
Chapter 11

Joint densities

11.1 Overview

Consider the general problem of describing probabilities involving two ran-
dom variables, X and Y . If both have discrete distributions, with X taking
values x1, x2, . . . and Y taking values y1, y2, . . . , then everything about the
joint behavior of X and Y can be deduced from the set of probabilities

P{X = xi, Y = yj} for i = 1, 2, . . . and j = 1, 2, . . .

We have been working for some time with problems involving such pairs
of random variables, but we have not needed to formalize the concept of a
joint distribution. When both X and Y have continuous distributions, it
becomes more important to have a systematic way to describe how one might
calculate probabilities of the form P{(X,Y ) ∈ B} for various subsetsB of the
plane. For example, how could one calculate P{X < Y } or P{X2 +Y 2 ≤ 9}
or P{X + Y ≤ 7}?

Definition. Say that random variables X and Y have a jointly continuous
distribution with joint density function f(·, ·) if

P{(X,Y ) ∈ B} =

∫∫
B
f(x, y) dx dy.

for each subset B of R2.

Remark. To avoid messy expressions in subscripts, I will sometimes
write

∫∫
1{(x, y) ∈ B} . . . instead of

∫∫
B
. . . .
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11. Joint densities 2

To ensure that P{(X,Y ) ∈ B} is nonnegative and that it equals one
when B is the whole of R2, we must require

f ≥ 0 and

∫ ∞
−∞

∫ ∞
−∞

f(x, y) dx dy = 1.

The density function defines a surface, via the equation z = f(x, y). The
probability that the random point (X,Y ) lands in B is equal to the volume
of the “cylinder”

{(x, y, z) ∈ R3 : 0 ≤ z ≤ f(x, y) and (x, y) ∈ B}.

In particular, if ∆ is small region in R2 around a point (x0, y0) at which f is
continuous, the cylinder is close to a thin column with cross-section ∆ and
height f(x0, y0), so that

P{(X,Y ) ∈ ∆} = (area of ∆)f(x0, y0) + smaller order terms.

More formally,

lim
∆↓{x0,y0)

P{(X,Y ) ∈ ∆}
area of ∆

= f(x0, y0).

The limit is taken as ∆ shrinks to the point (x0, y0).

height = f(x0,y0)

part of surface
     z=f(x,y)

base Δ
 in plane z=0

Apart from the replacement of single integrals by double integrals and
the replacement of intervals of small length by regions of small area, the def-
inition of a joint density is essentially the same as the definition for densities
on the real line in Chapter 7.

Example <11.1> Expectations of functions of random variable with
jointly continuous distributions: EH(X,Y ) =

∫∫
R2 H(x, y)f(x, y) dx dy.

The joint density for (X,Y ) includes information about the marginal
distributions of the random variables. To see why, write A × R for the
subset {(x, y) ∈ R2 : x ∈ A, y ∈ R} for a subset A of the real line. Then

P{X ∈ A}
= P{(X,Y ) ∈ A× R}

=

∫∫
1{x ∈ A, y ∈ R}f(x, y) dx dy

=

∫ +∞

−∞
1{x ∈ A}

(∫ +∞

−∞
1{y ∈ R}f(x, y) dy

)
dx

=

∫ +∞

−∞
1{x ∈ A}h(x) dx where h(x) =

∫ +∞

−∞
f(x, y) dy.
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11. Joint densities 3

It follows that X has a continuous distribution with (marginal) density h.
Similarly, Y has a continuous distribution with (marginal) density g(y) =∫ +∞
−∞ f(x, y) dx.

Remark. The word marginal is used here to distinguish the joint
density for (X,Y ) from the individual densities g and h.

When we wish to calculate a density, the small region ∆ can be chosen
in many ways—small rectangles, small disks, small blobs, and even small
shapes that don’t have any particular name—whatever suits the needs of a
particular calculation.

Example <11.2> (Joint densities for independent random variables)
Suppose X has a continuous distribution with density g and Y has a con-
tinuous distribution with density h. Then X and Y are independent if
and only if they have a jointly continuous distribution with joint density
f(x, y) = g(x)h(y) for all (x, y) ∈ R2.

When pairs of random variables are not independent it takes more work
to find a joint density. The prototypical case, where new random variables
are constructed as linear functions of random variables with a known joint
density, illustrates a general method for deriving joint densities.

Example <11.3> Suppose X and Y have a jointly continuous distri-
bution with density function f . Define S = X + Y and T = X − Y .
Show that (S, T ) has a jointly continuous distribution with density ψ(s, t) =

1
2f

(
s+ t

2
,
s− t

2

)
.

For instance, suppose the X and Y from Example <11.3> are inde-
pendent and each is N(0, 1) distributed. From Example <11.2>, the joint
density for (X,Y ) is

f(x, y) =
1

2π
exp

(
1
2(x2 + y2)

)
.

The joint density for S = X + Y and T = X − Y is

ψ(s, t) =
1

4π
exp

(
1
8((s+ t)2 + (s− t)2)

)
=

1

σ
√

2π
exp

(
− s2

2σ2

)
1

σ
√

2π
exp

(
− t2

2σ2

)
where σ2 = 2.
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It follows that S and T are independent, each with a N(0, 2) distribution.
Example <11.3> also implies the convolution formula from Chapter 8.

For if X and Y are independent, with densities g and h, then their joint
density is f(x, y) = g(x)h(y) and the joint density for S = X + Y and
T = X − Y is

ψ(s, t) = 1
2g

(
s+ t

2

)
h

(
s− t

2

)
Integrate over t to get the marginal density for S:∫ +∞

−∞
ψ(s, t) dt =

∫ +∞

−∞

1
2g

(
s+ t

2

)
h

(
s− t

2

)
dt

=

∫ +∞

−∞
g(x)h(s− x) dx putting x = (s+ t)/2.

The argument for general linear combinations is slightly more compli-
cated, unless you already know about Jacobians. You could skip the next
Example if you don’t know about matrices.

Example <11.4> Suppose X and Y have a jointly continuous distribu-
tion with joint density f(x, y). For constants a, b, c, d, define U = aX + bY
and V = cX + dY . Find the joint density function ψ(u, v) for (U, V ), under
the assumption that the quantity κ = ad− bc is nonzero.

The method used in Example<11.4>, for linear transformations, extends
to give a good approximation for more general smooth transformations when
applied to small regions. Densities describe the behaviour of distributions
in small regions; in small regions smooth transformations are approximately
linear; the density formula for linear transformations gives a good approxi-
mation to the density for smooth transformations in small regions.

Example <11.5> Suppose X and Y are independent random variables,
with X ∼ gamma(α) and Y ∼ gamma(β). Show that the random variables
U = X/(X + Y ) and V = X + Y are independent, with U ∼ beta(α, β) and
V ∼ gamma(α+ β).

The conclusion about X + Y from Example <11.5> extends to sums of
more than two independent random variables, each with a gamma distri-
bution. The result has a particularly important special case, involving the
sums of squares of independent standard normals.
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Example <11.6> Sums of independent gamma random variables.

And finally, a polar coordinates way to generate independent normals:

Example <11.7> Building independent normals

11.2 Examples for Chapter 11

<11.1> Example. Expectations of functions of a random variable with jointly con-
tinuous distributions

Suppose X and Y have a jointly continuous distribution with joint den-
sity function f(x, y). Let Y = H(X,Y ) be a new random variable, defined
as a function of X and Y . An approximation argument similar to the one
used in Chapter 7 will show that

EH(X,Y ) =

∫∫
R2

H(x, y)f(x, y) dx dy.

For simplicity suppose H is nonnegative. (For the general case split H
into positive and negtive parts.) For a small δ > 0 define

An = {(x, y) ∈ R2 : nδ ≤ H(x, y) < (n+ 1)δ} for n = 0, 1, . . .

The function Hδ(x, y) =
∑

n≥0 nδ1{(x, y) ∈ An} approximates H:

Hδ(x, y) ≤ H(x, y) ≤ Hδ(x, y) + δ for all (x, y) ∈ R2.

In particular,

EHδ(X,Y ) ≤ EH(X,Y ) ≤ δ + EHδ(X,Y ).

and ∫∫
R2

Hδ(x, y)f(x, y) dx dy

≤
∫∫

R2

H(x, y)f(x, y) dx dy ≤ δ +

∫∫
R2

Hδ(x, y)f(x, y) dx dy
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The random variable Hδ(X,Y ) has a discrete distribution, with expected
value

EHδ(X,Y ) = E
∑

n≥0
nδ1{(X,Y ) ∈ An}

=
∑

n≥0
nδ P{(X,Y ) ∈ An}

=
∑

n
nδ

∫∫
R2

1{(x, y) ∈ An}f(x, y) dx dy

=

∫∫
R2

∑
n
nδ1{(x, y) ∈ An}f(x, y) dx dy

=

∫∫
R2

Hδ(x, y)f(x, y) dx dy.

Deduce that∫∫
R2

H(x, y)f(x, y) dx dy − δ

≤ EH(X,Y )

≤ δ +

∫∫
R2

H(x, y)f(x, y) dx dy

for every δ > 0. �

<11.2> Example. (Joint densities for independent random variables) Suppose X
has a continuous distribution with density g and Y has a continuous distri-
bution with density h. Then X and Y are independent if and only if they
have a jointly continuous distribution with joint density f(x, y) = g(x)h(y)
for all (x, y) ∈ R2.

When X has density g(x) and Y has density h(y), and X is independent
of Y , the joint density is particularly easy to calculate. Let ∆ be a small
rectangle with one corner at (x0, y0) and small sides of length δ > 0 and
ε > 0,

∆ = {(x, y) ∈ R2 : x0 ≤ x ≤ x0 + δ, y0 ≤ y ≤ y0 + ε}.

By independence,

P{(X,Y ) ∈ ∆} = P{x0 ≤ X ≤ x0 + δ}P{y0 ≤ Y ≤ y0 + ε}
≈ δg(x0)εh(y0) =

(
area of ∆

)
× g(x0)h(y0).

Thus X and Y have a jointly continuous distribution with joint density that
takes the value f(x0, y0) = g(x0)h(y0) at (x0, y0).
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Conversely, if X and Y have a joint density f that factorizes, f(x, y) =
g(x)h(y), then for each pair of subsets C,D of the real line,

P{X ∈ C, Y ∈ D} =

∫∫
1{x ∈ C, y ∈ D}f(x, y) dx dy

=

∫∫
1{x ∈ C}1{y ∈ D}g(x)h(y)dx dy

=

(∫
1{x ∈ C}g(x) dx

)(∫
1{y ∈ D}h(y) dy

)
Define K :=

∫ +∞
−∞ g(x) dx. The choice C = D = R in the previous display

then shows that
∫ +∞
−∞ h(y) dy = 1/K.

If we take only D = R we get

P{X ∈ C} = P{X ∈ C, Y ∈ R} =

∫
C
g(x)/K dx

from which it follows that g(x)/K is the marginal density for X. Similarly,
Kh(y) is the marginal density for Y , so that

P{X ∈ C, Y ∈ D} =

∫
C

g(x)

K
dx×

∫
D
Kh(y) dy = P{X ∈ C}×P{Y ∈ D}.

Put another way,

P{X ∈ C | Y ∈ D} = P{X ∈ C} provided P{Y ∈ D} 6= 0.

The random variables X and Y are independent.
Of course, if we know that g and h are the marginal densities then we

have K = 1. The argument in the previous paragraph actually shows that
any factorization f(x, y) = g(x)h(y) of a joint density (even if we do not
know that the factors are the marginal densities) implies independence. �

<11.3> Example. Suppose X and Y have a jointly continuous distribution with
density function f . Define S = X+Y and T = X−Y . Show that (S, T ) has

a jointly continuous distribution with density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
.

Consider a small ball ∆ of radius ε centered at a point (s0, t0) in the
plane. The area of ∆ equals πε2. The point (s0, t0) in the (S, T )-plane
(the region where (S, T ) takes its values) corresponds to the point (x0, y0)
in the (X,Y )-plane for which s0 = x0 + y + 0 and t0 = x0 − y0. That is,
x0 = (s0 + t0)/2 and y0 = (s0 − t0)/2.
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We need to identify {(S, T ) ∈ ∆} with some set {(X,Y ) ∈ D}.

enalp-)T,S(enalp-)Y,X(

s

t

x

y

s0

t0

x0

y0

∆
D

By great luck (or by a clever choice for ∆) the region D in the (X,Y )-
plane turns out to be another ball:

{(S, T ) ∈ ∆} = {(S − s0)2 + (T − t0)2 ≤ ε2}
= {(X + Y − x0 − y0)2 + (X − Y − x0 + y0)2 ≤ ε2}
= {2(X − x0)2 + 2(Y − y0)2 ≤ ε2}.

(Notice the cancellation of (X − x0)(Y − y0) terms.) That is D is a ball
of radius ε/

√
2 centered at (x0, y0), with area πε2/2, which is half the area

of ∆. Now we can calculate.

P{(S, T ) ∈ ∆} = P{(X,Y ) ∈ D}
≈ (area of D)× f(x0, y0)

= 1
2(area of ∆)× f

(
s0 + t0

2
,
s0 − t0

2

)

It follows that (S, T ) has joint density g(s, t) = 1
2f

(
s+ t

2
,
s− t

2

)
. �

<11.4> Example. Suppose X and Y have a jointly continuous distribution with
joint density f(x, y). For constants a, b, c, d, define U = aX + bY and
V = cX + dY . Find the joint density function ψ(u, v) for (U, V ), under
the assumption that the quantity κ = ad− bc is nonzero.

In matrix notation,

(U, V ) = (X, Y )A where A =

(
a c
b d

)
.
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Notice that detA = ad− bc = κ. The assumption that κ 6= 0 ensures that A
has an inverse:

A−1 =
1

κ

(
d −c
−b a

)
That is, if (u, v) = (x, y)A then

du− bv
κ

= x and
−cu+ av

κ
= y.

Notice that det
(
A−1

)
= 1/κ = 1/(detA).

Consider a small rectangle ∆ = {u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}, for
(u0, v0) in the (U, V )-plane and small, positive δ and ε. The joint density
function ψ(u, v) is characterized by the property that

P{(U, V ) ∈ ∆} ≈ ψ(u0, v0)δε

The event {(U, V ) ∈ ∆} is equal to some event {(X,Y ) ∈ D}. The
linear transformation A−1 maps parallel straight lines in the (U, V )-plane
into parallel straight lines in the (X,Y )-plane. The region D must be a
parallelogram. We have only to determine its vertices, which correspond
to the four vertices of the rectangle ∆. Define vectors α1 = (d,−c)/κ and
α2 = (−b, a)/κ, which correspond to the two rows of the matrix A−1. Then
D has vertices:

(x0, y0) = (u0, v0)A−1 = u0α1 + v0α2

(x0, y0) + δα1 = (u0 + δ, v0)A−1 = (u0 + δ)α1 + v0α2

(x0, y0) + εα2 = (u0, v0 + ε)A−1 = u0α1 + (v0 + ε)α2

(x0, y0) + δα1 + εα2 = (u0 + δ, v0 + ε)A−1 = (u0 + δ)α1 + (v0 + ε)α2

(u0+δ,v0+ε)

(x0,y0)
(u0,v0)

(U,V)-plane(X,Y)-plane

Δ
D (x0,y0)+δα1

(x0,y0)+εα2

(x0,y0)+δα1+εα2

From the formula in the Appendix to this Chapter, the parallelogram D
has area equal to δε times the absolute value of the determinant of the
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matrix with rows α1 and α2. That is,

area of D = δε|det(A−1)| = δε

|detA|
.

In summary: for small δ > 0 and ε > 0,

ψ(u0, v0)δε ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ D}
≈ (area of D)f(x0, y0)

≈ δεf(x0, y0)/|det(A)|.

It follows that (U, V ) have joint density

ψ(u, v) =
1

| detA|
f(x, y) where (x, y) = (u, v)A−1.

On the right-hand side you should substitute (du− bv) /κ for x and (−cu+ av) /κ
for y, in order to get an expresion involving only u and v. �

Remark. In effect, I have calculated a Jacobian by first principles.

<11.5> Example. Suppose X and Y are independent random variables, with X ∼
gamma(α) and Y ∼ gamma(β). Show that the random variables U =
X/(X + Y ) and V = X + Y are independent, with U ∼ beta(α, β) and
V ∼ gamma(α+ β).

The random variables X and Y have marginal densities

g(x) = xα−1e−x1{x > 0}/Γ(α) and h(y) = yβ−1e−y1{y > 0}/Γ(β)

From Example <11.2>, they have a jointly continuous distribution with joint
density

f(x, y) = g(x)h(y) =
xα−1e−xyβ−1e−y

Γ(α)Γ(β)
1{x > 0, y > 0}.

We need to find the joint density function ψ(u, v) for the random vari-
ables U = X/(X + Y ) and V = X + Y . The pair (U, V ) takes values in the
strip defined by {(u, v) ∈ R2 : 0 < u < 1, 0 < v < ∞}. The joint density
function ψ can be determined by considering corresponding points (x0, y0)
in the (x, y)-quadrant and (u0, v0) in the (u, v)-strip for which

u0 = x0/(x0 + y0) and v0 = x0 + y0,
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that is,

x0 = u0v0 and y0 = (1− u0)v0.

u0 u0+δ

(x0,y0)

v0+ε

v0
ΔD

(X,Y)-quadrant (U,V)-strip

1

When (U, V ) lies near (u0, v0) then (X,Y ) lies near the point (x0, y0) =
(u0v0, v0(1−u0)). More precisely, for small positive δ and ε, there is a small
region D in the (X,Y )-quadrant corresponding to the small rectangle

∆ = {(u, v) : u0 ≤ u ≤ u0 + δ, v0 ≤ v ≤ v0 + ε}

in the (U, V )-strip. That is, {(U, V ) ∈ ∆} = {(X,Y ) ∈ D}. The set D is not
a parallelogram but it is well approximated by one. For small perturbations,
the map from (u, v) to (x, y) is approximately linear. First locate the points
corresponding to the corners of ∆, under the maps x = uv and y = v(1−u):

(u0, v0) 7→ (x0, y0)

(u0 + δ, v0) 7→ (x0, y0) + δ(v0,−v0)

(u0, v0 + ε) 7→ (x0, y0) + ε(u0, 1− u0).

The fourth vertex, (u0 + δ, v0 + ε) corresponds to the point (x, y) with

x = (u0 + δ)(v0 + ε) = u0v0 + δv0 + εu0 + δε

y = (v0 + ε)(1− u0 − δ) = v0u0 + ε(1− u0)− δv0 − δε
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Put another way,

(u0, v0) 7→ (x0, y0)

(u0, v0) + (δ, 0) 7→ (x0, y0) + (δ, 0)J

(u0, v0) + (0, ε) 7→ (x0, y0) + (0, ε)J

(u0, v0) + (δ, ε) 7→ (x0, y0) + (δ, ε)J + smaller order terms

where

J =

(
v0 −v0

u0 1− u0

)
.

You might recognize J as the Jacobian matrix of partial derivatives
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v


evaluated at (u0, v0).

The region D is approximately a parallelogram, with the edges oblique
to the coordinate axes. To a good approximation, the area of D is equal to
δε times the area of the parallelogram with corners at

(0, 0), a = (v0,−v0), b = (u0, 1− u0), a + b,

which, from the Appendix to this Chapter, equals |det(J)| = v0.
The rest of the calculation of the joint density ψ for (U, V ) is easy:

δεψ(u0, v0) ≈ P{(U, V ) ∈ ∆}
= P{(X,Y ) ∈ R}

≈ f(x0, y0)(area of D) ≈ xα−1
0 e−x0

Γ(α)

yβ−1
0 e−y0

Γ(β)
δ ε v0

Substitute x0 = u0v0 and y0 = (1−u0)v0 to get the joint density at (u0, v0):

ψ(u0, v0) =
uα−1

0 vα−1
0 e−u0v0

Γ(α)

(1− u0)β−1vβ−1
0 e−v0+u0v0

Γ(β)
v0

=
uα−1

0 (1− u0)β−1

B(α, β)
× vα+β−1

0 e−v0

Γ(α+ β)
× Γ(α+ β)B(α, β)

Γ(α)Γ(β)
.
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Once again the final constant must be equal to 1, which gives the identity

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

The joint density factorizes; the random variables U and V are indepen-
dent, with U ∼ Beta(α, β) and V ∼ gamma(α+ β). �

Remark. The fact that Γ(1/2) =
√
π also follows from the equality

Γ(1/2)Γ(1/2)

Γ(1)
= B(1/2, 1/2)

=

∫ 1

0

t−1/2(1− t)−1/2 dt put t = sin2(θ)

=

∫ π/2

0

1

sin(θ) cos(θ)
2 sin(θ) cos(θ) dθ = π.

<11.6> Example. If X1, X2, . . . , Xk are independent random variables, with Xi

distributed gamma(αi) for i = 1, . . . , k, then

X1 +X2 ∼ gamma(α1 + α2),

X1 +X2 +X3 = (X1 +X2) +X3 ∼ gamma(α1 + α2 + α3)

X1 +X2 +X3 +X4 = (X1 +X2 +X3) +X4 ∼ gamma(α1 + α2 + α3 + α4)

. . .

X1 +X2 + · · ·+Xk ∼ gamma(α1 + α2 + · · ·+ αk)

A particular case has great significance for Statistics. Suppose Z1, . . . Zk
are independent random variables, each distributed N(0,1). You know that
the random variables Z2

1/2, . . . , Z
2
k/2 are independent gamma(1/2) distributed

random variables. The sum

(Z2
1 + · · ·+ Z2

k)/2

must have a gamma(k/2) distribution with density tk/2−1e−t1{0 < t}/Γ(k/2).
It follows that the sum Z2

1 + · · ·+ Z2
k has density

(t/2)k/2−1e−t/21{0 < t}
2Γ(k/2)

.

This distribution is called the chi-squared on k degrees of freedom, usually
denoted by χ2

k. The letter χ is a lowercase Greek chi. �
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<11.7> Example. Here are the bare bones of the polar coordinates way of manufac-
turing two independent N(0, 1)’s. Start with independent random variables
U ∼ Uniform(0, 2π) and W ∼ gamma(1) (a.k.a. standard exponential). De-
fine R =

√
2W and X = R cos(U) and Y = R sin(U). Calculate the density

for R as

g(r) = r exp(−r2/2)1{r > 0}.

For 0 < θ0 < 1 and r0 > 0, and very small δ > 0 and ε > 0, check that the
region

D = {(u, r) ∈ (0, 1)× (0,∞) : θ0 ≤ U ≤ θ0 + δ, r0 ≤ r ≤ r0 + ε}

corresponds to the region ∆ in the (X,Y )-plane that is bounded by circles of
radius r0 and r0 +ε and by radial lines from the origin at angles θ0 and θ0 +δ
to the horizontal axis. The area of ∆ is approximately 2πr0εδ.

Deduce that the joint density f for (X,Y ) satisfies

2πr0εδf(x0, y0) ≈ εg(r0)
δ

2π
where x0 = r0 cos(θ0), y0 = r0 sin(θ0)

That is,

f(x, y) =
g(r)

2πr
where x = r cos(θ), y = r sin(θ)

=
1

2π
exp

(
−1

2
(x2 + y2)

)
.

The random variablesX and Y are independent, with each distributedN(0, 1).
�

11.3 Appendix: area of a parallelogram

Let R be a parallelogram in the plane with corners at 0 = (0, 0), and a =
(a1, a2), and b = (b1, b2), and a + b. The area of R is equal to the absolute
value of the determinant of the matrix

J =

(
a1 a2

b1 b2

)
=

(
a
b

)
.

That is, the area of R equals |a1b2 − a2b1|.
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Proof Let θ denotes the angle between a and b. Remember that

‖a‖ × ‖b‖ × cos(θ) = a · b

The area of R is twice the area of the triangle with vertices at 0, a,
and b. The triangle has area

1
2(base length) × (height) = 1

2 ‖a‖ × (‖b‖ × | sin θ|)

The square of the area of R equals

‖a‖2 ‖b‖2 sin2(θ) = ‖a‖2 ‖b‖2 − ‖a‖2 ‖b‖2 cos2(θ)

= (a · a)(b · b)− (a · b)2

= det

(
a · a a · b
a · b b · b

)
= det

(
JJ ′
)

= (det J)2 .

0

a

b

a+b

θ

If you are not sure about the properties of determinants used in the last
two lines, you should check directly that

(a2
1 + a2

2)(b21 + b22)− (a1b1 + a2b2)2 = (a1b2 − a2b1)2.

�
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