
Chapter 2

Expectations

2.1 Overview

Recall from Chapter 1 that a random variable is just a function that attaches
a number to each item in the sample space. Less formally, a random variable
corresponds to a numerical quantity whose value is determined by some
chance mechanism.

Just as events have (conditional) probabilities attached to them, with
possible interpretation as a long-run frequency, so too do random variables
have a number interpretable as a long-run average attached to them. Given
a particular piece of information (info), the symbol

E (X | info)

denotes the (conditional) expected value or (conditional) expectation
of the random variable X (given that information). When the information
is taken as understood, the expected value is abbreviated to EX.

Expected values are not restricted to lie in the range from zero to one.
For example, if the info forces a random variable X to always take values
larger than 16 then E (X | info) will be larger than 16.

As with conditional probabilities, there are convenient abbreviations
when the conditioning information includes something like {event F has
occurred}:

E (X | info and “F has occurred” )

E (X | info, F )

Unlike many authors, I will take the expected value as a primitive concept,
not one to be derived from other concepts. All of the methods that those
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2. Expectations 2

authors use to define expected values will be derived from a small number
of basic rules. I will provide an interpretation for just one of the rules, using
long-run averages of values generated by independent repetitions of random
experiments. You should provide analogous interpretations for the other
rules.

Remark. See the Appendix to this Chapter for another interpretation,
which does not depend on a preliminary concept of independent
repetitions of an experiment. The expected value EX can be interpreted
as a“fair price” to pay up-front, in exchange for a random return X
later—something like an insurance premium.

Rules for (conditional) expectations
Let X and Y be random variables, c and d be constants, and F1, F2, . . . be
events. Then:

(E1) E (cX + dY | info) = cE (X | info) + dE (Y | info );

(E2) if X can only take the constant value c under the given “info” then
E (X | info ) = c;

(E3) if the given “info” forces X ≤ Y then E (X | info) ≤ E (Y | info );

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole
sample space then

E (X | info) =
∑

i
E (X | Fi, info)P (Fi | info ) .

Rule (E4) combines the power of both rules (P4) and (P5) for conditional
probabilities. Here is the frequency interpretation for the case of two disjoint
events F1 and F2 with union equal to the whole sample space: Repeat the
experiment (independently) a very large number (n) of times, each time
with the same conditioning info, noting for each repetition the value taken
by X and which of F1 or F2 occurs.

1 2 3 4 . . . n− 1 n total

F1 occurs X X X . . . X X n1
F2 occurs X . . . X X X n2

X x1 x2 x3 x4 . . . xn−1 xn
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By the frequency interpretation of probabilities, P (F1 | info) ≈ n1/n and
P (F2 | info) ≈ n2/n. Those trials where F1 occurs correspond to condition-
ing on F1:

E (X | F1, info ) ≈ 1

n1

∑
F1 occurs

xi.

Similarly,

E (X | F2, info ) ≈ 1

n2

∑
F2 occurs

xi

Thus

E (X | F1, info)P (F1 | info ) + E (X | F2, info)P (F2 | info )

≈

 1

n1

∑
F1 occurs

xi

(n1
n

)
+

 1

n2

∑
F2 occurs

xi

(n2
n

)

=
1

n

n∑
i=1

xi

≈ E (X | info ) .

As n gets larger and larger all approximations are supposed to get better
and better, and so on.

Modulo some fine print regarding convergence of infinite series, rule (E1)
extends to sums of infinite sequences of random variables,

(E1)′ E(X1 +X2 + . . . ) = E(X1) + E(X2) + . . .

(For mathematical purists: the asserted equality holds if
∑

i E|Xi| <∞.)

Remark. The rules for conditional expectations actually include all
the rules for conditional probabilities as special cases. This delightfully
convenient fact can be established by systematic use of particularly
simple random variables. For each event A the indicator function
of A is defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

Each IA is a random variable.
Rule (E4) with F1 = A and F2 = Ac gives

E (IA | info) = E (IA | A, info)P (A | info) +

+ E (IA | Ac, info)P (Ac | info)

= 1× P (A | info) + 0× P (Ac | info) by (E2).
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That is, E (IA | info) = P (A | info).
If an event A is a disjoint union of events A1, A2, . . . then

IA = IA1
+ IA2

+ . . . . (Why?) Taking expectations then invoking the
version of (E1) for infinite sums we get rule (P4).

As an exercise, you might try to derive the other probability rules,
but don’t spend much time on the task or worry about it too much.
Just keep buried somewhere in the back of your mind the idea that
you can do more with expectations than with probabilities alone.

You will find it useful to remember that E (IA | info) = P (A | info),
a result that is easy to recall from the fact that the long-run frequency
of occurrence of an event, over many repetitions, is just the long-run
average of its indicator function.

Rules (E2) and (E4) can be used to calculate expectations from prob-
abilities, for random variables that take values in “discrete” set. Consider
the case of a random variable Y expressible as a function g(X) of another
random variable, X, which takes on only a discrete set of values c1, c2, . . . .
Let Fi be the subset of S on which X = ci, that is, Fi = {X = ci}. Then
by E2,

E (Y | Fi, info ) = g(ci),

and by E5,

E (Y | info) =
∑

i
g(ci)P (Fi | info ) .

More succinctly,

(E5) E (g(X) | info) =
∑

i
g(ci)P (X = ci | info ) .

In particular,

(E5)′ E (X | info) =
∑

i
ciP (X = ci | info ) .

Both (E5) and (E5)’ apply to random variables X that take values in the
“discrete set” {c1, c2, . . . }.

Remark. For random variables that take a continuous range of values
an approximation argument (see Chapter 6) will provide us with an
analog of (E5) with the sum replaced by an integral.

You will find it helpful to remember expectations for a few standard
mechanisms, such as coin tossing, rather than have to rederive them repeat-
edly.
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Example <2.1> Expected value for the geometric(p) distribution is 1/p.

The calculation of an expectation is often a good way to get a rough feel
for the behaviour of a random process, but it doesn’t tell the whole story.

Example <2.2> Expected number of tosses to get tthh is 16 with fair
coin.

Compare with the next Example.

Example <2.3> Expected number of tosses to get hhh is 14 with fair
coin.

Don’t the last two results seem strange? On average it takes longer to
reach tthh than hhh, but also on average the pattern tthh appears first.

Remark. You should also be able to show that the expected number
of tosses for the completion of the game with competition between hhh
and tthh is 91/3. Notice that the expected value for the game with
competition is smaller than the minimum of the expected values for
the two games. Why must it be smaller?

Probabilists study standard mechanisms, and establish basic results for
them, partly in the hope that they will recognize those same mechanisms
buried in other problems. In that way, unnecessary calculation can be
avoided, making it easier to solve more complex problems. It can, how-
ever, take some work to find the hidden simplification.

Example <2.4> [Coupon collector problem] In order to encourage con-
sumers to buy many packets of cereal, a manufacurer includes a Famous
Probabilist card in each packet. There are 10 different types of card: Chung,
Feller, Lévy, Kolmogorov, . . . , Doob. Suppose that I am seized by the de-
sire to own at least one card of each type. What is the expected number of
packets that I need to buy in order to achieve my goal?

For the coupon collectors problem I assumed large numbers of cards
of each type, in order to justify the analogy with coin tossing. Without
that assumption the depletion of cards from the population would have
a noticeable effect on the proportions of each type remaining after each
purchase. The next example illustrates the effects of sampling from a finite
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population without replacement, when the population size is not assumed
very large.

The example will also provides an illustration of the method of in-
dicators, whereby a random variable is expressed as a sum of indicator
variables IA1 + IA2 + . . . , in order to reduce calculation of an expected value
to separate calculation of probabilities PA1, PA2, . . . via the formula

E (IA1 + IA2 + . . . | info )

= E (IA1 | info) + E (IA2 | info ) + . . .

= P (A1 | info) + P (A2 | info) + P (A2 | info) + . . .

Example <2.5> Suppose an urn contains r red balls and b black balls, all
identical except for color. Suppose you remove one ball at a time, without
replacement, at each step selecting at random from the urn: if k balls re-
main then each has probability 1/k of being chosen.Show that the expected
number of red balls removed before the firstblack ball equals r/(b+ 1).

Compare the solution r/(b+1) with the result for sampling with replace-
ment, where the number of draws required to get the first black would have
a geometric(b/(r+b)) distribution. With replacement, the expected number
of reds removed before the first black would be

(b/(r + b))−1 − 1 = r/b.

Replacement of balls after each draw increases the expected value slightly.
Does that make sense?

The conditioning property (E5) can be used in a subtle way to solve
the classical gambler’s ruin problem. The method of solution invented by
Abraham de Moivre, over two hundred years ago, has grown into one of the
main technical tools of modern probability.

Example <2.6> Suppose two players, Alf and Betamax, bet on the tosses
of a fair coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax
pays Alf one dollar. The stop playing when one player runs out of money. If
Alf starts with α dollar bills, and Betamax starts with β dollars bills (both
α and β whole numbers), what is the probability that Alf ends up with all
the money?
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De Moivre’s method also works with biased coins, if we count profits in a
different way—an even more elegant application of conditional expectations.
The next Example provides the details. You could safely skip it if you
understand the tricky idea behind Example <2.6>.

Example <2.7> Same problem as in Example <2.6>, except that the
coin they toss has probability p 6= 1/2 of landing heads. (Could be skipped.)

You could also safely skip the final Example. It contains a discussion of
a tricky little problem, that can be solved by conditioning or by an elegant
symmetry argument.

Example <2.8> Big pills, little pills. (Tricky. Should be skipped.)

2.2 Things to remember

• Expectations (and conditional expectations) are linear (E1), increas-
ing (E3) functions of random variables, which can be calculated as
weighted averages of conditional expectations,

E (X | info) =
∑

i
E (X | Fi, info)P (Fi | info ) ,

where the disjoint events F1, F2, . . . cover all possibilities (the weights
sum to one).

• The indicator function of an event A is the random variable defined
by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

The expected value of an indicator variable, E (IA | info), is the same
as the probability of the corresponding event, P (A | info).

• As a consequence of the rules,

E (g(X) | info) =
∑

i
g(ci)P (X = ci | info ) ,

if X can take only values c1, c2, . . . .
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2.3 The examples

<2.1> Example. For independent coin tossing, what is the expected value of X,
the number of tosses to get the first head?

Suppose the coin has probability p > 0 of landing heads. (So we are
actually calculating the expected value for the geometric(p) distribution.) I
will present two methods.

Method A: a Markov argument without the picture
Condition on whether the first toss lands heads (H1) or tails (T1).

EX = E(X | H1)PH1 + E(X | T1)PT1
= (1)p+ (1 + EX)(1− p).

The reasoning behind the equality

E(X | T1) = 1 + EX

is: After a tail we are back where we started, still counting the number of
tosses until a head, except that the first tail must be included in that count.

Solving the equation for EX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it decrease
as p increases? What happens as p tends to zero or one?)

Method B
By the formula (E5),

EX =
∑∞

k=1
k(1− p)k−1p.

There are several cute ways to sum this series. Here is my favorite. Write
q for 1 − p. Write the kth summand as a a column of k terms pqk−1, then
sum by rows:

EX = p+ pq + pq2 + pq3 + . . .

+pq + pq2 + pq3 + . . .

+pq2 + pq3 + . . .

+pq3 + . . .

...
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Each row is a geometric series.

EX = p/(1− q) + pq/(1− q) + pq2/(1− q) + . . .

= 1 + q + q2 + . . .

= 1/(1− q)
= 1/p,

same as before. �

<2.2> Example. The “HHH versus TTHH” Example in Chapter 1 solved the
following problem:

Imagine that I have a fair coin, which I toss repeatedly. Two
players, M and R, observe the sequence of tosses, each waiting
for a particular pattern on consecutive tosses: M waits for hhh,
and R waits for tthh. The one whose pattern appears first is the
winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly sur-
prising, because, at first sight, a pattern of four appears harder to achieve
than a pattern of three.

A calculation of expected values will add to the puzzlement. As you will
see, if the game is continued until each player sees his pattern, it takes tthh
longer (on average) to appear than it takes hhh to appear. However, when
the two patterns are competing, the tthh pattern is more likely to appear
first. How can that be?

For the moment forget about the competing hhh pattern: calculate the
expected number of tosses needed before the pattern tthh is obtained with
four successive tosses. That is, if we let X denote the number of tosses
required then the problem asks for the expected value EX.

S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the start-
ing state (labelled S) to the state TTHH where the pattern is achieved.
Each arrow in the diagram corresponds to a transition between states with
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probability 1/2. The corresponding transition matrix is:

P =



S T TT TTH TTHH

S 1/2 1/2 0 0 0
T 1/2 0 1/2 0 0
TT 0 0 1/2 1/2 0
TTH 0 1/2 0 0 1/2
TTHH 0 0 0 0 1

.
Once again it is easier to solve not just the original problem, but a set

of problems, one for each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)

...

Then the original problem is asking for the value of ES .
To solve gthe problem, condition on the outcome of the first toss, writing

H for the event {first toss lands heads} and T for the event {first toss lands
tails}. From rule E4 for expectations,

ES = E(X | start at S,T)P(T | start at S)

+ E(X | start at S,H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does
not depend on the state). For the first of the conditional expectations,
count 1 for the first toss, then recognize that the remaining tosses are just
those needed to reach TTHH starting from the state T :

E(X | start at S,T) = 1 + E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an
analogous expression for the second conditional expectation. Substitution
into the expression for ES then gives

ES = 1/2(1 + ET ) + 1/2(1 + ES)

Similarly,

ET = 1/2(1 + ETT ) + 1/2(1 + ES)

ETT = 1/2(1 + ETT ) + 1/2(1 + ETTH)

ETTH = 1/2(1 + 0) + 1/2(1 + ET )
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What does the zero in the last equation represent?
The four linear equations in four unknowns have the solution ES = 16,

ET = 14, ETT = 10, ETTH = 8. Thus, the solution to the original problem
is that the expected number of tosses to achieve the tthh pattern is 16. �

<2.3> Example. Expected number of tosses to get hhh with fair coin is 14.
I could use the same method as for the tthh problem but I want to show

you a variation on the method that is easier to generalize. It involves a lot
more notation, but it captures better the recursive nature of the problem.

First relabel the states: S0 = S, S1 = H, S2 = HH, and S3 = HHH.
Then write Xk for the number of steps to reach state Sk and define

τk = E(Xk | start at S0).

Clearly Xk+1 is bigger than Xk, so the random variable Yk+1 = Xk+1 −Xk

is nonnegative. The variation works by calculating E(Yk+1 | start at S0).
For each integer m write Hm for the event that the mth toss results in

a head and Tm for Hc
m. I claim that

E(Yk+1 | Xk = m,Hm+1) = 1

E(Yk+1 | Xk = m,Tm+1) = 1 + τk+1.

The second equality reflects the fact that the tail sends us right back to the
start.

By rule (E4),

E(Yk+1 | start at S0)

=
∑

m
E(Yk+1 | Xk = m,Hm+1, start at S0)×

P(Xk = m,Hm+1 | start at S0)

+
∑

m
E(Yk+1 | Xk = m,Tm+1, start at S0)×

P(Xk = m,Tm+1 | start at S0)

=
∑

m
P(Xk = m) ((1/2× 1) + 1/2× (1 + τk+1))

Here I have used conditional independence of the events {Xk = m} and Hm+1

(or Tm+1) given “start at S0”. Assuming that Xk is finite with probability
one (given “start at S0”), the probabilities P(Xk = m) sum to one, leaving

E(Yk+1 | start at S0) = 1 + τk+1/2.
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We now have a recursive equation

τk+1 = E(Xk + Yk+1 | start at S0) = τk + 1 + τk+1/2

or τk+1 = 2τk + 2. If you are very brave you might use τ0 = 0, otherwise
you would appeal to Example <2.1> to get τ1 = 2. The recursive equality
then gives τ2 = 6 and τ3 = 14, as asserted. �

<2.4> Example. In order to encourage consumers to buy many packets of cereal,
a manufacurer includes a Famous Probabilist card in each packet. There
are 10 different types of card: Chung, Feller, Lévy, Kolmogorov, . . . , Doob.
Suppose that I am seized by the desire to own at least one card of each type.
What is the expected number of packets that I need to buy in order to achieve
my goal?

Assume that the manufacturer has produced enormous numbers of cards,
the same number for each type. (If you have ever tried to collect objects
of this type, you might doubt the assumption about equal numbers. But,
without it, the problem becomes exceedingly difficult.) The assumption
ensures, to a good approximation, that the cards in different packets are
independent, with probability 1/10 for a Chung, probability 1/10 for a Feller,
and so on.

The high points in my life occur at random “times” T1, T1 + T2, . . . ,
T1 + T2 + · · ·+ T10, when I add a new type of card to my collection: After
one card (that is, T1 = 1) I have my first type; after another T2 cards I will
get something different from the first card; after another T3 cards I will get
a third type; and so on.

The question asks for E(T1 + T2 + · · · + T10), which rule E1 (applied
repeatedly) reexpresses as ET1 + ET2 + · · ·+ ET10.

The calculation for ET1 is trivial because T1 must equal 1: we get ET1 = 1
by rule (E2). Consider the mechanism controlling T2. For concreteness
suppose the first card was a Doob. Each packet after the first is like a coin
toss with probability 9/10 of getting a head (= a nonDoob), with T2 like
the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example <2.1> that ET2 = 10/9, a value slightly larger than 1.
Now consider the mechanism controlling T3. Condition on everything

that was observed up to time T1 +T2. Under the assumption of equal abun-
dance and enormous numbers of cards, most of this conditioning information
is acually irrelevent; the mechanism controlling T3 is independent of the past
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information. (Hard question: Why would the T2 and T3 mechanisms not be
independent if the cards were not equally abundant?) So what is that T3
mechanism? I am waiting for any one of the 8 types I have not yet collected.
It is like coin tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thus ET3 = 10/8.

Remark. More precisely, T3 is independent of T2 with conditional
probability distribution geometric (8/10). That is, with p = 8/10,

P{T3 = k | T2 = `} = (1− p)k−1p for k = 1, 2, . . .

for every possible `.

And so on, leading to

ET1 + ET2 + · · ·+ ET10 = 1 + 10/9 + 10/8 + ...+ 10/1 ≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards. �

Note: The independence between packets was not needed to justify
the appeal to rule (E1), to break the expected value of the sum into a
sum of expected values. It did allow me to recognize the various geometric
distributions without having to sort through possible effects of large T2 on
the behavior of T3, and so on.

You might appreciate better the role of independence if you try to solve
a similar (but much harder) problem with just two sorts of card, not in equal
proportions.

<2.5> Example. Suppose an urn contains r red balls and b black balls, all identical
except for color. Suppose you remove one ball at a time, without replacement,
at each step selecting at random from the urn: if k balls remain then each
has probability 1/k of being chosen.Show that the expected number of red
balls removed before the firstblack ball equals r/(b+ 1).

The problem might at first appear to require nothing more than a simple
application of rule (E5)’ for expectations. We shall see. Let T be the number
of reds removed before the first black. Find the distribution of T , then appeal
to E5′ to get

ET =
∑

k
kP{T = k}.

Sounds easy enough. We have only to calculate the probabilities P{T = k}.
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Define Ri = {ith ball red} and Bi = {ith ball black}. The possible
values for T are 0, 1, . . . , r. For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1R2 . . . RkBk+1)

= (PR1)P(R2 | R1)P(R3 | R1R2) . . .P(Bk+1 | R1 . . . Rk)

=
r

r + b
.
r − 1

r + b− 1
. . .

b

r + b− k
.

The dependence on k is fearsome. I wouldn’t like to try multiplying by k
and summing. If you are into pain you might try to continue this line of
argument. Good luck.

There is a much easier way to calculate the expectation, by breaking T
into a sum of much simpler random variables for which (E5)’ is trivial to
apply. This approach is sometimes called the method of indicators.

Suppose the red balls are labelled 1, . . . , r. Let Ti equal 1 if red ball
number i is sampled before the first black ball, zero otherwise. That is, Ti
is the indicator for the event

{red ball number i is removed before any of the black balls}.

(Be careful here. The black balls are not thought of as numbered. The
first black ball is not a ball bearing the number 1; it might be any of the
b black balls in the urn.) Then T = T1 + · · · + Tr. By symmetry—it is
assumed that the numbers have no influence on the order in which red balls
are selected—each Ti has the same expectation. Thus

ET = ET1 + · · ·+ ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event
{T1 = 1} occurs if and only if red ball number 1 is drawn before all b of
the black balls. By symmetry, the event has probability 1/(b+ 1). (If b+ 1
objects are arranged in random order, each object has probability 1/(1 + b)
of appearing first in the order.)

Remark. If you are not convinced by the appeal to symmetry, you
might find it helpful to consider a thought experiment where all r + b
balls are numbered and they are removed at random from the urn.
That is, treat all the balls as distinguishable and sample until the
urn is empty. (You might find it easier to follow the argument in a
particular case, such as all 120 = 5! orderings for five distinguishable
balls, 2 red and 3 black.) The sample space consists of all permutations
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of the numbers 1 to r + b. Each permutation is equally likely. For
each permutation in which red 1 precedes all the black balls there is
another equally likely permutation, obtained by interchanging the red
ball with the first of the black balls chosen; and there is an equally
likely permutation in which it appears after two black balls, obtained
by interchanging the red ball with the second of the black balls chosen;
and so on. Formally, we are partitioning the whole sample space into
equally likely events, each determined by a relative ordering of red 1
and all the black balls. There are b+ 1 such equally likely events, and
their probabilities sum to one.

Now it is easy to calculate the expected value for red 1.

ET1 = 0P{T1 = 0}+ 1P{T1 = 1} = 1/(b+ 1)

The expected number of red balls removed before the first black ball is equal
to r/(b+ 1). �

<2.6> Example. Suppose two players, Alf (A for short) and Betamax (B for
short), bet on the tosses of a fair coin: for a head, Alf pays Betamax one
dollar; for a tail, Betamax pays Alf one dollar. They stop playing when
one player runs out of money. If Alf starts with α dollar bills, and Beta-
max starts with β dollars bills (both α and β whole numbers), what is the
probability that Alf ends up with all the money?

Write Xn for the number of dollars held by A after n tosses. (Of course,
once the game ends the value of Xn stays fixed from then on, at either a+ b
or 0, depending on whether A won or not.) It is a random variable taking
values in the range {0, 1, 2, . . . , a + b}. We start with X0 = α. To solve
the problem, calculate EXn, for very large n in two ways, then equate the
answers. We need to solve for the unknown θ = P{A wins}.

First calculation
Invoke rule (E4) with the sample space broken into three pieces,

An = {A wins at, or before, the nth toss},
Bn = {B wins at, or before, the nth toss},
Cn = {game still going after the nth toss}.

For very large n the game is almost sure to be finished, with PAn ≈ θ,
PBn ≈ 1− θ, and PCn ≈ 0. Thus

EXn = E(Xn | An)PAn + E(Xn | Bn)PBn + E(Xn | Cn)PCn
≈
(
(α+ β)× θ

)
+
(
0× (1− θ)

)
+
(
(something)× 0

)
.

Statistics 241/541 fall 2014 c©David Pollard,



2. Expectations 16

The error in the approximation goes to zero as n goes to infinity.

Second calculation
Calculate conditionally on the value of Xn−1. That is, split the sample
space into disjoint events Fk = {Xn−1 = k}, for k = 0, 1, . . . , a + b, then
work towards another appeal to rule (E4). For k = 0 or k = a+ b, the game
will be over, and Xn must take the same value as Xn−1. That is,

E(Xn | F0) = 0 and E(Xn | Fα+β) = α+ β.

For values of k between the extremes, the game is still in progress. With
the next toss, A’s fortune will either increase by one dollar (with probability
1/2) or decrease by one dollar (with probability 1/2). That is, for k =
1, 2, . . . , α+ -

¯
1,

E(Xn | Fk) = 1/2(k + 1) + 1/2(k − 1) = k.

Now invoke (E4).

E(Xn) = (0× PF0) + (1× PF1) + · · ·+ (α+ β)PFα+β.

Compare with the direct application of (E5)’ to the calculation of EXn−1:

E(Xn−1) =
(
0× P{Xn−1 = 0}

)
+
(
1× P{Xn−1 = 1}

)
+

· · ·+
(
(α+ β)× P{Xn−1 = α+ β}

)
,

which is just another way of writing the sum for EXn derived above. Thus
we have

EXn = EXn−1

The expected value doesn’t change from one toss to the next.
Follow this fact back through all the previous tosses to get

EXn = EXn−1 = EXn−2 = · · · = EX2 = EX1 = EX0.

But X0 is equal to α, for certain, which forces EX0 = α.

Putting the two answers together
We have two results: EXn = α, no matter how large n is; and EXn gets
arbitrarily close to θ(α + β) as n gets larger. We must have α = θ(α + β).
That is, Alf has probability α/(α+ β) of eventually winning all the money.
�
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2. Expectations 17

Remark. Twice I referred to the sample space, without actually having
to describe it explicitly. It mattered only that several conditional
probabilities were determined by the wording of the problem.

Danger: The next two Examples are harder. They can be skipped.

<2.7> Example. Same problem as in Example <2.6>, except that the coin they
toss has probability p 6= 1/2 of landing heads.

The cases p = 0 and p = 1 are trivial. So let us assume that 0 < p < 1
(and p 6= 1/2). Essentially De Moivre’s idea was that we could use almost
the same method as in Example <2.6> if we kept track of A’s fortune on a
geometrically expanding scaled. For some number s, to be specified soon,
consider a new random variable Zn = sXn .

Xn scale

Zn scale

0 1 α+β

sα+β

s= s1
1=s0

s2

Once again write θ for P{A wins}, and give the events An, Bn, and Cn
the same meaning as in Example <2.6>.

As in the first calculation for the other Example, we have

EZn = E(sXn | An)PAn + E(sXn | Bn)PBn + E(sXn | Cn)PCn

≈
(
sα+β × θ

)
+
(
s0 × (1− θ)

)
+
(
(something)× 0

)
if n is very large.

For the analog of the second calculation, in the cases where the game
has ended by at or before the (n− 1)st toss we have

E(Zn | Xn−1 = 0) = s0 and E(Zn | Xn−1 = α+ β) = sα+β.
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For 0 < k < α+ β, the result of the calculation is slightly different.

E(Zn | Xn−1 = k) = psk+1 + (1− p)sk−1 =
(
ps+ (1− p)s−1

)
sk.

If we choose s = (1−p)/p, the factor
(
ps+ (1− p)s−1

)
becomes 1. Invoking

rule E4 we then get

EZn = E(Zn | Xn−1 = 0)× P(Xn−1 = 0) + E(Zn | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(Zn | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1)

+ · · ·+ sα+β × P(Xn−1 = α+ β)

Compare with the calculation of EZn−1 via (E5).

EZn−1 = E(sXn−1 | Xn−1 = 0)× P(Xn−1 = 0)

+ E(sXn−1 | Xn−1 = 1)× P(Xn−1 = 1)

+ · · ·+ E(sXn−1 | Xn−1 = α+ β)× P(Xn−1 = α+ β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . .

+ sα+β × P(Xn−1 = α+ β)

Once again we have a situation where EZn stays fixed at the initial value
EZ0 = sα, but, with very large n, it can be made arbitrarily close to θsα+β+
(1− θ)s0. Equating the two values, we deduce that

P{Alf wins} = θ =
1− sα

1− sα+β
where s = (1− p)/p.

What goes wrong with this calculation if p = 1/2? As a check we could
let p tend to 1/2, getting

1− sα

1− sα+β
=

(1− s)(1 + s+ · · ·+ sα−1)

(1− s)(1 + s+ · · ·+ sα+β−1)
for s 6= 1

=
1 + s+ · · ·+ sα−1

1 + s+ · · ·+ sα+β−1

→ α

α+ β
as s→ 1.

Comforted? �

<2.8> Example. My interest in the calculations in Example <2.5> was kindled by
a problem that appeared in the August-September 1992 issue of the Amer-
ican Mathematical Monthly. My solution to the problem—the one I first
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came up with by application of a straightforward conditioning argument—
reduces the calculation to several applications of the result from the pre-
vious Example. The solution offered by two readers of the Monthly was
slicker. The following brown paragraphs are taken hyper-verbatim from the
Monthly; I was seeing how closely LATEX could reproduce the original text.

E 3429 [1991, 264]. Proposed by Donald E. Knuth and John McCarthy,
Stanford University, Stanford, CA.

A certain pill bottle contains m large pills and n small pills initially, where each
large pill is equivalent to two small ones. Each day the patient chooses a pill at
random; if a small pill is selected, (s)he eats it; otherwise (s)he breaks the selected
pill and eats one half, replacing the other half, which thenceforth is considered to
be a small pill.

(a) What is the expected number of small pills remaining when the last large pill
is selected?

(b) On which day can we expect the last large pill to be selected?

Solution from AMM:
Composite solution by Walter Stromquist, Daniel H. Wagner, Associates,
Paoli, PA and Tim Hesterberg, Franklin & Marshall College, Lancaster,
PA. The answers are (a) n/(m+1)+

∑m
k=1(1/k), and (b) 2m+n− (n/(m+

1))−
∑m

k=1(1/k). The answer to (a) assumes that the small pill created by
breaking the last large pill is to be counted. A small pill present initially
remains when the last large pill is selected if and only if it is chosen last
from among the m+1 element set consisting of itself and the large pills—an
event of probability 1/(m+1). Thus the expected number of survivors from
the original small pills is n/(m + 1). Similarly, when the kth large pill is
selected (k = 1, 2, . . . ,m), the resulting small pill will outlast the remaining
large pills with probability 1/(m−k+1), so the expected number of created
small pills remaining at the end is

∑m
k=1(1/k). Hence the answer to (a) is as

above. The bottle will last 2m+n days, so the answer to (b) is just 2m+n
minus the answer to (a), as above.

I offer two alternative methods of solution for the problem. The first
method uses a conditioning argument to set up a recurrence formula for the
expected numbers of small pills remaining in the bottle after each return of
half a big pill. The equations are easy to solve by repeated substitution.
The second method uses indicator functions to spell out the Hesterberg-
Stromquist method in more detail. Apparently the slicker method was not
as obvious to most readers of the Monthly (and me):

Statistics 241/541 fall 2014 c©David Pollard,



2. Expectations 20

Editorial comment. Most solvers derived a recurrence relation, guessed
the answer, and verified it by induction. Several commented on the
origins of the problem. Robert High saw a version of it in the MIT
Technology Review of April, 1990. Helmut Prodinger reports that
he proposed it in the Canary Islands in 1982. Daniel Moran at-
tributes the problem to Charles MacCluer of Michigan State Uni-
versity, where it has been known for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect

solution was received.

Conditioning method.

Invent random variables to describe the depletion of the pills. Initially
there are L0 = n small pills in the bottle. Let S1 small pills be consumed
before the first large pill is broken. After the small half is returned to the
bottle let there be L1 small pills left. Then let S2 small pills be consumed
before the next big pill is split, leaving L2 small pills in the bottle. And so
on.

S
1
 small S

2
 small S

i 
small

L
1
 small left L

i
 small left

first big broken ith big brokenith big brokenfirst big broken last big broken

With this notation, part (a) is asking for ELm. Part (b) is asking for
2m+n−ELm: If the last big pill is selected on day X then it takes X+Lm
days to consume the 2m+n small pill equivalents, so EX +ELm = 2m+n.

The random variables are connected by the equation

Li = Li−1 − Si + 1,

the −Si representing the small pills consumed between the breaking of the
(i − 1)st and ith big pill, and the +1 representing the half of the big pill
that is returned to the bottle. Taking expectations we get

<2.9> ELi = ELi−1 − ESi + 1.

The result from Example <2.5> will let us calculate ESi in terms of ELi−1,
thereby producing the recurrence formula for ELi.

Condition on the pill history up to the (i− 1)st breaking of big pill (and
the return of the unconsumed half to the bottle). At that point there are
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Li−1 small pills and m − (i − 1) big pills in the bottle. The mechanism
controlling Si is just like the urn problem of Example <2.5>, with

r = Li−1 red balls (= small pills)

b = m− (i− 1) black balls (= big pills).

From that Example,

E{Si |history to (i− 1)st breaking of a big pill} = Li−11 +m− (i− 1).

To calculate ESi we would need to average out using weights equal to the
probability of each particular history:

ESi =
1

1 +m− (i− 1)

∑
histories

P{history}(value of Li−1 for that history).

The sum on the right-hand side is exactly the sum we would get if we
calculated ELi−1 using rule E4, partitioning the sample space according to
possible histories up to the (i− 1)st breaking of a big pill. Thus

ESi =
1

2 +m− i
ELi−1.

Now we can eliminate ESi from equality <2.9> to get the recurrence
formula for the ELi values:

ELi =

(
1− 1

2 +m− i

)
ELi−1 + 1.

If we define θi = ELi/(1 +m− i) the equation becomes

θi = θi−1 +
1

1 +m− i
for i = 1, 2, . . . ,m,

with initial condition θ0 = EL0/(1+m) = n/(1+m). Repeated substitution
gives

θ1 = θ0 +
1

m

θ2 = θ1 +
1

m− 1
= θ0 +

1

m
+

1

m− 1

θ3 = θ2 +
1

m− 2
= θ0 +

1

m
+

1

m− 1
+

1

m− 2
...

θm = · · · = θ0 +
1

m
+

1

m− 1
+ · · ·+ 1

2
+

1

1
.
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That is, the expected number of small pills left after the last big pill is
broken equals

ELm = (1 +m−m)θm

=
n

1 +m
+ 1 +

1

2
+ · · ·+ 1

m
.

Rewrite of the Stromquist-Hesterberg solution.
Think in terms of half pills, some originally part of big pills. Number the
original half pills 1, . . . , n. Define

Hi =
{

+1 if original half pill i survives beyond last big pill
0 otherwise.

Number the big pills 1, . . . ,m. Use the same numbers to refer to the half
pills that are created when a big pill is broken. Define

Bj =
{

+1 if created half pill j survives beyond last big pill
0 otherwise.

The number of small pills surviving beyond the last big pill equals

H1 + · · ·+Hn +B1 + · · ·+Bm.

By symmetry, each Hi has the same expected value, as does each Bj . The
expected value asked for by part (a) equals

<2.10> nEH1 +mEB1 = nP{H1 = 1}+mP{B1 = 1}.

For the calculation of P{H1 = +1} we can ignore all except the relative
ordering of the m big pills and the half pill described by H1. By symmetry,
the half pill has probability 1/(m + 1) of appearing in each of the m + 1
possible positions in the relative ordering. In particular,

P{H1 = +1} =
1

m+ 1
.

For the created half pills the argument is slightly more complicated. If
we are given that big pill number 1 the kth amongst the big pills to be
broken, the created half then has to survive beyond the remaining m−k big
pills. Arguing again by symmetry amongst the (m−k+ 1) orderings we get

P{B1 = +1 | big number 1 chosen as kth big} =
1

m− k + 1
.
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Also by symmetry,

P{big 1 chosen as kth big} =
1

m
.

Average out using the conditioning rule E4 to deduce

P{B1 = +1} =
1

m

m∑
k=1

1

m− k + 1
.

Notice that the summands run through the values 1/1 to 1/m in reversed
order.

When the values for P{H1 = +1} and P{B1 = +1} are substituted
into <2.10>, the asserted answer to part (a) results. �
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2.4 Appendix: The fair price interpretation of expec-
tations

Consider a situation—a bet if you will—where you stand to receive an un-
certain return X. You could think of X as a random variable, a real-valued
function on a sample space S. For the moment forget about any probabili-
ties on the sample space S. Suppose you consider p(X) the fair price to pay
in order to receive X. What properties must p(·) have?

Your net return will be the random quantity X−p(X), which you should
consider to be a fair return. Unless you start worrying about the utility
of money you should find the following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y )
fair for Y then you should be prepared to make both bets, paying
p(X) + p(Y ) to receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you
pay 2p(X) to receive 2X (actually, that particular example is a special
case of (i)) or 3.76p(X) to receive 3.76X, or −p(X) to receive −X. The
last example corresponds to willingness to take either side of a fair bet.
In general, to receive cX you should pay cp(X), for constant c.

(iii) There is no fair bet whose return X − p(X) is always ≥ 0 (except for
the trivial situation where X − p(X) is certain to be zero).

If you were to declare a bet with returnX−p(X) ≥ 0 under all circumstances
to be fair, I would be delighted to offer you the opportunity to receive the
“fair” return −C (X − p(X)), for an arbitrarily large positive constant C. I
couldn’t lose.
Fact 1:Properties (i), (ii), and (iii) imply that p(αX+βY ) = αp(X)+βp(Y )
for all random variables X and Y , and all constants α and β.

Consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY )− αp(X)− βp(Y ).
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If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii).
The asserted equality follows.
Fact 2:Properties (i), (ii), and (iii) imply that p(Y ) ≤ p(X) if the random
variable Y is always ≤ the random variable X.

If you claim that p(X) < p(Y ) then I would be happy for you to accept
the bet that delivers

(Y − p(Y ))− (X − p(X)) = −(X − Y )− (p(Y )− p(X)) ,

which is always < 0.
The two Facts are analogous to rules E1 and E3 for expectations. You

should be able to deduce the analog of E2 from (iii).
As a special case, consider the bet that returns 1 if an event F occurs,

and 0 otherwise. If you identify the event F with the random variable taking
the value 1 on F and 0 on F c (that is, the indicator of the event F ), then it
follows directly from Fact 1 that p(·) is additive: p(F1∪F2) = p(F1) + p(F2)
for disjoint events F1 and F2, an analog of rule P4 for probabilities.

Contingent bets
Things become much more interesting if you are prepared to make a bet
to receive an amount X, but only when some event F occurs. That is, the
bet is made contingent on the occurrence of F . Typically, knowledge of
the occurrence of F should change the fair price, which we could denote by
p(X | F ). Let me write Z for the indicator function of the event F , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is (X − p(X | F ))Z. The
indicator function Z ensures that money changes hands only when F occurs.

By combining various bets and contingent bets, we can deduce that an
analog of rule E4 for expectations: if S is partitioned into disjoint events
F1, . . . , Fk, then

p(X) =

k∑
i=1

p(Fi)p(X | Fi).

Make the following bets. Write ci for p(X | Fi).

(a) For each i, pay cip(Fi) in order to receive ci if Fi occurs.

ritem[(b)] Pay −p(X) in order to receive −X.
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(c) For each i, make a bet contingent on Fi: pay ci (if Fi occurs) to receive
X.

If event Fk occurs, your net profit will be

−
∑
i

cip(Fi) + ck + p(X)−X − ck +X = p(X)−
∑
i

cip(Fi),

which does not depend on k. Your profit is always the same constant value.
If the constant were nonzero, requirement (iii) for fair bets would be vio-
lated.

If you rewrite p(X) as the expected value EX, and p(F ) as PF for an
event F , and E(X | F ) for p(X | F ), you will see that the properties of fair
prices are completely analogous to the rules for probabilities and expecta-
tions. Some authors take the bold step of interpreting probability theory
as a calculus of fair prices. The interpretation has the virtue that it makes
sense in some situations where there is no reasonable way to imagine an un-
limited sequence of repetions from which to calculate a long-run frequency
or average.

See de Finetti (1974) for a detailed discussion of expectations as fair
prices.
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