Chapter 12

Conditional densities

12.1 Overview

Density functions determine continuous distributions. If a continuous distribution is calculated conditionally on some information, then the density is called a *conditional density*. When the conditioning information involves another random variable with a continuous distribution, the conditional density can be calculated from the joint density for the two random variables.

Suppose X and Y have a jointly continuous distribution with joint density f(x, y). From Chapter 11, you know that the marginal distribution of X is continuous with density

$$g(y) = \int_{-\infty}^{\infty} f(x, y) \, dx.$$

The conditional distribution for Y given X = x has a (conditional) density, which I will denote by $h(y \mid X = x)$, or just $h(y \mid x)$ if the conditioning variable is unambiguous, for which

$$\mathbb{P}\{y \le Y \le y + \delta \mid X = x\} \approx \delta h(y \mid X = x), \quad \text{for small } \delta > 0.$$

Conditioning on X = x should be almost the same as conditioning on the event $\{x \le X \le x + \epsilon\}$ for a very small $\epsilon > 0$. That is, provided g(x) > 0,

$$\begin{split} \mathbb{P}\{y \leq Y \leq y + \delta \mid X = x\} &\approx \mathbb{P}\{y \leq Y \leq y + \delta \mid x \leq X \leq x + \epsilon\} \\ &= \frac{\mathbb{P}\{y \leq Y \leq y + \delta, x \leq X \leq x + \epsilon\}}{\mathbb{P}\{x \leq X \leq x + \epsilon\}} \\ &\approx \frac{\delta \epsilon f(x, y)}{\epsilon g(x)}. \end{split}$$

In the limit, as ϵ tends to zero, we are left with $\delta \approx \delta f(x, y)/g(x)$. That is,

 $h(y \mid X = x) = f(x, y)/g(x)$ for each x with g(x) > 0.

Less formally, the conditional density is

$$h(y \mid X = x) = \frac{\text{joint } (X, Y) \text{ density at } (x, y)}{\text{marginal } X \text{ density at } x}$$

The first Example illustrates two ways to find a conditional density: first by calculation of a joint density followed by an appeal to the formula for the conditional density; and then by a sneakier method where all the random variables are built directly using polar coordinates.

Example <12.1> Let X and Y be independent random variables, each distributed N(0, 1). Define $R = \sqrt{X^2 + Y^2}$. Show that, for each r > 0, the conditional distribution of X given R = r has density

$$h(x \mid R = r) = \frac{\mathbf{1}\{|x| < r\}}{\pi\sqrt{r^2 - x^2}} \quad \text{for } r > 0.$$

The most famous example of a continuous condition distribution comes from pairs of random variables that have a bivariate normal distribution. For each constant $\rho \in (-1, +1)$, the **standard bivariate normal with correlation** ρ is defined as the joint distribution of a pair of random variables constructed from independent random variables X and Y, each distributed N(0, 1). Define $Z = \rho X + \sqrt{1 - \rho^2} Y$. The pair X, Y has a jointly continuous distribution with density $f(x, y) = (2\pi)^{-1} \exp(-(x^2 + y^2)/2)$. Apply the result from Example <11.4> with

$$(X, Z) = (X, Y)A$$
 where $A = \begin{pmatrix} 1 & \rho \\ 0 & \sqrt{1 - \rho^2} \end{pmatrix}$

to deduce that X, Z have joint density

$$f_{\rho}(x,z) = \frac{1}{\sqrt{1-\rho^2}} \exp\left(-\frac{x^2 - 2\rho x z + z^2}{1-\rho^2}\right).$$

Notice the symmetry in x and z. The X and Z marginals must be the same. Thus $Z \sim N(0, 1)$. Also

$$cov(X, Z) = cov(X, \rho X + \sqrt{1 - \rho^2} Y)$$
$$= \rho cov(X, X) + \sqrt{1 - \rho^2} cov(X, Y) = \rho$$

Remark. The *correlation* between two random variables S and T is defined as

$$\operatorname{corr}(S,T) = \frac{\operatorname{cov}(S,T)}{\sqrt{\operatorname{var}(S)\operatorname{var}(T)}}.$$

If var(S) = var(T) = 1 the correlation reduces to the covariance.

By construction, the conditional distribution of Z given X = x is just the conditional distribution of $\rho x + \sqrt{1 - \rho^2} Y$ given X = x. Independence of X and Y then shows that

$$Z \mid X = x \sim N(\rho x, 1 - \rho^2).$$

In particular, $\mathbb{E}(Z \mid X = x) = \rho x$. By symmetry of f_{ρ} , we also have $X \mid Z = z \sim N(\rho z, 1 - \rho^2)$, a fact that you could check by dividing $f_{\rho}(x, z)$ by the standard normal density for Z.

Example <12.2> Let S denote the height (in inches) of a randomly chosen father, and T denote the height (in inches) of his son at maturity. Suppose each of S and T has a $N(\mu, \sigma^2)$ distribution with $\mu = 69$ and $\sigma = 2$. Suppose also that the standardized variables $(S - \mu)/\sigma$ and $(T - \mu)/\sigma$ have a standard bivariate normal distribution with correlation $\rho = .3$.

If Sam has a height of S = 74 inches, what would one predict about the ultimate height T of his young son Tom?

For the standard bivariate normal, if the variables are uncorrelated (that is, if $\rho = 0$) then the joint density factorizes into the product of two N(0, 1)densities, which implies that the variables are independent. This situation is one of the few where a zero covariance (zero correlation) implies independence.

The final Example demonstrates yet another connection between Poisson processes and order statistics from a uniform distribution. The arguments make use of the obvious generalizations of joint densities and conditional densities to more than two dimensions.

Definition. Say that random variables X, Y, Z have a jointly continuous distribution with joint density f(x, y, z) if

$$\mathbb{P}\{(X,Y,Z)\in A\} = \iiint_A f(x,y,z) \, dx \, dy \, dz \qquad \text{for each } A\subseteq \mathbb{R}^3.$$

As in one and two dimensions, joint densities are typically calculated by looking at small regions: for a small region Δ around (x_0, y_0, z_0)

 $\mathbb{P}\{(X, Y, Z) \in \Delta\} \approx (\text{volume of } \Delta) \times f(x_0, y_0, z_0).$

Similarly, the joint density for (X, Y) conditional on Z = z is defined as the function $h(x, y \mid Z = z)$ for which

$$\mathbb{P}\{(X,Y) \in B \mid Z = z\} = \iiint \mathbb{I}\{(x,y) \in B\} h(x,y \mid Z = z) \, dx \, dy$$

for each subset B of \mathbb{R}^2 . It can be calculated, at z values where the marginal density for Z,

$$g(z) = \iint_{\mathbb{R}^2} f(x, y, z) \, dx \, dy,$$

is strictly positive, by yet another small-region calculation. If Δ is a small subset containing (x_0, y_0) then, for small $\epsilon > 0$,

$$\mathbb{P}\{(X,Y) \in \Delta \mid Z = z_0\} \approx \mathbb{P}\{(X,Y) \in \Delta \mid z_0 \leq Z \leq z_0 + \epsilon\}$$
$$= \frac{\mathbb{P}\{(X,Y) \in \Delta, z_0 \leq Z \leq z_0 + \epsilon\}}{\mathbb{P}\{z_0 \leq Z \leq z_0 + \epsilon\}}$$
$$\approx \frac{((\text{area of } \Delta) \times \epsilon) f(x_0, y_0, z_0)}{\epsilon g(z_0)}$$
$$= (\text{area of } \Delta) \frac{f(x_0, y_0, z_0)}{q(z_0)}.$$

Remark. Notice the identification of the set of points (x, y, z) in \mathbb{R}^3 for which $(x, y) \in \Delta$ and $z_0 \leq z \leq z_0 + \epsilon$ as a small region with volume equal to (area of Δ) $\times \epsilon$.

That is, the conditional (joint) distribution of (X, Y) given Z = z has density

$$h(x, y \mid Z = z) = \frac{f(x, y, z)}{g(z)} \quad \text{provided } g(z) > 0$$

Remark. Many authors (including me) like to abbreviate h(x, y | Z = z) to h(x, y | z). Many others run out of symbols and write f(x, y | z) for the conditional (joint) density of (X, Y) given Z = z. This notation is defensible if one can somehow tell which values are being conditioned on. In a problem with lots of conditioning it can get confusing to remember which f is the joint density and which is conditional on something. To avoid confusion, some authors write things like $f_{X,Y|Z}(x, y | z)$ for the conditional density and $f_X(x)$ for the X-marginal density, at the cost of more cumbersome notation.

Example $\langle 12.3 \rangle$ Let T_i denote the time to the *i*th point in a Poisson process with rate λ on $[0, \infty)$. Find the joint distribution of (T_1, T_2) conditional on T_3 .

From the result in the previous Example, you should be able to deduce that, conditional on $T_3 = t_3$ for a given $t_3 > 0$, the random variables $(T_1/T_3, T_2/T_3)$ are uniformly distributed over the triangular region

 $\{(u_1 u_2) \in \mathbb{R}^2 : 0 < u_1 < u_2 < 1\}.$

HW11 will step you through an analogous result for order statistics.

12.2 Examples for Chapter 12

<12.1>

Example. Let X and Y be independent random variables, each distributed N(0,1). Define $R = \sqrt{X^2 + Y^2}$. For each r > 0, find the density for the conditional distribution of X given R = r.

The joint density for (X, Y) equals $f(x, y) = (2\pi)^{-1} \exp\left(-(x^2 + y^2)/2\right)$. To find the conditional density for X given R = r, first I'll find the joint density ψ for X and R, then I'll calculate its X marginal, and then I'll divide to get the conditional density. A simpler method is described at the end of the Example.

We need to calculate $\mathbb{P}\{x_0 \leq X \leq x_0 + \delta, r_0 \leq R \leq r_0 + \epsilon\}$ for small, positive δ and ϵ . For $|x_0| < r_0$, the event corresponds to the two small regions in the (X, Y)-plane lying between the lines $x = x_0$ and $x = x_0 + \delta$, and between the circles centered at the origin with radii r_0 and $r_0 + \epsilon$.

By symmetry, both regions contribute the same probability. Consider the upper region. For small δ and ϵ , the region is approximately a parallelogram,

with side length $\eta = \sqrt{(r_0 + \epsilon)^2 - x_0^2} - \sqrt{r_0^2 - x_0^2}$ and width δ . We could expand the expression for η as a power series in ϵ by multiple applications of Taylor's theorem. It is easier to argue less directly, starting from the equalities

$$x_0^2 + (y_0 + \eta)^2 = (r_0 + \epsilon)^2$$
 and $x_0^2 + y_0^2 = r_0^2$

Take differences to deduce that $2y_0\eta + \eta^2 = 2r_0\epsilon + \epsilon^2$. Ignore the lower order terms η^2 and ϵ^2 to conclude that $\eta \approx (r_0\epsilon/y_0)$. The upper region has approximate area $r_0\epsilon\delta/y_0$, which implies

$$\mathbb{P}\{x_0 \le X \le x_0 + \delta, r_0 \le R \le r_0 + \epsilon\}$$

$$\approx 2 \frac{r_0 \epsilon \delta}{y_0} f(x_0, y_0)$$

$$\approx \frac{2r_0}{\sqrt{r_0^2 - x_0^2}} \frac{\exp(-r_0^2/2)}{2\pi} \epsilon \delta.$$

Thus the random variables X and R have joint density

$$\psi(x,r) = \frac{r \exp(-r^2/2)}{\pi \sqrt{r^2 - x^2}} \mathbf{1}\{|x| < r, \ 0 < r\}.$$

Once again I have omitted the subscript on the dummy variables, to indicate that the argument works for every x, r in the specified range.

For r > 0, the random variable R has marginal density

$$g(r) = \int_{-r}^{r} \psi(x, r) \, dx$$

= $\frac{r \exp(-r^2/2)}{\pi} \int_{-r}^{r} \frac{dx}{\sqrt{r^2 - x^2}}$ put $x = r \cos \theta$
= $\frac{r \exp(-r^2/2)}{\pi} \int_{\pi}^{0} \frac{-r \sin \theta}{r \sin \theta} \, d\theta = r \exp(-r^2/2).$

The conditional density for X given R = r equals

$$h(x \mid R = r) = \frac{\psi(x, r)}{g(r)} = \frac{1}{\pi\sqrt{r^2 - x^2}}$$
 for $|x| < r$ and $r > 0$.

A goodly amount of work.

The calculation is easier when expressed in polar coordinates. From example $\langle 11.7 \rangle$ you know how to construct independent N(0, 1) distributed

random variables by starting with independent random variables \widetilde{R} with density

$$g(r) = r \exp(-r^2/2) \mathbf{1}\{r > 0\},\$$

and $U \sim \text{Uniform}(0, 2\pi)$: define $X = \widetilde{R}\cos(U)$ and $Y = \widetilde{R}\sin(U)$.

If we start with X and Y constructed in this way then $R = \sqrt{X^2 + Y^2} = \widetilde{R}$ and the conditional density $h(x \mid R = r)$ is given, for |x| < r by

$$\delta h(x \mid R = r)$$

$$\approx \mathbb{P}\{x \le R \cos(U) \le x + \delta \mid R = r\}$$

$$= \mathbb{P}\{x \le r \cos(U) \le x + \delta\} \quad \text{by independence of } R \text{ and } U$$

$$= \mathbb{P}\{\theta_0 - \epsilon \le U \le \theta_0\} + \mathbb{P}\{\theta_0 - \epsilon + \pi \le U \le \theta_0 + \pi\}$$

where θ_0 is the unique value in $[0, \pi]$ for which

$$x/r = \cos(\theta_0)$$
 AND $(x+\delta)/r = \cos(\theta_0 - \epsilon) \approx \cos(\theta_0) + \epsilon \sin(\theta_0).$

Solve (approximately) for ϵ then substitute into the expression for the conditional density:

$$\delta h(x \mid R = r) \approx \frac{2\epsilon}{2\pi} \approx \frac{\delta}{\pi r \sin(\theta_0)} = \frac{\delta}{\pi r \sqrt{1 - (x/r)^2}}, \quad \text{for } |x| < r,$$

the same as before.

<12.2> **Example.** Let S denote the height (in inches) of a randomly chosen father,
and T denote the height (in inches) of his son at maturity. Suppose each of
S and T has a
$$N(\mu, \sigma^2)$$
 distribution with $\mu = 69$ and $\sigma = 2$. Suppose also
that the standardized variables $(S - \mu)/\sigma$ and $(T - \mu)/\sigma$ have a standard
bivariate normal distribution with correlation $\rho = .3$.

If Sam has a height of S = 74 inches, what would one predict about the ultimate height T of his young son Tom?

In standardized units, Sam has height $X = (S - \mu)/\sigma$, which we are given to equal 2.5. Tom's ultimate standardized height is $Y = (T - \mu)/\sigma$. By assumption, before the value of X was known, the pair (X, Y) has a standard bivariate normal distribution with correlation ρ . The conditional distribution of Y given that X = 2.5 is

$$Y \mid X = 2.5 \sim N(2.5\rho, 1 - \rho^2)$$

Statistics 241/541 fall 2014 ©David Pollard, 18 Nov 2014

- .

In the original units, the conditional distribution of T given S = 74 is normal with mean $\mu + 2.5\rho\sigma$ and variance $(1 - \rho^2)\sigma^2$, that is,

Tom's ultimate height | Sam's height = 74 inches $\sim N(70.5, 3.64)$

If I had to make a guess, I would predict that Tom would ultimately reach a height of 70.5 inches.

Remark. Notice that Tom expected height (given that Sam is 74 inches) is less than his father's height. This fact is an example of a general phenomenon called "regression towards the mean". The term *regression*, as a synonym for conditional expectation, has become commonplace in Statistics.

<12.3>**Example.** Let T_i denote the time to the *i*th point in a Poisson process with rate λ on $[0,\infty)$. Find the joint distribution of (T_1,T_2) conditional on T_3 .

> For fixed $0 < t_1 < t_2 < t_3 < \infty$ and suitably small positive $\delta_1, \delta_2, \delta_3$ define disjoint intervals

$$I_1 = [0, t_1) \quad I_2 = [t_1, t_1 + \delta_1] \quad I_3 = (t_1 + \delta_1, t_2),$$

$$I_4 = [t_2, t_2 + \delta_2], \quad I_5 = (t_2 + \delta_2, t_3), \quad I_6 = [t_3, t_3 + \delta_3].$$

Write N_j for the number of points landing in I_j , for j = 1, ..., 6. The random variables N_1, \ldots, N_6 are independent Poissons, with expected values

 $\lambda t_1, \quad \lambda \delta_1, \quad \lambda (t_2 - t_1 - \delta_1), \quad \lambda \delta_2, \quad \lambda (t_3 - t_2 - \delta_2), \quad \lambda \delta_3.$

To calculate the joint density for (T_1, T_2, T_3) start from

$$\mathbb{P}\{t_1 \leq T_1 \leq t_1 + \delta_1, t_2 \leq T_2 \leq t_2 + \delta_2, t_3 \leq T_3 \leq t_3 + \delta_3\}$$

= $\mathbb{P}\{N_1 = 0, N_2 = 1, N_3 = 0, N_4 = 1, N_5 = 0, N_6 = 1\}$
+ smaller order terms

+ smaller order terms.

Here the "smaller order terms" involve probabilities of subsets of events such as $\{N_2 \ge 2, N_4 \ge 1, N_6 \ge 1\}$, which has very small probability:

 $\mathbb{P}\{N_2 \ge 2\} \mathbb{P}\{N_4 \ge 1\} \mathbb{P}\{N_6 \ge 1\} = o(\delta_1 \delta_2 \delta_3).$

Independence also gives a factorization of the main contribution:

$$\mathbb{P}\{N_1 = 0, N_2 = 1, N_3 = 0, N_4 = 1, N_5 = 0, N_6 = 1\}$$

$$= \mathbb{P}\{N_1 = 0\}\mathbb{P}\{N_2 = 1\}\mathbb{P}\{N_3 = 0\}\mathbb{P}\{N_4 = 1\}\mathbb{P}\{N_5 = 0\}\mathbb{P}\{N_6 = 1\}$$

$$= e^{-\lambda t_1}[\lambda \delta_1 + o(\delta_1)]e^{-\lambda(t_2 - t_1 - \delta_1)} \times$$

$$\times [\lambda \delta_2 + o(\delta_2)]e^{-\lambda(t_3 - t_2 - \delta_2)}[\lambda \delta_3 + o(\delta_3)]$$

$$= \lambda^3 \delta_1 \delta_2 \delta_3 e^{-\lambda t_3} + o(\delta_1 \delta_2 \delta_3)$$

If you think of Δ as a small shoebox (hyperrectangle) with sides δ_1 , δ_2 , and δ_3 , with all three δ_j 's of comparable magnitude (you could even take $\delta_1 = \delta_2 = \delta_3$), the preceding calculations reduce to

$$\mathbb{P}\{(T_1, T_2, T_3) \in \Delta\} = (\text{volume of } \Delta)\lambda^3 e^{-\lambda t_3} + \text{smaller order terms}$$

where the "smaller order terms" are small relative to the volume of Δ . Thus the joint density for (T_1, T_2, T_3) is

$$f(t_1, t_2, t_3) = \lambda^3 e^{-\lambda t_3} \mathbb{I}\{0 < t_1 < t_2 < t_3\}.$$

Remark. The indicator function is very important. Without it you would be unpleasantly surprised to find $\iint_{\mathbb{R}^3} f = \infty$.

Just as a check, calculate the marginal density for T_3 as

$$g(t_3) = \iint_{\mathbb{R}^2} f(t_1, t_2, t_3) dt_1 dt_2$$

= $\lambda^3 e^{-\lambda t_3} \iint \mathbb{I}\{0 < t_1 < t_2 < t_3\} dt_1 dt_2.$

The double integral equals

$$\int \mathbb{I}\{0 < t_2 < t_3\} \left(\int_0^{t_2} 1 \, dt_1 \right) = \int_0^{t_3} t_2 \, dt_2 = \frac{1}{2} t_3^2.$$

That is, T_3 has marginal density

$$g(t_3) = \frac{1}{2}\lambda^3 t_3^2 e^{-\lambda t_3} \mathbb{I}\{t_3 > 0\},\$$

which agrees with the result calculated in Example <10.1>.

Calculate the conditional density for a given $t_3 > 0$ as

$$h(t_1, t_2 \mid T_3 = t_3) = \frac{f(t_1, t_2, t_3)}{g(t_3)}$$
$$= \frac{\lambda^3 e^{-\lambda t_3} \mathbb{I}\{0 < t_1 < t_2 < t_3\}}{\frac{1}{2} \lambda^3 t_3^2 e^{-\lambda t_3}}$$
$$= \frac{2}{t_3^2} \mathbb{I}\{0 < t_1 < t_2 < t_3\}.$$

That is, conditional on $T_3 = t_3$, the pair (T_1, T_2) is uniformly distributed in a triangular region of area $t_3^2/2$.