12.1

Chapter 12

Conditional densities

Overview

Density functions determine continuous distributions. If a continuous distri-
bution is calculated conditionally on some information, then the density is
called a conditional density. When the conditioning information involves
another random variable with a continuous distribution, the conditional den-
sity can be calculated from the joint density for the two random variables.

Suppose X and Y have a jointly continuous distribution with joint den-
sity f(x,y). From Chapter 11, you know that the marginal distribution of X
is continuous with density

s = [ " fay) do.

The conditional distribution for Y given X = x has a (conditional) density,
which I will denote by h(y | X = x), or just h(y | x) if the conditioning
variable is unambiguous, for which

P{y<Y <y+d| X =z} ~dh(y| X =2x), for small § > 0.

Conditioning on X = x should be almost the same as conditioning on the
event {x < X <z + ¢} for a very small ¢ > 0. That is, provided g(z) > 0,

Ply<Y <y+d|X=a}=Ply<V <y+ilz<X<z+¢}
CPly<vY<y+sar<X<z+e}
B P{x <X <z+e€}
def(z,y)

 def(

€g(x)
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12. Conditional densities 2

In the limit, as € tends to zero, we are left with § ~ ¢ f(z,y)/g(x). That is,
hMy| X =z)= f(z,y)/g9(x) for each x with g(z) > 0.

Less formally, the conditional density is

joint (X,Y") density at (z,y)

hy | X =x2) =
2 ) marginal X density at x

The first Example illustrates two ways to find a conditional density: first
by calculation of a joint density followed by an appeal to the formula for the
conditional density; and then by a sneakier method where all the random
variables are built directly using polar coordinates.

Example <12.1> Let X and Y be independent random variables, each
distributed N(0,1). Define R = vV X2 + Y2. Show that, for each r > 0, the

conditional distribution of X given R = r has density
x| <7}

h(x | R="1 e ———
e | ") Tr? — x?

for » > 0.

The most famous example of a continuous condition distribution comes
from pairs of random variables that have a bivariate normal distribution.
For each constant p € (—1,+1), the standard bivariate normal with
correlation p is defined as the joint distribution of a pair of random vari-
ables constructed from independent random variables X and Y, each dis-
tributed N(0,1). Define Z = pX + /1 — p? Y. The pair X,Y has a jointly
continuous distribution with density f(z,y) = (2m) texp (—(2? + 3?)/2).
Apply the result from Example <11.4> with

_ _(t r
(X,Z2)=(X,Y)A where A = <0 1—p2>

to deduce that X, Z have joint density

1 < m2—2pxz+22>
exp| ———F———).

folw,2) = T =2

Notice the symmetry in z and z. The X and Z marginals must be the same.
Thus Z ~ N(0,1). Also

cov(X,Z) = cov(X, pX + /1 —p?Y)
=peov(X,X) + 1 —p? cov(X,Y) = p.
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Remark. The correlation between two random variables S and T is
defined as
cov(S,T)

corr(S,T) = ——=—.
(5.7) var(S)var(T)

If var(S) = var(T) = 1 the correlation reduces to the covariance.

By construction, the conditional distribution of Z given X = x is just
the conditional distribution of pz + /1 — p2 Y given X = x. Independence
of X and Y then shows that

Z| X =z~ N(pz,1—p%).
In particular, E(Z | X = x) = pr. By symmetry of f,, we also have

X | Z =2z~ N(pz,1—p?), a fact that you could check by dividing f,(z, 2)
by the standard normal density for Z.

Example <12.2>  Let S denote the height (in inches) of a randomly
chosen father, and T denote the height (in inches) of his son at maturity.
Suppose each of S and T has a N (u, 02) distribution with 1 = 69 and o = 2.
Suppose also that the standardized variables (S — u)/o and (T'— p)/o have
a standard bivariate normal distribution with correlation p = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T" of his young son Tom?

For the standard bivariate normal, if the variables are uncorrelated (that
is, if p = 0) then the joint density factorizes into the product of two N (0, 1)
densities, which implies that the variables are independent. This situation
is one of the few where a zero covariance (zero correlation) implies indepen-
dence.

The final Example demonstrates yet another connection between Poisson
processes and order statistics from a uniform distribution. The arguments
make use of the obvious generalizations of joint densities and conditional
densities to more than two dimensions.

Definition. Say that random variables X,Y,Z have a jointly continuous
distribution with joint density f(x,y, z) if

P{(X,Y,Z) e A} = /// flz,y,z)dedydz for each A C IR3.
JJJA
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As in one and two dimensions, joint densities are typically calculated by
looking at small regions: for a small region A around (x¢, Yo, 20)

P{(X,Y,Z) € A} = (volume of A) x f(x0, o, 20)-

Similarly, the joint density for (X,Y’) conditional on Z = z is defined as the
function h(z,y | Z = z) for which

P{(X,Y)eB|Z ==z} :///]I{(x,y) € BYh(z,y | Z =z)dxdy

for each subset B of R2. It can be calculated, at z values where the marginal
density for Z,

9(z) = //R2 f(z,y, 2) dz dy,

is strictly positive, by yet another small-region calculation. If A is a small
subset containing (g, yo) then, for small € > 0,

P{X,Y)eEA|Z=2}~P{(X,)Y)EA|20<Z < zy+¢€}
CP{(X,)Y) €A 20< Z < 29+ €}
B P{z0 < Z < 20 + €}
((area of A) X €) f(xo, Yo, 20)
eg(20)
f (0, Y0, 20)
g9(z0)

~

= (area of A)

Remark. Notice the identification of the set of points (z,y, z) in R3
for which (z,y) € A and 2y < z < zp + € as a small region with volume
equal to (area of A) xe.

That is, the conditional (joint) distribution of (X, Y’) given Z = z has density

f(x7 y? Z)

e,y | Z=2z2)= )

provided g(z) > 0.

Remark. Many authors (including me) like to abbreviate h(x,y | Z = z)
to h(z,y | z). Many others run out of symbols and write f(x,y | z) for
the conditional (joint) density of (X,Y) given Z = z. This notation is
defensible if one can somehow tell which values are being conditioned on.
In a problem with lots of conditioning it can get confusing to remember
which f is the joint density and which is conditional on something. To
avoid confusion, some authors write things like fx y|z(z,y | z) for the
conditional density and fx(x) for the X-marginal density, at the cost
of more cumbersome notation.
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Example <12.3>  Let T; denote the time to the ith point in a Poisson
process with rate A on [0, 00). Find the joint distribution of (77, 7%) condi-
tional on T5.

From the result in the previous Example, you should be able to de-
duce that, conditional on T3 = t3 for a given t3 > 0, the random vari-
ables (11/T3,T>/T3) are uniformly distributed over the triangular region

{(uluQ) € R2 0<up <us < 1}.

HW11 will step you through an analogous result for order statistics.

Examples for Chapter 12

Example. Let X and Y be independent random variables, each distributed
N(0,1). Define R = VX2 +Y?2. For each r > 0, find the density for the
conditional distribution of X given R =r.

The joint density for (X,Y) equals f(z,y) = (2m) texp (—(2? + %) /2).
To find the conditional density for X given R = r, first I'll find the joint
density ¥ for X and R, then I’ll calculate its X marginal, and then I'll divide
to get the conditional density. A simpler method is described at the end of
the Example.

We need to calculate P{xg < X < xo+ 6, r9 < R < rg+ €} for small,
positive § and e. For |zg| < 79, the event corresponds to the two small
regions in the (X, Y)-plane lying between the lines x = zp and z = z¢ + 9,
and between the circles centered at the origin with radii r¢ and rg + €.

—) N

4

Yotn = ("0‘*‘8)2'X02

/

XO\/ X0+8' Yo=V r02-X02 _/

—

Xo  Xo+0

By symmetry, both regions contribute the same probability. Consider the
upper region. For small § and €, the region is approximately a parallelogram,
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with side length = /(19 + €)2 — 22 — \/r2 — 22 and width 6. We could
expand the expression for 1 as a power series in € by multiple applications
of Taylor’s theorem. It is easier to argue less directly, starting from the
equalities

w224 (yo+n)?=o+e? anD x4y =ri

Take differences to deduce that 2yon + 7% = 2rge + €2. Ignore the lower
order terms 7% and €2 to conclude that n ~ (ro€/yo). The upper region has
approximate area roed /yo, which implies

Plzo < X <mo+0,70 < R< 70+ ¢}

ro€d
~ 20 f(x0, o)
Yo

210 exp(—r%/2) 5
=~ €0.
A /7‘(2) — gj% 27'['

Thus the random variables X and R have joint density

2
rexp(—r</2
U(x,r) = Mlﬂaﬂ <r, 0<r}.

2 _ 2
Once again I have omitted the subscript on the dummy variables, to indicate
that the argument works for every x,r in the specified range.

For r > 0, the random variable R has marginal density

T

9 = [ ) do

= rexp(-r*/2) [1 dx put x = rcosf

T V222
2 0w
_ rexp(—r /2)/ TSIHHdQ:reXp(—T2/2).

T rsin @

The conditional density for X given R = r equals
P(x,r) 1

hz | R=7r)= = for |z| < r and r > 0.
(=] ) g(r) TVr? — x? o

A goodly amount of work.
The calculation is easier when expressed in polar coordinates. From
example <11.7> you know how to construct independent N (0, 1) distributed
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Bo-¢ -/ \
6o

<12.2>

random variables by starting with independent random variables R with
density

g(r) = rexp(—r%/2)1{r > 0},

and U ~ Uniform(0, 27): define X = Rcos(U) and Y = Rsin(U).
_ If we start with X and Y constructed in this way then R = v/ X2+Y2 =
R and the conditional density h(z | R = r) is given, for |z| < r by

Oh(z |R=r)
~P{z <Rcos(U)<zx+d6|R=r}
=P{x <rcos(U) <z+ 0} by independence of R and U
=P{y—e<U<bO}+P{p—e+7<U<6by+7}
where 6 is the unique value in [0, 7] for which

x/r = cos(bp) AND (x+0)/r = cos(By — €) = cos(bp) + esin(fp).

Solve (approximately) for e then substitute into the expression for the con-
ditional density:

2 § )
5h(x\R:r)%—€% = for |z| < r,

2 awrsin(fo)  wry/1— (z/r)2

the same as before. O

Example. Let S denote the height (in inches) of a randomly chosen father,
and T denote the height (in inches) of his son at maturity. Suppose each of
S and T has a N(p,0?) distribution with p = 69 and o = 2. Suppose also
that the standardized variables (S — p)/o and (T' — p)/o have a standard
bwariate normal distribution with correlation p = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T of his young son Tom?

In standardized units, Sam has height X = (S — u)/o, which we are
given to equal 2.5. Tom’s ultimate standardized height is Y = (T' — u)/o.
By assumption, before the value of X was known, the pair (X,Y) has a
standard bivariate normal distribution with correlation p. The conditional
distribution of Y given that X = 2.5 is

Y | X =25~ N(2.5p,1—p?)
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In the original units, the conditional distribution of T" given S = 74 is normal
with mean p + 2.5p0 and variance (1 — p?)o?, that is,

Tom’s ultimate height | Sam’s height = 74 inches ~ N(70.5, 3.64)

If I had to make a guess, I would predict that Tom would ultimately reach
a height of 70.5 inches. O

Remark. Notice that Tom expected height (given that Sam is 74
inches) is less than his father’s height. This fact is an example of a
general phenomenon called “regression towards the mean”. The term
regression, as a synonym for conditional expectation, has become
commonplace in Statistics.

Example. Let T; denote the time to the ith point in a Poisson process with
rate A on [0,00). Find the joint distribution of (11,T2) conditional on Tj.

For fixed 0 < t; < to < t3 < oo and suitably small positive §1, o, d3
define disjoint intervals

I =[0,t1) Io=[t1,t1+61] I3=(t1+ d1,t2),
Iy = [ta,t2 + 2], 15 = (ta + da,t3), [Is = [t3, 13+ J3).

Write N; for the number of points landing in I}, for j = 1,...,6. The random
variables Ny, ..., Ng are independent Poissons, with expected values

M1,  ANo1, A(ta —t1—01), A2, A(t3 —te —d2), Ads.
To calculate the joint density for (77,73, T3) start from
P{t; <Th <ty + 01, tg < T <tp + 02,13 < T3 <t3+ 63}
=P{N; =0, Ny=1, N3=0, Ny=1, N5 =0, Ng = 1}
+ smaller order terms.

Here the “smaller order terms” involve probabilities of subsets of events such
as {Ny > 2, Ny > 1, Ng > 1}, which has very small probability:

P{Ny > 2}P{Ny > 1}P{Ng > 1} = 0(610203).
Independence also gives a factorization of the main contribution:
P{N1 =0, No=1, N3 =0, Ny=1, N5 =0, Ng¢ =1}
=P{N; = 0}P{Ny = 1}P{N3 = 0}P{ Ny = 1} P{N5 = 0}P{Ng = 1}
= e MGy + o(dy)]e A0
X [Ad2 + 0(82)]e ME52702) [\55 4+ o(53)]
= X3610203 e M3 + 0(810203)
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If you think of A as a small shoebox (hyperrectangle) with sides d1, d2,
and d3, with all three ¢;’s of comparable magnitude (you could even take
d1 = d3 = 03), the preceding calculations reduce to

P{(T1,T»,T3) € A} = (volume of A)X3e~*3 4 smaller order terms

where the “smaller order terms” are small relative to the volume of A. Thus
the joint density for (T, T5,T3) is

f(tl,tg,tg) = )\3€_>\t3]1{0 <t <t < tg}.

Remark. The indicator function is very important. Without it you
would be unpleasantly surprised to find [[[os f = oo.

Just as a check, calculate the marginal density for T3 as

g(ts) = //2 f(t1,t2,t3) dty dty
R
= \3e M3 // H{O <t <ty < tg} dtq dts.

The double integral equals

to t3
/H{O <ty < t3} </ 1dt1> = / todty = 3.
0 0

That is, T3 has marginal density
g(ts) = AN t3eM1{t3 > 0},

which agrees with the result calculated in Example <10.1>.
Calculate the conditional density for a given t3 > 0 as

f(tla t27 t3)

g(t3)
_ /\36_>‘t3ﬂ{0 <ty <ty <ts}
%)\375%6_”3

h(tl,tg | T3 = tg) =

2
:%]I{O<t1 <ty < ts}.

That is, conditional on T3 = t3, the pair (71, 73) is uniformly distributed in
a triangular region of area t3/2. O
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