
Chapter 12

Conditional densities

12.1 Overview

Density functions determine continuous distributions. If a continuous distri-
bution is calculated conditionally on some information, then the density is
called a conditional density. When the conditioning information involves
another random variable with a continuous distribution, the conditional den-
sity can be calculated from the joint density for the two random variables.

Suppose X and Y have a jointly continuous distribution with joint den-
sity f(x, y). From Chapter 11, you know that the marginal distribution of X
is continuous with density

g(y) =

∫ ∞
−∞

f(x, y) dx.

The conditional distribution for Y given X = x has a (conditional) density,
which I will denote by h(y | X = x), or just h(y | x) if the conditioning
variable is unambiguous, for which

P{y ≤ Y ≤ y + δ | X = x} ≈ δh(y | X = x), for small δ > 0.

Conditioning on X = x should be almost the same as conditioning on the
event {x ≤ X ≤ x+ ε} for a very small ε > 0. That is, provided g(x) > 0,

P{y ≤ Y ≤ y + δ | X = x} ≈ P{y ≤ Y ≤ y + δ | x ≤ X ≤ x+ ε}

=
P{y ≤ Y ≤ y + δ, x ≤ X ≤ x+ ε}

P{x ≤ X ≤ x+ ε}

≈ δεf(x, y)

εg(x)
.
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In the limit, as ε tends to zero, we are left with δ ≈ δf(x, y)/g(x). That is,

h(y | X = x) = f(x, y)/g(x) for each x with g(x) > 0.

Less formally, the conditional density is

h(y | X = x) =
joint (X,Y ) density at (x, y)

marginal X density at x

The first Example illustrates two ways to find a conditional density: first
by calculation of a joint density followed by an appeal to the formula for the
conditional density; and then by a sneakier method where all the random
variables are built directly using polar coordinates.

Example <12.1> Let X and Y be independent random variables, each
distributed N(0, 1). Define R =

√
X2 + Y 2. Show that, for each r > 0, the

conditional distribution of X given R = r has density

h(x | R = r) =
1{|x| < r}
π
√
r2 − x2

for r > 0.

The most famous example of a continuous condition distribution comes
from pairs of random variables that have a bivariate normal distribution.
For each constant ρ ∈ (−1,+1), the standard bivariate normal with
correlation ρ is defined as the joint distribution of a pair of random vari-
ables constructed from independent random variables X and Y , each dis-
tributed N(0, 1). Define Z = ρX +

√
1− ρ2 Y . The pair X,Y has a jointly

continuous distribution with density f(x, y) = (2π)−1 exp
(
−(x2 + y2)/2

)
.

Apply the result from Example <11.4> with

(X,Z) = (X,Y )A where A =

(
1 ρ

0
√

1− ρ2

)
to deduce that X,Z have joint density

fρ(x, z) =
1√

1− ρ2
exp

(
−x

2 − 2ρxz + z2

1− ρ2

)
.

Notice the symmetry in x and z. The X and Z marginals must be the same.
Thus Z ∼ N(0, 1). Also

cov(X,Z) = cov(X, ρX +
√

1− ρ2 Y )

= ρ cov(X,X) +
√

1− ρ2 cov(X,Y ) = ρ.
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Remark. The correlation between two random variables S and T is
defined as

corr(S, T ) =
cov(S, T )√

var(S)var(T )
.

If var(S) = var(T ) = 1 the correlation reduces to the covariance.

By construction, the conditional distribution of Z given X = x is just
the conditional distribution of ρx+

√
1− ρ2 Y given X = x. Independence

of X and Y then shows that

Z | X = x ∼ N(ρx, 1− ρ2).

In particular, E(Z | X = x) = ρx. By symmetry of fρ, we also have
X | Z = z ∼ N(ρz, 1− ρ2), a fact that you could check by dividing fρ(x, z)
by the standard normal density for Z.

Example <12.2> Let S denote the height (in inches) of a randomly
chosen father, and T denote the height (in inches) of his son at maturity.
Suppose each of S and T has a N(µ, σ2) distribution with µ = 69 and σ = 2.
Suppose also that the standardized variables (S −µ)/σ and (T −µ)/σ have
a standard bivariate normal distribution with correlation ρ = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T of his young son Tom?

For the standard bivariate normal, if the variables are uncorrelated (that
is, if ρ = 0) then the joint density factorizes into the product of two N(0, 1)
densities, which implies that the variables are independent. This situation
is one of the few where a zero covariance (zero correlation) implies indepen-
dence.

The final Example demonstrates yet another connection between Poisson
processes and order statistics from a uniform distribution. The arguments
make use of the obvious generalizations of joint densities and conditional
densities to more than two dimensions.

Definition. Say that random variables X,Y, Z have a jointly continuous
distribution with joint density f(x, y, z) if

P{(X,Y, Z) ∈ A} =

∫∫∫
A
f(x, y, z) dx dy dz for each A ⊆ R3.
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As in one and two dimensions, joint densities are typically calculated by
looking at small regions: for a small region ∆ around (x0, y0, z0)

P{(X,Y, Z) ∈ ∆} ≈ (volume of ∆)× f(x0, y0, z0).

Similarly, the joint density for (X,Y ) conditional on Z = z is defined as the
function h(x, y | Z = z) for which

P{(X,Y ) ∈ B | Z = z} =

∫∫∫
I{(x, y) ∈ B}h(x, y | Z = z) dx dy

for each subset B of R2. It can be calculated, at z values where the marginal
density for Z,

g(z) =

∫∫
R2

f(x, y, z) dx dy,

is strictly positive, by yet another small-region calculation. If ∆ is a small
subset containing (x0, y0) then, for small ε > 0,

P{(X,Y ) ∈ ∆ | Z = z0} ≈ P{(X,Y ) ∈ ∆ | z0 ≤ Z ≤ z0 + ε}

=
P{(X,Y ) ∈ ∆, z0 ≤ Z ≤ z0 + ε}

P{z0 ≤ Z ≤ z0 + ε}

≈ ((area of ∆) × ε) f(x0, y0, z0)

εg(z0)

= (area of ∆)
f(x0, y0, z0)

g(z0)
.

Remark. Notice the identification of the set of points (x, y, z) in R3

for which (x, y) ∈ ∆ and z0 ≤ z ≤ z0 + ε as a small region with volume
equal to (area of ∆) × ε.

That is, the conditional (joint) distribution of (X,Y ) given Z = z has density

h(x, y | Z = z) =
f(x, y, z)

g(z)
provided g(z) > 0.

Remark. Many authors (including me) like to abbreviate h(x, y | Z = z)
to h(x, y | z). Many others run out of symbols and write f(x, y | z) for
the conditional (joint) density of (X,Y ) given Z = z. This notation is
defensible if one can somehow tell which values are being conditioned on.
In a problem with lots of conditioning it can get confusing to remember
which f is the joint density and which is conditional on something. To
avoid confusion, some authors write things like fX,Y |Z(x, y | z) for the
conditional density and fX(x) for the X-marginal density, at the cost
of more cumbersome notation.
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Example <12.3> Let Ti denote the time to the ith point in a Poisson
process with rate λ on [0,∞). Find the joint distribution of (T1, T2) condi-
tional on T3.

From the result in the previous Example, you should be able to de-
duce that, conditional on T3 = t3 for a given t3 > 0, the random vari-
ables (T1/T3, T2/T3) are uniformly distributed over the triangular region

{(u1u2) ∈ R2 : 0 < u1 < u2 < 1}.

HW11 will step you through an analogous result for order statistics.

12.2 Examples for Chapter 12

<12.1> Example. Let X and Y be independent random variables, each distributed
N(0, 1). Define R =

√
X2 + Y 2. For each r > 0, find the density for the

conditional distribution of X given R = r.
The joint density for (X,Y ) equals f(x, y) = (2π)−1 exp

(
−(x2 + y2)/2

)
.

To find the conditional density for X given R = r, first I’ll find the joint
density ψ for X and R, then I’ll calculate its X marginal, and then I’ll divide
to get the conditional density. A simpler method is described at the end of
the Example.

We need to calculate P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε} for small,
positive δ and ε. For |x0| < r0, the event corresponds to the two small
regions in the (X,Y )-plane lying between the lines x = x0 and x = x0 + δ,
and between the circles centered at the origin with radii r0 and r0 + ε.

radius r0+ε

radius r0

x0+δx0

x0 x0+δ

y0+η =   (r0+ε)2-x0
2

y0 =   r0
2-x0

2

By symmetry, both regions contribute the same probability. Consider the
upper region. For small δ and ε, the region is approximately a parallelogram,
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with side length η =
√

(r0 + ε)2 − x20 −
√
r20 − x20 and width δ. We could

expand the expression for η as a power series in ε by multiple applications
of Taylor’s theorem. It is easier to argue less directly, starting from the
equalities

x20 + (y0 + η)2 = (r0 + ε)2 and x20 + y20 = r20.

Take differences to deduce that 2y0η + η2 = 2r0ε + ε2. Ignore the lower
order terms η2 and ε2 to conclude that η ≈ (r0ε/y0). The upper region has
approximate area r0εδ/y0, which implies

P{x0 ≤ X ≤ x0 + δ, r0 ≤ R ≤ r0 + ε}

≈ 2
r0εδ

y0
f(x0, y0)

≈ 2r0√
r20 − x20

exp(−r20/2)

2π
εδ.

Thus the random variables X and R have joint density

ψ(x, r) =
r exp(−r2/2)

π
√
r2 − x2

1{|x| < r, 0 < r}.

Once again I have omitted the subscript on the dummy variables, to indicate
that the argument works for every x, r in the specified range.

For r > 0, the random variable R has marginal density

g(r) =

∫ r

−r
ψ(x, r) dx

=
r exp(−r2/2)

π

∫ r

−r

dx√
r2 − x2

put x = r cos θ

=
r exp(−r2/2)

π

∫ 0

π

−r sin θ

r sin θ
dθ = r exp(−r2/2).

The conditional density for X given R = r equals

h(x | R = r) =
ψ(x, r)

g(r)
=

1

π
√
r2 − x2

for |x| < r and r > 0.

A goodly amount of work.
The calculation is easier when expressed in polar coordinates. From

example <11.7> you know how to construct independent N(0, 1) distributed
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random variables by starting with independent random variables R̃ with
density

g(r) = r exp(−r2/2)1{r > 0},

and U ∼ Uniform(0, 2π): define X = R̃ cos(U) and Y = R̃ sin(U).
If we start with X and Y constructed in this way then R =

√
X2 + Y 2 =

0

1

π
x / r

(x+δ) / r

θ0-ε
θ0

R̃ and the conditional density h(x | R = r) is given, for |x| < r by

δh(x | R = r)

≈ P{x ≤ R cos(U) ≤ x+ δ | R = r}
= P{x ≤ r cos(U) ≤ x+ δ} by independence of R and U

= P{θ0 − ε ≤ U ≤ θ0}+ P{θ0 − ε+ π ≤ U ≤ θ0 + π}

where θ0 is the unique value in [0, π] for which

x/r = cos(θ0) and (x+ δ)/r = cos(θ0− ε) ≈ cos(θ0) + ε sin(θ0).

Solve (approximately) for ε then substitute into the expression for the con-
ditional density:

δh(x | R = r) ≈ 2ε

2π
≈ δ

πr sin(θ0)
=

δ

πr
√

1− (x/r)2
, for |x| < r,

the same as before. �

<12.2> Example. Let S denote the height (in inches) of a randomly chosen father,
and T denote the height (in inches) of his son at maturity. Suppose each of
S and T has a N(µ, σ2) distribution with µ = 69 and σ = 2. Suppose also
that the standardized variables (S − µ)/σ and (T − µ)/σ have a standard
bivariate normal distribution with correlation ρ = .3.

If Sam has a height of S = 74 inches, what would one predict about the
ultimate height T of his young son Tom?

In standardized units, Sam has height X = (S − µ)/σ, which we are
given to equal 2.5. Tom’s ultimate standardized height is Y = (T − µ)/σ.
By assumption, before the value of X was known, the pair (X,Y ) has a
standard bivariate normal distribution with correlation ρ. The conditional
distribution of Y given that X = 2.5 is

Y | X = 2.5 ∼ N(2.5ρ, 1− ρ2)
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In the original units, the conditional distribution of T given S = 74 is normal
with mean µ+ 2.5ρσ and variance (1− ρ2)σ2, that is,

Tom’s ultimate height | Sam’s height = 74 inches ∼ N(70.5, 3.64)

If I had to make a guess, I would predict that Tom would ultimately reach
a height of 70.5 inches. �

Remark. Notice that Tom expected height (given that Sam is 74
inches) is less than his father’s height. This fact is an example of a
general phenomenon called “regression towards the mean”. The term
regression, as a synonym for conditional expectation, has become
commonplace in Statistics.

<12.3> Example. Let Ti denote the time to the ith point in a Poisson process with
rate λ on [0,∞). Find the joint distribution of (T1, T2) conditional on T3.

For fixed 0 < t1 < t2 < t3 < ∞ and suitably small positive δ1, δ2, δ3
define disjoint intervals

I1 = [0, t1) I2 = [t1, t1 + δ1] I3 = (t1 + δ1, t2),

I4 = [t2, t2 + δ2], I5 = (t2 + δ2, t3), I6 = [t3, t3 + δ3].

WriteNj for the number of points landing in Ij , for j = 1, . . . , 6. The random
variables N1, . . . , N6 are independent Poissons, with expected values

λt1, λδ1, λ(t2 − t1 − δ1), λδ2, λ(t3 − t2 − δ2), λδ3.

To calculate the joint density for (T1, T2, T3) start from

P{t1 ≤ T1 ≤ t1 + δ1, t2 ≤ T2 ≤ t2 + δ2, t3 ≤ T3 ≤ t3 + δ3}
= P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
+ smaller order terms.

Here the “smaller order terms” involve probabilities of subsets of events such
as {N2 ≥ 2, N4 ≥ 1, N6 ≥ 1}, which has very small probability:

P{N2 ≥ 2}P{N4 ≥ 1}P{N6 ≥ 1} = o(δ1δ2δ3).

Independence also gives a factorization of the main contribution:

P{N1 = 0, N2 = 1, N3 = 0, N4 = 1, N5 = 0, N6 = 1}
= P{N1 = 0}P{N2 = 1}P{N3 = 0}P{N4 = 1}P{N5 = 0}P{N6 = 1}
= e−λt1 [λδ1 + o(δ1)]e

−λ(t2−t1−δ1)×
× [λδ2 + o(δ2)]e

−λ(t3−t2−δ2)[λδ3 + o(δ3)]

= λ3δ1δ2δ3 e
−λt3 + o(δ1δ2δ3)
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If you think of ∆ as a small shoebox (hyperrectangle) with sides δ1, δ2,
and δ3, with all three δj ’s of comparable magnitude (you could even take
δ1 = δ2 = δ3), the preceding calculations reduce to

P{(T1, T2, T3) ∈ ∆} = (volume of ∆)λ3e−λt3 + smaller order terms

where the “smaller order terms” are small relative to the volume of ∆. Thus
the joint density for (T1, T2, T3) is

f(t1, t2, t3) = λ3e−λt3I{0 < t1 < t2 < t3}.

Remark. The indicator function is very important. Without it you
would be unpleasantly surprised to find

∫∫∫
R3 f =∞.

Just as a check, calculate the marginal density for T3 as

g(t3) =

∫∫
R2

f(t1, t2, t3) dt1 dt2

= λ3e−λt3
∫∫

I{0 < t1 < t2 < t3} dt1 dt2.

The double integral equals∫
I{0 < t2 < t3}

(∫ t2

0
1 dt1

)
=

∫ t3

0
t2 dt2 = 1

2 t
2
3.

That is, T3 has marginal density

g(t3) = 1
2λ

3t23e
−λt3I{t3 > 0},

which agrees with the result calculated in Example <10.1>.
Calculate the conditional density for a given t3 > 0 as

h(t1, t2 | T3 = t3) =
f(t1, t2, t3)

g(t3)

=
λ3e−λt3I{0 < t1 < t2 < t3}

1
2λ

3t23e
−λt3

=
2

t23
I{0 < t1 < t2 < t3}.

That is, conditional on T3 = t3, the pair (T1, T2) is uniformly distributed in
a triangular region of area t23/2. �
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