
Chapter 3

Things binomial

3.1 Overview

The standard coin-tossing mechanism drives much of classical probability. It
generates several standard distributions, the most important of them being
the Binomial. The name comes from the binomial coefficient,

(
n
k

)
, which

is defined as the number of subsets of size k for a set of size n. (Read the
symbol as “n choose k”.) Clearly,

(
n
0

)
= 1 =

(
n
n

)
: there is only one empty

subset and only one subset containing everything.
Here is a neat probabilistic way to determine

(
n
k

)
, for integers 1 ≤ k ≤ n.

Suppose k balls are sampled at random, without replacement, from an urn
containing k red balls and n−k black balls. Each of the

(
n
k

)
different subsets

of size k has probability 1/
(
n
k

)
of being selected. In particular, the event

A = {the sample consists of the red balls}

has probabilty 1/
(
n
k

)
. We can also calculate this probability using a condi-

tioning argument. Given that the first i balls are red, the probability that
the (i+ 1)st is red is (k − i)/(n− i). Thus

PA =
k

n
.
k − 1

n− 1
.
k − 2

n− 2
. . .

1

n− k + 1
=
k!(n− k)!

n!
.

Equating the two values for PA we get(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!

The formula also holds for k = 0 if we interpret 0! as 1.

Statistics 241/541 fall 2014 c©David Pollard, Aug2014 1



3. Things binomial 2

Remark. The symbol
(
n
k

)
is called a binomial coefficient because of its

connection with the binomial expansion: (a + b)n =
∑n
k=0

(
n
k

)
akbn−k.

The expansion can be generalized to fractional and negative powers by
means of Taylor’s theorem. For general real α define(
α

0

)
= 1 and

(
α

k

)
=
α(α− 1)(α− 2) . . . (α− k + 1)

k!
for k = 1, 2, . . .

Then

(1 + x)α =
∑∞

k=0

(
α

k

)
xk at least for |x| < 1.

Definition. (Binomial distribution) A random variable X is said to have a
Bin(n, p) distribution, for a parameter p in the range 0 ≤ p ≤ 1, if it can
take values 0, 1, . . . , n− 1, n with probabilities

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n

Compare with the binomial expansion,

1 = (p+ q)n =
∑n

k=0

(
n

k

)
pkqn−k where q = 1− p.

Example <3.1> For n independent tosses of a coin that lands heads
with probability p, show that the total number of heads has a Bin(n, p)
distribution, with expected value np.

The Binomial distribution arises in any situation where one is interested
in the number of successes in a fixed number of independent trials (or ex-
periments), each of which can result in either success or failure.

Example <3.2> An unwary visitor to the Big City is standing at the
corner of 1st Street and 1st Avenue. He wishes to reach the railroad station,
which actually occupies the block on 6th Street from 3rd to 4th Avenue.
(The Street numbers increase as one moves north; the Avenue numbers
increase as one moves east.) He is unaware that he is certain to be mugged
as soon as he steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor

1

6

3 4

lets himself be guided by the tosses of a fair coin: at each intersection he
goes east, with probability 1/2, or north, with probability 1/2. What is the
probability that he is mugged outside the railroad station?
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3. Things binomial 3

The following problem is an example of Bayesian inference, based on
the probabilistic result known as Bayes’s rule. You need not memorize
the rule, because it is just an application of the conditioning method you
already know.

Example <3.3> Suppose a multiple-choice exam consists of a string
of unrelated questions, each having three possible answers. Suppose also
that there are two types of candidate who will take the exam: guessers,
who make a blind stab on each question, and skilled candidates, who can
always eliminate one obviously false alternative, but who then choose at
random between the two remaining alternatives. Finally, suppose 70% of the
candidates who take the exam are skilled and the other 30% are guessers.
A particular candidate has gotten 4 of the first 6 question correct. What is
the probability that he will also get the 7th question correct?

As a method of solving statistical problems, Bayesian inference is advo-
cated devoutly by some Statisticians, and derided by others. There is no
disagreement regarding the validity of Bayes’s rule; it is the assignment of
prior probabilities—such as the PS and PG of the previous Example—that
is controversial in a general setting.

The Bayesian message comes through more strongly in the next Example.

Example <3.4> Suppose we have three coins, which land heads with
probabilities p1, p2, and p3. Choose a coin according to the prior distri-
bution θi = P{ choose coin i }, for i = 1, 2, 3, then toss that coin n times.
Find the posterior probabilities P{ chose coin i | k heads with n tosses },
for k = 0, 1, . . . , n.

We will meet the Binomial again.

3.2 The examples

<3.1> Example. For n independent tosses of a coin that lands heads with prob-
ability p, show that the total number of heads has a Bin(n, p) distribution,
with expected value np.

Clearly X can take only values 0, 1, 2, . . . , n. For a fixed a k in this range,
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3. Things binomial 4

break the event {X = k} into disjoint pieces like

F1 = {first k gives heads, next n-k give tails}
F2 = {first (k-1) give heads, then tail, then head, then n- k-1 tails}

...

Here i runs from 1 to
(
n
k

)
, because each Fi corresponds to a different choice

of the k positions for the heads to occur.

Remark. The indexing on the Fi is most uninformative; it gives no
indication of the corresponding pattern of heads and tails. Maybe you
can think of something better.

Write Hj for the event {jth toss is a head}. Then

PF1 = P
(
H1H2 . . . HkH

c
k+1 . . . H

c
n

)
= (PH1)(PH2) . . . (PHc

n) by independence

= pk(1− p)n−k.

A similar calculation gives PFi = pk(1 − p)n−k for every other i; all that
changes is the order in which the p and (1− p) factors appear. Thus

P{X = k} =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n,

which is the asserted Binomial distribution.
It is possible to calculate EX by the summation formula

EX =
∑n

k=0
E(X|X = k)P{X = k}

=
∑n

k=0
k

(
n

k

)
pk(1− p)n−k

=
∑n

k=1

n(n− 1)!

(k − 1)!(n− k)!
pk(1− p)n−k

= np
∑n−1

k−1=0

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np cf. binomial expansion of (p+ (1− p))n−1.

The manipulations of the sums was only slightly tedious, but why endure
even a little tedium when the method of indicators is so much simpler?
Define

Xi =
{

1 if ith toss is head
0 if ith toss is tail.
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3. Things binomial 5

Then X = X1 + . . . Xn, which gives EX = EX1 + . . .EXn = nEX1. Calcu-
late.

EX1 = 0P{X1 = 0}+ 1P{X1 = 1} = p.

Thus EX = np.

Remark. The calculation of the expected value made no use of the
independence. If each Xi has marginal distribution Ber(p), that is, if

P{Xi = 1} = p = 1− P{Xi = 0} for each i,

then E(X1 + . . . Xn) = np, regardless of possible dependence between
the tosses. The expectation of a sum is the sum of the expectations,
no matter how dependent the summands might be.The symbol Ber stands

for “Bernoulli”.
�

<3.2> Example. An unwary visitor to the Big City is standing at the corner of
1st Street and 1st Avenue. He wishes to reach the railroad station, which
actually occupies the block on 6th Street from 3rd to 4th Avenue. (The Street
numbers increase as one moves north; the Avenue numbers increase as one
moves east.) He is unaware that he is certain to be mugged as soon as he
steps onto 6th Street or 6th Avenue.

Being unsure of the exact location of the railroad station, the visitor
lets himself be guided by the tosses of a fair coin: at each intersection he
goes east, with probability 1/2, or north, with probability 1/2. What is the
probability that he is mugged outside the railroad station?

To get mugged at (3,6) or (4,6) the visitor must proceed north from

1

6

3 4

either the intersection (3,5) or the intersection (4,5)—we may assume that
if he gets mugged at (2,6) and then moves east, he won’t get mugged again
at (3,6), which would be an obvious waste of valuable mugging time for no
return. The two possibilities correspond to disjoint events.

P{mugged at railroad}
= P{reach (3,5), move north}+ P{reach (4,5), move north}
= 1/2P{reach (3,5)}+ 1/2P{reach (4,5)}
= 1/2P{move east twice during first 6 blocks}

+ 1/2P{move east 3 times during first 7 blocks}.

A better way to describe the last event might be “move east 3 times and
north 4 times, in some order, during the choices governed by the first 7
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3. Things binomial 6

tosses of the coin.” The Bin(7, 1/2) lurks behind the calculation. The other
calculation involves the Bin(6, 1/2).

P{mugged at railroad} =
1

2

(
6

2

)(
1

2

)2(1

2

)4

+
1

2

(
7

3

)(
1

2

)3(1

2

)4

=
65

256
.

Remark. Notice that the events {reach (3,5)} and {reach (4,5)} are
not disjoint. We need to include the part about moving north to get a
clean break.

�

<3.3> Example. Suppose a multiple-choice exam consists of a string of unrelated
questions, each having three possible answers. Suppose there are two types of
candidate who will take the exam: guessers, who make a blind stab on each
question, and skilled candidates, who can always eliminate one obviously
false alternative, but who then choose at random between the two remaining
alternatives. Suppose 70% of the candidates who take the exam are skilled
and the other 30% are guessers. A particular candidate has gotten 4 of the
first 6 question correct. What is the probability that he will also get the 7th
question correct?

Interpret the assumptions to mean that a guesser answers questions inde-
pendently, with probability 1/3 of being correct, and that a skilled candidate
also answers independently, but with probability 1/2 of being correct. Let X
denote the number of questions answered correctly from the first six. Let C
denote the event {question 7 answered correctly}, G denote the event {the
candidate is a guesser}, and S denote the event {the candidate is skilled}.
Then

(i) conditional on being a guesser, X has a Bin(6, 1/3) distribution (some-
times abbreviated to X | G ∼ Bin(6, 1/3))

(ii) conditional on being a skilled candidate, X has a Bin(6, 1/2) distribu-
tion (sometimes abbreviated to X | S ∼ Bin(6, 1/2)).

(iii) PG = 0.3 and PS = 0.7.

The question asks for P(C | X = 4).
Split according to the type of candidate, then condition.

P(C | X = 4) = P{CS | X = 4}+ P{CG | X = 4}
= P(S | X = 4)P(C | X = 4, S)

+ P(G | X = 4)P(C | X = 4, G).
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3. Things binomial 7

If we know the type of candidate, the {X = 4} information becomes irrele-
vant. The last expression simplifies to

1/2P(S | X = 4) + 1/3P(G | X = 4).

Notice how the success probabilities are weighted by probabilities that sum-
marize our current knowledge about whether the candidate is skilled or
guessing. If the roles of {X = 4} and type of candidate were reversed we
could use the conditional distributions for X to calculate conditional prob-
abilities:

P(X = 4 | S) =
(
6
4

)
(1/2)

4(1/2)
2 =

(
6
4

)
1/64

P(X = 4 | G) =
(
6
4

)
(1/3)

4(2/3)
2 =

(
6
4

)
4/729.

Apply the usual splitting/conditioning argument.

P(S | X = 4) =
PS{X = 4}
P{X = 4}

=
P(X = 4 | S)PS

P(X = 4 | S)PS + P(X = 4 | G)PG

=

(
6
4

)
1/64(.7)(

6
4

)
1/64(.7) +

(
6
4

)
4/729(.3)

≈ .869.

There is no need to repeat the calculation for the other conditional proba-
bility, because

P(G | X = 4) = 1− P(S | X = 4) ≈ .131.

Thus, given the 4 out of 6 correct answers, the candidate has conditional
probability of approximately

1/2(.869) + 1/3(.131) ≈ .478

of answering the next question correctly.

Remark. Some authors prefer to summarize the calculations by means
of the odds ratios:

P(S | X = 4)

P(G | X = 4)
=

PS
PG
· P(X = 4 | S)

P(X = 4 | G)
.

The initial odds ratio, PS/PG, is multiplied by a factor that reflects
the relative support of the data for the two competing explanations
“skilled” and “guessing”.

�
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3. Things binomial 8

<3.4> Example. Suppose we have three coins, which land heads with probabili-
ties p1, p2, and p3. Choose a coin according to the prior distribution
θi = P{choose coin i}, for i = 1, 2, 3, then toss that coin n times. Find the
posterior probabilities

P{chose coin i | k heads with n tosses } for k = 0, 1, . . . , n.

Let Ci denote the event {chose coin i} and Dk denote the event that we
get k heads from the n tosses. Then PCi = θi and

P(Dk | Ci) =

(
n

k

)
pki (1− pi)n−k for k = 0, 1, . . . , n.

Condition.

P(Ci | Dk) =
P(CiDk)

PDk

=
P(Dk | Ci)P(Ci)∑3
j=1 P(Dk | Cj)P(Cj)

=
pki (1− pi)n−kθi∑3
j=1 p

k
j (1− pj)n−kθj

Notice that the
(
n
k

)
factors have cancelled. In fact, we would get the same

posterior probabilities if we conditioned on any particular pattern of k heads
and n− k tails.

The R-script Bayes.R defines functions to plot the posterior probabilities
as a function of k/n, for various choices of the pi’s and the θi’s and n.
The P(C1 | Dk) are in solid black, the P(C2 | Dk) are in dashed red, and
the P(C3 | Dk) are in dotted blue. For the pictures I chose p1 = 0.45, p2 =
0.5 and p3 = 0.55 with prior probabilities θ1 = 0.5, θ2 = 0.3, and θ3 = 0.2.
The pictures were produced by running:

draw.posterior(

p = c(0.45,0.5,0.55),

tosses=c(10,50,100,250),

prior = c(0.5,0.3,0.2)

)
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0
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When n gets large, the posterior probability P(Ci | Dk) gets closer to 1
for values of k/n close to pi, a comforting fact. �
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