
Chapter 9

Poisson approximations

9.1 Overview

The Bin(n, p) can be thought of as the distribution of a sum of independent
indicator random variables X1 + · · · + Xn, with {Xi = 1} denoting a head
on the ith toss of a coin that lands heads with probability p. Each Xi has
a Ber(p) distribution. The normal approximation to the Binomial works
best when the variance np(1− p) is large, for then each of the standardized
summands (Xi−p)/

√
np(1− p) makes a relatively small contribution to the

standardized sum.
When n is large but p is small, in such a way that λ := np is not too large,

a different type of approximation to the Binomial is better. The traditional
explanation uses an approximation to

P{X = k} =

(
n

k

)
pk(1− p)n−k

for a fixed k. For a k that is small compared with n, consider the contribu-
tions

(
n
k

)
pk and (1− p)n−k separately.(
n

k

)
pk =

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k
= 1×

(
1− 1

n

)
× . . .

(
1− k − 1

n

)
λk

k!
≈ λk

k!

and

log(1− p)n−k = (n− k) log (1− λ/n) ≈ n (−λ/n) .
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9. Poisson approximations 2

That is, (1− p)n−k ≈ e−λ. Together the two approximations give(
n

k

)
pk(1− p)n−k ≈ λk

k!
e−λ.

For large k, both P{X = k} and p′k := e−λλk/k! are small. The p′k define a
new distribution.

Definition. A random variable Y is said to have a Poisson distribution
with parameter λ if it can take values in N0, the set of nonnegative integers,
with probabilities

P{Y = k} =
e−λλk

k!
for k = 0, 1, 2, . . .

The parameter λmust be positive. The distribution is denoted by Poisson(λ).

That is , for λ = np not too large, the Bin(n, p) is (well?) approximated
by the Poisson(λ).

Remark. Counts of rare events—such as the number of atoms under-
going radioactive decay during a short period of time, or the number of
aphids on a leaf—are often modeled by Poisson distributions, at least
as a first approximation.

The Poisson inherits several properties from the Binomial. For example,
the Bin(n, p) has expected value np and variance np(1 − p). One might
suspect that the Poisson(λ) should therefore have expected value λ = n(λ/n)
and variance λ = limn→∞ n(λ/n)(1 − λ/n). Also, the coin-tossing origins
of the Binomial show that if X has a Bin(m, p) distribution and Y has a
Bin(n, p) distribution independent of X, then X + Y has a Bin(n + m, p)
distribution. Putting λ = mp and µ = np one might then suspect that the
sum of independent Poisson(λ) and Poisson(µ) distributed random variables
is Poisson(λ+ µ) distributed. These suspicions are correct.

Example <9.1> IfX has a Poisson(λ) distribution, then EX = var(X) =
λ. If also Y has a Poisson(µ) distribution, and Y is independent of X, then
X + Y has a Poisson(λ+ µ) distribution.

There is a clever way to simplify some of the calculations in the last
Example using generating functions, a way to code all the Poisson prob-
abilities into a single function on [0, 1].
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Example <9.2> Calculate moments of the Poisson(λ) distribution using
its generating function.

9.2 A more precise Poisson approximation

Modern probability methods have improved this rough approximation of
the Binomial by the Poisson by giving useful upper bounds for the error of
approximation. Using a technique known as the Chen-Stein method one
can show that

dTV (Bin(n, p),Poisson(np)) :=
1

2

∑
k≥0

∣∣∣P{S = k}−e−λλ
k

k!

∣∣∣ ≤ min
(
p, np2

)
,

which makes precise the traditional advice that the Poisson approximation
is good “when p is small and np is not too big”. (In fact, the tradition was
a bit conservative.)

Remark. The quantity dTV (P,Q) is called the total variation
distance between two probabilities P and Q. It is also equal to
maxA |PA − QA| where the maximum runs over all subsets A of
the set where both P and Q are defined. For P = Bin(n, p) and
Q = Poisson(np), the A runs over all subsets of the nonnegative
integers.

The Chen-Stein method of approximation also works in situations where
the rare events do not all have the same probability of occurrence. For
example, suppose S = X1 + X2 + · · · + Xn, a sum of independent random
variables where Xi has a Ber(pi) distribution, for constants p1, p2, . . . , pn
that are not necessarily all the same. The sum S has expected value λ =
p1 + · · ·+ pn. Using Chen-Stein it can also be shown that that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ min

(
1,

1

λ

)∑n

i=1
p2i .

The Chen-Stein method of proof is elementary—in the sense that it
makes use of probabilistic techniques only at the level of Statistics 241—but
extremely subtle. See Barbour et al. (1992) for an extensive discussion of
the method.
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9.3 Poisson approximations under dependence

The Poisson approximation also applies in many settings where the trials are
“almost independent”, but not quite. Again the Chen-Stein method delivers
impressively good bounds on the errors of approximation. For example, the
method works well in two cases where the dependence takes an a simple
form.

Once again suppose S = X1 + X2 + · · · + Xn, where Xi has a Ber(pi)
distribution, for constants p1, p2, . . . , pn that are not necessarily all the same.
Often Xi is interpreted as the indicator function for success in the ith in
some finite set of trials. Define S−i = S − Xi =

∑
1≤j≤n I{j 6= i}Xj . The

random variables X1, . . . , Xn are said to be positively associated if

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and k = 0, 1, 2, . . .

and negatively associated if

P{S−i ≥ k | Xi = 1} ≤ P{S−i ≥ k | Xi = 0} for each i and k = 0, 1, 2, . . . .

Intuitively, positive association means that success in the ith trial makes suc-
cess in the other trials more likely; negative association means that success
in the ith trial makes success in the other trials less likely.

With some work it can be shown (Barbour et al., 1992, page 20) that

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ min

(
1,

1

λ

)
×{(

var(S)− λ+ 2
∑n

i=1 p
2
i

)
under positive association

(λ− var(S)) under negative association
.

These bounds take advantage of the fact that var(S) would be exactly equal
to λ if S had a Poisson(λ) distribution.

The next Example illustrates both the classical approach and the Chen-
Stein approach (via positive association) to deriving a Poisson approxima-
tion for a matching problem.

Example <9.3> Poisson approximation for a matching problem: assign-
ment of n letters at random to n envelopes, one per envelope.
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9.4 Examples for Chapter 9

<9.1> Example. If X has a Poisson(λ) distribution, then EX = var(X) = λ. If
also Y has a Poisson(µ) distribution, and Y is independent of X, then X+Y
has a Poisson(λ+ µ) distribution.

Assertion (i) comes from a routine application of the formula for the
expectation of a random variable with a discrete distribution.

EX =
∑∞

k=0
kP{X = k} =

∑∞

k=1
k
e−λλk

k!
What happens to k = 0?

= e−λλ
∞∑

k−1=0

λk−1

(k − 1)!

= e−λλeλ

= λ.

Notice how the k cancelled out one factor from the k! in the denominator.
If I were to calculate E(X2) in the same way, one factor in the k2 would

cancel the leading k from the k!, but would leave an unpleasant k/(k − 1)!
in the sum. Too bad the k2 cannot be replaced by k(k− 1). Well, why not?

E(X2 −X) =
∞∑
k=0

k(k − 1)P{X = k}

= e−λ
∞∑
k=2

k(k − 1)
λk

k!
What happens to k = 0 and k = 1?

= e−λλ2
∞∑

k−2=0

λk−2

(k − 2)!
= λ2.

Now calculate the variance.

var(X) = E(X2)− (EX)2 = E(X2 −X) + EX − (EX)2 = λ.

For assertion (iii), first note that X + Y can take only values 0, 1, 2 . . . .
For a fixed k in this range, decompose the event {X + Y = k} into disjoint
pieces whose probabilities can be simplified by means of the independence
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9. Poisson approximations 6

between X and Y .

P{X + Y = k} =

P{X = 0, Y = k}+ P{X = 1, Y = k − 1}+ · · ·+ P{X = k, Y = 0}
= P{X = 0}P{Y = k}+ · · ·+ P{X = k}P{Y = 0}

=
e−λλ0

0!

e−µµk

k!
+ · · ·+ e−λλk

k!

e−µµ0

0!

=
e−λ−µ

k!

(
k!

0!k!
λ0µk +

k!

1!(k − 1)!
λ1µk−1 + · · ·+ k!

k!0!
λkµ0

)
=
e−λ−µ

k!
(λ+ µ)k.

The bracketed sum in the second last line is just the binomial expansion of
(λ+ µ)k. �

Remark. How do you interpret the notation in the last calculation
when k = 0? I always feel slightly awkward about a contribution from
k − 1 if k = 0.

<9.2> Example. There is a sneakier way to calculate EXm for m = 1, 2, . . . when
X has a Poisson(λ) distribution. Code the whole distribution into a function
(the probability generating function) of a dummy variable s:

g(s) := EsX =
∑

k≥0
ske−λ

λk

k!
= e−λ

∑
k≥0

(sλ)k

k!
= e−λeλs.

Given g, the individual probabilities P{X = k} could be recovered by ex-
panding the function as a power series in s.

Other facts about the distribution can also be obtained from g. For
example,

d

ds
g(s) = lim

h→0
E
(

(s+ h)X − sX

h

)
= E

∂

∂s
sX = EXsX−1

and, by direct calculation, g′(s) = e−λλeλs. Put s = 1 in both expressions
to deduce that EX = g′(1) = λ.

Similarly, repeated differentiation inside the expectation sign gives

g(m)(s) =
∂m

∂sm
E(sX) = E

(
X(X − 1) . . . (X −m+ 1)sX−m

)
,

and direct differentiation of g gives g(m)(s) = e−λλmeλs. Again put s = 1
to deduce that

λm = g(m)(1) = E
(
X(X − 1) . . . (X −m+ 1)

)
for m = 1, 2, . . .

�
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<9.3> Example. Suppose n letters are placed at random into n envelopes, one
letter per envelope. The total number of correct matches, S, can be written
as a sum X1 + · · ·+Xn of indicators,

Xi =
{

1 if letter i is placed in envelope i,
0 otherwise.

The Xi are dependent on each other. For example, symmetry implies that

pi = P{Xi = 1} = 1/n for each i

and

P{Xi = 1 | X1 = X2 = · · · = Xi−1 = 1} =
1

n− i+ 1

Remark. If we eliminated the dependence by relaxing the requirement
of only one letter per envelope, the number of letters placed in the
correct envelope (possibly together with other, incorrect letters)
would then have a Bin(n, 1/n) distribution, which is approximated by
Poisson(1) if n is large.

We can get some supporting evidence for S having something close to a
Poisson(1) distribution under the original assumption (one letter per enve-
lope) by calculating some moments.

ES =
∑

i≤n
EXi = nP{Xi = 1} = 1

and

ES2 = E

X2
1 + · · ·+X2

n + 2
∑
i<j

XiXj


= nEX2

1 + 2

(
n

2

)
EX1X2 by symmetry

= nP{X1 = 1}+ (n2 − n)P{X1 = 1, X2 = 1}

=

(
n× 1

n

)
+ (n2 − n)× 1

n(n− 1)

= 2.

Thus var(S) = ES2 − (ES)2 = 1. Compare with Example <9.1>, which
gives EY = 1 and var(Y ) = 1 for a Y distributed Poisson(1).
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Using the method of inclusion and exclusion, it is possible (Feller,
1968, Chapter 4) to calculate the exact distribution of the number of correct
matches,

P{S = k} =
1

k!

(
1− 1

1!
+

1

2!
− 1

3!
− · · · ± 1

(n− k)!

)
for k = 0, 1, . . . , n.

For fixed k, as n→∞ the probability converges to

1

k!

(
1− 1 +

1

2!
− 1

3!
− . . .

)
=
e−1

k!
,

which is the probability that Y = k if Y has a Poisson(1) distribution.
The Chen-Stein method is also effective in this problem. I claim that it

is intuitively clear (although a rigorous proof might be tricky) that the Xi’s
are positively associated:

P{S−i ≥ k | Xi = 1} ≥ P{S−i ≥ k | Xi = 0} for each i and each k ∈ N0.

I feel that if Xi = 1, then it is more likely for the other letters to find their
matching envelopes than if Xi = 0, which makes things harder by filling one
of the envelopes with the incorrect letter i. Positive association gives

1

2

∑
k≥0

∣∣∣P{S = k} − e−λλ
k

k!

∣∣∣ ≤ 2
∑n

i=1
p2i + var(S)− 1 = 2/n.

As n gets large, the distribution of S does get close to the Poisson(1) in the
strong, total variation sense. �
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