
Chapter 7

Continuous Distributions

In Chapter 5 you met your first example of a continuous distribution, the
normal. Recall the general definition.

Densities
A random variable X is said to have a continuous distribution (on R)
with density function f(·) if

(i) f is a nonnegative function on the real line for which
∫ +∞
−∞ f(x) dx = 1

(ii) for each subset A of the real line,

P{X ∈ A} =

∫
A
f(x) dx =

∫ ∞
−∞

I{x ∈ A}f(x) dy

Assumption (ii) is actually equivalent to its special case:

P{a ≤ X ≤ b} =

∫ b

a
f(x) dx for all intervals [a, b] ⊆ R.
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Bin( 30 , 2/3 ) with normal approximation superimposed

For the normal approximation to the Bin(n, p) the density was

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞
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7. Continuous Distributions 2

with µ = np and σ2 = npq. That is, f is the N(µ, σ2) density.

Remark. As you will soon learn, the N(µ, σ2) distribution has expected
value µ and variance σ2.

Notice that a change of variable y = (x− µ)/σ gives∫ ∞
−∞

f(x) dx =
1√
2π

∫ ∞
−∞

e−y
2/2 dy,

which (see Chapter 5) equals 1.
The simplest example of a continuous distribution is the Uniform[0, 1],

the distribution of a random variable U that takes values in the interval
[0, 1], with

P{a ≤ U ≤ b} = b− a for all 0 ≤ a ≤ b ≤ 1.

Equivalently,

P{a ≤ U ≤ b} =

∫ b

a
f(x) dx for all real a, b,

where

f(x) =
{

1 if 0 < x < 1
0 otherwise.

I will use the Uniform to illustrate several general facts about continuous
distributions.

Remark. Of course, to actually simulate a Uniform[0, 1] distribution
on a computer one would work with a discrete approximation. For
example, if numbers were specified to only 7 decimal places, one
would be approximating Uniform[0,1] by a discrete distribution placing
probabilities of about 10−7 on a fine grid of about 107 equi-spaced
points in the interval. You might think of the Uniform[0, 1] as a
convenient idealization of the discrete approximation.

Be careful not to confuse the density f(x) with the probabilities p(y) =
P{Y = y} used to specify discrete distributions, that is, distributions
for random variables that can take on only a finite or countably infinite set
of different values. The Bin(n, p) and the geometric(p) are both discrete
distributions. Continuous distributions smear the probability out over a
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7. Continuous Distributions 3

continuous range of values. In particular, if X has a continuous distribution
with density f then

P{X = t} =

∫ t

t
f(x) dx = 0 for each fixed t.

The value f(x) does not represent a probability. Instead, the values taken
by the density function could be thought of as constants of proportionality.
At least at points where the density function f is continuous and when δ is
small,

P{t ≤ X ≤ t+ δ} =

∫ t+δ

t
f(x) dy = f(t)δ + terms of order o(δ).

Remark. Remember that g(δ) = o(δ) means that g(δ)/δ → 0 as δ → 0.

Equivalently,

lim
δ→0

1

δ
P{t ≤ X ≤ t+ δ} = f(t).

Some texts define the density as the derivative of the cumulative dis-
tribution function

F (t) = P{−∞ < X ≤ t} for −∞ < t <∞.

That is,

f(t) = lim
δ→0

1

δ

(
F (t+ δ)− F (t)

)
This approach works because

P{t ≤ X ≤ t+ δ}
= P{X ≤ t+ δ} − P{X < t}
= F (t+ δ)− F (t) because P{X = t} = 0.

Remark. Evil probability books often refer to random variables X that
have continuous distributions as “continuous random variables”, which
is misleading. If you are thinking of a random variable as a function
defined on a sample space, the so-called continuous random variables
need not be continuous as functions.
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7. Continuous Distributions 4

Evil probability books often also explain that distributions are
called continuous if their distribution functions are continuous. A
better name would be non-atomic: if X has distribution function F
and if F has a jump of size p at x then P{X = x} = p. Continuity
of F (no jumps) implies no atoms, that is, P{X = x} = 0 for all x. It
is sad fact of real analysis life that continuity of F does not imply that
the corresponding distribution is given by a density. Fortunately, you
won’t be meeting such strange beasts in this course.

When we are trying to determine a density function, the trick is to work
with very small intervals, so that higher order terms in the lengths of the
intervals can be ignored. (More formally, the errors in approximation tend
to zero as the intervals shrink.)

Example <7.1> The distribution of tan(X) if X ∼ Uniform(−π/2, π/2)

I recommend that you remember the method used in the previous Ex-
ample, rather than trying to memorize the result for various special cases.
In each particular application, rederive. That way, you will be less likely to
miss multiple contributions to a density.

Example <7.2> Smooth functions of a random variable with a continu-
ous distribution

Calculations with continuous distributions typically involve integrals or
derivatives where discrete distribution involve sums or probabilities attached
to individual points. The formulae developed in previous chapters for ex-
pectations and variances of random variables have analogs for continuous
distributions.

Example <7.3> Expectations of functions of a random variable with a
continuous distribution

You should be very careful not to confuse the formulae for expectations
in the discrete and continuous cases. Think again if you find yourself inte-
grating probabilities or summing expressions involving probability densities.

Example <7.4> Expected value and variance for the N(µ, σ2).

Calculations for continuous distributions are often simpler than analo-
gous calculations for discrete distributions because we are able to ignore
some pesky cases.
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7. Continuous Distributions 5

Example <7.5> Zero probability for ties with continuous distributions.

Calculations are also greatly simplified by the fact that we can ignore
contributions from higher order terms when working with continuous distri-
butions and small intervals.

Example <7.6> The distribution of the order statistics from the uniform
distribution.

The distribution from the previous Example is a member of a family
whose name is derived from the beta function, defined by

B(α, β) :=

∫ 1

0
tα−1(1− t)β−1dt for α > 0, β > 0.

The equality∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,

noted at the end of the Example, gives the value for B(k, n− k + 1).
In general, if we divide tα−1(1− t)β−1 by B(α, β) we get a candidate for

a density function: non-negative and integrating to 1.

Definition. For α > 0 and β > 0 the Beta(α, β) distribution is defined by
the density function

xα−1(1− x)β−1

B(α, β)
for 0 < x < 1.

The density is zero outside (0, 1).

As you just saw in Example <7.6>, the kth order statistic from a sample
of n independently generated random variables with Uniform[0, 1] distribu-
tions has a Beta(k, n− k + 1) distribution.

The function beta() in R calculates the value of the beta function:

> beta(5.5,2.7)

[1] 0.01069162

> ?beta # get help for the beta() function
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7. Continuous Distributions 6

Also, there is a set of R functions that gives useful results for the beta
density. For example, the pictures on the next page could be drawn by a
series of R commands like:

> jj=(1:1000)/1000

> plot(jj,dbeta(jj,2,3),type="l")

The functions dbeta() calculates the values of the beta density at a fine grid
of points. The plot() function is called with the option of joining the points
by a smooth curve.

β 
= 

5
β 

= 
4

β 
= 

3
β 

= 
2

α = 1

β 
= 

1

α = 2

Beta densities: tα-1 (1-t) β-1 /B(α,β) for 0 < t <1 and vertical range (0,5)

α = 3 α = 4 α = 5

There is an interesting exact relationship between the tails of the beta
and Binomial distributions.

Example <7.7> Binomial tail probabilities from beta distributions.

7.1 Things to remember

• The density function f(·) gives the constants of proportionality, and
not probabilities: f(x) is not the same as P{X = x}, which is zero for
every x if X has a continuous distribution.
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7. Continuous Distributions 7

• A density function, f , must be non-negative and it must integrate to
one over the whole line, 1 =

∫∞
−∞ f(t) dt.

• Expected value of a function of a random variable with a continuous
distribution: if the distribution of X has density f then

EH(X) =

∫ ∞
−∞

H(x)f(x) dx

• Be very careful not to confuse the formulae for expectations in the dis-
crete and continuous cases. Think again if you find yourself integrating
probabilities or summing expressions involving probability densities.

7.2 Examples for Chapter 7

<7.1> Example. The distribution of tan(X) if X ∼ Uniform(−π/2, π/2)
The distribution of X is continuous with density

-1.5 -0.5 0.5 1.5

-4
-2

0
2

4

f(x) = 1{−π/2 < x < π/2} =
{

1/π for −π/2 < x < π/2
0 elsewhere

Let a new random variable be defined by Y = tan(X). It takes values over
the whole real line. For a fixed real y, and a positive δ, we have

(∗) y ≤ Y ≤ y + δ if and only if x ≤ X ≤ x+ ε,

where x and ε are related to y and δ by the equalities

y = tan(x) and y + δ = tan(x+ ε).

By Calculus, for small δ,

δ = (y + δ)− yε× tan(x+ ε)− tan(x)

ε
≈ ε

cos2 x
.

Compare with the definition of the derivative:

lim
ε→0

tan(x+ ε)− tan(x)

ε
=
d tan(x)

dx
=

1

cos2 x
.

Statistics 241/541 fall 2014 c©David Pollard, 7 Oct 2014



7. Continuous Distributions 8

Thus

P{y ≤ Y ≤ y + δ} = P{x ≤ X ≤ x+ ε}
≈ εf(x)

≈ δ cos2 x

π
.

We need to express cos2 x as a function of y. Note that

1 + y2 = 1 +
sin2 x

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
.

Thus Y has a continuous distribution with density

g(y) =
1

π(1 + y2)
for −∞ < y <∞.

The continuous distribution with this density is called the Cauchy. �

<7.2> Example. For functions that are not one-to-one, the analog of the method
from Example <7.1> can require a little more work. In general, we can
consider a random variable Y defined as H(X), a function of another random
variable. If X has a continous distribution with density f , and if H is a
smooth function with derivative H ′, then we can calculate a density for Y
by an extension of the method for the tan function.

A small interval [y, y+δ] in the range of values taken by Y can correspond
to a more complicated range of values for X. For instance, it might consist
of a union of several intervals [x1, x1 + ε1], [x2, x2 + ε2], . . . . The number of
pieces in the X range might be different for different values of y.

H( . )

y

y+δ

x1 x1+ε1
x3 x3+ε3

x5 x5+ε5

From the representation of {y ≤ Y ≤ y+ δ} as a disjoint union of events

{x1 ≤ X ≤ x1 + ε1} ∪ {x2 ≤ X ≤ x2 + ε2} ∪ . . . ,
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7. Continuous Distributions 9

we get, via the defining property of the density f for X,

P{y ≤ Y ≤ y + }. = P{x1 ≤ X ≤ x1 + ε1}+ P{x2 ≤ X ≤ x2 + ε2}+ . . .

≈ ε1f(x1) + ε2f(x2) + . . . .

For each small interval, the ratio of δ/εi is close to the derivative of the
function H at the corresponding xi. That is, εi ≈ δ/H ′(xi).

y

y+δ

xi xi+εi

δ
εi

Adding the contributions from each such interval, we then have an ap-
proximation that tells us the density for Y ,

P{y ≤ Y ≤ y + δ} ≈ δ
(
f(x1)

H ′(x1)
+

f(x2)

H ′(x2)
+ . . .

)
That is, the density for Y at the particular point y in its range equals

f(x1)

H ′(x1)
+

f(x2)

H ′(x2)
+ . . .

Of course we should reexpress each xi as a function of y, to get the density
in a more tractable form. �

<7.3> Example. Expectations of functions of a random variable with a continuous
distribution

SupposeX has a continuous distribution with density function f . Let Y =
H(X) be a new random variable, defined as a function of X. We can cal-
culate EY by an approximation argument similar to the one used in Exam-
ple <7.2>. It will turn out that

EH(X) =

∫ +∞

−∞
H(x)f(x) dx.
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7. Continuous Distributions 10

H( . )

nδ

(n+1)δ

An

Cut the range of values that might be taken by Y into disjoint intervals of
the form nδ ≤ y < (n + 1)δ, for an arbitrarily small, positive δ. Write An
for the corresponding set of x values. That is, for each x in R,

nδ ≤ H(x) < (n+ 1)δ if and only if x ∈ An.

We now have simple upper and lower bounds for H:

Hδ(x) ≤ H(x) ≤ δ +Hδ(x) for every real x

where Hδ(x) =
∑

n
nδ1{x ∈ An}.

(You should check the inequalities when x ∈ An, for each possible integer n.)
Consequently

EHδ(X) ≤ EH(X) ≤ δ + EHδ(X)

and ∫ +∞

−∞
Hδ(x)f(x) dx ≤

∫ +∞

−∞
H(x)f(x) dx ≤ δ +

∫ +∞

−∞
Hδ(x)f(x) dx.

More concisely,

(?) |EHδ(X)− EH(X)| ≤ δ

and

(??) |
∫ +∞

−∞
Hδ(x)f(x) dx−

∫ +∞

−∞
H(x)f(x) dx| ≤ δ.
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7. Continuous Distributions 11

The random variable Hδ(X) has a discrete distribution whose expecta-
tion you know how to calculate:

EHδ(X) = E
∑

n
nδ1{X ∈ An} expectation of a countable sum

=
∑

n
nδP{X ∈ An} because E1{X ∈ An} = P{X ∈ An}

=
∑

n
nδ

∫ +∞

−∞
1{x ∈ An}f(x) dx definition of f

=

∫ +∞

−∞
Hδ(x)f(x) dx take sum inside integral.

From the inequalities (?) and (??), the last equality deduce that

|EH(X) =

∫ +∞

−∞
H(x)f(x) dx| ≤ 2δ

for arbitrarily small δ > 0. The asserted representation for EH(X) follows.
�

Remark. Compare with the formula for a random variable X∗ taking
only a discrete set of values x1, x2, . . . ,

EH(X∗) =
∑

i
H(xi)P{X∗ = xi}

In the passage from discrete to continuous distributions, discrete
probabilities get replaced by densities and sums get replaced by
integrals.

<7.4> Example. Expected value and variance N(µ, σ2).
If X ∼ N(µ, σ2) its density function is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
for −∞ < x <∞

=
1

σ
φ

(
x− µ
σ

)
where φ(y) := (2π)−1/2 exp(−y2/2).

Calculate, using a change of variable y = (x− µ)/σ.

EX =

∫ +∞

−∞
xf(x) dx

=

∫ +∞

−∞
(µ+ σy)φ(y) dy

= µ

∫ +∞

−∞
φ(y) dy + σ

∫ +∞

−∞
yφ(y) dy

= µ.
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7. Continuous Distributions 12

The second integral vanishes because yφ(y) = −(−y)φ(−y).
Similarly

var(X) = E(X − µ)2

=

∫ +∞

−∞
(x− µ)2f(x) dx

= σ2
∫ +∞

−∞
y2φ(y) dy

= σ2

using integration by parts and d
dyφ(y) = −yφ(y).

�

<7.5> Example. Suppose X and Y are independent random variables, each with
a Uniform[0, 1] distribution. Show that P{X = Y } = 0.

The event {X = Y = 1} is a subset of {X = 1}, which has zero prob-
ability. The other possibilities are almost as easy to dispose of: for each
positive integer n,

{X = Y < 1} ⊂ ∪n−1i=0 {i/n ≤ X < (i+ 1)/n and i/n ≤ Y < (i+ 1)/n}

a disjoint union of events each with probability 1/n2, by independence. Thus

P{X = Y < 1} ≤ n(1/n2) = 1/n for every n.

It follows that P{X = Y } = 0.
A similar calculation shows that P{X = Y } = 0 for independent random

variables with any pair of continuous distributions. �

<7.6> Example. The distribution of the order statistics from the uniform distri-
bution.

Suppose U1, U2, . . . , Un are independent random variables, each with dis-
tribution Uniform(0, 1). That is,

P{a ≤ Ui ≤ b} =

∫ b

a
h(x) dx for all real a ≤ b,

where

h(x) =
{

1 if 0 < x < 1
0 otherwise.
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7. Continuous Distributions 13

The Ui’s define n points in the unit interval. If we measure the distance of
each point from 0 we obtain random variables 0 ≤ T1 < T2 < · · · < Tn ≤ 1,
the values U1, . . . , Un rearranged into increasing order. (Example <7.5> lets
me ignore ties.) For n = 6, the picture (with T5 and T6 not shown) looks
like:

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

If we repeated the process by generating a new sample of Ui’s, we would
probably not have U4 as the smallest, U1 as the second smallest, and so on.
That is, T1 might correspond to a different Ui.

The random variable Tk, the kth smallest of the ordered values, is usually
called the kth order statistic. It takes a continuous range of values. It has
a continuous distribution. What is its density function?

For a very short interval [t, t + δ], with 0 < t < t + δ < 1 and δ very
small, we need to show that P{t ≤ Tk ≤ t+ δ} is roughly proportional to δ,
then determine f(t), the constant of proportionality.

Write N for the number of Ui points that land in [t, t + δ]. To get
t ≤ Tk ≤ t + δ we must have N ≥ 1. If N = 1 then we must have exactly
k − 1 points in [0, t) to get t ≤ Tk ≤ t + δ. If N ≥ 2 then it becomes more
complicated to describe all the ways that we would get t ≤ Tk ≤ t + δ.
Luckily for us, the contributions from all those complicated expressions will
turn out to be small enough to ignore if δ is small. Calculate.

P{t ≤ Tk ≤ t+ δ} = P{N = 1 and exactly k − 1 points in [0, t)}
+ P{N ≥ 2 and t ≤ Tk ≤ t+ δ}.

Let me first dispose of the second contribution, where N ≥ 2. The event

F2 = {N ≥ 2} ∩ {t ≤ Tk ≤ t+ δ}

is a subset of the union

∪1<i<j≤n{Ui, Uj both in [t, t+ δ] }
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7. Continuous Distributions 14

Put another way,

IF2 ≤
∑

1≤i<j≤n
I{Ui, Uj both in [t, t+ δ] }.

Take expectations of both sides to deduce that

PF2 ≤
∑

1≤i<j≤n
P{Ui, Uj both in [t, t+ δ]}.

By symmetry, all
(
n
2

)
terms in the sum are equal to

P{U1, U2 both in [t, t+ δ]}
= P{t ≤ U1 ≤ t+ δ}P{t ≤ U2 ≤ t+ δ} by independence

= δ2.

Thus PF2 ≤
(
n
2

)
δ2, which tends to zero much faster than δ as δ → 0. (The

value of n stays fixed throughout the calculation.)
Next consider the contribution from the event

F1 = {N = 1} ∩ {exactly k − 1 points in [0, t)}.

Break F1 into disjoint events like

{U1, . . . , Uk−1 in [0, t), Uk in [t, t+ δ], Uk+1, . . . , Un in (t+ δ, 1]}.

Again by virtue of the independence between the {Ui}, this event has prob-
ability

P{U1 < t}P{U2 < t} . . .P{Uk−1 < t}
× P{Uk in [t, t+ δ]}
× P{Uk+1 > t+ δ} . . .P{Un > t+ δ},

Invoke the defining property of the uniform distribution to factorize the
probability as

tk−1δ(1− t− δ)n−k = tk−1(1− t)n−kδ + terms of order δ2 or smaller.

How many such pieces are there? There are
(
n
k−1
)

ways to choose the k − 1
of the Ui’s to land in [0, t), and for each of these ways there are n − k + 1
ways to choose the single observation to land in [t, t + δ]. The remaining
observations must go in (t+ δ, 1]. We must add up(

n

k − 1

)
× (n− k + 1) =

n!

(k − 1)!(n− k)!
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7. Continuous Distributions 15

contributions with the same probability to calculate PF1.
Consolidating all the small contributions from PF1 and PF2 we then get

P{t ≤ Tk ≤ t+ δ}

=
n!

(k − 1)!(n− k)!
tk−1(1− t)n−kδ + terms of order δ2 or smaller.

That is, the distribution of Tk is continuous with density function

f(t) =
n!

(k − 1)!(n− k)!
tk−1(1− t)n−k for 0 < t < 1.

Outside (0, 1) the density is zero. �

Remark. It makes no difference how we define f(t) at t = 0 and t = 1,

because it can have no effect on integrals
∫ b

a
f(t) dt.

From the fact that the density must integrate to 1, we get

1 =

∫ 0

−∞
0dt+

n!

(k − 1)!(n− k)!

∫ 1

0
tk−1(1− t)n−kdt+

∫ ∞
1

0dt

That is,∫ 1

0
tk−1(1− t)n−kdt =

(k − 1)!(n− k)!

n!
,

a fact that you might try to prove by direct calculation.

<7.7> Example. Binomial tail probabilities from beta distributions.
In principle it is easy to calculate probabilities such as P{Bin(30, p) ≥ 17}

for various values of p: one has only to sum the series(
30

17

)
p17(1− p)13 +

(
30

18

)
p18(1− p)12 + · · ·+ (1− p)30.

With a computer (using R, for example) such a task would not be as ar-
duous as it used to be back in the days of hand calculation. We could also
use a normal approximation (as in the example for the median in Chap-
ter 6). However, there is another method based on the facts about the
order statistics, which gives an exact integral expression for the Binomial
tail probability.
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7. Continuous Distributions 16

The relationship becomes clear from a special method for simulating coin
tosses. For a fixed n (such as n = 30), generate independently n random
variables U1, . . . , Un, each distributed uniformly on [0, 1]. Fix a p in [0, 1].
Then the independent events

{U1 ≤ p}, {U2 ≤ p}, . . . , {Un ≤ p}

are like n independent flips of a coin that lands heads with probability p.
The number, Xn, of such events that occur has a Bin(n, p) distribution.

As in Example <7.6>, write Tk for the kth smallest value when the Ui’s
are sorted into increasing order.

0 1U4 U1

T1

U5 U2 U6 U3

T2

T3

T4

p

The random variables Xn and Tk are related by an equivalence,

Xn ≥ k if and only if Tk ≤ p.

That is, there are k or more of the Ui’s in [0, p] if and only if the kth smallest
of all the Ui’s is in [0, p]. Thus

P{Xn ≥ k} = P{Tk ≤ p} =
n!

(k − 1)!(n− k)!

∫ p

0
tk−1(1− t)n−k dt.

The density for the distribution of Tk comes from Example <7.6>. �
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