH(X) =

∫ +∞

−∞
H(x)f(x) dx| ≤ 2δ

for arbitrarily small δ > 0. The asserted representation for EH(X) follows.
�

Remark. Compare with the formula for a random variable X∗ taking
only a discrete set of values x1, x2, . . . ,

EH(X∗) =
∑

i
H(xi)P{X∗ = xi}

In the passage from discrete to continuous distributions, discrete
probabilities get replaced by densities and sums get replaced by
integrals.

<7.4> Example. Expected value and variance N(µ, σ2).
If X ∼ N(µ, σ2) its density function is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

=
1

σ
φ

(
x− µ
σ

)
where φ(y) := (2π)−1/2 exp(−y2/2).

Calculate, using a change of variable y = (x− µ)/σ.

EX =

∫ +∞

−∞
xf(x) dx

=

∫ +∞

−∞
(µ+ σy)φ(y) dy

= µ

∫ +∞

−∞
φ(y) dy + σ

∫ +∞

−∞
yφ(y) dy

= µ.
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The second integral vanishes because yφ(y) = −(−y)φ(−y).
Similarly

var(X) = E(X − µ)2

=

∫ +∞

−∞
(x− µ)2f(x) dx

= σ2

∫ +∞

−∞
y2φ(y) dy

= σ2

using integration by parts and d
dyφ(y) = −yφ(y).

�

<7.5> Example. Suppose X and Y are independent random variables, each with
a Uniform[0, 1] distribution. Show that P{X = Y } = 0.

The event {X = Y = 1} is a subset of {X = 1}, which has zero prob-
ability. The other possibilities are almost as easy to dispose of: for each
positive integer n,

{X = Y < 1} ⊂ ∪n−1
i=0 {i/n ≤ X < (i+ 1)/n and i/n ≤ Y < (i+ 1)/n}

a disjoint union of events each with probability 1/n2, by independence. Thus

P{X = Y < 1} ≤ n(1/n2) = 1/n for every n.

It follows that P{X = Y } = 0.
A similar calculation shows that P{X = Y } = 0 for independent random

variables with any pair of continuous distributions. �

<7.6> Example. The distribution of the order statistics from the uniform distri-
bution.

Suppose U1, U2, . . . , Un are independent random variables, each with dis-
tribution Uniform(0, 1). That is,

P{a ≤ Ui ≤ b} =

∫ b

a
h(x) dx for all real a ≤ b,

where

h(x) =
{

1 if 0 < x < 1
0 otherwise.
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The Ui’s define n points in the unit interval. If we measure the distance of
each point from 0 we obtain random variables 0 ≤ T1 < T2 < · · · < Tn ≤ 1,
the values U1, . . . , Un rearranged into increasing order. (Example <7.5> lets
me ignore ties.) For n = 6, the picture (with T5 and T6 not shown) looks
like:

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

If we repeated the process by generating a new sample of Ui’s, we would
probably not have U4 as the smallest, U1 as the second smallest, and so on.
That is, T1 might correspond to a different Ui.

The random variable Tk, the kth smallest of the ordered values, is usually
called the kth order statistic. It takes a continuous range of values. It has
a continuous distribution. What is its density function?

For a very short interval [t, t + δ], with 0 < t < t + δ < 1 and δ very
small, we need to show that P{t ≤ Tk ≤ t+ δ} is roughly proportional to δ,
then determine f(t), the constant of proportionality.

Write N for the number of Ui points that land in [t, t + δ]. To get
t ≤ Tk ≤ t + δ we must have N ≥ 1. If N = 1 then we must have exactly
k − 1 points in [0, t) to get t ≤ Tk ≤ t + δ. If N ≥ 2 then it becomes more
complicated to describe all the ways that we would get t ≤ Tk ≤ t + δ.
Luckily for us, the contributions from all those complicated expressions will
turn out to be small enough to ignore if δ is small. Calculate.

P{t ≤ Tk ≤ t+ δ} = P{N = 1 and exactly k − 1 points in [0, t)}
+ P{N ≥ 2 and t ≤ Tk ≤ t+ δ}.

Let me first dispose of the second contribution, where N ≥ 2. The event

F2 = {N ≥ 2} ∩ {t ≤ Tk ≤ t+ δ}

is a subset of the union

∪1<i<j≤n{Ui, Uj both in [t, t+ δ] }
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Put another way,

IF2 ≤
∑

1≤i<j≤n
I{Ui, Uj both in [t, t+ δ] }.

Take expectations of both sides to deduce that

PF2 ≤
∑

1≤i<j≤n
P{Ui, Uj both in [t, t+ δ]}.

By symmetry, all
(
n
2

)
terms in the sum are equal to

P{U1, U2 both in [t, t+ δ]}
= P{t ≤ U1 ≤ t+ δ}P{t ≤ U2 ≤ t+ δ} by independence

= δ2.

Thus PF2 ≤
(
n
2

)
δ2, which tends to zero much faster than δ as δ → 0. (The

value of n stays fixed throughout the calculation.)
Next consider the contribution from the event

F1 = {N = 1} ∩ {exactly k − 1 points in [0, t)}.

Break F1 into disjoint events like

{U1, . . . , Uk−1 in [0, t), Uk in [t, t+ δ], Uk+1, . . . , Un in (t+ δ, 1]}.

Again by virtue of the independence between the {Ui}, this event has prob-
ability

P{U1 < t}P{U2 < t} . . .P{Uk−1 < t}
× P{Uk in [t, t+ δ]}
× P{Uk+1 > t+ δ} . . .P{Un > t+ δ},

Invoke the defining property of the uniform distribution to factorize the
probability as

tk−1δ(1− t− δ)n−k = tk−1(1− t)n−kδ + terms of order δ2 or smaller.

How many such pieces are there? There are
(
n
k−1

)
ways to choose the k − 1

of the Ui’s to land in [0, t), and for each of these ways there are n − k + 1
ways to choose the single observation to land in [t, t + δ]. The remaining
observations must go in (t+ δ, 1]. We must add up(

n

k − 1

)
× (n− k + 1) =

n!

(k − 1)!(n− k)!
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contributions with the same probability to calculate PF1.
Consolidating all the small contributions from PF1 and PF2 we then get

P{t ≤ Tk ≤ t+ δ}

=
n!

(k − 1)!(n− k)!
tk−1(1− t)n−kδ + terms of order δ2 or smaller.

That is, the distribution of Tk is continuous with density function

f(t) =
n!

(k − 1)!(n− k)!
tk−1(1− t)n−k for 0 < t < 1.

Outside (0, 1) the density is zero. �

Remark. It makes no difference how we define f(t) at t = 0 and t = 1,

because it can have no effect on integrals
∫ b
a
f(t) dt.

From the fact that the density must integrate to 1, we get

1 =

∫ 0

−∞
0dt+

n!

(k − 1)!(n− k)!

∫ 1

0
tk−1(1− t)n−kdt+

∫ ∞
1

0dt

That is,∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,

a fact that you might try to prove by direct calculation.

<7.7> Example. Binomial tail probabilities from beta distributions.
In principle it is easy to calculate probabilities such as P{Bin(30, p) ≥ 17}

for various values of p: one has only to sum the series(
30

17

)
p17(1− p)13 +

(
30

18

)
p18(1− p)12 + · · ·+ (1− p)30.

With a computer (using R, for example) such a task would not be as ar-
duous as it used to be back in the days of hand calculation. We could also
use a normal approximation (as in the example for the median in Chap-
ter 6). However, there is another method based on the facts about the
order statistics, which gives an exact integral expression for the Binomial
tail probability.

Statistics 241/541 fall 2014 c©David Pollard, 7 Oct 2014



8. Conditioning on a random variable
with a continuous distribution 99

The relationship becomes clear from a special method for simulating coin
tosses. For a fixed n (such as n = 30), generate independently n random
variables U1, . . . , Un, each distributed uniformly on [0, 1]. Fix a p in [0, 1].
Then the independent events

{U1 ≤ p}, {U2 ≤ p}, . . . , {Un ≤ p}

are like n independent flips of a coin that lands heads with probability p.
The number, Xn, of such events that occur has a Bin(n, p) distribution.

As in Example <7.6>, write Tk for the kth smallest value when the Ui’s
are sorted into increasing order.

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

p

The random variables Xn and Tk are related by an equivalence,

Xn ≥ k if and only if Tk ≤ p.

That is, there are k or more of the Ui’s in [0, p] if and only if the kth smallest
of all the Ui’s is in [0, p]. Thus

P{Xn ≥ k} = P{Tk ≤ p} =
n!

(k − 1)!(n− k)!

∫ p

0
tk−1(1− t)n−k dt.

The density for the distribution of Tk comes from Example <7.6>. �
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Chapter 8

Conditioning on a random
variable
with a continuous
distribution

8.1 Overview

At this point in the course I hope you appreciate the usefulness of the discrete
conditioning formula,

E
(
Y
)

=
∑

i
P
(
Fi
)
E
(
Y | Fi

)
,

for a finite or countably infinite collection of disjoint events F1, F2, . . . with∑
i PFi = 1. As a particular case, if X is a random variable that takes only

a discrete set of values {x1, x2, . . . } then

<8.1> E
(
Y
)

=
∑

i
P{X = xi}E

(
Y | X = xi

)
.

This formula can be made to look simpler by the introduction of the function
g(x) = E

(
Y | X = x

)
, for then

<8.2> E
(
Y
)

=
∑

i
P{X = xi}g(xi) = E

(
g(X)

)
.

Throughout the course I have been working with examples where you
could figure out things like E(Y | X = x) or P(A | F ) by identifying the
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8. Continuous conditioning 101

probabilistic mechanism corresponding to the conditional probability dis-
tribution P( · | X = x} or P( · | F ). In a few cases, you could also have
calculated directly from

<8.3> P(A | F ) =
P(AF )

PF
or E(Y | F ) =

E(Y 1F )

PF
.

Of course this formula only makes sense if PF 6= 0.
If the random variable X has a continuous distribution, you still have

the possibility of calculating things like E(Y | X = x) and P(A | X = x)
by recognizing the probabilistic mechanism corresponding to P(· | X = x).
But you won’t have much luck in putting F = {X = x} in <8.3> because
P{X = x} = 0.

Nevertheless there is a formula similar to <8.2> that works when X has
a continuous distribution with density function f . Section 8.2 (which could
be skipped) explains in more detail why

<8.4> E
(
Y
)

=

∫ ∞
−∞

E(Y | X = x)f(x) dx.

As a special case, when Y equals the indicator function of an event B the
formula reduces to

PB =

∫ ∞
−∞

P(B | X = x)f(x) dx.

Moreover, for most values of z, the conditional expectation can be calculated
as a limit of a ratio,

<8.5> E(Y | X = z) = lim
ε→0

E(Y | z ≤ X ≤ z+ ε) = lim
ε→0

E(Y 1{z ≤ X ≤ z + ε}
P{z ≤ X ≤ z + ε}

.

The final ratio is amenable to discretization methods like those introduced
in Chapter 7.

*8.2 *Some justification for the conditioning formulae

You could skip this Section if you are prepared to believe <8.4> and <8.5>.
Here is an argument that many authors, including me, find convincing

as a way to get the formula <8.4>. We start from an assumption about
conditional expectations that has intuitive appeal:
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For each subset A of the real line, if α and β are constants
(depending on A, of course) for which

α ≤ E(Y | X = x) ≤ β for all x ∈ A,

then we should have

α ≤ E(Y | X ∈ A) ≤ β.

Suppose the assumption is valid. As before write g(x) for E(Y | X = x).
For a small δ > 0 and each integer n define

An = {x ∈ R : nδ ≤ g(x) < (n+ 1)δ}.

Define a ‘step function’ gδ(x) =
∑

n nδ1{x ∈ An}, which approximates g
very well, in the sense that

<8.6> gδ(x) ≤ g(x) < gδ(x) + δ for every real number x.

By definition of the set An,

nδ ≤ E(Y | X = x) ≤ (n+ 1)δ for all x ∈ An.

The conditioning assumption (in the box) then implies

<8.7> nδ ≤ E(Y | X ∈ An) ≤ (n+ 1)δ for each n.

By the discrete conditioning formula <8.1> with Fn = {X ∈ An},

EY =
∑

n
P{X ∈ An}E(Y | X ∈ An).

Writing
∫
An
f(x) dx =

∫ +∞
−∞ 1{x ∈ An}f(x) dx for P{X ∈ An} and using the

lower bound from <8.7> we then get

EY ≥
∑

n

∫ +∞

−∞
nδ1{x ∈ An}f(x) dx

=

∫ +∞

−∞

∑
n
nδ1{x ∈ An}f(x) dx legit?

=

∫ +∞

−∞
gδ(x)f(x) dx.

A similar argument gives the upper bound

EY ≤
∫ +∞

−∞
(gδ(x) + δ) f(x) dx = δ +

∫ +∞

−∞
gδ(x)f(x) dx.
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In summary,∫ +∞

−∞
gδ(x)f(x) dx ≤ EY ≤ δ +

∫ +∞

−∞
gδ(x)f(x) dx.

Compare with the inequality that results when we multiply both sides
of <8.6> by f(x) then integrate:∫ +∞

−∞
gδ(x)f(x) dx ≤

∫ +∞

−∞
g(x)f(x) dx ≤ δ +

∫ +∞

−∞
gδ(x)f(x) dx.

The upper and lower bounds in the last two inequalities are the same. Both
EY and

∫ +∞
−∞ g(x)f(x) dx lie in an interval of length δ. The two quantities

can differ by at most δ, no matter how small we choose δ > 0. Equal-
ity <8.4> follows.

Equality <8.4> has a small extension based on the idea that functions
of X should behave like constants when we condition on X = x:

<8.8>

E (Y H(X)) =

∫ +∞

−∞
E(Y H(X) | X = x)f(x) dx

=

∫ +∞

−∞
H(x)E(Y | X = x)f(x) dx

=

∫ +∞

−∞
H(x)g(x)f(x) dx.

In particular, if H(x) is the indicator function of an interval [z, z + ε], for a
fixed z and a small ε > 0 then

E (Y 1{z ≤ X ≤ z + ε}) =

∫ z+ε

z
g(x)f(x) dx = g(z)

∫ z+ε

z
f(x) dx+ o(ε)

if g is continuous at z. The inequality rearranges to give <8.5>.

Remark. In advanced probability theory, the abstract treatment of
conditional expectations starts by taking <8.8> as a desirable property.
One then shows, using measure theoretic arguments, that there exists
a function g(x) (which is uniquely determined up to trivial changes on
very small sets) for which the desired property holds. One declares
that function to be the definition of E(Y | X = x). From that starting
point, one then goes on to verify the assumptions that I have taken as
axiomatic for Stat 241/541.

The benefit is mathematical rigor; the cost is the need to work
with an abstraction that has little intuitive appeal.
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8.3 Convolutions

The conditioning formula <8.4> can be used to find the distribution for a
sum of two independent random variables, each having a continuous distri-
bution.

Example <8.10> Suppose X has a continuous distribution with den-
sity f and Y has a continuous distribution with density g. If X and Y
are independent then the random variable Z = X + Y has a continuous
distribution with density

<8.9> h(z) =

∫ ∞
−∞

g(z − x)f(x) dx for all real z.

Equality <8.9> is called the convolution formula. The next Example
shows the formula in action. It also serves as an advertisement for indicator
functions.

Example <8.11> IfX and Y are independent, each with the Uniform(0, 1)
distribution, find the distribution of X + Y .

The convolution formula also establishes an important fact about the
normal distribution, which lurks behind the central limit theorem. If you
are interested, look at the Appendix to this chapter for a sketch of a beautiful
proof of the CLT due to Lindeberg (1922).

Example <8.12> If X1 and X2 are independent random variables with
X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2), then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

8.4 Examples for Chapter 8

<8.10> Example. Suppose X has a continuous distribution with density f and Y
has a continuous distribution with density g. If X and Y are independent
show that the random variable Z = X + Y has a continuous distribution
with density

h(z) =

∫ ∞
−∞

g(z − x)f(x) dx for all real z.
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As usual, consider a fixed z and a small, positive δ. Then

P{z ≤ Z ≤ z + δ}

=

∫ +∞

−∞
P{z ≤ X + Y ≤ z + δ | X = x}f(x) dx by <8.4>

=

∫ +∞

−∞
P{z ≤ x+ Y ≤ z + δ | X = x}f(x) dx

=

∫ +∞

−∞
P{z − x ≤ Y ≤ z − x+ δ | X = x}f(x) dx

=

∫ +∞

−∞
P{z − x ≤ Y ≤ z − x+ δ}f(x) dx by independence

≈
∫ +∞

−∞
δg(z − x)f(x) dx density for Y .

That is,

P{z ≤ Z ≤ z + δ} ≈ δh(x)

as asserted. �

<8.11> Example. If X and Y are independent, each with the Uniform(0, 1) distri-
bution, find the distribution of X + Y .

The Uniform(0, 1) has density function f(x) = 1{0 < x < 1}, that is,

f(x) =
{

1 if x ∈ (0, 1)
0 otherwise

The density function h for the distribution of X + Y is given by

h(z) =

∫ ∞
−∞

1{0 < z − x < 1}1{0 < x < 1} dx

=

∫ ∞
−∞

1{x < z, x > z − 1, 0 < x < 1} dx

=

∫ ∞
−∞

1{max(0, z − 1) < x < min(1, z)} dx.

If z ≤ 0 or z ≥ 2 there are no values of x that satisfy the pair of inequalities
in the final indicator function; for those cases the indicator function is zero.
If 0 < z ≤ 1 the indicator becomes 1{0 < x < z}, so that the corresponding
integral equals∫ ∞

−∞
1{0 < x < z} dx =

∫ z

0
1 dx = z.
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Similarly, if 1 < z < 2 the integral becomes∫ ∞
−∞

1{z − 1 < x < 1} dx =

∫ 1

z−1
1 dx = 2− z.

In summary,

h(z) =

{
0 if z ≤ 0 or z ≥ 2
z if 1 < z ≤ 1
2− z if 1 < z < 2

.

More succinctly, h(z) =
(
1− |z − 1|

)+
.

z

0 1

1

2

h(z)

�

<8.12> Example. If X1 and X2 are independent random variables with X1 ∼
N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2), then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
Let me simplify the algebra by writing Xi = µi +σiZi, where Z1 and Z2

are independent standard normals. Then we have X1+X2 = µ1+µ2+σ1Z1+
σ2Z2. It will suffice we show that W = σ1Z1 + σ2Z2 has a N(0, σ2

1 + σ2
2)

distribution.
The convolution formula gives the density for the distribution of W ,

h(z) =
1

σ1σ22π

∫ ∞
−∞

exp

(
− (z − x)2

2σ2
1

− x2

2σ2
2

)
dx.

The exponent expands to

−1
2x

2
(
σ−2

1 + σ−2
2

)
+ zx/σ2

1 − 1
2z

2/σ2
1.

Make the change of variable y = x/c, with

c = 1/

√
σ−2

1 + σ−2
2 = σ1σ2/τ where τ =

√
σ2

1 + σ2
2.

The exponent becomes

− 1
2

(
y2 − 2zcy/σ2

1 + c2z2/σ4
1

)
+ 1

2c
2z2/σ4

1 − 1
2z

2/σ2
1

= −1
2

(
y − zc/σ2

1

)2 − 1
2z

2/τ2.

The expression for h(z) simplifies to

1

τ2π
exp

(
− z2

2τ2

)∫ ∞
−∞

exp
(
− 1

2(y − zc/σ2
1)2
)
dy.
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The change of variable w = y − zc/σ2
1 then leaves an integral that equals√

2π.
What a mess!
All the sneaky changes of variable might leave you feeling that the ar-

gument is difficult. In fact I didn’t have to be so careful. In the original
convolution integral I had an exponent of the form −C1x

2 + C2xz − C3z
2

for some constants C1, C2, C3. I completed the square to rewrite the ex-
ponent as −C4(y − C5z)

2 − C6z
2, where y is a linear function of x and

C4, C5, C6 were new constants. A change of variable allowed me to inte-
grate out the y, leaving an expression of the form C7 exp(−C6z

2), which is
clearly a N(0, τ2) density for some τ . I could have calculated τ directly by
τ2 = var(W ) = σ2

1var(Z1) + σ2
2var(Z2). �

8.5 Appendix: Lindeberg’s method for the CLT

This Section should be skipped unless you have a burning desire to know
how a general proof of the CLT works.

Suppose X = X1 + X2 + · · · + Xn, a sum of a independent random
variables with EXi = 0 and var(Xi) = σ2

i . We may assume the random
variable X has been scaled so that

∑
i σ

2
i = 1.

If all the Xi’s are normally distributed, repeated appeals to Exam-
ple <8.12> show that X is also normally distributed.

If the Xi’s are not normal, we replace them one at a time by new in-
dependent random variables Y1, . . . , Yn with Yi ∼ N(0, σ2

i ). It is easy to
use Taylor’s theorem to track the effect of the replacement if we consider
smoooth functions of the sum.

For example, suppose h has a lot of bounded, continuous derivatives.
Write S for X1 + · · ·+Xn−1. Then

Eh(X)

= Eh(S +Xn)

= E
[
h(S) +Xnh

′(S) + 1
2X

2
nh
′′(S) + 1

6X
3
nh
′′′(S) + . . .

]
= Eh(S) + EXnEh′(S) + 1

2E(X2
n)Eh′′(S) + 1

6E(X3
n)E(h′′′(S)) + . . .

= Eh(S) + 0 + 1
2σ

2
i + terms of higher order

In the last two lines I used the independence to factorize a bunch of products.
Exactly the same idea works for h(S + Yn). That is,

Eh(S + Yn) = Eh(S) + 0 + 1
2σ

2
i + terms of higher order
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Subtract the two expansions, noting the cancellations.

Eh(S +Xn)− Eh(S + Yn) = terms of higher order .

A similar argument works if we replace the Xn−1 in Eh(S + Yn) by its
companion Yn−1. And so on. After we swap out all the Xi’s we are left with

Eh(X)−Eh(Y1+Y2+. . . Yn) = a sum of quantities of third, or higher order.

A formal theorem would give a precise meaning to how small the Xi’s
have to be in order to make the “sum of quantities of third, or higher order”
small enough to ignore.

If you were interested in expectations Eh(X) for functions that are not
smooth, as happens with P{X ≤ x}, you would need to approximate the
non-smooth h by a smooth function for which Lindeberg’s method can be
applied.

References
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Chapter 9

Poisson approximations

9.1 Overview

The Bin(n, p) can be thought of as the distribution of a sum of independent
indicator random variables X1 + · · · + Xn, with {Xi = 1} denoting a head
on the ith toss of a coin that lands heads with probability p. Each Xi has
a Ber(p) distribution. The normal approximation to the Binomial works
best when the variance np(1− p) is large, for then each of the standardized
summands (Xi−p)/

√
np(1− p) makes a relatively small contribution to the

standardized sum.
When n is large but p is small, in such a way that λ := np is not too large,

a different type of approximation to the Binomial is better. The traditional
explanation uses an approximation to

P{X = k} =

(
n

k

)
pk(1− p)n−k

for a fixed k. For a k that is small compared with n, consider the contribu-
tions

(
n
k

)
pk and (1− p)n−k separately.(
n

k

)
pk =

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k
= 1×

(
1− 1

n

)
× . . .

(
1− k − 1

n

)
λk

k!
≈ λk

k!

and

log(1− p)n−k = (n− k) log (1− λ/n) ≈ n (−λ/n) .

Statistics 241/541 fall 2014 c©David Pollard, Oct2014 109



9. Poisson approximations 110

That is, (1− p)n−k ≈ e−λ. Together the two approximations give(
n

k

)
pk(1− p)n−k ≈ λk

k!
e−λ.

For large k, both P{X = k} and p′k := e−λλk/k! are small. The p′k define a
new distribution.

Definition. A random variable Y is said to have a Poisson distribution
with parameter λ if it can take values in N0, the set of nonnegative integers,
with probabilities

P{Y = k} =
e−λλk

k!
for k = 0, 1, 2, . . .

The parameter λmust be positive. The distribution is denoted by Poisson(λ).

That is , for λ = np not too large, the Bin(n, p) is (well?) approximated
by the Poisson(λ).

Remark. Counts of rare events—such as the number of atoms under-
going radioactive decay during a short period of time, or the number of
aphids on a leaf—are often modeled by Poisson distributions, at least
as a first approximation.

The Poisson inherits several properties from the Binomial. For example,
the Bin(n, p) has expected value np and variance np(1 − p). One might
suspect that the Poisson(λ) should therefore have expected value λ = n(λ/n)
and variance λ = limn→∞ n(λ/n)(1 − λ/n). Also, the coin-tossing origins
of the Binomial show that if X has a Bin(m, p) distribution and Y has a
Bin(n, p) distribution independent of X, then X + Y has a Bin(n + m, p)
distribution. Putting λ = mp and µ = np one might then suspect that the
sum of independent Poisson(λ) and Poisson(µ) distributed random variables
is Poisson(λ+ µ) distributed. These suspicions are correct.

Example <9.1> IfX has a Poisson(λ) distribution, then EX = var(X) =
λ. If also Y has a Poisson(µ) distribution, and Y is independent of X, then
X + Y has a Poisson(λ+ µ) distribution.

There is a clever way to simplify some of the calculations in the last
Example using generating functions, a way to code all the Poisson prob-
abilities into a single function on [0, 1].
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Example <9.2> Calculate moments of the Poisson(λ) distribution using
its generating function.

9.2 A more precise Poisson approximation

Modern probability methods have improved this rough approximation of
the Binomial by the Poisson by giving useful upper bounds for the error of
approximation. Using a technique known as the Chen-Stein method one
can show that

dTV (Bin(n, p),Poisson(np)) :=
1

2

∑
k≥0

∣∣∣P{S = k}−e−λλ
k

k!

∣∣∣ ≤ min
(
p, np2

)
,

which makes precise the traditional advice that the Poisson approximation
is good “when p is small and np is not too big”. (In fact, the tradition was
a bit conservative.)

Remark. The quantity dTV (P,Q) is called the total variation
distance between two probabilities P and Q. It is also equal to
maxA |PA − QA| where the maximum runs over all subsets A of
the set where both P and Q are defined. For P = Bin(n, p) and
Q = Poisson(np), the A runs over all subsets of the nonnegative
integers.

The Chen-Stein method of approximation also works in situations where
the rare events do not all have the same probability of occurrence. For
example, suppose S = X1 + X2 + · · · + Xn, a sum of independent random
variables where Xi has a Ber(pi) distribution, for constants p1, p2, . . . , pn
that are not necessarily all the same. The sum S has expected value λ =
p1 + · · ·+ pn. Using Chen-Stein it can also be shown that that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ min

(
1,

1

λ

)∑n

i=1
p2
i .

The Chen-Stein method of proof is elementary—in the sense that it
makes use of probabilistic techniques only at the level of Statistics 241—but
extremely subtle. See Barbour et al. (1992) for an extensive discussion of
the method.
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9.3 Poisson approximations under dependence

The Poisson approximation also applies in many settings where the trials are
“almost independent”, but not quite. Again the Chen-Stein method delivers
impressively good bounds on the errors of approximation. For example, the
method works well in two cases where the dependence takes an a simple
form.

Once again suppose S = X1 + X2 + · · · + Xn, where Xi has a Ber(pi)
distribution, for constants p1, p2, . . . , pn that are not necessarily all the same.
Often Xi is interpreted as the indicator function for success in the ith in
some finite set of trials. Define S−i = S − Xi =

∑
1≤j≤n I{j 6= i}Xj . The

random variables X1, . . . , Xn are said to be positively associated if

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and k = 0, 1, 2, . . .

and negatively associated if

P{S−i ≥ k | Xi = 1} ≤ P{S−i ≥ k | Xi = 0} for each i and k = 0, 1, 2, . . . .

Intuitively, positive association means that success in the ith trial makes suc-
cess in the other trials more likely; negative association means that success
in the ith trial makes success in the other trials less likely.

With some work it can be shown (Barbour et al., 1992, page 20) that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ min

(
1,

1

λ

)
×{(

var(S)− λ+ 2
∑n

i=1 p
2
i

)
under positive association

(λ− var(S)) under negative association
.

These bounds take advantage of the fact that var(S) would be exactly equal
to λ if S had a Poisson(λ) distribution.

The next Example illustrates both the classical approach and the Chen-
Stein approach (via positive association) to deriving a Poisson approxima-
tion for a matching problem.

Example <9.3> Poisson approximation for a matching problem: assign-
ment of n letters at random to n envelopes, one per envelope.

Statistics 241/541 fall 2014 c©David Pollard, Oct2014



9. Poisson approximations 113

9.4 Examples for Chapter 9

<9.1> Example. If X has a Poisson(λ) distribution, then EX = var(X) = λ. If
also Y has a Poisson(µ) distribution, and Y is independent of X, then X+Y
has a Poisson(λ+ µ) distribution.

Assertion (i) comes from a routine application of the formula for the
expectation of a random variable with a discrete distribution.

EX =
∑∞

k=0
kP{X = k} =

∑∞

k=1
k
e−λλk

k!
What happens to k = 0?

= e−λλ
∞∑

k−1=0

λk−1

(k − 1)!

= e−λλeλ

= λ.

Notice how the k cancelled out one factor from the k! in the denominator.
If I were to calculate E(X2) in the same way, one factor in the k2 would

cancel the leading k from the k!, but would leave an unpleasant k/(k − 1)!
in the sum. Too bad the k2 cannot be replaced by k(k− 1). Well, why not?

E(X2 −X) =
∞∑
k=0

k(k − 1)P{X = k}

= e−λ
∞∑
k=2

k(k − 1)
λk

k!
What happens to k = 0 and k = 1?

= e−λλ2
∞∑

k−2=0

λk−2

(k − 2)!
= λ2.

Now calculate the variance.

var(X) = E(X2)− (EX)2 = E(X2 −X) + EX − (EX)2 = λ.

For assertion (iii), first note that X + Y can take only values 0, 1, 2 . . . .
For a fixed k in this range, decompose the event {X + Y = k} into disjoint
pieces whose probabilities can be simplified by means of the independence
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between X and Y .

P{X + Y = k} =

P{X = 0, Y = k}+ P{X = 1, Y = k − 1}+ · · ·+ P{X = k, Y = 0}
= P{X = 0}P{Y = k}+ · · ·+ P{X = k}P{Y = 0}

=
e−λλ0

0!

e−µµk

k!
+ · · ·+ e−λλk

k!

e−µµ0

0!

=
e−λ−µ

k!

(
k!

0!k!
λ0µk +

k!

1!(k − 1)!
λ1µk−1 + · · ·+ k!

k!0!
λkµ0

)
=
e−λ−µ

k!
(λ+ µ)k.

The bracketed sum in the second last line is just the binomial expansion of
(λ+ µ)k. �

Remark. How do you interpret the notation in the last calculation
when k = 0? I always feel slightly awkward about a contribution from
k − 1 if k = 0.

<9.2> Example. There is a sneakier way to calculate EXm for m = 1, 2, . . . when
X has a Poisson(λ) distribution. Code the whole distribution into a function
(the probability generating function) of a dummy variable s:

g(s) := EsX =
∑

k≥0
ske−λ

λk

k!
= e−λ

∑
k≥0

(sλ)k

k!
= e−λeλs.

Given g, the individual probabilities P{X = k} could be recovered by ex-
panding the function as a power series in s.

Other facts about the distribution can also be obtained from g. For
example,

d

ds
g(s) = lim

h→0
E
(

(s+ h)X − sX

h

)
= E

∂

∂s
sX = EXsX−1

and, by direct calculation, g′(s) = e−λλeλs. Put s = 1 in both expressions
to deduce that EX = g′(1) = λ.

Similarly, repeated differentiation inside the expectation sign gives

g(m)(s) =
∂m

∂sm
E(sX) = E

(
X(X − 1) . . . (X −m+ 1)sX−m

)
,

and direct differentiation of g gives g(m)(s) = e−λλmeλs. Again put s = 1
to deduce that

λm = g(m)(1) = E
(
X(X − 1) . . . (X −m+ 1)

)
for m = 1, 2, . . .

�
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<9.3> Example. Suppose n letters are placed at random into n envelopes, one
letter per envelope. The total number of correct matches, S, can be written
as a sum X1 + · · ·+Xn of indicators,

Xi =
{

1 if letter i is placed in envelope i,
0 otherwise.

The Xi are dependent on each other. For example, symmetry implies that

pi = P{Xi = 1} = 1/n for each i

and

P{Xi = 1 | X1 = X2 = · · · = Xi−1 = 1} =
1

n− i+ 1

Remark. If we eliminated the dependence by relaxing the requirement
of only one letter per envelope, the number of letters placed in the
correct envelope (possibly together with other, incorrect letters)
would then have a Bin(n, 1/n) distribution, which is approximated by
Poisson(1) if n is large.

We can get some supporting evidence for S having something close to a
Poisson(1) distribution under the original assumption (one letter per enve-
lope) by calculating some moments.

ES =
∑

i≤n
EXi = nP{Xi = 1} = 1

and

ES2 = E

X2
1 + · · ·+X2

n + 2
∑
i<j

XiXj


= nEX2

1 + 2

(
n

2

)
EX1X2 by symmetry

= nP{X1 = 1}+ (n2 − n)P{X1 = 1, X2 = 1}

=

(
n× 1

n

)
+ (n2 − n)× 1

n(n− 1)

= 2.

Thus var(S) = ES2 − (ES)2 = 1. Compare with Example <9.1>, which
gives EY = 1 and var(Y ) = 1 for a Y distributed Poisson(1).
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Using the method of inclusion and exclusion, it is possible (Feller,
1968, Chapter 4) to calculate the exact distribution of the number of correct
matches,

P{S = k} =
1

k!

(
1− 1

1!
+

1

2!
− 1

3!
− · · · ± 1

(n− k)!

)
for k = 0, 1, . . . , n.

For fixed k, as n→∞ the probability converges to

1

k!

(
1− 1 +

1

2!
− 1

3!
− . . .

)
=
e−1

k!
,

which is the probability that Y = k if Y has a Poisson(1) distribution.
The Chen-Stein method is also effective in this problem. I claim that it

is intuitively clear (although a rigorous proof might be tricky) that the Xi’s
are positively associated:

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and each k ∈ N0.

I feel that if Xi = 1, then it is more likely for the other letters to find their
matching envelopes than if Xi = 0, which makes things harder by filling one
of the envelopes with the incorrect letter i. Positive association gives

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ 2
∑n

i=1
p2
i + var(S)− 1 = 2/n.

As n gets large, the distribution of S does get close to the Poisson(1) in the
strong, total variation sense. �
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Chapter 10

Poisson processes

10.1 Overview

The Binomial distribution and the geometric distribution describe the be-
havior of two random variables derived from the random mechanism that I
have called coin tossing. The name coin tossing describes the whole mecha-
nism; the names Binomial and geometric refer to particular aspects of that
mechanism. If we increase the tossing rate to n tosses per second and de-
crease the probability of heads to a small p, while keeping the expected
number of heads per second fixed at λ = np, the number of heads in a t
second interval will have approximately a Bin(nt, p) distribution, which is
close to the Poisson(λt). Also, the numbers of heads tossed during disjoint
time intervals will still be independent random variables. In the limit, as
n→∞, we get an idealization called a Poisson process.

Remark. The double use of the name Poisson is unfortunate. Much
confusion would be avoided if we all agreed to refer to the mechanism
as “idealized-very-fast-coin-tossing”, or some such. Then the Poisson
distribution would have the same relationship to idealized-very-
fast-coin-tossing as the Binomial distribution has to coin-tossing.
Conversely, I could create more confusion by renaming coin tossing as
“the binomial process”. Neither suggestion is likely to be adopted, so
you should just get used to having two closely related objects with the
name Poisson.

Definition. A Poisson process with rate λ on [0,∞) is a random mechanism
that generates “points” strung out along [0,∞) in such a way that

(i) the number of points landing in any subinterval of length t is a random
variable with a Poisson(λt) distribution
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(ii) the numbers of points landing in disjoint (= non-overlapping) intervals
are independent random variables.

It often helps to think of [0,∞) as time.
Note that, for a very short interval of length δ, the number of points N

in the interval has a Poisson(λδ) distribution, with

P{N = 0} = e−λδ = 1− λδ + o(δ)

P{N = 1} = λδe−λδ = λδ + o(δ)

P{N ≥ 2} = 1− e−λδ − λδe−λδ = o(δ).

When we pass to the idealized mechanism of points generated in contin-
uous time, several awkward details of discrete-time coin tossing disappear.

Example <10.1> (Gamma distribution from Poisson process) The wait-
ing time Wk to the kth point in a Poisson process with rate λ has a con-
tinuous distribution, with density gk(w) = λkwk−1e−λw/(k − 1)! for w > 0,
zero otherwise.

It is easier to remember the distribution if we rescale the process, defining
Tk = λWk. The new Tk has a continuous distribution with a gamma(k)
density,

fk(t) =
tk−1e−t

(k − 1)!
I{t > 0}

Remark. Notice that gk = fk when λ = 1. That is, Tk is the waiting
time to the kth point for a Poisson process with rate 1. Put another
way, we can generate a Poisson process with rate λ by taking the points
appearing at times 0 < T1 < T2 < T3 < . . . from a Poisson process
with rate 1, then rescaling to produce a new process with points at

0 <
T1
λ
<
T2
λ
<
T3
λ
< . . .

You could verify this assertion by checking the two defining properties
for a Poisson process with rate λ. Doesn’t it makes sense that, as λ
gets bigger, the points appear more rapidly?

For k = 1, Example <10.1> shows that the waiting time, W1, to the first
point has a continuous distribution with density λe−λw1{w > 0}, which
is called the exponential distribution with expected value 1/λ. (You
should check that EW1 = 1/λ.) The random variable λW1 has a standard
exponential distribution, with density f1(t) = e−t1{t > 0} and expected
value 1.
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Remark. I write the exponential distribution symbolically as “exp,
mean 1/λ”. Do you see why the name exp(1/λ) would be ambiguous?
Don’t confuse the exponential density (or the exponential distribution
that it defines) with the exponential function.

Just as for coin tossing, the independence properties of the Poisson pro-
cess ensures that the times W1,W2−W1,W3−W2, . . . are independent, each
with the same distribution. You can see why this happens by noting that
the future evolution of the process after the occurence of the first point at
time W1 is just a Poisson process that is independent of everything that
happened up to time W1. In particular, the standardized time Tk = λWk,
which has a gamma(k) distribution, is a sum of independent random vari-
ables Z1 = λW1, Z2 = λ(W2 −W1), . . . each with a standard exponential
distribution.

The gamma density can also be defined for fractional values α > 0:

fα(t) =
tα−1e−t

Γ(α)
1{t > 0}

is called the gamma(α) density. The scaling constant, Γ(α), which ensures
that the density integrates to one, is given by

Γ(α) =

∫ ∞
0

xα−1e−xdx for each α > 0.

The function Γ(·) is called the gamma function. Don’t confuse the gamma
density (or the gamma distribution that it defines) with the gamma function.

Example <10.2> Facts about the gamma function: Γ(k) = (k − 1)! for
k = 1, 2, . . . , and Γ(1/2) =

√
π.

The change of variable used in Example <10.2> to prove Γ(1/2) =
√
π

is essentially the same piece of mathematics as the calculation to find the
density for the distribution of Y = Z2/2 when Z ∼ N(0, 1). The random
variable Y has a gamma(1/2) distribution.

Example <10.3> Moments of the gamma distribution

Poisson processes are often used as the simplest model for stochastic
processes that involve arrivals at random times.

Example <10.4> A process with random arrivals
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Poisson Processes can also be defined for sets other than the half-line.

Example <10.5> A Poisson Process in two dimensions.

10.2 Things to remember

Analogies between coin tossing, as a discrete time mechanism, and the Pois-
son process, as a continuous time mechanism:

discrete time ↔ continuous time

coin tossing, prob p of heads ↔ Poisson process with rate λ

Bin(n, p) ↔ Poisson(λt)
X = #heads in n tosses X = # points in [a, a+ t]

P{X = i} =
(
n
i

)
piqn−i P{X = i} = e−λt(λt)i/i!

for i = 0, 1, . . . , n for i = 0, 1, 2 . . .

geometric(p) ↔ (standard) exponential
N1 = # tosses to first head; T1/λ = time to first point;

P{N1 = 1 + i} = qip T1 has density f1(t) = e−t

for i = 0, 1, 2, . . . for t > 0

negative binomial ↔ gamma

See HW10 Tk has density
fk(t) = tk−1e−t/k! for t > 0

negative binomial as sum of gamma(k) as sum of
independent geometrics independent exponentials

10.3 Examples for Chapter 10

<10.1> Example. Let Wk denote the waiting time to the kth point in a Poisson
process on [0,∞) with rate λ. It has a continuous distribution, whose den-
sity gk we can find by an argument similar to the one used in Chapter 7 to
find the distribution of an order statistic for a sample from the Uniform(0, 1).
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For a given w > 0 and small δ > 0, write M for the number of points
landing in the interval [0, w), and N for the number of points landing in the
interval [w,w + δ]. From the definition of a Poisson process, M and N are
independent random variables with

M ∼ Poisson(λw) and N ∼ Poisson(λδ).

To have Wk lie in the interval [w,w+ δ] we must have N ≥ 1. When N = 1,
we need exactly k − 1 points to land in [0, w). Thus

P{w ≤Wk ≤ w+δ} = P{M = k−1, N = 1}+P{w ≤Wk ≤ w+δ, N ≥ 2}.

The second term on the right-hand side is of order o(δ). Independence of
M and N lets us factorize the contribution from N = 1 into

P{M = k − 1}P{N = 1} =
e−λw(λw)k−1

(k − 1)!

e−λδ(λδ)1

1!

=
e−λwλk−1wk−1

(k − 1)!

(
λδ + o(δ)

)
,

Thus

P{w ≤Wk ≤ w + δ} =
e−λwλkwk−1

(k − 1)!
δ + o(δ),

which makes

gk(w) =
e−λwλkwk−1

(k − 1)!
1{w > 0}

the density function for Wk. �

<10.2> Example. The gamma function is defined for α > 0 by

Γ(α) =

∫ ∞
0

xα−1e−xdx.

By direct integration, Γ(1) =
∫∞

0 e−xdx = 1. Also, a change of variable

y =
√

2x gives

Γ(1/2) =

∫ ∞
0

x−1/2e−xdx

=

∫ ∞
0

√
2e−y

2/2dy

=

√
2

2

√
2π√
2π

∫ ∞
−∞

e−y
2/2dy

=
√
π cf. integral of N(0, 1) density.
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For each α > 0, an integration by parts gives

Γ(α+ 1) =

∫ ∞
0

xαe−xdx

=
[
−xαe−x

]∞
0

+ α

∫ ∞
0

xα−1e−xdx

= αΓ(α).

Repeated appeals to the same formula, for α > 0 and each positive integer m
less than α, give

Γ(α+m) = (α+m− 1)(α+m− 2) . . . (α)Γ(α).

In particular,

Γ(k) = (k−1)(k−2)(k−3) . . . (2)(1)Γ(1) = (k−1)! for k = 1, 2, . . . .

�

<10.3> Example. For parameter value α > 0, the gamma(α) distribution is defined
by its density

fα(t) =

{
tα−1e−t/Γ(α) for t > 0
0 otherwise

If a random variable T has a gamma(α) distribution then, for each positive
integer m,

ETm =

∫ ∞
0

tmfα(t) dt

=

∫ ∞
0

tmtα−1e−t

Γ(α)
dt

=
Γ(α+m)

Γ(α)

= (α+m− 1)(α+m− 2) . . . (α) by Example <10.2>.

In particular, ET = α and

var(T ) = E
(
T 2
)
− (ET )2 = (α+ 1)α− α2 = α.

�
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<10.4> Example. Suppose an office receives two different types of inquiry: persons
who walk in off the street, and persons who call by telephone. Suppose the
two types of arrival are described by independent Poisson processes, with
rate λw for the walk-ins, and rate λc for the callers. What is the distribution
of the number of telephone calls received before the first walk-in customer?

Write T for the arrival time of the first walk-in, and let N be the number
of calls in [0, T ). The time T has a continuous distribution, with the expo-
nential density f(t) = λwe

−λwt1{t > 0}. We need to calculate P{N = i} for
i = 0, 1, 2, . . . . Condition on T :

P{N = i} =

∫ ∞
0

P{N = i | T = t}f(t) dt.

The conditional distribution of N is affected by the walk-in process only in-
sofar as that process determines the length of the time interval over which N
counts. Given T = t, the random variable N has a Poisson(λct) conditional
distribution. Thus

P{N = i} =

∫ ∞
0

e−λct(λct)
i

i!
λwe

−λwt dt

= λw
λic
i!

∫ ∞
0

(
x

λc + λw

)i
e−x

dx

λc + λw
putting x = (λc + λw)t

=
λw

λc + λw

(
λc

λc + λw

)i 1

i!

∫ ∞
0

xie−xdx

The 1/i! and the last integral cancel. (Compare with Γ(i + 1).) Writing p
for λw/(λc + λw) we have

P{N = i} = p(1− p)i for i = 0, 1, 2, . . .

That is, 1 + N has a geometric(p) distribution. The random variable N
has the distribution of the number of tails tossed before the first head, for
independent tosses of a coin that lands heads with probability p.

Such a clean result couldn’t happen just by accident. HW10 will give
you a neater way to explain how the geometric got into the Poisson process.
�

<10.5> Example. A Poisson process with rate λ on R2 is a random mechanism
that generates “points” in the plane in such a way that

(i) the number of points landing in any region of area A is a random
variable with a Poisson(λA) distribution
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(ii) the numbers of points landing in disjoint regions are independent ran-
dom variables.

Suppose mold spores are distributed across the plane as a Poisson process
with intensity λ. Around each spore, a circular moldy patch of radius r
forms. Let S be some bounded region. Find the expected proportion of the
area of S that is covered by mold.

S

Write x = (x, y) for the typical point of R2. If B is a subset of R2,

area of S ∩B =

∫∫
x∈S

I{x ∈ B} dx

If B is a random set then

E
(
area of S ∩B

)
=

∫∫
x∈S

EI{x ∈ B} dx =

∫∫
x∈S

P{x ∈ B} dx.

If B denotes the moldy region of the plane,

1− P{x ∈ B} = P{ no spores land within a distance r of x }
= P{ no spores in circle of radius r around x }
= exp

(
− λπr2

)
.

Notice that the probability does not depend on x. Consequently,

E
(
area of S ∩B

)
=

∫∫
x∈S

1− exp
(
− λπr2

)
dx

=
(
1− exp

(
− λπr2

))
× area of S

The expected value of the proportion of the area of S that is covered by
mold is 1− exp

(
− λπr2

)
. �
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Chapter 11

Joint densities

11.1 Overview

Consider the general problem of describing probabilities involving two ran-
dom variables, X and Y . If both have discrete distributions, with X taking
values x1, x2, . . . and Y taking values y1, y2, . . . , then everything about the
joint behavior of X and Y can be deduced from the set of probabilities

P{X = xi, Y = yj} for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs
of random variables, but we have not needed to formalize the concept of a
joint distribution. When both X and Y have continuous distributions, it
becomes more important to have a systematic way to describe how one might
calculate probabilities of the form P{(X,Y ) ∈ B} for various subsetsB of the
plane. For example, how could one calculate P{X < Y } or P{X2 +Y 2 ≤ 9}
or P{X + Y ≤ 7}?

Definition. Say that random variables X and Y have a jointly continuous
distribution with joint density function f(·, ·) if

P{(X,Y ) ∈ B} =

∫∫
B
f(x, y) dx dy.

for each subset B of R2.

Remark. To avoid messy expressions in subscripts, I will sometimes
write

∫∫
1{(x, y) ∈ B} . . . instead of

∫∫
B
. . . .
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To ensure that P{(X,Y ) ∈ B} is nonnegative and that it equals one
when B is the whole of R2, we must require

f ≥ 0 and

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1.

The density function defines a surface, via the equation z = f(x, y). The
probability that the random point (X,Y ) lands in B is equal to the volume
of the “cylinder”

{(x, y, z) ∈ R3 : 0 ≤ z ≤ f(x, y) and (x, y) ∈ B}.

In particular, if ∆ is small region in R2 around a point (x0, y0) at which f is
continuous, the cylinder is close to a thin column with cross-section ∆ and
height f(x0, y0), so that

P{(X,Y ) ∈ ∆} = (area of ∆)f(x0, y0) + smaller order terms.

More formally,

lim
∆↓{x0,y0)

P{(X,Y ) ∈ ∆}
area of ∆

= f(x0, y0).

The limit is taken as ∆ shrinks to the point (x0, y0).

height = f(x0,y0)

part of surface
     z=f(x,y)

base Δ
 in plane z=0

Apart from the replacement of single integrals by double integrals and
the replacement of intervals of small length by regions of small area, the def-
inition of a joint density is essentially the same as the definition for densities
on the real line in Chapter 7.

Example <11.1> Expectations of functions of random variable with
jointly continuous distributions: EH(X,Y ) =

∫∫
R2 H(x, y)f(x, y) dx dy.

The joint density for (X,Y ) includes information about the marginal
distributions of the random variables. To see why, write A × R for the
subset {(x, y) ∈ R2 : x ∈ A, y ∈ R} for a subset A of the real line. Then

P{X ∈ A}
= P{(X,Y ) ∈ A× R}

=

∫∫
1{x ∈ A, y ∈ R}f(x, y) dx dy

=

∫ +∞

−∞
1{x ∈ A}

(∫ +∞

−∞
1{y ∈ R}f(x, y) dy

)
dx

=

∫ +∞

−∞
1{x ∈ A}h(x) dx where h(x) =

∫ +∞

−∞
f(x, y) dy.
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It follows that X has a continuous distribution with (marginal) density h.
Similarly, Y has a continuous distribution with (marginal) density g(y) =∫ +∞
−∞ f(x, y) dx.

Remark. The word marginal is used here to distinguish the joint
density for (X,Y ) from the individual densities g and h.

When we wish to calculate a density, the small region ∆ can be chosen
in many ways—small rectangles, small disks, small blobs, and even small
shapes that don’t have any particular name—whatever suits the needs of a
particular calculation.

Example <11.2> (Joint densities for independent random variables)
Suppose X has a continuous distribution with density g and Y has a con-
tinuous distribution with density h. Then X and Y are independent if
and only if they have a jointly continuous distribution with joint density
f(x, y) = g(x)h(y) for all (x, y) ∈ R2.

When pairs of random variables are not independent it takes more work
to find a joint density. The prototypical case, where new random variables
are constructed as linear functions of random variables with a known joint
density, illustrates a general method for deriving joint densities.

Example <11.3> Suppose X and Y have a jointly continuous distri-
bution with density function f . Define S = X + Y and T = X − Y .
Show that (S, T ) has a jointly continuous distribution with density ψ(s, t) =

1
2f

(
s+ t

2
,
s− t

2

)
.

For instance, suppose the X and Y from Example <11.3> are inde-
pendent and each is N(0, 1) distributed. From Example <11.2>, the joint
density for (X,Y ) is

f(x, y) =
1

2π
exp

(
−1

2(x2 + y2)
)
.

The joint density for S = X + Y and T = X − Y is

ψ(s, t) =
1

4π
exp

(
−1

8((s+ t)2 + (s− t)2)
)

=
1

σ
√

2π
exp

(
− s2

2σ2

)
1

σ
√

2π
exp

(
− t2

2σ2

)
where σ2 = 2.
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It follows that S and T are independent, each with a N(0, 2) distribution.
Example <11.3> also implies the convolution formula from Chapter 8.

For if X and Y are independent, with densities g and h, then their joint
density is f(x, y) = g(x)h(y) and the joint density for S = X + Y and
T = X − Y is

ψ(s, t) = 1
2g

(
s+ t

2

)
h

(
s− t

2

)
Integrate over t to get the marginal density for S:∫ +∞

−∞
ψ(s, t) dt =

∫ +∞

−∞

1
2g

(
s+ t

2

)
h

(
s− t

2

)
dt

=

∫ +∞

−∞
g(x)h(s− x) dx putting x = (s+ t)/2.

The argument for general linear combinations is slightly more compli-
cated, unless you already know about Jacobians. You could skip the next
Example if you don’t know about matrices.

Example <11.4> Suppose X and Y have a jointly continuous distribu-
tion with joint density f(x, y). For constants a, b, c, d, define U = aX + bY
and V = cX + dY . Find the joint density function ψ(u, v) for (U, V ), under
the assumption that the quantity κ = ad− bc is nonzero.

The method used in Example<11.4>, for linear transformations, extends
to give a good approximation for more general smooth transformations when
applied to small regions. Densities describe the behaviour of distributions
in small regions; in small regions smooth transformations are approximately
linear; the density formula for linear transformations gives a good approxi-
mation to the density for smooth transformations in small regions.

Example <11.5> Suppose X and Y are independent random variables,
with X ∼ gamma(α) and Y ∼ gamma(β). Show that the random variables
U = X/(X + Y ) and V = X + Y are independent, with U ∼ beta(α, β) and
V ∼ gamma(α+ β).

The conclusion about X + Y from Example <11.5> extends to sums of
more than two independent random variables, each with a gamma distri-
bution. The result has a particularly important special case, involving the
sums of squares of independent standard normals.

Statistics 241/541 fall 2014 c©David Pollard, 9 Nov 2014



11. Joint densities 129

Example <11.6> Sums of independent gamma random variables.

And finally, a polar coordinates way to generate independent normals:

Example <11.7> Building independent normals

11.2 Examples for Chapter 11

<11.1> Example. Expectations of functions of a random variable with jointly con-
tinuous distributions

Suppose X and Y have a jointly continuous distribution with joint den-
sity function f(x, y). Let Y = H(X,Y ) be a new random variable, defined
as a function of X and Y . An approximation argument similar to the one
used in Chapter 7 will show that

EH(X,Y ) =

∫∫
R2

H(x, y)f(x, y) dx dy.

For simplicity suppose H is nonnegative. (For the general case split H
into positive and negtive parts.) For a small δ > 0 define

An = {(x, y) ∈ R2 : nδ ≤ H(x, y) < (n+ 1)δ} for n = 0, 1, . . .

The function Hδ(x, y) =
∑

n≥0 nδ1{(x, y) ∈ An} approximates H:

Hδ(x, y) ≤ H(x, y) ≤ Hδ(x, y) + δ for all (x, y) ∈ R2.

In particular,

EHδ(X,Y ) ≤ EH(X,Y ) ≤ δ + EHδ(X,Y ).

and ∫∫
R2

Hδ(x, y)f(x, y) dx dy

≤
∫∫

R2

H(x, y)f(x, y) dx dy ≤ δ +

∫∫
R2

Hδ(x, y)f(x, y) dx dy
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The random variable Hδ(X,Y ) has a discrete distribution, with expected
value

EHδ(X,Y ) = E
∑

n≥0
nδ1{(X,Y ) ∈ An}

=
∑

n≥0
nδ P{(X,Y ) ∈ An}

=
∑

n
nδ

∫∫
R2

1{(x, y) ∈ An}f(x, y) dx dy

=

∫∫
R2

∑
n
nδ1{(x, y) ∈ An}f(x, y) dx dy

=

∫∫
R2

Hδ(x, y)f(x, y) dx dy.

Deduce that∫∫
R2

H(x, y)f(x, y) dx dy − δ

≤ EH(X,Y )

≤ δ +

∫∫
R2

H(x, y)f(x, y) dx dy

for every δ > 0. �

<11.2> Example. (Joint densities for independent random variables) Suppose X
has a continuous distribution with density g and Y has a continuous distri-
bution with density h. Then X and Y are independent if and only if they
have a jointly continuous distribution with joint density f(x, y) = g(x)h(y)
for all (x, y) ∈ R2.

When X has density g(x) and Y has density h(y), and X is independent
of Y , the joint density is particularly easy to calculate. Let ∆ be a small
rectangle with one corner at (x0, y0) and small sides of length δ > 0 and
ε > 0,

∆ = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + δ, y0 ≤ y ≤ y0 + ε}.

By independence,

P{(X,Y ) ∈ ∆} = P{x0 ≤ X ≤ x0 + δ}P{y0 ≤ Y ≤ y0 + ε}
≈ δg(x0)εh(y0) =

(
area of ∆

)
× g(x0)h(y0).

Thus X and Y have a jointly continuous distribution with joint density that
takes the value f(x0, y0) = g(x0)h(y0) at (x0, y0).
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Conversely, if X and Y have a joint density f that factorizes, f(x, y) =
g(x)h(y), then for each pair of subsets C,D of the real line,

P{X ∈ C, Y ∈ D} =

∫∫
1{x ∈ C, y ∈ D}f(x, y) dx dy

=

∫∫
1{x ∈ C}1{y ∈ D}g(x)h(y)dx dy

=

(∫
1{x ∈ C}g(x) dx

)(∫
1{y ∈ D}h(y) dy

)
Define K :=

∫ +∞
−∞ g(x) dx. The choice C = D = R in the previous display

then shows that
∫ +∞
−∞ h(y) dy = 1/K.

If we take only D = R we get

P{X ∈ C} = P{X ∈ C, Y ∈ R} =

∫
C
g(x)/K dx

from which it follows that g(x)/K is the marginal density for X. Similarly,
Kh(y) is the marginal density for Y , so that

P{X ∈ C, Y ∈ D} =

∫
C

g(x)

K
dx×

∫
D
Kh(y) dy = P{X ∈ C}×P{Y ∈ D}.

Put another way,

P{X ∈ C | Y ∈ D} = P{X ∈ C} provided P{Y ∈ D} 6= 0.

The random variables X and Y are independent.
Of course, if we know that g and h are the marginal densities then we

have K = 1. The argument in the previous paragraph actually shows that
any factorization f(x, y) = g(x)h(y) of a joint density (even if we do not
know that the factors are the marginal densities) implies independence. �

<11.3> Example. Suppose X and Y have a jointly continuous distribution with
density function f . Define S = X+Y and T = X−Y . Show that (S, T ) has

a jointly continuous distribution with density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
.

Consider a small ball ∆ of radius ε centered at a point (s0, t0) in the
plane. The area of ∆ equals πε2. The point (s0, t0) in the (S, T )-plane
(the region where (S, T ) takes its values) corresponds to the point (x0, y0)
in the (X,Y )-plane for which s0 = x0 + y + 0 and t0 = x0 − y0. That is,
x0 = (s0 + t0)/2 and y0 = (s0 − t0)/2.
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We need to identify {(S, T ) ∈ ∆} with some set {(X,Y ) ∈ D}.

enalp-)T,S(enalp-)Y,X(

s

t

x

y

s0

t0

x0

y0

∆
D

By great luck (or by a clever choice for ∆) the region D in the (X,Y )-
plane turns out to be another ball:

{(S, T ) ∈ ∆} = {(S − s0)2 + (T − t0)2 ≤ ε2}
= {(X + Y − x0 − y0)2 + (X − Y − x0 + y0)2 ≤ ε2}
= {2(X − x0)2 + 2(Y − y0)2 ≤ ε2}.

(Notice the cancellation of (X − x0)(Y − y0) terms.) That is D is a ball
of radius ε/

√
2 centered at (x0, y0), with area πε2/2, which is half the area

of ∆. Now we can calculate.

P{(S, T ) ∈ ∆} = P{(X,Y ) ∈ D}
≈ (area of D)× f(x0, y0)

= 1
2(area of ∆)× f

(
s0 + t0

2
,
s0 − t0

2

)

It follows that (S, T ) has joint density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
. �

<11.4> Example. Suppose X and Y have a jointly continuous distribution with
joint density f(x, y). For constants a, b, c, d, define U = aX + bY and
V = cX + dY . Find the joint density function ψ(u, v) for (U, V ), under
the assumption that the quantity κ = ad− bc is nonzero.

In matrix notation,

(U, V ) = (X, Y )A where A =

(
a c
b d

)
.
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Notice that detA = ad− bc = κ. The assumption that κ 6= 0 ensures that A
has an inverse:

A−1 =
1

κ

(
d −c
−b a

)
That is, if (u, v) = (x, y)A then

du− bv
κ

= x and
−cu+ av

κ
= y.

Notice that det
(
A−1

)
= 1/κ = 1/(detA).

Consider a small rectangle ∆ = {u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}, for
(u0, v0) in the (U, V )-plane and small, positive δ and ε. The joint density
function ψ(u, v) is characterized by the property that

P{(U, V ) ∈ ∆} ≈ ψ(u0, v0)δε

The event {(U, V ) ∈ ∆} is equal to some event {(X,Y ) ∈ D}. The
linear transformation A−1 maps parallel straight lines in the (U, V )-plane
into parallel straight lines in the (X,Y )-plane. The region D must be a
parallelogram. We have only to determine its vertices, which correspond
to the four vertices of the rectangle ∆. Define vectors α1 = (d,−c)/κ and
α2 = (−b, a)/κ, which correspond to the two rows of the matrix A−1. Then
D has vertices:

(x0, y0) = (u0, v0)A−1 = u0α1 + v0α2

(x0, y0) + δα1 = (u0 + δ, v0)A−1 = (u0 + δ)α1 + v0α2

(x0, y0) + εα2 = (u0, v0 + ε)A−1 = u0α1 + (v0 + ε)α2

(x0, y0) + δα1 + εα2 = (u0 + δ, v0 + ε)A−1 = (u0 + δ)α1 + (v0 + ε)α2

(u0+δ,v0+ε)

(x0,y0)
(u0,v0)

(U,V)-plane(X,Y)-plane

Δ
D (x0,y0)+δα1

(x0,y0)+εα2

(x0,y0)+δα1+εα2

From the formula in the Appendix to this Chapter, the parallelogram D
has area equal to δε times the absolute value of the determinant of the
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matrix with rows α1 and α2. That is,

area of D = δε|det(A−1)| = δε

|detA|
.

In summary: for small δ > 0 and ε > 0,

ψ(u0, v0)δε ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ D}
≈ (area of D)f(x0, y0)

≈ δεf(x0, y0)/|det(A)|.

It follows that (U, V ) have joint density

ψ(u, v) =
1

| detA|
f(x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du− bv) /κ for x and (−cu+ av) /κ
for y, in order to get an expresion involving only u and v. �

Remark. In effect, I have calculated a Jacobian by first principles.

<11.5> Example. Suppose X and Y are independent random variables, with X ∼
gamma(α) and Y ∼ gamma(β). Show that the random variables U =
X/(X + Y ) and V = X + Y are independent, with U ∼ beta(α, β) and
V ∼ gamma(α+ β).

The random variables X and Y have marginal densities

g(x) = xα−1e−x1{x > 0}/Γ(α) and h(y) = yβ−1e−y1{y > 0}/Γ(β)

From Example <11.2>, they have a jointly continuous distribution with joint
density

f(x, y) = g(x)h(y) =
xα−1e−xyβ−1e−y

Γ(α)Γ(β)
1{x > 0, y > 0}.

We need to find the joint density function ψ(u, v) for the random vari-
ables U = X/(X + Y ) and V = X + Y . The pair (U, V ) takes values in the
strip defined by {(u, v) ∈ R2 : 0 < u < 1, 0 < v < ∞}. The joint density
function ψ can be determined by considering corresponding points (x0, y0)
in the (x, y)-quadrant and (u0, v0) in the (u, v)-strip for which

u0 = x0/(x0 + y0) and v0 = x0 + y0,
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that is,

x0 = u0v0 and y0 = (1− u0)v0.

u0 u0+δ

(x0,y0)

v0+ε

v0
ΔD

(X,Y)-quadrant (U,V)-strip

1

When (U, V ) lies near (u0, v0) then (X,Y ) lies near the point (x0, y0) =
(u0v0, v0(1−u0)). More precisely, for small positive δ and ε, there is a small
region D in the (X,Y )-quadrant corresponding to the small rectangle

∆ = {(u, v) : u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}

in the (U, V )-strip. That is, {(U, V ) ∈ ∆} = {(X,Y ) ∈ D}. The set D is not
a parallelogram but it is well approximated by one. For small perturbations,
the map from (u, v) to (x, y) is approximately linear. First locate the points
corresponding to the corners of ∆, under the maps x = uv and y = v(1−u):

(u0, v0) 7→ (x0, y0)

(u0 + δ, v0) 7→ (x0, y0) + δ(v0,−v0)

(u0, v0 + ε) 7→ (x0, y0) + ε(u0, 1− u0).

The fourth vertex, (u0 + δ, v0 + ε) corresponds to the point (x, y) with

x = (u0 + δ)(v0 + ε) = u0v0 + δv0 + εu0 + δε

y = (v0 + ε)(1− u0 − δ) = v0u0 + ε(1− u0)− δv0 − δε
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Put another way,

(u0, v0) 7→ (x0, y0)

(u0, v0) + (δ, 0) 7→ (x0, y0) + (δ, 0)J

(u0, v0) + (0, ε) 7→ (x0, y0) + (0, ε)J

(u0, v0) + (δ, ε) 7→ (x0, y0) + (δ, ε)J + smaller order terms

where

J =

(
v0 −v0

u0 1− u0

)
.

You might recognize J as the Jacobian matrix of partial derivatives
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v


evaluated at (u0, v0).

The region D is approximately a parallelogram, with the edges oblique
to the coordinate axes. To a good approximation, the area of D is equal to
δε times the area of the parallelogram with corners at

(0, 0), a = (v0,−v0), b = (u0, 1− u0), a + b,

which, from the Appendix to this Chapter, equals |det(J)| = v0.
The rest of the calculation of the joint density ψ for (U, V ) is easy:

δεψ(u0, v0) ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ R}

≈ f(x0, y0)(area of D) ≈ xα−1
0 e−x0

Γ(α)

yβ−1
0 e−y0

Γ(β)
δ ε v0

Substitute x0 = u0v0 and y0 = (1−u0)v0 to get the joint density at (u0, v0):

ψ(u0, v0) =
uα−1

0 vα−1
0 e−u0v0

Γ(α)

(1− u0)β−1vβ−1
0 e−v0+u0v0

Γ(β)
v0

=
uα−1

0 (1− u0)β−1

B(α, β)
× vα+β−1

0 e−v0

Γ(α+ β)
× Γ(α+ β)B(α, β)

Γ(α)Γ(β)
.
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Once again the final constant must be equal to 1, which gives the identity

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

The joint density factorizes; the random variables U and V are indepen-
dent, with U ∼ Beta(α, β) and V ∼ gamma(α+ β). �

Remark. The fact that Γ(1/2) =
√
π also follows from the equality

Γ(1/2)Γ(1/2)

Γ(1)
= B(1/2, 1/2)

=

∫ 1

0

t−1/2(1− t)−1/2 dt put t = sin2(θ)

=

∫ π/2

0

1

sin(θ) cos(θ)
2 sin(θ) cos(θ) dθ = π.

<11.6> Example. If X1, X2, . . . , Xk are independent random variables, with Xi

distributed gamma(αi) for i = 1, . . . , k, then

X1 +X2 ∼ gamma(α1 + α2),

X1 +X2 +X3 = (X1 +X2) +X3 ∼ gamma(α1 + α2 + α3)

X1 +X2 +X3 +X4 = (X1 +X2 +X3) +X4 ∼ gamma(α1 + α2 + α3 + α4)

. . .

X1 +X2 + · · ·+Xk ∼ gamma(α1 + α2 + · · ·+ αk)

A particular case has great significance for Statistics. Suppose Z1, . . . Zk
are independent random variables, each distributed N(0,1). You know that
the random variables Z2

1/2, . . . , Z
2
k/2 are independent gamma(1/2) distributed

random variables. The sum

(Z2
1 + · · ·+ Z2

k)/2

must have a gamma(k/2) distribution with density tk/2−1e−t1{0 < t}/Γ(k/2).
It follows that the sum Z2

1 + · · ·+ Z2
k has density

(t/2)k/2−1e−t/21{0 < t}
2Γ(k/2)

.

This distribution is called the chi-squared on k degrees of freedom, usually
denoted by χ2

k. The letter χ is a lowercase Greek chi. �
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<11.7> Example. Here are the bare bones of the polar coordinates way of manufac-
turing two independent N(0, 1)’s. Start with independent random variables
U ∼ Uniform(0, 2π) and W ∼ gamma(1) (a.k.a. standard exponential). De-
fine R =

√
2W and X = R cos(U) and Y = R sin(U). Calculate the density

for R as

g(r) = r exp(−r2/2)1{r > 0}.

For 0 < θ0 < 1 and r0 > 0, and very small δ > 0 and ε > 0, check that the
region

D = {(u, r) ∈ (0, 1)× (0,∞) : θ0 ≤ U ≤ θ0 + δ, r0 ≤ r ≤ r0 + ε}

corresponds to the region ∆ in the (X,Y )-plane that is bounded by circles of
radius r0 and r0 +ε and by radial lines from the origin at angles θ0 and θ0 +δ
to the horizontal axis. The area of ∆ is approximately 2πr0εδ.

Deduce that the joint density f for (X,Y ) satisfies

2πr0εδf(x0, y0) ≈ εg(r0)
δ

2π
where x0 = r0 cos(θ0), y0 = r0 sin(θ0)

That is,

f(x, y) =
g(r)

2πr
where x = r cos(θ), y = r sin(θ)

=
1

2π
exp

(
−1

2
(x2 + y2)

)
.

The random variablesX and Y are independent, with each distributedN(0, 1).
�

11.3 Appendix: area of a parallelogram

Let R be a parallelogram in the plane with corners at 0 = (0, 0), and a =
(a1, a2), and b = (b1, b2), and a + b. The area of R is equal to the absolute
value of the determinant of the matrix

J =

(
a1 a2

b1 b2

)
=

(
a
b

)
.

That is, the area of R equals |a1b2 − a2b1|.
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Proof Let θ denotes the angle between a and b. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b

The area of R is twice the area of the triangle with vertices at 0, a,
and b. The triangle has area

1
2(base length) × (height) = 1

2 ‖a‖ × (‖b‖ × | sin θ|)

The square of the area of R equals

‖a‖2 ‖b‖2 sin2(θ) = ‖a‖2 ‖b‖2 − ‖a‖2 ‖b‖2 cos2(θ)

= (a · a)(b · b)− (a · b)2

= det

(
a · a a · b
a · b b · b

)
= det

(
JJ ′
)

= (det J)2 .

0

a

b

a+b

θ

If you are not sure about the properties of determinants used in the last
two lines, you should check directly that

(a2
1 + a2

2)(b21 + b22)− (a1b1 + a2b2)2 = (a1b2 − a2b1)2.

�
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Chapter 12

Conditional densities

12.1 Overview

Density functions determine continuous distributions. If a continuous distri-
bution is calculated conditionally on some information, then the density is
called a conditional density. When the conditioning information involves
another random variable with a continuous distribution, the conditional den-
sity can be calculated from the joint density for the two random variables.

Suppose X and Y have a jointly continuous distribution with joint den-
sity f(x, y). From Chapter 11, you know that the marginal distribution of X
is continuous with density

g(y) =

∫ ∞
−∞

f(x, y) dx.

The conditional distribution for Y given X = x has a (conditional) density,
which I will denote by h(y | X = x), or just h(y | x) if the conditioning
variable is unambiguous, for which

P{y ≤ Y ≤ y + δ | X = x} ≈ δh(y | X = x), for small δ > 0.

Conditioning on X = x should be almost the same as conditioning on the
event {x ≤ X ≤ x+ ε} for a very small ε > 0. That is, provided g(x) > 0,

P{y ≤ Y ≤ y + δ | X = x} ≈ P{y ≤ Y ≤ y + δ | x ≤ X ≤ x+ ε}

=
P{y ≤ Y ≤ y + δ, x ≤ X ≤ x+ ε}

P{x ≤ X ≤ x+ ε}

≈ δεf(x, y)

εg(x)
.
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In the limit, as ε tends to zero, we are left with δ ≈ δf(x, y)/g(x). That is,

h(y | X = x) = f(x, y)/g(x) for each x with g(x) > 0.

Less formally, the conditional density is

h(y | X = x) =
joint (X,Y ) density at (x, y)

marginal X density at x

The first Example illustrates two ways to find a conditional density: first
by calculation of a joint density followed by an appeal to the formula for the
conditional density; and then by a sneakier method where all the random
variables are built directly using polar coordinates.

Example <12.1> Let X and Y be independent random variables, each
distributed N(0, 1). Define R =

√
X2 + Y 2. Show that, for each r > 0, the

conditional distribution of X given R = r has density

h(x | R = r) =
1{|x| < r}
π
√
r2 − x2

for r > 0.

The most famous example of a continuous condition distribution comes
from pairs of random variables that have a bivariate normal distribution.
For each constant ρ ∈ (−1,+1), the standard bivariate normal with
correlation ρ is defined as the joint distribution of a pair of random vari-
ables constructed from independent random variables X and Y , each dis-
tributed N(0, 1). Define Z = ρX +

√
1− ρ2 Y . The pair X,Y has a jointly

continuous distribution with density f(x, y) = (2π)−1 exp
(
−(x2 + y2)/2

)
.

Apply the result from Example <11.4> with

(X,Z) = (X,Y )A where A =

(
1 ρ

0
√

1− ρ2

)
to deduce that X,Z have joint density

fρ(x, z) =
1√

1− ρ2
exp

(
−x

2 − 2ρxz + z2

2(1− ρ2)

)
.

Notice the symmetry in x and z. The X and Z marginals must be the same.
Thus Z ∼ N(0, 1). Also

cov(X,Z) = cov(X, ρX +
√

1− ρ2 Y )

= ρ cov(X,X) +
√

1− ρ2 cov(X,Y ) = ρ.
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Remark. The correlation between two random variables S and T is
defined as

corr(S, T ) =
cov(S, T )√

var(S)var(T )
.

If var(S) = var(T ) = 1 the correlation reduces to the covariance.

By construction, the conditional distribution of Z given X = x is just
the conditional distribution of ρx+

√
1− ρ2 Y given X = x. Independence

of X and Y then shows that

Z | X = x ∼ N(ρx, 1− ρ2).

In particular, E(Z | X = x) = ρx. By symmetry of fρ, we also have
X | Z = z ∼ N(ρz, 1− ρ2), a fact that you could check by dividing fρ(x, z)
by the standard normal density for Z.

Example <12.2> Let S denote the height (in inches) of a randomly
chosen father, and T denote the height (in inches) of his son at maturity.
Suppose each of S and T has a N(µ, σ2) distribution with µ = 69 and σ = 2.
Suppose also that the standardized variables (S −µ)/σ and (T −µ)/σ have
a standard bivariate normal distribution with correlation ρ = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T of his young son Tom?

For the standard bivariate normal, if the variables are uncorrelated (that
is, if ρ = 0) then the joint density factorizes into the product of two N(0, 1)
densities, which implies that the variables are independent. This situation
is one of the few where a zero covariance (zero correlation) implies indepen-
dence.

The final Example demonstrates yet another connection between Poisson
processes and order statistics from a uniform distribution. The arguments
make use of the obvious generalizations of joint densities and conditional
densities to more than two dimensions.

Definition. Say that random variables X,Y, Z have a jointly continuous
distribution with joint density f(x, y, z) if

P{(X,Y, Z) ∈ A} =

∫∫∫
A
f(x, y, z) dx dy dz for each A ⊆ R3.
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As in one and two dimensions, joint densities are typically calculated by
looking at small regions: for a small region ∆ around (x0, y0, z0)

P{(X,Y, Z) ∈ ∆} ≈ (volume of ∆)× f(x0, y0, z0).

Similarly, the joint density for (X,Y ) conditional on Z = z is defined as the
function h(x, y | Z = z) for which

P{(X,Y ) ∈ B | Z = z} =

∫∫∫
I{(x, y) ∈ B}h(x, y | Z = z) dx dy

for each subset B of R2. It can be calculated, at z values where the marginal
density for Z,

g(z) =

∫∫
R2

f(x, y, z) dx dy,

is strictly positive, by yet another small-region calculation. If ∆ is a small
subset containing (x0, y0) then, for small ε > 0,

P{(X,Y ) ∈ ∆ | Z = z0} ≈ P{(X,Y ) ∈ ∆ | z0 ≤ Z ≤ z0 + ε}

=
P{(X,Y ) ∈ ∆, z0 ≤ Z ≤ z0 + ε}

P{z0 ≤ Z ≤ z0 + ε}

≈ ((area of ∆) × ε) f(x0, y0, z0)

εg(z0)

= (area of ∆)
f(x0, y0, z0)

g(z0)
.

Remark. Notice the identification of the set of points (x, y, z) in R3

for which (x, y) ∈ ∆ and z0 ≤ z ≤ z0 + ε as a small region with volume
equal to (area of ∆) × ε.

That is, the conditional (joint) distribution of (X,Y ) given Z = z has density

h(x, y | Z = z) =
f(x, y, z)

g(z)
provided g(z) > 0.

Remark. Many authors (including me) like to abbreviate h(x, y | Z = z)
to h(x, y | z). Many others run out of symbols and write f(x, y | z) for
the conditional (joint) density of (X,Y ) given Z = z. This notation is
defensible if one can somehow tell which values are being conditioned on.
In a problem with lots of conditioning it can get confusing to remember
which f is the joint density and which is conditional on something. To
avoid confusion, some authors write things like fX,Y |Z(x, y | z) for the
conditional density and fX(x) for the X-marginal density, at the cost
of more cumbersome notation.
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Example <12.3> Let Ti denote the time to the ith point in a Poisson
process with rate λ on [0,∞). Find the joint distribution of (T1, T2) condi-
tional on T3.

From the result in the previous Example, you should be able to de-
duce that, conditional on T3 = t3 for a given t3 > 0, the random vari-
ables (T1/T3, T2/T3) are uniformly distributed over the triangular region

{(u1u2) ∈ R2 : 0 < u1 < u2 < 1}.

HW11 will step you through an analogous result for order statistics.

12.2 Examples for Chapter 12

<12.1> Example. Let X and Y be independent random variables, each distributed
N(0, 1). Define R =

√
X2 + Y 2. For each r > 0, find the density for the

conditional distribution of X given R = r.
The joint density for (X,Y ) equals f(x, y) = (2π)−1 exp

(
−(x2 + y2)/2

)
.

To find the conditional density for X given R = r, first I’ll find the joint
density ψ for X and R, then I’ll calculate its X marginal, and then I’ll divide
to get the conditional density. A simpler method is described at the end of
the Example.

We need to calculate P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε} for small,
positive δ and ε. For |x0| < r0, the event corresponds to the two small
regions in the (X,Y )-plane lying between the lines x = x0 and x = x0 + δ,
and between the circles centered at the origin with radii r0 and r0 + ε.

radius r0+ε

radius r0

x0+δx0

x0 x0+δ

y0+η =   (r0+ε)2-x0
2

y0 =   r0
2-x0

2

By symmetry, both regions contribute the same probability. Consider the
upper region. For small δ and ε, the region is approximately a parallelogram,
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with side length η =
√

(r0 + ε)2 − x2
0 −

√
r2

0 − x2
0 and width δ. We could

expand the expression for η as a power series in ε by multiple applications
of Taylor’s theorem. It is easier to argue less directly, starting from the
equalities

x2
0 + (y0 + η)2 = (r0 + ε)2 and x2

0 + y2
0 = r2

0.

Take differences to deduce that 2y0η + η2 = 2r0ε + ε2. Ignore the lower
order terms η2 and ε2 to conclude that η ≈ (r0ε/y0). The upper region has
approximate area r0εδ/y0, which implies

P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε}

≈ 2
r0εδ

y0
f(x0, y0)

≈ 2r0√
r2

0 − x2
0

exp(−r2
0/2)

2π
εδ.

Thus the random variables X and R have joint density

ψ(x, r) =
r exp(−r2/2)

π
√
r2 − x2

1{|x| < r, 0 < r}.

Once again I have omitted the subscript on the dummy variables, to indicate
that the argument works for every x, r in the specified range.

For r > 0, the random variable R has marginal density

g(r) =

∫ r

−r
ψ(x, r) dx

=
r exp(−r2/2)

π

∫ r

−r

dx√
r2 − x2

put x = r cos θ

=
r exp(−r2/2)

π

∫ 0

π

−r sin θ

r sin θ
dθ = r exp(−r2/2).

The conditional density for X given R = r equals

h(x | R = r) =
ψ(x, r)

g(r)
=

1

π
√
r2 − x2

for |x| < r and r > 0.

A goodly amount of work.
The calculation is easier when expressed in polar coordinates. From

example <11.7> you know how to construct independent N(0, 1) distributed
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random variables by starting with independent random variables R̃ with
density

g(r) = r exp(−r2/2)1{r > 0},

and U ∼ Uniform(0, 2π): define X = R̃ cos(U) and Y = R̃ sin(U).
If we start with X and Y constructed in this way then R =

√
X2 + Y 2 =

0

1

π
x / r

(x+δ) / r

θ0-ε
θ0

R̃ and the conditional density h(x | R = r) is given, for |x| < r by

δh(x | R = r)

≈ P{x ≤ R cos(U) ≤ x+ δ | R = r}
= P{x ≤ r cos(U) ≤ x+ δ} by independence of R and U

= P{θ0 − ε ≤ U ≤ θ0}+ P{θ0 − ε+ π ≤ U ≤ θ0 + π}

where θ0 is the unique value in [0, π] for which

x/r = cos(θ0) and (x+ δ)/r = cos(θ0− ε) ≈ cos(θ0) + ε sin(θ0).

Solve (approximately) for ε then substitute into the expression for the con-
ditional density:

δh(x | R = r) ≈ 2ε

2π
≈ δ

πr sin(θ0)
=

δ

πr
√

1− (x/r)2
, for |x| < r,

the same as before. �

<12.2> Example. Let S denote the height (in inches) of a randomly chosen father,
and T denote the height (in inches) of his son at maturity. Suppose each of
S and T has a N(µ, σ2) distribution with µ = 69 and σ = 2. Suppose also
that the standardized variables (S − µ)/σ and (T − µ)/σ have a standard
bivariate normal distribution with correlation ρ = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T of his young son Tom?

In standardized units, Sam has height X = (S − µ)/σ, which we are
given to equal 2.5. Tom’s ultimate standardized height is Y = (T − µ)/σ.
By assumption, before the value of X was known, the pair (X,Y ) has a
standard bivariate normal distribution with correlation ρ. The conditional
distribution of Y given that X = 2.5 is

Y | X = 2.5 ∼ N(2.5ρ, 1− ρ2)
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In the original units, the conditional distribution of T given S = 74 is normal
with mean µ+ 2.5ρσ and variance (1− ρ2)σ2, that is,

Tom’s ultimate height | Sam’s height = 74 inches ∼ N(70.5, 3.64)

If I had to make a guess, I would predict that Tom would ultimately reach
a height of 70.5 inches. �

Remark. Notice that Tom expected height (given that Sam is 74
inches) is less than his father’s height. This fact is an example of a
general phenomenon called “regression towards the mean”. The term
regression, as a synonym for conditional expectation, has become
commonplace in Statistics.

<12.3> Example. Let Ti denote the time to the ith point in a Poisson process with
rate λ on [0,∞). Find the joint distribution of (T1, T2) conditional on T3.

For fixed 0 < t1 < t2 < t3 < ∞ and suitably small positive δ1, δ2, δ3

define disjoint intervals

I1 = [0, t1) I2 = [t1, t1 + δ1] I3 = (t1 + δ1, t2),

I4 = [t2, t2 + δ2], I5 = (t2 + δ2, t3), I6 = [t3, t3 + δ3].

WriteNj for the number of points landing in Ij , for j = 1, . . . , 6. The random
variables N1, . . . , N6 are independent Poissons, with expected values

λt1, λδ1, λ(t2 − t1 − δ1), λδ2, λ(t3 − t2 − δ2), λδ3.

To calculate the joint density for (T1, T2, T3) start from

P{t1 ≤ T1 ≤ t1 + δ1, t2 ≤ T2 ≤ t2 + δ2, t3 ≤ T3 ≤ t3 + δ3}
= P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
+ smaller order terms.

Here the “smaller order terms” involve probabilities of subsets of events such
as {N2 ≥ 2, N4 ≥ 1, N6 ≥ 1}, which has very small probability:

P{N2 ≥ 2}P{N4 ≥ 1}P{N6 ≥ 1} = o(δ1δ2δ3).

Independence also gives a factorization of the main contribution:

P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
= P{N1 = 0}P{N2 = 1}P{N3 = 0}P{N4 = 1}P{N5 = 0}P{N6 = 1}
= e−λt1 [λδ1 + o(δ1)]e−λ(t2−t1−δ1)×
× [λδ2 + o(δ2)]e−λ(t3−t2−δ2)[λδ3 + o(δ3)]

= λ3δ1δ2δ3 e
−λt3 + o(δ1δ2δ3)
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If you think of ∆ as a small shoebox (hyperrectangle) with sides δ1, δ2,
and δ3, with all three δj ’s of comparable magnitude (you could even take
δ1 = δ2 = δ3), the preceding calculations reduce to

P{(T1, T2, T3) ∈ ∆} = (volume of ∆)λ3e−λt3 + smaller order terms

where the “smaller order terms” are small relative to the volume of ∆. Thus
the joint density for (T1, T2, T3) is

f(t1, t2, t3) = λ3e−λt3I{0 < t1 < t2 < t3}.

Remark. The indicator function is very important. Without it you
would be unpleasantly surprised to find

∫∫∫
R3 f =∞.

Just as a check, calculate the marginal density for T3 as

g(t3) =

∫∫
R2

f(t1, t2, t3) dt1 dt2

= λ3e−λt3
∫∫

I{0 < t1 < t2 < t3} dt1 dt2.

The double integral equals∫
I{0 < t2 < t3}

(∫ t2

0
1 dt1

)
=

∫ t3

0
t2 dt2 = 1

2 t
2
3.

That is, T3 has marginal density

g(t3) = 1
2λ

3t23e
−λt3I{t3 > 0},

which agrees with the result calculated in Example <10.1>.
Calculate the conditional density for a given t3 > 0 as

h(t1, t2 | T3 = t3) =
f(t1, t2, t3)

g(t3)

=
λ3e−λt3I{0 < t1 < t2 < t3}

1
2λ

3t23e
−λt3

=
2

t23
I{0 < t1 < t2 < t3}.

That is, conditional on T3 = t3, the pair (T1, T2) is uniformly distributed in
a triangular region of area t23/2. �
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Chapter 13

Moment generating functions

13.1 Basic facts

Formally the moment generating function is obtained by substituting s = et

in the probability generating function.

Definition. The moment generating function (m.g.f.) of a random vari-
able X is the function MX defined by MX(t) = E(eXt) for those real t at
which the expectation is well defined.

Unfortunately, for some distributions the moment generating function is
finite only at t = 0. The Cauchy distribution, with density

f(x) =
1

π(1 + x2)
for all x ∈ R,

is an example.

Remark. The problem with existence and finiteness is avoided if t is
replaced by it, where t is real and i =

√
−1. In probability theory

the function EeiXt is usually called the characteristic function, even
though the more standard term Fourier transform would cause less
confusion.

When the m.g.f. is finite in a neighborhood of the origin it can be
expanded in a power series, which gives us some information about the
moments (the values of EXk for k = 1, 2, . . . ) of the distribution:

E(eXt) =

∞∑
k=0

E(Xt)k

k!
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The coefficient of tk/k! in the series expansion of M(t) equals the kth mo-
ment, EXk.

<13.1> Example. Suppose X has a standard normal distribution. Its moment
generating function equals exp(t2/2), for all real t, because∫ ∞

−∞
ext

e−x
2/2

√
2π

dx =
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2
+
t2

2

)
dx

= exp

(
t2

2

)
.

For the last equality, compare with the fact that the N(t, 1) density inte-
grates to 1.

The exponential in MX(t) expands to

∞∑
m=0

1

m!

(
t2

2

)m
=

∞∑
m=0

(
(2m)!

m!2m

)
t2m

(2m)!

Pick off coefficients.

EX2 =
2!

1!21
= 1 (you knew that)

EX4 =
4!

2!22
= 3

. . .

E(X2m) =
(2m)!

m!2m
for m a positive integer.

The coefficient for each odd power of t equals zero, which reflects the fact
that EXk = 0, by anti-symmetry, if k is odd.

�

<13.2> Example. If X ∼ gamma(α), with α > 0, then for t < 1

MX(t) =
1

Γ(α)

∫ ∞
0

extxα−1e−xdx

=
1

(1− t)αΓ(α)

∫ ∞
0

yα−1e−ydy putting y = (1− t)x

= (1− t)−α.

For t ≥ 1 the integral diverges and MX(t) =∞. For |t| < 1,

MX(t) =
∑∞

k=0

(
−α
k

)
(−t)k

=
∑∞

k=0
(−1)k

(−α)(−α− 1) . . . (−α− k + 1)

k!
tk.
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The kth moment, E(Xk), equals (α+k−1))(α+k−2) . . . (α), the coeeficient
of tk/k!. Compare with the direct calculation in Example <10.3>.

�

13.2 MGF’s determine distributions

If two random variables X and Y have moment generating functions that are
finite and equal in some neighborhood of 0 then they have the same distri-
butions. This result is much harder to prove than its analog for probability
generating functions.

For example, if MX(t) = et
2/2, even just for t near 0, then X must have

a N(0, 1) distribution.

13.3 Approximations via moment generating functions

If Xn = ξ1 + · · ·+ ξn with the ξi’s independently Ber(p) distributed then

MXn(t) = E
(
etξ1etξ2 . . . etξn

)
=
(
Eetξ1

)(
Eetξ2

)
. . .
(
Eetξn

)
by independence

=
(
q + pet

)n
.

That is, the Bin(n, p) has m.g.f.
(
q + pet

)n
.

Write q for 1−p and σ2
n for npq. You know that the standardized random

variable Zn := (Xn − np)/σn is approximately N(0, 1) distributed. The
moment generating function MZn(t) also suggests such an approximation.
Then

MZn(t) = Eet(X−np)/σn

= e−npt/σEeX(t/σn) = e−npt/σMXn(t/σn)

= e−npt/σn
(
q + pet/σn

)n
=
(
qe−pt/σn + peqt/σn

)n
.

The power series expansion for qe−pt/σ + peqt/σ simplifies:

q

(
1− pt

σ
+
p2t2

2!σ2
− p3t3

3!σ3
+ . . .

)
+ p

(
1 +

qt

σ
+
q2t2

2!σ2
− q3t3

3!σ3
+ . . .

)
= 1 +

pqt

2σ2
+
pq(p− q)t3

6σ3
+ . . .
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For large n use the series expansion log(1+z)n = n(z−z2/2+ . . . ) to deduce
that

logMZn(t) =
t2

2
+

(q − p)t3

6
√
npq

+ terms of order
1

n
or smaller

The t2/2 term agree with the logarithm of the moment generating function
for the standard normal. As n tends to infinity, the remainder terms tend
to zero.

The convergence of MZn(t) to et
2/2 can be used to prove rigorously that

the distribution of the standardized Binomial “converges to the standard
normal” as n tends to infinity. In fact the series expansion for logMn(t) is
the starting point for a more precise approximation result—but for that story
you will have to take the more advanced probability course Statistics 330.
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