
Chapter 5

Normal approximation to the
Binomial

5.1 History

In 1733, Abraham de Moivre presented an approximation to the Binomial
distribution. He later (de Moivre, 1756, page 242) appended the derivation
of his approximation to the solution of a problem asking for the calculation
of an expected value for a particular game. He posed the rhetorical question
of how we might show that experimental proportions should be close to their
expected values:

From this it follows, that if after taking a great number of Experi-
ments, it should be perceived that the happenings and failings have
been nearly in a certain proportion, such as of 2 to 1, it may safely
be concluded that the Probabilities of happening or failing at any
one time assigned will be very near in that proportion, and that the
greater the number of Experiments has been, so much nearer the
Truth will the conjectures be that are derived from them.

But suppose it should be said, that notwithstanding the reason-
ableness of building Conjectures upon Observations, still considering
the great Power of Chance, Events might at long run fall out in a
different proportion from the real Bent which they have to happen
one way or the other; and that supposing for Instance that an Event
might as easily happen as not happen, whether after three thousand
Experiments it may not be possible it should have happened two thou-
sand times and failed a thousand; and that therefore the Odds against
so great a variation from Equality should be assigned, whereby the
Mind would be the better disposed in the Conclusions derived from
the Experiments.
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5. Normal approximation to the Binomial 2

In answer to this, I’ll take the liberty to say, that this is the
hardest Problem that can be proposed on the Subject of Chance, for
which reason I have reserved it for the last, but I hope to be forgiven
if my Solution is not fitted to the capacity of all Readers; however
I shall derive from it some Conclusions that may be of use to every
body: in order thereto, I shall here translate a Paper of mine which
was printed November 12, 1733, and communicated to some Friends,
but never yet made public, reserving to myself the right of enlarging
my own Thoughts, as occasion shall require.

De Moivre then stated and proved what is now known as the normal
approximation to the Binomial distribution. The approximation itself has
subsequently been generalized to give normal approximations for many other
distributions. Nevertheless, de Moivre’s elegant method of proof is still
worth understanding. This Chapter will explain de Moivre’s approximation,
using modern notation.

A Method of approximating the Sum of the Terms of the Binomial
a+ b\n expanded into a Series, from whence are deduced some
practical Rules to estimate the Degree of Assent which is to
be given to Experiments.

Altho’ the Solution of problems of Chance often requires that
several Terms of the Binomial a+ b\n be added together, never-
theless in very high Powers the thing appears so laborious, and
of so great difficulty, that few people have undertaken that Task;
for besides James and Nicolas Bernouilli, two great Mathemati-
cians, I know of no body that has attempted it; in which, tho’
they have shown very great skill, and have the praise that is due
to their Industry, yet some things were further required; for what
they have done is not so much an Approximation as the deter-
mining very wide limits, within which they demonstrated that the
Sum of the Terms was contained. Now the method . . .

5.2 Pictures of the binomial

Suppose Xn has a Bin(n, p) distribution. That is,

bn(k) := P{Xn = k} =

(
n

k

)
pkqn−k for k = 0, 1, . . . , n, where q = 1− p,
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5. Normal approximation to the Binomial 3

Recall that we can think of Xn as a sum of independent random variables
Y1+· · ·+Yn with P{Yi = 1} = p and P{Yi = 0} = q. From this representation
it follows that

EXn =
∑

i
EYi = nEY1 = np

var(Xn) =
∑

i
var(Yi) = n× var(Y1) = npq

Recall also that Tchebychev’s inequality suggests the distribution should
be clustered around np, with a spread determined by the standard devia-
tion, σn :=

√
npq.

What does the Binomial distribution look like? The plots in the next
display, for the Bin(n, 0.4) distribution with n = 20, 50, 100, 150, 200, are
typical. Each plot on the left shows bars of height bn(k) and width 1,
centered at k. The maxima occur near n×0.4 for each plot. As n increases,
the spread also increases, reflecting the increase in the standard deviations
σn =

√
npq for p = 0.4. Each of the shaded regions on the left has area to

one because
∑n

k=0 bn(k) = 1 for each n.
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The plots on the right show represent the distributions of the standard-
ized random variables Zn = (Xn − np)/σn. The location and scaling effects
of the increasing expected values and standard deviations (with p = 0.4 and
various n) are now removed. Each plot is shifted to bring the location of the
maximum close to 0 and the horizontal scale is multiplied by a factor 1/σn.
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A bar of height σn× bn(k) with width 1/σn is now centered at (k− np)/σn.
The plots all have similar shapes. Each shaded region still has area 1.

5.3 De Moivre’s argument

Notice how the standardized plots in the last picture settle down to a sym-
metric ‘bell-shaped’ curve. You can understand this effect by looking at the
ratio of successive terms:

bn(k)/bn(k − 1)

=

(
n!

k!(n− k)!
pkqn−k

)
/

(
n!

(k − 1)!(n− k + 1)!
pk−1qn−k+1

)
= (n− k + 1)p/(kq) for k = 1, 2, . . . , n.

As a consequence, bn(k) ≥ bn(k − 1) if and only if (n − k + 1)p ≥ kq, that
is, iff (n + 1)p ≥ k. For fixed n, the probability bn(k) achieves its largest
value at kmax = b(n+ 1)pc ≈ np. The probabilities bn(k) increase with k for
k ≤ kmax then decrease for k > kmax. That explains why each plot on the
left has a peak near np.

Now for the shape. At least for k = kmax + i near kmax we get a good
approximation for the logarithm of the ratio of successive terms using the
Taylor approximation: log(1 + x) ≈ x for x near 0. Indeed,

b(kmax + i)/b(kmax + i− 1) =
(n− kmax − i+ 1)p

(kmax + i)q

≈ (nq − i)p
(np+ i)q

=
1− i/(nq)
1 + i/(np)

after dividing through by npq.

The logarithm of the last ratio equals

log

(
1− i

nq

)
− log

(
1 +

i

np

)
≈ − i

nq
− i

np
= − i

npq
.

By taking a product of successive ratios we get the ratio of the individual
Binomial probabilities to their largest term. On a log scale the calculation
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is even simpler. For example, if m ≥ 1 and kmax +m ≤ n,

log
b(kmax +m)

b(kmax)

= log

(
b(kmax + 1)

b(kmax)
× b(kmax + 2)

b(kmax + 1)
× · · · × b(kmax +m)

b(kmax +m− 1)

)
= log

b(kmax + 1)

b(kmax)
+ log

b(kmax + 2)

b(kmax + 1)
+ · · ·+ log

b(kmax +m)

b(kmax +m− 1)

≈ −1− 2− · · · −m
npq

≈ −1
2

m2

npq
.

The last line used the fact that 1 + 2 + 3 + · · ·+m = 1
2m(m+ 1) ≈ 1

2m
2.

In summary,

P{X = kmax +m} ≈ b(kmax) exp

(
− m2

2npq

)
for m not too large.

An analogous approximation holds for 0 ≤ kmax +m ≤ kmax.

5.4 The largest binomial probability

Using the fact that the probabilities sum to 1, for p = 1/2 de Moivre was
able to show that the b(kmax) should decrease like 2/(B

√
n), for a constant B

that he was initially only able to express as an infinite sum. Referring to his
calculation of the ratio of the maximum term in the expansion of (1 + 1)n

to the sum, 2n, he wrote (de Moivre, 1756, page 244)

When I first began that inquiry, I contented myself to deter-
mine at large the Value of B, which was done by the addition
of some Terms of the above-written Series; but as I perceived
that it converged but slowly, and seeing at the same time that
what I had done answered my purpose tolerably well, I desisted
from proceeding further till my worthy and learned Friend Mr.
James Stirling, who had applied himself after me to that inquiry,
found that the Quantity B did denote the Square-root of the Cir-
cumference of a Circle whose Radius is Unity, so that if that
Circumference be called c, the Ratio of the middle Term to the
Sum of all the Terms will be expressed by 2

√
nc.
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In modern notation, the vital fact discovered by the learned Mr. James
Stirling asserts that

n! ≈
√

2π nn+1/2e−n for n = 1, 2, . . .

in the sense that the ratio of both sides tends to 1 (very rapidly) as n goes
to infinity. See Feller (1968, pp52-53) for an elegant, modern derivation of
the Stirling formula.

By Stirling’s formula, for k = kmax ≈ np,

bn(k) =
n!

k!(n− k)!
pkqn−k

≈ 1√
2π

nn+1/2

(np)np+1/2(nq)nq+1/2
pnpqnq

=
1√

2πnpq
.

De Moivre’s approximation becomes

P{Xn = kmax +m} ≈ 1√
2πnpq

exp

(
− m2

2npq

)
,

or, substituting np for kmax and writing k for kmax +m,

P{Xn = k} ≈ 1√
2πnpq

exp

(
−(k − np)2

2npq

)
=

1

σn
√

2π
exp

(
−(k − np)2

2σ2n

)
.

That is, P{Xn = k} is approximately equal to the area under the smooth
curve

f(x) =
1

σn
√

2π
exp

(
−(x− np)2

2σ2n

)
,

for the interval k − 1/2 ≤ x ≤ k + 1/2. (The length of the interval is 1, so
it does not appear in the previous display.)

Similarly, for each pair of integers with 0 ≤ a < b ≤ n,

P{a ≤ Xn ≤ b} =
∑b

k=a
bn(k) ≈

∑b

k=a

∫ k+1/2

k−1/2
f(x) dx =

∫ b+1/2

a−1/2
f(x) dx.

A change of variables, y = (x− np)/σn, simplifies the last integral to

1√
2π

∫ β

α
e−y

2/2dy where α =
a− np− 1/2

σn
and β =

b− np+ 1/2

σn
.

Remark. It usually makes little difference to the approximation if we
omit the ±1/2 terms from the definitions of α and β.
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5.5 Normal approximations

How does one actually perform a normal approximation? Back in the olden
days, I would have interpolated from a table of values for the function

Φ(x) :=
1√
2π

∫ x

−∞
e−y

2/2dy,

which was found in most statistics texts. For example, ifX has a Bin(100, 1/2)
distribution,

P{45 ≤ X ≤ 55} ≈ Φ

(
55.5− 50

5

)
− Φ

(
44.5− 50

5

)
≈ 0.8643− 0.1356 = 0.7287

These days, I would just calculate in R:

> pnorm(55.5, mean = 50, sd = 5) - pnorm(44.5, mean = 50, sd = 5)

[1] 0.7286679

or use another very accurate, built-in approximation:

> pbinom(55,size = 100, prob = 0.5) - pbinom(44,size = 100, prob = 0.5)

[1] 0.728747

5.6 Continuous distributions

At this point, the integral in the definition of Φ(x) is merely a reflection
of the Calculus trick of approximating a sum by an integral. Probabilists
have taken a leap into abstraction by regarding Φ, or its derivative φ(y) :=
exp(−y2/2)/

√
2π, as a way to define a probability distribution

<5.1> Definition. A random variable Y is said to have a continuous distribu-
tion (on R) with density function f(·) if

P{a ≤ Y ≤ b} =

∫ b

a
f(y) dy for all intervals [a, b] ⊆ R.

Equivalently, for each subset A of the real line,

P{Y ∈ A} =

∫
A
f(y) dy =

∫ ∞
−∞

I{y ∈ A}f(y) dy
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5. Normal approximation to the Binomial 8

Notice that f should be a nonnegative function, for otherwise it might
get awkward when calculating P{Y ∈ A} for the set A = {y ∈ R : f(y) < 0}:

0 ≤ P{Y ∈ A} =

∫
A
f(y) dy ≤ 0.

Remark. By putting A equal to R we get

1 = P{−∞ < Y < +∞} =

∫ ∞
−∞

f(y) dy

That is, the integral of a density function over the whole real line
equals one.

I prefer to think of densities as being defined on the whole real line,
with values outside the range of the random variable being handled by
setting the density function equal to zero in appropriate places. If a
range of integration is not indicated explicitly, it can then always be
understood as −∞ to ∞, with the zero density killing off unwanted
contributions.

Distributions defined by densities have both similarities to and differ-
ences from the sort of distributions I have been considering up to this point
in Stat 241/541. All the distributions before now were discrete. They were
described by a (countable) discrete set of possible values {xi : i = 1, 2, . . . }
that could be taken by a random variable X and the probabilities with
which X took those values:

P{X = xi} = pi for i = 1, 2, . . . .

For any subset A of the real line

P{X ∈ A} =
∑

i
I{xi∈A}P{X = xi} =

∑
i
I{xi∈A}pi

Expectations, variances, and things like Eg(X) for various functions g, could
all be calculated by conditioning on the possible values for X.

For a random variable X with a continuous distribution defined by a
density f , we have

P{X = x} =

∫ x

x
f(y) dy = 0

for every x ∈ R. We cannot hope to calculate a probability by adding up
(an uncountable set of) zeros. Instead, as you will see in Chapter 7, we must
pass to a limit and replace sums by integrals when a random variable X has
a continuous distribution.
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5.7 Appendix: The mysterious
√
2π

The
√

2π appeared in de Moivre’s approximation by way of Stirling’s for-
mula. It is slightly mysterious why it appears in that formula. The reason
for both appearances is the fact that the constant

C :=

∫ ∞
−∞

exp(−x2/2) dx

is exactly equal to
√

2π, as I now explain.
Equivalently, the constant C2 =

∫∫
exp(−(x2 +y2)/2) dx dy equal to 2π.

(Here, and subsequently, the double integral runs over the whole plane.) We
can evaluate this double integral by using a small Calculus trick.

Using the fact that∫ ∞
0

I{r ≤ z}e−z dz = e−r for r > 0,

we may rewrite C2 as a triple integral: replace r by (x2 + y2)/2, then
substitute into the double integral to get

C2 =

∫∫ (∫ ∞
0

I{x2 + y2 ≤ 2z}e−z dz
)
dx dy

=

∫ ∞
0

(∫∫
I{x2 + y2 ≤ 2z} dx dy

)
e−z dz.

With the change in the order of integration, the double integral is now
calculating the area of a circle centered at the origin and with radius

√
2z.

The triple integral reduces to∫ ∞
0

π
(√

2z
)2
e−z dz =

∫ ∞
0

π2ze−z dz = 2π.

That is, C =
√

2π.
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