
Chapter 6

Central limit theorems

6.1 Overview

Recall that a random variable Z is said to have a standard normal distri-
bution, denoted by N(0, 1), if it has a continuous distribution with density

φ(z) = (2π)−1/2 exp(−z2/2) for −∞ < z <∞.

That is, for all intervals [a, b],

P{a ≤ Z ≤ b} =

∫ b

a
φ(z) dz,

and, for each subset A of the real line, P{Z ∈ A} =
∫
A φ(z) dz. In particular,

for each fixed b we must have P{Z = b} =
∫ b
b φ(z) dz = 0.

More generally, for µ ∈ R and σ > 0, a random variable X is said to
have a N(µ, σ2) distribution if (X−µ)/σ has a N(0, 1) distribution. That
is,

P{a ≤ X ≤ b} = P{(a− µ)/σ ≤ (X − µ)/σ) ≤ (b− µ)/σ}

=

∫ (b−µ)/σ

(a−µ)/σ
φ(z) dz

=

∫ b

a
fµ,σ(x) dx

where

fµ,σ(x) :=
1

σ
φ

(
x− µ
σ

)
=

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞.

In other words, X has a continuous distribution with density fµ,σ(x).
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Remark. In Chapter 7 you will see that if Z has a N(0, 1) distribution
then EZ = 0 and var(Z) = 1. Consequently, if X has a N(µ, σ2)
distribution then EX = µ and var(X) = σ2.

The normal approximation to the Binomial distribution also implies a
normal approximation for the distribution of some other random variables.

Example <6.1> A normal approximation for a sample median

The normal approximation to the Binomial is just one example of a
general phenomenon corresponding to the mathematical result known as
the central limit theorem. Roughly stated, the theorem asserts:

If X can be written as a sum of a large number of relatively small, independent

random variables, and if EX = µ and var(X) = σ2, then the standardized variable

(X − µ)/σ has approximately a standard normal distribution. Equivalently, X is

approximately N(µ, σ2) distributed.

If you are interested in the reasons behind the success of normal ap-
proximation, see the Appendix to Chapter 8 for an outline of a proof of the
central limit theorem.

The normal distribution has many agreeable properties that make it easy
to work with. Many statistical procedures have been developed under nor-
mality assumptions, with occasional offhand references to the central limit
theorem to mollify anyone who doubts that all distributions are normal.
That said, let me also note that modern theory has been much concerned
with possible harmful effects of unwarranted assumptions such as normal-
ity. The modern fix often substitutes huge amounts of computing for neat,
closed-form, analytic expressions; but normality still lurks behind some of
the modern data analytic tools.

Example <6.2> A hidden normal approximation—the boxplot

The normal approximation is heavily used to give an estimate of vari-
ability for the results from sampling.

Example <6.3> Normal approximations for sample means
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6.2 The examples

<6.1> Example. Suppose U1, . . . , Un are independent random variables each dis-
tributed Uniform(0, 1). That is,

P{a ≤ Ui ≤ b} = b− a for all 0 < a ≤ b < 1.

The corresponding density function is f(z) = 1{0 < z < 1}.
For simplicity suppose n is even, n = 2k. The sample median Mn is

defined as the kth smallest when the Ui’s are arranged in increasing order.

Remark. Some authors would define Mn as the (k + 1)st smallest or
as some value between the kth and (k + 1)st. It doesn’t make much
difference when n is large.

0 1U4 U1 U5 U2 U6 U3

For example, if n = 6 and the Ui’s are as shown then Mn would be equal
to U5. For another realization it would probably be equal to another Ui.

Now consider any fixed y in (0, 1). Write Ny for the number of Ui’s that
are ≤ y. More formally,

Ny =
∑

i≤n
1{Ui ≤ y}.

The random variable Ny counts the number of “successes” (the number
of Ui’s that are ≤ y) in n independent trials; Ny has Bin(n, y) distribution,
with expected value ny and variance ny(1− y). The key thing to notice is:

Ny ≥ k iff “at least k of the Ui’s are ≤ y iff Mn ≤ y.

Thus

P{Mn ≤ y} = P{Ny ≥ k}

= P

{
Ny − ny√
ny(1− y)

≥ k − ny√
ny(1− y)

}
.

Use the normal approximation for the distribution of the standardized vari-
able (Ny − ny)/

√
ny(1− y) to deduce that the last probability is approxi-

mately equal to∫ ∞
γ

φ(y) dy = 1− Φ(γ) where γ := (k − ny)/
√
ny(1− y) .
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Now consider a special value, y = (1 + x/
√
n)/2, for a fixed x. When n

is large enough we certainly have y ∈ (0, 1). This choice also gives

ny(1− y) =
n

4

(
1− x2

n

)
≈ n

4

and

k − ny = −x
√
n /2,

implying γ ≈ −x and

P{Mn ≤ (1 + x/
√
n)/2} ≈ 1− Φ(−x) = Φ(x).

For the last equality I have used the symmetry of φ around zero to deduce
that

∫∞
−x φ(y) dy =

∫ x
−∞ φ(y) dy.

Put another way,

P{2
√
n(Mn − 1/2) ≤ x} ≈ Φ(x)

which shows that 2
√
n(Mn − 1/2) is approximately N(0, 1) distributed.

Remark. It might be more convincing to use the approximation twice,
first with x = b and then with x = a, where a < b, then subtract.

That is, Mn has approximately a N(1/2, 1/(4n)) distribution. �

<6.2> Example. The boxplot provides a convenient way of summarizing data
(such as grades in Statistics 241/541). The method is:

(i) arrange the data in increasing order

(ii) find the split points

LQ = lower quartile: 25% of the data smaller than LQ

M = median: 50% of the data smaller than M

UQ = upper quartile: 75% of the data smaller than UQ

(iii) calculate IQR (= inter-quartile range) = UQ−LQ

(iv) draw a box with ends at LQ and UQ, and a dot or a line at M

(v) draw whiskers out to UQ + (1.5 × IQR) and LQ − (1.5 × IQR), but
then trim them back to the most extreme data point in those ranges
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(vi) draw dots for each individual data point outside the box and whiskers
(There are various ways to deal with cases where the number of ob-
servations is not a multiple of four, or where there are ties, or . . . )

LQ UQM

Where does the 1.5×IQR come from? Consider n independent observa-
tions from a N(µ, σ2) distribution. The proportion of observations smaller
than any fixed x should be approximately equal to P{W ≤ x}, where W has
a N(µ, σ2) distribution. From normal tables (or a computer),

P{W ≤ µ+ .675σ} ≈ .75 and P{W ≤ µ− .675σ} ≈ .25

and, of course, P{W ≤ µ} = .5. For the sample we should expect

LQ ≈ µ− .675σ and UQ ≈ µ+ .675σ and M ≈ µ

and consequently, IQR ≈ 1.35σ. Check that 0.675 + (1.5 × 1.35) = 2.70.
Before trimming, the whiskers should approximately reach to the ends of
the range µ± 2.70σ. From computer (or tables),

P{W ≤ µ− 2.70σ} = P{W ≥ µ+ 2.70σ} = .003

Only about 0.6% of the sample should be out beyond the whiskers. �

<6.3> Example. Chapter 4 gave the expected value and variance of a sample
mean Ȳ for a sample of size n (with replacement) from a finite population
labelled 1, . . . , N with “values of interest” y1, y2, . . . , yN :

EY = y =
1

N

∑N

i=1
yi.

For sampling with replacement,

var(Y ) = σ2/n where σ2 =
∑N

i=1 (yi − y)2 /N.
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The standardized random variable (Y − y)/
√
σ2/n is well approximated by

the N(0, 1). Thus

P
{
−1.96σ√

n
≤ Y − y ≤ 1.96σ√

n

}
≈ Φ(1.96)− Φ(−1.96) ≈ 0.95.

Before we sample, we can assert that we have about a 95% chance of getting a
value of Y in the range y±1.96σ/

√
n. (For the post-sampling interpretation

of the approximation, you should take Statistics 242/542.)
Of course, we would not know the value σ, so it must be estimated.

How?
For sampling without replacement, the variance of the sample mean is

multiplied by the correction factor (N − n)/(N − 1). The sample mean
is no longer an average of many independent summands, but the normal
approximation can still be used. (The explanation would take me too far
beyond 241/541.) �
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